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PHYSICAL REVIEW C, VOLUME 61, 025802
Strange nuclear matter within Brueckner-Hartree-Fock theory

I. Vidaña, A. Polls, and A. Ramos
Departament d’Estructura i Constituents de la Mate`ria, Universitat de Barcelona, E-08028 Barcelona, Spain

M. Hjorth-Jensen
Department of Physics, University of Oslo, N-0316 Oslo, Norway

V. G. J. Stoks
Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide SA 5005, Australia

~Received 10 September 1999; published 20 January 2000!

We have developed a formalism for microscopic Brueckner-type calculations of dense nuclear matter that
includes all types of baryon-baryon interactions and allows us to treat any asymmetry in the fractions of the
different species~n, p, L, S2, S0, S1, J2, and J0). We present results for the different single-particle
potentials, focusing on situations that can be relevant in future microscopic studies of beta-stable neutron star
matter with strangeness. We find that both the hyperon-nucleon and hyperon-hyperon interactions play a
non-negligible role in determining the chemical potentials of the different species.

PACS number~s!: 26.60.1c, 21.65.1f, 13.75.Ev, 21.30.2x
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I. INTRODUCTION

The properties and composition of dense matter at su
nuclear densities determine the static and dynamical be
ior of stellar matter@1–5#. The study of matter at extrem
densities and temperatures has received renewed interes
to the possibility of attaining such conditions in relativist
heavy-ion collisions at GSI, and in the near future at CER
and Brookhaven.

It is believed that at extremely high densities, deconfi
ment will take place resulting in a transition from hadronic
quark matter. The transition point and its characteristics w
depend crucially on the equation of state of matter in
hadronic phase. It is well known that the presence of stran
ness, in the form of hyperons~L,S! or mesons (K2), will
soften the equation of state and will delay the transiti
Most investigations up to date have been made in the fra
work of the mean field approach, either relativistic@6,7# or
nonrelativistic, with effective Skyrme interactions@8#. Mi-
croscopic theories, on the other hand, aim at obtaining
properties of hadrons in dense matter from the bare
space interaction. In this sense, Brueckner theory was de
oped a long time ago and successfully helped to unders
the properties of~nonstrange! nuclear matter starting from
interactions that reproduce a huge amount ofNN scattering
observables. A first attempt to incorporate strangeness in
form of hyperons within Brueckner theory was made in Re
@9,10#, the latter extended to investigations of beta-sta
nuclear matter@11#. A missing ingredient in these works wa
the hyperon-hyperon (YY) interaction and the results o
single-particle potentials or binding energy per baryon wit
finite amount of hyperons were simply orientative.

The recent availability of a baryon-baryon potential@12#
covering the complete SU~3!3SU~3! sector has allowed u
to incorporate theYY potential in a microscopic calculatio
of dense matter with nonzero hyperon fraction@13#. The in-
corporation of all possible baryon-baryon interactions
quired the solution of theG-matrix equation in coupled chan
nels for different strangeness sectors:NN (S50), YN (S5
0556-2813/2000/61~2!/025802~12!/$15.00 61 0258
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21), YY (S522,23, and24!. The work of Ref.@13# con-
centrated mainly on isospin-saturated systems, i.e., sys
with the same fraction of particles within the same isos
and strangeness multiplet:T51/2, S50 ~neutrons and pro-
tons!, T50, S521 ~L!, T51, S521 (S2,S0,S1), and
T51/2, S522 (J2,J0). In this way, the complications
associated with different Fermi seas for each species of
same isospin-strangeness multiplet were avoided and thG
matrix in each sector was independent of the third com
nent of isospin.

It is well known, however, that the presence of electro
causes nuclear star matter to be equilibrated against the w
b-decay reactions for neutron fractions much larger~a factor
of 10 or more! than that for protons@14–16#. Also, the in-
crease of negatively charged leptons with baryonic den
will turn into a decrease when the appearance of negativ
charged baryons becomes energetically more favorable.
is the case of theS2 hyperon, since neutralizing the proto
charge withS2 instead ofe2 will remove two energetic
neutrons (pS2↔nn) instead of one (pe2↔n). It is clear,
therefore, that a microscopic study ofb-stable nuclear matte
with hyperons requires the treatment of highly asymme
matter, both in the nonstrange sector~protons vs neutrons!
and the hyperonic one (S2 vs S0 and S1). In the present
paper we extend the study of Ref.@13# to allow for different
fractions of each species. We will also explore the effect
the recently availableYY interaction on the single-particle
potential of the hyperons, a crucial ingredient to determ
the baryonic density at which the different hyperons appe
Our aim is to present a thorough analysis of the propertie
the different baryons in dense matter, taking into acco
their mutual interactions. We will explore different baryon
densities and compositions that are relevant in the stud
neutron stars.

II. FORMALISM

In this section we present the formalism to obtain, in t
Brueckner-Hartree-Fock approximation, the single-parti
©2000 The American Physical Society02-1
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energies ofn, p, L, S2, S0, S1, J2, andJ0 embedded in
an infinite system composed of different concentrations
such baryons. We first construct effective baryon-bary
(BB) interactions~G matrices! starting from new realistic
bareBB interactions, which have become recently availa
for different strangeness channels@12#.
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A. Effective BB interaction

The effectiveBB interaction orG matrix is obtained from
the bareBB interaction by solving the corresponding Beth
Goldstone equation, which in partial wave decomposit
and using the quantum numbers of the relative and cen
of-mass motion~RCM! reads
^~B3B4!k9KL9S9~J!T,MTuG~v!u~B1B2!kKLS~J!TMT&

5^~B3B4!k9KL9S9~J!TMTuVu~B1B2!kKLS~J!TMT&1(
L8

(
S8

(
BB̃

E k82dk8^~B3B4!k9KL9S9~J!

