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We show that in hidden local symmetry theory with the vector manifestation (VM), a K� can be
bound to skyrmion to give an exotic baryon that has the quantum numbers of the �� pentaquark with
spin 1=2 and even parity which is consistent with large Nc counting. The vector meson K� subject to the
VM in the chiral limit plays an essential role in inducing the binding.
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The discovery of a �� baryon [1] with a mass of
1540 MeV and with a narrow width less than 25 MeV is
one of the most exciting events in recent hadron physics.
It is an interesting exotic state that cannot be simply made
of three quarks as the other baryons. The existence of
such an exotic state has been anticipated also in various
models [2]. Among them, the most precise predictions for
the mass and the width were made in the SU(3) chiral
soliton model by Diakonov, Petrov, and Polyakov [3].
There, it is postulated that the N�1710� state is the
Y � 1 member of the 10 and then the mass formula
coming from the SU(3) rigid rotator quantization of the
Skyrme model is used to predict the other members such
as the isosinglet �� and the isoquartet �’s in this mul-
tiplet. The predicted mass and width of �� are surpris-
ingly close to the experimental data.

On the other hand, the large strange quark mass com-
pared with the two nonstrange light-quark masses renders
the SU(3) rigid rotor quantization problematic and, in
particular, for the exotic state, it has been argued [4–6]
that its excitation energy of order N0

c is inconsistent with
the scale separation needed to justify collective coordi-
nate quantization. Since the Skyrme model is considered
to be a valid description of the baryons in the large-
number-of-colors (Nc) limit, such an Nc inconsistency
could be a severe defect although the results are satisfac-
tory phenomenologically. In Ref. [5], it has even been
argued that the collective exotic states cannot be the
genuine prediction at large Nc. This argument was given
a further support by an exactly solvable model [7].

The objective of this paper is to show that the bound
state approach first proposed by Callan and Klebanov
[4,8] for the nonexotic S � �1 hyperons, in which the
fluctuations in the strangeness direction are of order N0

c
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of freedom are of order 1=Nc with a rotational character,
can be suitably applied to hidden local symmetry
Lagrangian [9,10] to obtain a bound or quasibound K�

soliton having the quantum numbers of the exotic
pentaquarks.

In fact, Itzhaki et al. [11,12] recently studied this
K�-soliton system using the usual three-flavor Skyrme
Lagrangian consisting of the octet pseudo-Goldstone
fields and arrived at the conclusion that with the parame-
ters appropriate for the S � �1 hyperons, the repulsive
Wess-Zumino (WZ) term for the K� channel prevented
the binding and there can at best be a near-threshold S �
�1 bound state —which can be quantized to I � 0, JP �
1=2� pentaquark state —only when the SU(3) symmetry
is strongly broken and the strength of the WZ term is
reduced. However, in contrast to the S � �1 case where
the bound state approach and the rigid rotator approach
match consistently to each other with the bound state
turning into the rotor zero mode, the absence of the S �
�1 bound state in the SU(3) symmetric limit raises a
serious question on the validity of the rigid rotor approach
where S � �1 exotic states come out independent of the
strange quark mass. Our study reaches a similar conclu-
sion in the chiral limit.

In this work, we show that when vector mesons are
incorporated into the chiral Lagrangian as was done in
[13], a dramatic change can take place in the structure of
the S � �1 skyrmions. In particular, we will see that the
hidden local symmetry (HLS) theory [9] endowed with
the vector manifestation (VM) as formulated recently by
Harada and Yamawaki [10] can render under certain
conditions that are not unreasonable the K� meson bound
to an SU(2) skyrmion à la Callan and Klebanov to give a
state with the quantum numbers of the ��. The crucial
element in the treatment is that the vector mesons need to
figure explicitly with the VM since as will be clarified
below, the role of the vector mesons becomes more promi-
nent for the K�-nucleon interactions. There are qualita-
tively two important mechanisms at work in arriving at
our result. First, the vector meson K� exerts a level
-1  2004 The American Physical Society
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repulsion from above, thereby weakening the ‘‘pushing-
up’’ effect of the repulsive WZ term for the S � �1 kaon
state. Next, the explicit vector degrees of freedom with
masses subject to the VM [10] soften the contact interac-
tion terms between the pseudoscalars, reducing the
strength of the WZ term. That vector mesons are impor-
tant for bound pentaquarks for heavy flavors has been
understood for some time [14]: This is intimately con-
nected with heavy-quark symmetry. The significant new
element in our theory is that theVM to which HLS theory
flows as the spontaneously broken chiral symmetry is
restored renders feasible a systematic chiral perturbation
calculation with the vector mesons treated on the same
footing as the pseudo-Goldstone bosons [10]. A striking
case in support of this argument is the recent analysis of
the chiral doublers in light-heavy-quark hadrons starting
from the VM fixed point and taking into account small
deviations from the VM in low order perturbation theory
confirms that the VM is not too far from nature [15].

