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I can live with doubt, and uncertainty, and not knowing. I think it’s much
more interesting to live not knowing than to have answers which might be

wrong. I have approximate answers, and possible beliefs, and different
degrees of certainty about different things, but I’m not absolutely sure of

anything.
– Richard P. Feynman
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ABSTRACT

Improving Uncertainty Estimation in Geophysical
Inversion Modelling

by Sebastian Schnaidt

Numerical inversion modelling is an integral part of geophysical data inter-
pretation. Growing computational resources are used to invert ever-growing
data sets and higher dimensional data. However, models without mean-
ingful uncertainty estimates are difficult to interpret reliably and limited
attention has been paid to the advancement of model quality estimation
techniques to keep up with the more sophisticated inversion schemes. The
employment of meaningful uncertainty estimation methods is often hin-
dered by the complicated implementation of those methods, and inadequate
model quality estimators are frequently used. This project was aimed at the
advancement of model uncertainty estimation, to enable a more common
use.

Two different approaches were developed, approaching the problem from
different directions:

Firstly, a bootstrap resampling approach for the qualitative estimation of
model uncertainties is presented. The algorithm is characterised by an easy
implementation and the fact that it can provide model quality estimation
capabilities to existing inversion algorithms without requiring access to the
inversion algorithm’s source code. A given data set is repeatedly resampled
to create multiple realisations of the data set. Each realisation is individu-
ally inverted and the variations between the generated models are analysed
and visualised to generate interpretable uncertainty maps. The capabilities
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ABSTRACT

of the approach are demonstrated using the example of synthetic and real
2-D magnetotellurics data.

Secondly, the multi-objective joint optimisation algorithm MOJO is pre-
sented, which aims to remedy the common shortcomings of classical joint
inversion approaches. Joint inversion modelling is a powerful tool to im-
prove model results and reduce the effects of data noise and solution non-
uniqueness. Nevertheless, the classic joint inversion approaches have a va-
riety of shortcomings, such as a dependency on the choice of data weights,
optimising only a single solution resulting in inadequate uncertainty esti-
mates, and the risk of model artefacts being introduced by the accidental
joint inversion of incompatible data. MOJO is based on the concept of
Pareto-optimality and treats each data set as a separate objective, avoid-
ing data-weighting. The algorithm generates solution ensembles, which are
statistically analysed to provide model uncertainty estimates. The shapes
and evolutions of the solutions ensemble’s distribution in objective space
is dependent on the level of compatibility between the data set. The solu-
tion distributions are compared against a theoretical solution distribution
corresponding to perfectly compatible data to estimate the compatibility
state of any given objective-pair, allowing to distinguish between compat-
ible and incompatible data, as well as identify data sets that are neither
mutually exclusive nor sensitive to common features. MOJO’s effectiveness
was demonstrated in extensive feasibility studies on synthetic data as well
as real data. The algorithm is adaptive and can be expanded to incorporate
a variety of different data types.

Additionally, ways were explored to make the communication of the mod-
elling results and the model quality estimates as clear and concise as pos-
sible, to allow the user to make an informed decision and avoid misinter-
pretations.

Thesis Supervisors: Prof. Dr. Graham Heinson, Dr. Stephan Thiel
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