3TMTuVu~BB̃!k8KL8S8~J!TMT&
Q̄BB̃~k8,K;T,MT!

v2
K2

2~MB1MB̃!
2

k82~MB1MB̃!

2MBMB̃

2MB2MB̃1 ih

^~BB̃!k8KL8S8~J!

3TMTuG~v!u~B1B2!kKLS~J!TMT&. ~1!
The starting energyv corresponds to the sum of nonrel
tivistic single-particle energies of the interacting baryons
cluding their rest masses. Note that we use the kinetic en
spectrum for the intermediateBB̃ states. The variablesk, k8,
k9 andL, L8, L9 denote relative linear momenta and orbi
momenta, respectively, whileK is the linear center-of-mas
momentum. The total angular momentum, spin, isospin,
isospin projections are denoted byJ, S, T, andMT , respec-
tively. As usual,Q̄BB̃(k8,K;T,MT) is the angle average o
the Pauli operator which prevents the intermediate baryonB

and B̃ from being scattered to states below their respec

Fermi momentakF
(B) andkF

(B̃) . This angle average is show
in Appendix A, together with the expressions that define
Pauli operator in a particular (T,MT) channel in terms of the
basis of physical states. Although we keep the indexMT in
the bare potential matrix elements, they do not really hav
dependence on the third component of isospin since we
sider charge symmetric and charge independent interact
Therefore, the dependence of theG matrix on the third com-
ponent of isospin comes exclusively from the Pauli opera
since, as can be clearly seen in Appendix A, it acquire
dependence onMT when different concentrations of particle
belonging to the same isomultiplet~i.e., different values for
the correspondingkF’s! are considered.

In comparison with the pure nucleonic calculation, th
problem is a little bit more complicated because of
coupled-channel structure. Whereas for the strangeness
tors 0 and24 there is only one particle channel (NN and
JJ, respectively! and two possible isospin states (T50,1),
in the S521(S523) sector we are dealing with th
LN(LJ) andSN(SJ) channels, coupled toT51/2,

S GLN→LN GLN→SN

GSN→LN GSN→SN
D S GLJ→LJ GLJ→SJ

GSJ→LJ GSJ→SJ
D ,
-
gy
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e
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and theSN(SJ) channel in isospinT53/2:

~GSN→SN!~GSJ→SJ!.

In the S522 sector we must consider the channelsLL,
LS, JN, andSS in isospin statesT50,

S GLL→LL GLL→JN GLL→SS

GJN→LL GJN→JN GJN→SS

GSS→LL GSS→JN GSS→SS

D ,

T51,

S GJN→JN GJN→LS GJN→SS

GLS→JN GLS→LS GLS→SS

GSS→JN GSS→LS GSS→SS

D ,

andT52,

~GSS→SS!.

In addition, each boxGB1B2→B3B4
has a 232 matrix sub-

structure to incorporate the couplings between (L,S) states
having the same total angular momentumJ. This submatrix
reads
2-2
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S ^L5J,S50uGuL5J,S50& ^L5J,S50uGuL5J,S51&

^L5J,S51uGuL5J,S50& ^L5J,S51uGuL5J,S51&
D

for spin-singlet–spin-triplet coupling (L5J,S50↔L5J,S51) and

S (^L5J21,S51uGuL5J21,S51& ^L5J21,S51uGuL5J11,S51&

^L5J11,S51uGuL5J21,S51& ^L5J11,S51uGuL5J11,S51&
D

for tensor coupling (L5J21,S51↔L5J11,S51).

B. Baryon single-particle energy in the Brueckner-Hartree-Fock approximation

In the Brueckner-Hartree-Fock approximation the single-particle potential of a baryonB1 which is embedded in the Ferm
sea of baryonsB2 is given, using the partial wave decomposition of theG-matrix, by

UB1

(B2)
~kB1

!5
~11jB1

!3

2 (
J,L,S,T,MT

~2J11!@12~21!L1S1T2SB1
2SB2

2TB1
2TB2#u^TB1

TB2
MT

(B1)MT
(B2)uTMT&u2

3E
0

kmax
k2dk f~k,kB1

!^B1B2 ;kKLSTMTuGJ@EB1
~kB1

!1EB2
~kB2

!1mB1
1mB2

#uB1B2 ;kKLSTMT&, ~2!

if both types of baryons are identical, or by

UB1

(B2)
~kB1

!5
~11jB1

!3

2 (
J,L,S,T,MT

~2J11!u^TB1
TB2

MT
(B1)MT

(B2)uTMT&u2E
0

kmax
k2dk f~k,kB1

!