To bring out the above points in the simplest form, we
consider the HLS Lagrangian for three flavors [9] with
only the relevant degrees of freedom retained. The nor-
mal part of the Lagrangian will be taken in the form

L �
f2�
4
fTr�D�L

y
L �D�R

y
R�

2 � Tr�M�y
LR

� y
RL � 2�� � aTr�D�L

y
L �D�R

y
R�

2g

�
1

2g2
TrF��F��; (1)

where y
LR � U 2 SU�3� describes the pseudoscalar oc-

tets with masses M � diag�m2
�;m

2
�;m

2
K�, and the cova-

riant derivatives are defined as D� � @� � iV� with the
vector meson nonets V� taken as hidden gauge fields
(with the ! included as the isosinglet vector meson).
F�� � D�V� �D�V� is the field strength tensor. The
constant a which will play a crucial role in our work
represents the ratio �f�=f��2 where f� is the decay con-
stant of the scalar field that gets ‘‘eaten up’’ to give the
vector meson mass and f� is the pion decay constant, the
empirical value of which is 93 MeV.

We shall take the anomalous part of the Lagrangian
which plays a key role in our treatment in the form

L an � L0
WZ � 10C�L1 �L2�; (2)

where L0
WZ comes from the five-dimensional Wess-

Zumino action that we shall refer to as ‘‘irreducible’’
WZ term and we have chosen only a special combination
of two terms among four general homogeneous solutions
of the anomaly equation of Ref. [16]. Other choices are
found not to affect the essential feature of our results.
Explicitly, they are

L 1 � "����Tr�L�L�L�R� � R�R�R�L��; (3)

and
114026
L 2 � "����Tr�L�R�L�R�� (4)

with L��R�� � D�L�R�
y
L�R� and C � �iNc=240�2.

This particular combination of the homogeneous solu-
tions makes the amplitude of the five-pseudoscalar
process K��k�� � K��k�� ! ���q�����q�����q0� en-
tirely given by �0

WZ in the chiral limit to be consistent
with QCD anomaly [17].

The basic premise of the Harada-Yamawaki approach is
that the parameters of the Lagrangian are to be deter-
mined à la Harada-Yamawaki [10] by matching the ef-
fective theory (via, e.g., correlators) to QCD at a
matching scale � near the chiral scale �4�f� �
1 GeV. Physical quantities such as the masses and cou-
pling constants of the fluctuating fields are obtained by
doing loop calculations with the Lagrangian. This means
that not all the parameters that figure for the soliton
justified at the large Nc limit are physical ones. The
quantum corrections are generically suppressed by 1=Nc
factors. Now what figures the most importantly for our
problem is the parameter a which ranges between 1 and 2
in nature. The vector meson mass arising from Higgsing
in HLS theory is m2

V � ag2f2�.
At the VM fixed point, a � 1. The Harada-Yamawaki

study shows that in the large Nc limit, a is �1:3 but at the
scale corresponding to the on-shell vector meson, loop
corrections make a approach 2 at which point the vector
meson dominance is exact [18]. On the other hand, there is
a compelling indication that in the background of bar-
yonic matter, a is close to 1 with the vector dominance
maximally violated [19] even though the gauge coupling
g departs from the VM fixed-point value. Following the
modern literature [20], we call this point with a � 1 and
g � 0 ‘‘Georgi vector limit’’ (GVL). This indicates that
the range of mass parameters that would figure in the
soliton and in fluctuations in the strangeness direction
would be that which is closer to 1. It is intriguing that a
detailed analysis [10,18] indicates that a � 2 is ‘‘acciden-
tal’’ and nature is closer to one —the (GVL)—with the
vector dominance violated maximally although other
parameters (such as f�) are subject to significant quan-
tum corrections. It is also intriguing that on a much more
fundamental level, a � 1 represents the ‘‘theory-space
locality’’ in the little Higgs mechanism for the ��-�0

electromagnetic mass difference [20,21]. Thus our focus
then will be the property of the soliton for a in the
vicinity of 1.