3^B1B2 ;kKLSTMTuGJ@EB1
~kB1

!1EB2
~kB2

!1mB1
1mB2

#uB1B2 ;kKLSTMT&, ~3!

if they are different. In the actual calculations, we consider all partial waves up toJ54. The labelsSB1
,SB2

(TB1
,TB2

) denote

the spin ~isospin! of baryonsB1 and B2, respectively, and̂ TB1
TB2

MT
(B1)MT

(B2)uTMT& is the Clebsch-Gordan coefficien

coupling to total isospinT. The variablek denotes the relative momentum of theB1B2 pair, which is constrained by

kmax5
kF

(B2)
1jB1

kB1

11jB1

, ~4!

with jB1
5MB2

/MB1
. Finally, the weight functionf (k,kB1

), given by

f ~k,kB1
!55

1 for k<
kF

(B2)
2jB1

kB1

11jB1

,

0 for ujB1
kB1

2~11jB1
!ku.kF

(B2) ,

kF
(B2)22@jB1

kB1
2~11jB1

!k#2

4jB1
~11jB1

!kB1
k

otherwise,

~5!
an
.
f

Se

ra
n
he
results from the analytical angular integration, once the
gular dependence of theG-matrix elements is eliminated
This is done by choosing appropriate angular averages
the center of mass of theB1B2 pair and for the value ofkB2

which enters in the determination of the starting energy.
Appendix B for details.

If the baryonBi is embedded in the Fermi seas of seve
baryonsB1 ,B2 ,B3 , . . . , including its own Fermi sea, the
its single-particle potential is given by the sum of all t
partial contributions,
02580
-

or

e

l

UBi
~k!5(

Bj

UBi

(Bj )~k!, ~6!

where UBi

(Bj )(k) is the potential of the baryonBi due

to the Fermi sea of baryonsBj . In this expressionk
denotes the single-particle momentum of particleBi . The
nonrelativistic single-particle energy of baryonB is then
given by
2-3



ne

a

io

e

en

le
th
ar
o

-

he
e

s

-

a
-

ho
b

t-

the

we
tons
a

is
s

c

en
m
a-

ed

nta
le-
e-

the

y

s

ac-
h

r
e-
feel

ials
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EB~k!5
\2k2

2MB
1UB~k!. ~7!

This is precisely the single-particle energy that determi
the value of the starting energyv at which theGB1B2↔B3B4

matrix in Eq.~2! @or ~3!# should be evaluated. This implies
self-consistent solution of Eqs.~1!, ~2! @or ~3!#, and~7!. The
Fermi energy of each species is determined by settingk to
the corresponding Fermi momentum in the above express

C. Energy density and binding energy per baryon

The total nonrelativistic energy density« and the total
binding energy per baryon,B/A, can be evaluated from th
baryon single-particle potentials in the following way:

«52(
B

E
0

kF
(B) d3k

~2p!3 S \2k2

2MB
1

1

2
UB~k! D , ~8!

B

A
5

«

r
, ~9!

wherer is the total baryonic density. The density of a giv
baryon species is given by

rB5
kFB

3

3p2
5xBr, ~10!

where xB5rB /r is the fraction of baryonB, which is of
course constrained by

(
B

xB51. ~11!

III. RESULTS

We start this section by presenting results for the sing
particle potential of each baryon species, as a function of
baryon momentum, for several baryonic densities and v
ous nucleonic and hyperonic fractions. We have focused
results for the Nijmegen model~e! of the recent parametri
zation @12#, since it gives, together with model~f!, the best
predictions for hypernuclear observables@17#, apart from re-
producing theYN scattering scattering data as well as t
other models. We will restrict our calculations to matt
composed of neutrons, protons,L ’s and S2’s, since these
last two hyperons species are the first ones to appear a
density ofb-stable neutron star matter increases@11#. This is
confirmed on the recent study of@18# where, up to the den
sity 1.2 fm23 considered there,J2 andJ0 baryons are ab-
sent.

In Fig. 1 we show our results for nonstrange nuclear m
ter at normal density,r050.17 fm23, and three proton frac
tions (xp50.5xN , 0.25xN , and 0!, wherexN is the fraction
of nonstrange baryons, which in this case is 1. We also s
the hyperon single-particle potentials, denoted with the la
‘‘old,’’ obtained with the Nijmegen 1989 version of theYN
interaction@19#. In the right panel, corresponding to symme
02580
s
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ric nuclear matter, we see that neutrons and protons have
same single-particle potential, of the order of279 MeV at
zero momentum. Looking at the middle and left panels
see how, as the fraction of protons decreases, the pro
gain binding while the neutrons lose attraction. This is
consequence of the different behavior of theNN interaction
in the T50 and T51 channels, theT50 channel being
substantially more attractive. The potential of the proton
built from moreT50 thanT51 pairs and hence become
more attractive. TheL single-particle potential in symmetri
nuclear matter turns out to be around238 MeV atk50 and
has a smooth parabolic behavior as a function ofk. This
result is larger than the value of230 MeV obtained when
one extrapolates to largeA the s-waveL single-particle en-
ergy of several hypernuclei@20#. It is also much larger in
magnitude than the value of around224 MeV @21–23#
which is obtained using the 1989 version of the Nijmeg
YN potential@19# with the standard choice for the spectru
of the intermediateYN states in the Bethe-Goldstone equ
tion. The value of theS single-particle potential atk50 of
220 MeV is somewhat more attractive than that obtain
with the 1989 potential of around217 MeV. The function
US2(k) remains pretty constant in the range of mome
explored. Apart from the different size, the new sing
particle hyperon potentials also show a totally different b
havior with increasing asymmetry than that observed for
potentials obtained with the 1989 NijmegenYN interaction.
While the oldL single-particle potential turns to be slightl
more attractive with increasing neutron fraction~i.e., going
from the right panel to the left one!, the new one become
slightly more repulsive. The changes for theS2 single-
particle potential are more drastic. While the 1989 inter
tion gives aS2 potential which shows a little change wit
increasing neutron fraction, the newS2 potential becomes
strongly attractive. The value atk50 for the S2 potential
changes from about220 MeV in symmetric nuclear matte
to 237 MeV in neutron matter. This has important cons
quences in the composition of dense matter: if hyperons

FIG. 1. Momentum dependence of the single-particle potent
for the different species atr50.17 fm23, hyperon fractionxY50,
and several nucleon asymmetries.
2-4
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substantially more attraction, their appearance in dense
ter will happen at lower density. We note that our resu
with the 1989 Nijmegen interaction are consistent with tho
shown in@11#, where the sameYN interaction is used. Som
differences are found in the magnitude of the single-part
potentials which should be ascribed to the use of a c
tinuum spectrum prescription in the case of@11#.

Having established how the nucleons affect the sing
particle potential of hyperons it is necessary to investig
the influence of a finite fraction of hyperons on the hypero
themselves and on the nucleons. This is visualized in Fig
and 3 that show the single-particle potentials of the differ
baryons as functions of the momentum. Figure 2 shows
sults atr50.3 fm23 and a hyperon fractionxY50.1, which

FIG. 2. Momentum dependence of the single-particle potent
for the different species atr50.3 fm23 and hyperon fractionxY

50.1. The right panels correspond to symmetric nuclear ma
xn5xp50.5xN , while the left ones are for asymmetric nuclear m
ter with xn53xp50.75xN . In the top panels the hyperonic fractio
is built exclusively fromS2 (xS25xY) while in the bottom ones
there is a fraction ofL ’s (xL5xY/3) andS2’s (xS252xY/3).

FIG. 3. The same as Fig. 2 for a baryon densityr50.6 fm23 .
02580
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is assumed to come from onlyS2 ~top panels! or split into
S2 andL hyperons in a proportion 2:1, hencexS252xY/3
andxL5xY/3 ~bottom panels!. The panels on the right cor
respond to symmetric proton-neutron composition (xp5xn

50.5xN , wherexN50.9) and the ones on the left correspo
to a higher proportion of neutrons (xp50.25xN , xn

50.75xN). Starting at the upper-right panel we observe th
the presence ofS2 hyperons already breaks the symme
between the proton and neutron single-particle potentials
symmetric nucleonic composition, the neutrons feeli
around210 MeV more attraction. This is due to a differe
behavior between theS2n interaction which only happen
via the attractiveT53/2 channel and theS2p interaction
that also receives contributions from the very repulsiveT
51/2 SN component. In fact, the difference between t
neutron and proton potentials is not as pronounced as
move to the lower panel on the right, where someS2 hy-
perons are replaced byL hyperons which act identically ove
protons and neutrons. In the upper left panel, where we h
increased the neutron fraction in the nonstrange sector,
observe the typical pattern for the nucleon single-particle
tentials commented on Fig. 1: the particle with the small
fraction ~i.e., the proton! shows more binding. However, thi
behavior is partially compensated by the presence of a se
S2 which provides attraction~repulsion! to the neutron~pro-
ton! single-particle potential. We also observe that theS2

feels more attraction, as a consequence of having repla
some repulsiveS2p pairs by attractiveS2n ones. TheL
loses binding because the Fermi sea of neutrons is larger
their contribution to theL single-particle energy explore
higher relative momentum components of the effectiveLn
interaction, which are less attractive than the small relat
momentum ones. Finally, since the Fermi sea of hyperon
small, the differences observed in the potentials by go
from the top panels to the corresponding lower ones~which
amounts to replacingS2 hyperons byL ones! are also
small.

Similar effects are found in the results reported in Fig.
which have been obtained for a baryonic densityr
50.6 fm23, where it is expected that nuclear matter inb
equilibrium already contains hyperons@11#. The single-
particle potential of theL hyperon is less attractive than th
for r50.3 fm23 while that of theS2 is very similar. It just
gains somewhat more attraction when the number of n
trons increase relative to that of protons in going from t
right panels to the left ones. As for the nucleon sing
particle potentials we observe, also in the left panels, that
attractiveS2n interaction is enhanced at these high densit
and makes the neutron spectrum more attractive than
proton one, even in the asymmetric situation when o
would expect the protons to be more bound.

To assess the influence of theYY interaction we represen
the separate contributions building theL single-particle po-
tential in Fig. 4 and those for theS2 one in Fig. 5, for a
baryonic density of 0.6 fm23 . The hyperon fraction ofxY
50.1 is split into fractionsxS252xY/3 andxL5xY/3 for S2

andL hyperons, respectively. The results on the right-ha
side of Figs. 4 and 5 correspond to the symmetric nucl

ls

r,
2-5
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case and those on the left to a neutron fraction 3 times la
than that of protons. We see that the contribution to theL
potential from theL hyperons, represented by the das
dotted line, is attractive and almost negligible, due to a w
attractive LL effective interaction@13# and to the small
amount ofL particles present. On the contrary, the contrib
tion from the S2 hyperons is larger, of the order of210
MeV in nuclear-symmetric matter and slightly less
nuclear-asymmetric one, which is comparable in size w
the contribution from protons and neutrons. This exam
clearly shows the important role of theYY interaction in
modifying the properties of theL hyperon. TheL acquires
more attraction and its appearance in dense matter beco
more favorable with respect to the situation in which theYY
interaction was neglected. The fact that the neutron~thin
solid line! and proton~dotted line! contributions to theL

FIG. 4. Separate contributions of each species to theL single-
particle potential atr50.6 fm23 and hyperon fractionxY50.1 split
into xS252xY/3 andxL5xY/3. The right panel is for symmetric
nuclear matter (xn5xp50.5xN) and the left one for asymmetri
nuclear matter (xn53xp50.75xN).