For comparison with the work of Itzhaki et al. [11],
we consider also the limit —which is artificial in
the model—where a ! 1 while keeping the
Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF)
relation with the parameters f� and g fixed finite. Then,
the second term in the Lagrangian (1) containing a gives
constraints on the vector meson octets as V1

� � �v�

and on the isoscalar ! as !1
� � � Ncg

2m2
v
B�, where
-2



KAON-SOLITON BOUND STATE APPROACH TO THE. . . PHYSICAL REVIEW D 70, 114026 (2004)
B� � �1=3�2�"����Tr�a
�a�a�� and v��a�� �

1
2 �

�L� � ���R��. If the vector mesons are integrated out
by using these constraints, the Lagrangian (1) + (2)
reduces to the Lagrangian for the pseudoscalars with
the quartic Skyrme term and a special sixth order deriva-
tive term. All the interactions between the pseudoscalars
mediated by the vector mesons then become contact
terms in the heavy mass limit.

The first step of the bound state approach is to find the
static B � 1 soliton solutions U�0�� ~r� and V�

�0�� ~r� in the
nonstrangeness sector. Next, the fluctuations on top of the
classical soliton configuration in the strangeness direc-
tion— corresponding to O�1�—can be incorporated
114026
through the ansatz [13]

y
L � 0

�������
UK

p
; R �

�������
UK

p
0; (5)

so that y
LR becomes the Callan-Klebanov ansatz

0UK0 and

V� � V�0�
� �

g
2

0
���
2

p
K�

����
2

p
K�y

� 0

 !
: (6)

Substituting this ansatz into the Lagrangian and keeping
the terms to second order in the fluctuating fields, we
obtain
L � �D�0�
� K�yD�0��K �m2

KK
yK �

1

2
m2

��1� cosF�KyK � Kya�0�� a��0�K �
a
2
Trf�v�0�

� � iq�0�� ��K�D�0�
� K�y �D�0�

� KKy�g

� af2�g2
�

1

gf�
a�0�� K � K�

�

�
y
�

1

gf�
a��0�K � K��

�
�

1

2
�K�y

��K��� � 2iK�y
� q���0�K�

��

�

�
iNc

4f2�

���
2

2
�

3

2

�
B��0���D�0�

� K�yK � KyD�0�
� K� � Ky

�
i
3g
2
!0B

�0�
0

�
K �

2gf�
3�2 (�����K�

�a
�0�
� a�0�� D�0�

� K

� �D�0�
� K�ya�0�� a�0�� K�

�� �
2

3�2 (
�����D�0�

� K�y�a�0�� ; �v�0�
� � iq�0�� ���D

�0�
� K

�
; (7)
K K K K K K
K*

ω

− 3
2

1
2

ω(0)

ω ∞
(0)

2
2

K ∗
µ

K ∗∞
µ

FIG. 1. Schematic illustration of the WZ-like terms due to
vector mesons in the Lagrangian (7). The baryon number
density is given by the three pion lines stemming from the
shaded area, i.e., the soliton. In the limit of infinitely heavy
meson masses, an exact cancellation takes place among the
three terms.
where K�
�� � D�0�

� K�
� �D�0�

� K�
�, and q�0��� � D�0�

� q�0�� �
D�0�

� q�0�� . Note that we have two kinds of covariant de-
rivatives, one with the induced vector fields v�0�

� , D�0�
� �

�@� � v�0�
� �, and the other with the vector meson back-

ground q�0�� , D�0�
� � �@� � iq�0�� �.

The key point of our approach is that the presence of K�

modifies especially the terms of first order in time de-
rivative, which distinguishes S � �1 fluctuations. It
should be recalled that in the model with pseudoscalars
only as in [8] such a term arises uniquely from the
irreducibleWess-Zumino term.We shall refer to the terms
that distinguish S � �1 fluctuations other than the irre-
ducible WZ term as ‘‘WZ-like terms.’’ In Eq. (7), we have
many such WZ-like terms. They originate not only from
the homogeneous Wess-Zumino term but also from
the covariant derivatives with the static ! configuration
as a gauge potential. The most striking result is that
in addition to the irreducible WZ term,
��iNc=4f

2
��B

��0���D�0�
� K�yK � KyD�0�

� K� � 2
2 , of the

Callan-Klebanov Lagrangian, there is an additional
term with a factor � 3

2 from the homogeneous part of
the anomalous Lagrangian (2). However, this does not
necessarily mean that the S � �1 fluctuation will now
feel an attractive interaction with the skyrmion. One can
easily check that when the vector mesons are integrated
out, the additional terms are exactly canceled by (i) the
term with the nonvanishing time component of q�0���0 (�
the classical ! configuration) in the third line of Eq. (7),
with the !�0� replaced by its infinite mass limit !1

�0�, and
(ii) the eighth line in Eq. (7), with K�

�’s replaced by their
infinite mass limit which can be read off from the fourth
line as

K�1
� �

�1

gf�
a�0�� K: (8)

The sources of the various terms that cancel in the infinite
mass limit are schematically illustrated in Fig. 1.