FIG. 5. The same as Fig. 4 for theS2 single-particle potential.
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single-particle potential are not the same in nucle
symmetric matter is due to theS2 hyperons which make the
neutrons feel more attraction and, consequently, theLn pairs
explore the effectiveLN interaction at smaller energies
where it is less attractive. The different contributions to t
S2 potential are shown in Fig. 5. TheL hyperons~dot-
dashed line! contribute very little due to the reduced value
their Fermi momentum. The contribution of theS2S2 pairs
~long-dashed line! is very important, of the order of225
MeV in symmetric nuclear matter, and becomes crucial d
to the fact that the neutron~thin solid line! and the proton
~dotted line! contributions, which amount each one to abo
50 MeV in magnitude, almost cancel each other. In the
panel, the replacement of protons by neutrons, lowers theS2

single-particle potential considerably, by about 25 Me
Again, neglecting theYY interactions here would have mad
the S2 potential about 20–25 MeV less attractive.

The analysis of the structure ofb-stable matter requires
knowledge of the chemical potential (mB) of each baryon,
defined at zero temperature as the single-particle energ
the Fermi momentum@Eq. ~7!#. In Fig. 6 we show the chemi
cal potentials as functions of density for different nucle
asymmetries and hyperon fractions. Note that the curves
measured with respect to the nucleon mass and contain
addition to the nonrelativistic Fermi energy, the baryon m
of each species. The top panels show the results for as
metric nuclear matter (xn53xp50.75xN) whereas the bot-
tom panels stand for the symmetric case. In the left pan
we show results for purely nucleonic matter (xY50), and in
the central panels we havexS25xY50.1, while on the right
panelsxY is distributed intoxL5xY/3 andxS252xY/3. The
behavior of the chemical potentials when increasing
nucleonic asymmetry as well as the hyperonic fraction f
lows closely the trends observed in Figs. 1, 2, and 3 for
single-particle potential at densitiesr50.17, 0.3, and

FIG. 6. Chemical potentials of the different species as functi
of total baryonic density, for different nucleonic asymmetries a
strangeness fractions. The top panels correspond to the asymm
nuclear matter case (xn53xp50.75xN), while the bottom ones cor-
respond to symmetric nuclear matter (xn5xp50.5xN).
2-6
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0.6 fm23, respectively. We just have to consider here t
the curves in Fig. 6 also contain the kinetic energy of
corresponding Fermi momentum. It is interesting to co
ment on the high density behavior of the chemical potenti
since this will determine the feasibility of having hyperons
beta-stable neutron star matter. In symmetric nuclear ma
both theL and theS2 chemical potentials show, from
certain density on, an increase with increasing density wh
is very mild as compared to that assumed by phenomeno
cal YN interactions@24#. When the number of neutrons ove
that of protons is increased~top panels!, the L chemical
potential barely changes because of the similarity betw
the Ln and Lp interaction. However, theS2 hyperon ac-
quires more binding due to the dominantS2n attractive
pairs over theS2p repulsive ones. This will favor the ap
pearance ofS2 in dense neutron star matter, through t
nn→pS2 conversion, when the equilibrium between chem
cal chemical potentials is achieved at both sides. Onc
Fermi sea ofS2 hyperons starts to build up, however, th
neutrons become more attractive, moderating, in turn,
appearance ofS2 hyperons. As we see, the composition
dense neutron star matter in equilibrium will result from
delicate interplay between the mutual influence among
different species. In fact, one needs to find, at each bary
density, the particle fractions which balance the chem
potentials in the weak and strong reactions that transform
species among themselves. This study, which is beyond
scope of the present work, will be presented in a sepa
publication@18#.

One of the novelties of this work is that we allow fo
different concentrations of the baryon species. Therefore
can explicitly treat the dependence of theG matrix on the
third component of isospin which comes from the Pauli o
erator of speciesB, B̃ that may have, even when belongin
to the same isospin-strangeness multiplet, different Fe
momenta. See Appendix A for more details.

In Fig. 7 we report the diagonalSN→SN G-matrix ele-
ments in the1S0 channel, as a function of relative mome
tum for a densityr50.6 fm23, taking xL50 andxS25xY
50.1. The top panels correspond to the isospinT51/2 chan-
nel and the lower ones to theT53/2 one. The panels on th
right are for symmetric nuclear matter,xn5xp50.5xN ,
while those on the left correspond toxp50.25xN . The start-
ing energy and center of mass is the same for all the cu
shown in the same plot; thus the dependence onMT comes
exclusively from the Pauli operator. Note that different pa
of particles contribute to each (T,MT) combination. The
case (T,MT)5(1/2,11/2) receives contributions fromS1n
and S0p pairs while S2p and S0n contribute to (T,MT)
5(1/2,21/2). In the case of isospinT53/2 one has contri-
butions from S2n (MT523/2), S0n,S2p (MT521/2),
S1n,S0p (MT511/2), and S1p (MT513/2). We ob-
serve that the curve corresponding to the third compon
MT less affected by Paui blocking is always more attract
as the phase space for intermediate states, which induc
tractive corrections to the potential matrix elements,
larger. This is clearly seen in the top panel on the right, si
the dotted line contains a channel with theS2 hyperon.
02580
t
e
-
s,