However, with finite vector meson masses as required
in HLS theory, the cancellation becomes imperfect. The
deviation of !�0� from its infinite mass limit !1

�0� is such
that h!�0�=!1

�0�i< 1 independently of fluctuations in the
strangeness direction. Thus, the incomplete cancellation
effectively reduces the net strength of the Wess-Zumino
attraction in the S � �1 channel, which was the motiva-
-3
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tion for introducing the vectors in Ref. [13] to solve the
over-binding problem for the hyperons in the Callan-
Klebanov model. What was not noticed in [13] was,
however, that the K�

� solution depends strongly on its
strangeness. In the case of the S � �1 fluctuation, the
closer it is to K�1

� , the more exact the cancellation among
the WZ-like terms becomes. Thus, the net strength of the
Wess-Zumino attraction becomes stronger approaching
the irreducible strength. As for the S � �1 fluctuation,
however, the opposite phenomenon takes place; the more
K�

� deviates from its infinite mass limit, the less cancel-
lation among the WZ-like terms occurs. The sum of the
irreducibleWess-Zumino term and theWZ-like terms can
then give an attraction although the fourth term in
the Lagrangian prevents K�

� from deviating too much
from K�1

� .
Now, our task is to solve the equations of motion for K

and K� moving in the background potentials provided by
the static soliton configuration sitting at the origin. This is
straightforward though tedious. Through the background
potentials, K and K� are strongly coupled. Since the
soliton solution is invariant only under the simultaneous
rotations in the spatial and isospin spaces, the eigenstates
are classified by their ‘‘grand spin’’ quantum number �
associated with the operator � � L� S� I, where L, S,
and I are the angular momentum, spin, and isospin
operators.

To have an initial idea, we first take the bare
Lagrangian obtained by Harada and Yamawaki [10] by
matching the effective field theory correlators to the QCD
ones at � � 1:1 GeV. The resulting parameters take the
values: f� � 145 MeV, g � 3:69, and a � 1:33. These
parameters reflect in some sense a ‘‘large’’ Nc limit and
hence differ from the physical values by the loop correc-
tions down by 1=Nc. We expect the soliton mass to be too
big compared with the physical mass of the nucleon
without O�N0

c� (e.g., Casimir) corrections (which of
course should be calculated) but what is relevant for us
is the effective mass of K� in the background of the
skyrmion. The calculation shows that the K� is indeed
bound. The binding energy turns out to be not appreciably
big, around 3 MeV, but the sign of the mass shift seems
robust.

Since nature seems to indicate that a is close to 1, it
would be interesting to be able to ‘‘dial’’ a toward 1 and
see how the system evolves. This operation is rather in-
tricate and nontrivial, however, because of various ‘‘con-
sistency conditions’’ associated with the VM as can be
seen in [10]. For instance, much of the low-energy hadron
dynamics can be understood with a set to its fixed-point
value 1 while the other parameters of the Lagrangian such
as g and f� depart from their fixed-point values. This
comes about because there are subtle connections be-
tween various parameters controlled by the fact that the
theory flows to the VM fixed point.
114026
We have not done this ‘‘self-consistent’’ calculation yet.
Since what we are mainly interested in is whether or not
the K�-soliton system can be bound, and under what
conditions, we shall simply fix all the model parameters
to the empirical values except for a which we vary: Nc �
3, f� � 93 MeV, m� � 140 MeV, mK � 495 MeV, and
g � 5:85. In interpreting our results, we should keep in
mind that we do have at our disposal at least two con-
straints. One is that the (leading Nc) bare Lagrangian of
Harada and Yamawaki mentioned above does give a
bound K�-soliton system. The other is that at a � 1,
chiral symmetry is realized with f� � f� where
h0jA�j�i � ip�f� and h0jV�j�i � ip�f�, so it is likely
that the coupling of the K�-soliton bound state to the KN
continuum is zero in the spirit of the arguments presented
in [22,23].