r,

h
i-

n

-
a

e

e
ic
l
e

he
te

e

-

i

es

s

nt
e
at-
s
e

When the nucleonic asymmetry is increased by going to
panel on the left, the effects of Pauli blocking on the ne
trons are more important than those on theS2 hyperons.
This is the reason for the solid curve to appear above
dotted one, since the (T,MT)5(1/2,11/2) case receives
contributions fromS0p and S1n pairs in a proportion 1:2
and it contains relatively more neutrons than the c
(T,MT)5(1/2,21/2) with S2p andS0n pairs in a propor-
tion 2:1. In the case ofT53/2 we observe that the asymm
try on theS multiplet barely induces any dependence onMT
in the G matrix, as can be seen from the bottom panel
right. However, one can observe differences when going
asymmetric nuclear matter on the left panel since the P
blocking onS2n pairs (MT523/2) is enhanced over tha
on S1p pairs (MT513/2). As we can see, in all case
considered here the dependence of theG matrix on the third
component of the isospin is very weak and can almost
neglected. We have also encountered this weak depend
in the otherBB̃ G matrices. Therefore, a presumably go
strategy and less time consuming would be to obtain theG
matrices in isospin-saturated systems and, afterwards, ca
late the single-particle potentials by folding the ‘‘approx
mate’’ effective interactions with the different baryon Ferm
seas.

We finish this section by reporting in Fig. 8 the bindin
energy per baryon as a function of density. The right and
figures describe symmetric and asymmetric (xn53xp
50.75xN) nuclear matter, respectively. In the top panels,
show the binding energy withxS250 for several values of
xL while in the bottom panels we considerxL50 and vary
the concentration ofS2 hyperons. The binding energy pe
baryon, calculated according to Eqs.~8! and~9!, is the result
of a balance between the average kinetic energy of e
baryon Fermi sea and the contribution from the mutual int
actions, given by the average of the single-particle poten

FIG. 7. DiagonalSN G matrix in the 1S0 partial wave as a
function of the relative momentum at a densityr50.6 fm23, for
the different (T,MT) isospin channels. The right panels are for sy
metric nuclear matter,xn5xp50.5xN , while the left ones corre-
spond toxn53xp50.75xN . In all casesxS250.1 andxL50.
2-7
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of each species. In order to identify the effects of theYY
interaction on the binding energy per baryon we have a
included a curve corresponding to a calculation with a 1
of hyperons~eitherL ’s or S2’s! where theYY interaction is
turned off ~dash-dotted line!. In both cases, turning theYY
interaction on results in a gain of binding energy which
larger in the case ofS2 . The binding energy per baryo
shows a saturation density, i.e., a density for which the th
modynamic pressure is zero, which is too high when
consider the composition with only nucleons. The location
this saturation density is little affected when the percent
of hyperons is increased. When a small amount of nucle
is substituted by hyperons there is automatically a decre
of the kinetic energy contribution because the hyperons
be accomodated in lower momentum states and in add
have a larger bare mass. The analysis of the influence o
effective interaction on the binding energy must be ma
separately forL ’s andS2’s. Although the effectiveLN and
LL interactions are clearly less attractive than theNN one,
the reduction of kinetic energy is clearly enough to comp
sate for the loss of binding energy when a 10% of nucle
is substituted byL ’s. Notice, however, that we have to con
sider theLL interaction in order to obtain this increase
binding with respect to the pure nucleonic case. AtxL

530% the loss of kinetic energy is not enough to comp
sate for the loss of attraction from the effective interactio
and less binding energy than the case with only nucleo
degrees of freedom is obtained. Looking at the lower pan
for the S2 hyperons we observe that the binding energy
baryon gains more attraction as compared to the case
L ’s. This is due, essentially, to the larger loss of kine
energy due to the larger mass of theS2 . In general, the
replacement of nucleons by hyperons produces a gai
binding energy and a softening of the equation of state.

FIG. 8. Binding energy per baryon as a function of the bary
density. In the top panels we setxS250 and show results for sev
eral values ofxL , while the bottom panels correspond toxL50 and
different fractions ofS2’s. The panels on the right are for symme
ric nuclear matter, while the left ones correspond to asymme
nuclear matter (xn53xp50.75xN). In the case of nuclear symme
ric matter with 10% of hyperons we also show a curve~dash-dotted
line! where theYY interaction has been turned off.
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appearance of hyperons in beta-stable matter, the softe
of the equation of state, and its implications on the proper
of neutron stars are deferred to a future study@18#.

IV. CONCLUSIONS

In this work we have developed the formalism for micr
scopic Brueckner-type calculations of dense nuclear ma
with strangeness, allowing for any concentration of the d
ferent baryon species.

By relating the Pauli operator to the different pairs
physical particles that contribute to the particular (T,MT)
channel~see appendix A!, we have been able to obtain th
MT dependence of the effective interaction (G matrix! be-
tween any two species.