The solutions for the K�-soliton system we have so
obtained are summarized in Fig. 2. Plotted there are the
eigenenergies vs a of the bound states or the resonance
states found in S � �1, �P � 1

2
�; 32

� channels. The widths
of the resonance states in the kaon-soliton channel are
indicated by error bars, which, however, may not be
interpreted in the present form as the physical width of
the ��. Among others, the system should be (collective)
quantized for such an interpretation. We see in Fig. 2 that
the S � �1 states depend little on a for the relevant range
a � 1 (or as long as the corresponding mass parameter
mK� is larger than mK). This means that the structure of
the S < 0 states, well described with [13] or without [8]
vector mesons, will not be affected by the change in a.
There are two bound states stable against the change of a
which correspond, when quantized, to the normal S �
�1;�2 hyperons with positive parity or ��1405� with
negative parity and one bound state or narrow-width
-4
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resonance corresponding to ��1520� with negative parity.
On the other hand, the S � �1 state is extremely sensitive
to the value of a. Around a � 2, the S � �1, �P � 1

2
�

state could have a resonance state. The energy of the
resonance state is above the kaon mass but below the
mass of K�. Except for those near mK threshold, the
resonance states have much too large a width to be a
candidate for the ��. If a has the value around 1.3 as
appropriate in the large Nc limit [10] where mK� is com-
parable to mK, there can be a bound state or a sharp
resonance with very narrow width in the S � �1, �P �
1
2
� channel.

It is noteworthy that there is no low-lying S � �1,
�p � 3

2
� state in the model.

Similar results are obtained for any values of mK; that
is, there are always stable S � �1 bound states below mK
but for the S � �1 states the bound state or a resonance
state with narrow width are possible only when there is a
K� with mK� close to or even less than mK. This means
that to have a bound state or a narrow resonance, a
substantial modification of the vector meson mass in
the presence of the soliton is required. Whether or not
this can actually take place is not clear because of the
‘‘self-consistency’’ issue mentioned above. Since mK� is
nonzero except at the VM, there will be no bound or
narrow-width pentaquark state in the chiral limit and
hence our approach anchored on HLS/VM does not go
over to the rigid rotor picture even in that limit.

In summary, when the vector mesons are incorporated
à la Harada-Yamawaki HLS with theVM, a bound state or
a sharp resonance can arise in the Callan-Klebanov pic-
ture of pentaquark baryons for the range of values for a
implied by a variety of considerations, 1 & a & 1:4.
When quantized, it has the quantum numbers I � 0,
JP � 1

2
� of the �� pentaquark in question. Here, the

vector mesons play a very important role through a
simple mechanism of level repulsion which softens the
WZ terms. We have achieved this result without affecting
the successful description of the S < 0 hyperons [8,13].

Now the question is what our model can say about the
chiral soliton structure of the putative �� believed to be
seen in the kaon-nucleon channel. Within the given
scheme, the binding appears to be quite robust as long
as the value of a is near 1: It depends little on other
parameters of the theory as long as they are reasonable
for nonexotic baryons. However, whether the system is
bound or not is extremely sensitive to the value of a.
Suppose that a is such that the system is bound. When
the skyrmion is collective-quantized so that both �� and
114026
nucleon have the proper quantum numbers, the bound
K�-soliton system will turn into a bound state lying
below the KN threshold. This is clearly not the ��

resonance one is talking about. To the best of our knowl-
edge, such a bound state has not been seen in experiments.
This however does not necessarily mean that it does not
exist. It could be that the coupling to the kaon-nucleon
continuum is much too weak to produce such a state. On
the other hand, if the bound K�-soliton complex could
acquire additional mass by some— so far unknown—
repulsion mechanism, such that its mass lies above the
KN threshold, it then could produce a narrow-width
Feshbach-type resonance discussed by Jaffe and Jain
[24]. One could think of the bound K� soliton as an
analog of the bound diquark-antiquark state �ud�2 "s
viewed as a Castillejo-Dalitz-Dyson pole discussed in
[24] with the Pauli-blocking repulsion hypothesized in
[25] playing the role of the ‘‘unknown mechanism’’ in
our picture. At present, we have no idea how this repul-
sion can be implemented in our model.

A more plausible possibility is that a lies near 1.4 at
which a near-threshold resonance is formed. The width
for that resonance will be dictated by the O�N0

c� equation
of motion with higher order corrections strongly sup-
pressed, so it can be tiny as indicated in Fig. 2. To check
whether or not this description is viable will require the
collective quantization. Even if this can provide a de-
scription of the system, it will however be unsatisfactory
unless one can understand why a is ‘‘fine-tuned’’ to a
particular value. The answer may lie in understanding
why nature favors a near the Georgi vector limit value
a � 1 [20].

Finally, if the notions of HLS with VM and the soliton
structure for the pentaquarks are correct, since the
HLS/VM theory moves towards the VM fixed point as
matter density increases [26], in particular, as a quickly
approaches 1, the pentaquark would be definitely bound
in dense medium if it were only a resonance in free space.

The spectroscopy of the pentaquark multiplets is being
worked out and will be a subject of a forthcoming report,
together with details left out in this short article.
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