We have seen, however, that the dependence of thG
matrix on the third component of isospin is weak enough
allow, in future studies, for a simpler strategy consisting
obtaining the effective interactions in isospin-saturated s

ations (kF
(n)5kF

(p) , kF
(S2)5kF

(S0)5kF
(S1) , kF

(J2)5kF
(J0)). The

various single-particle potentials can then be obtained
folding the approximate effective interactions with the Fer
seas of the different species.

We have studied the dependence of the single-particle
tentials on the nucleon and hyperon asymmetries, focus
on situations that can be relevant in future studies of be
stable neutron star matter with strangeness. This is w
apart from neutrons and protons, we have only conside
theL andS2 hyperons, which are the first ones expected
appear. We have compared the symmetric nuclear ma
composition (xn5xp5xN) with the asymmetric case con
taining a large fraction of neutrons (xn53xp50.75xN), for a
small, but relevant, hyperon fractionxY50.1. This fraction
may be fully composed byS2 hyperons (xS25xY) or con-
tain also a small proportion ofL ’s (xS252xL52xY/3). We
find that the presence of hyperons, especiallyS2, modifies
substantially the single-particle potentials of the nucleo
The neutrons feel an increased attraction due to theS2n
effective interaction that only happens through the very
tractiveT53/2 SN channel, while the protons feel a repu
sion as theS2p pairs also receive contributions from th
very repulsiveT51/2 SN one.

By decomposing theL andS2 single-particle potentials
in the contributions from the various species, we have s
the relevance of considering theYY interaction. For a bary-
onic density of 0.6 fm23, a nuclear asymmetry ofxn53xp
50.75xN , and a hyperon fraction ofxY50.1 ~split into
xS252xY/3 andxL5xY/3), we find that the hyperonic con
tribution to theL single-particle potential at zero momentu
is of the order of210 MeV @1/3 of the totalUL(0)] andthat
for the S2 is of the order of225 MeV @1/2 of the total
US2(0)].

In the absence of hyperonic Fermi seas theL and S2

chemical potentials show a mild increase with increas
baryonic density. The presence of a Fermi sea ofS2 hyper-
ons slows down this increase, especially for theS2 chemical
potential and in the case of asymmetric nuclear matter,
to the very attractiveT53/2 SN interaction acting onS2n

n

ic
2-8
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pairs. This will make the balance between chemical pot
tials in the strongnn→S2p conversion easier and will favo
the appearance ofS2 at lower densities.

Finally, we have studied the modifications of the bindi
energy per baryon in symmetric and asymmetric nucl
matter when some nucleons are replaced either byL or S2

hyperons. As expected, we observe an increase in the b
ing energy, which increases with density, mainly as a re
of a decrease in kinetic energy because the hyperons ca
accommodated in lower momentum states and have a la
mass. This effect will produce a softening in the equation
state that will influence the behavior of dense matter and
structure of neutron stars.
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APPENDIX A: PAULI OPERATOR IN THE DIFFERENT
STRANGENESS CHANNELS

In this appendix we show how the Pauli operatorQBB̃ ,
which prevents scattering into occupiedBB̃ intermediate
states, acquires a dependence on the third component of
pin due to the different Fermi momenta of baryonsB andB̃.
The Pauli operator reads

QBB̃~kW ,KW !5H 1 for uaKW 1kW u.kF
B and ubKW 2kW u.kF

B̃ ,

0 otherwise,
~A1!

wherekW and KW are, respectively, the relative and total m
menta of theBB̃ pair, a5mB /(mB1mB̃) and b5mB̃ /(mB
1mB̃). In order to solve the Bethe-Goldstone equation
partial wave representation@see Eq.~1!# we need to perform
an angle average of the Pauli operator, which reads

Q̄BB̃~k,K !5H 1

2
~cosuB1cosu B̃! if cosuB1cosu B̃.0,

0 if cosuB1cosu B̃,0,
~A2!

where

cosuB5H 1 if uaKW 2kW u.kF
(B) ,

a2K21k22kF
(B)2

2aKk
otherwise,

~A3!

and
02580
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be
er
f
e

.

os-

cosu B̃5H 1 if ubKW 2kW u.kF
(B̃) ,

b2K21k22kF
(B̃)2

2bKk
otherwise.

~A4!

Taking the following convention for the isospin stat
representing the particle basis:

un&5u1/2,21/2&;up&5u1/2,11/2&, ~A5!

uL&5u0,0&, ~A6!

uS2&5u1,21&; uS0&5u1,0&; uS1&52u1,11&,
~A7!

uJ2&52u1/2,21/2&; uJ0&5u1/2,11/2&, ~A8!

it is easy to obtain the Pauli operator in the coupled-isos
basis,QBB̃(k,K;T,MT), for each strangeness sector. No
that in the following expressions we have only retained
dependence on the isospin labels.

1. Strangeness 0

QNN~T50,MT50!5
1

2
~Qpn1Qnp!, ~A9!

QNN~T51,MT521!5Qnn , ~A10!

QNN~T51,MT50!5
1

2
~Qpn1Qnp!, ~A11!

QNN~T51,MT511!5Qpp . ~A12!

2. Strangeness21

QLNS T5
1

2
,MT52

1

2D5QLn , ~A13!

QLNS T5
1

2
,MT51

1

2D5QLp , ~A14!

QSNS T5
1

2
,MT52

1

2D5
1

3
QS0n1

2

3
QS2p , ~A15!

QSNS T5
1

2
,MT51

1

2D5
2

3
QS1n1

1

3
QS0p , ~A16!

QSNS T5
3

2
,MT52

3

2D5QS2n , ~A17!

QSNS T5
3

2
,MT52

1

2D5
2

3
QS0n1

1

3
QS2p , ~A18!

QSNS T5
3

2
,MT51

1

2D5
1

3
QS1n1

2

3
QS0p , ~A19!
2-9
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QSNS T5
3

2
,MT51

3

2D5QS1p . ~A20!

3. Strangeness22

QLL~T50,MT50!5QLL , ~A21!

QJN~T50,MT50!5
1

2
~QJ2p1QJ0n!, ~A22!

QSS~T50,MT50!5
1

3
~QS1S21QS0S01QS2S1!,

~A23!

QJN~T51,MT521!5QJ2n , ~A24!

QJN~T51,MT50!5
1

2
~QJ2p1QJ0n!, ~A25!

QJN~T51,MT511!5QJ0p , ~A26!

QLS~T51,MT521!5QLS2 , ~A27!

QLS~T51,MT50!5QLS0 , ~A28!

QLS~T51,MT511!5QLS1 , ~A29!

QSS~T51,MT521!5
1

2
~QS0S21QS2S0!, ~A30!

QSS~T51,MT50!5
1

2
~QS1S21QS2S1!, ~A31!

QSS~T51,MT511!5
1

2
~QS0S11QS1S0!, ~A32!

QSS~T52,MT522!5QS2S2 , ~A33!

QSS~T52,MT521!5
1

2
~QS0S21QS2S0!, ~A34!

QSS~T52,MT50!5
1

6
QS1S21

2

3
QS0S01

1

6
QS2S1 ,

~A35!

QSS~T52,MT511!5
1

2
~QS0S11QS1S0!, ~A36!

QSS~T52,MT512!5QS1S1. ~A37!

4. Strangeness23

QLJS T5
1

2
,MT52

1

2D5QLJ2 , ~A38!

QLJS T5
1

2
,MT51

1

2D5QLJ0 , ~A39!
02580
QSJS T5
1

2
,MT52

1

2D5
1

3
QS0J21

2

3
QS2J0 ,

~A40!

QSJS T5
1

2
,MT51

1

2D5
2

3
QS1J21

1

3
QS0J0 ,

~A41!

QSJS T5
3

2
,MT52

3

2D5QS2J2 , ~A42!

QSJS T5
3

2
,MT52

1

2D5
2

3
QS0J21

1

3
QS2J0 ,

~A43!

QSJS T5
3

2
,MT51

1

2D5
1

3
QS1J21

2

3
QS0J0 ,

~A44!

QSJS T5
3

2
,MT51

3

2D5QS1J0 . ~A45!

5. Strangeness24

QJJ~T50,MT50!5
1

2
~QJ0J21QJ2J0!, ~A46!

QJJ~T51,MT521!5QJ2J2 , ~A47!

QJJ~T51,MT50!5
1

2
~QJ0J21QJ2J0!, ~A48!

QJJ~T51,MT511!5QJ0J0. ~A49!

From the above expressions it is easy to see that in iso

saturated matter matter~i.e., kF
(n)5kF

(p) , kF
(S1)5kF

(S0)

5kF
(S2) andkF

(J0)5kF
(J2)) the dependence on the third com

ponent of isospin disappears.

APPENDIX B: AVERAGE OF THE CENTER-OF-MASS
AND HOLE MOMENTA

In this appendix we show how to compute an appropri
angular average of the center-of-mass momentum of the
B1B2 and the hole momentumkWB2

which enters in the deter
mination of the starting energy in Eqs.~2! and ~3!. The
center-of-mass momentumKW and the relative momentumkW
of the pairB1B2 are defined in the following way:

KW 5kWB1
1kWB2

, ~B1!

kW5
MB2

kWB1
2MB1

kWB2

MB1
1MB2

5bkWB1
2akWB2

. ~B2!
2-10
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From the above expressions it is easy to writeKW andkWB2
in

terms of the extrenal momentumkWB1
and the relative mo-

mentumkW , which is used as integration variable in Eqs.~2!
and ~3!:

KW 5
1

a
~kWB1

2kW !, ~B3!

kWB2
5

1

a
~bkWB1

2kW !. ~B4!

The angle average of the center-of-mass momentum is
fined as

K2~kB1
,k!5

E d~cosu!K2~kB1
,k,cosu!

E d~cosu!

, ~B5!

whereK2(kB1
,k,cosu)5(1/a2)(kB1

2 1k222kB1
k cosu), with

u being the angle betweenkWB1
and kW . The integration runs

over all the angles for whichukWB2
u,kF

(B2) . Similarly, for the
hole momentum we have

kB2

2 ~kB1
,k!5

E d~cosu!kB2

2 ~kB1
,k,cosu!

E d~cosu!

, ~B6!

wherekB2

2 (kB1
,k,cosu)5(1/a2)(b2kB1

2 1k222bkB1
k cosu).

We can distinguish two cases in performing the angu
integrals,bkB1

,akF
(B2) andbkB1

.akF
(B2) . In the first case,

we have two possibilities 0,k,akF
(B2)

2kB1
, for which all

angle values are allowed, giving the result

K2~kB1
,k!5

1

a2
@kB1

2 1k2#, ~B7!

kB2

2 ~kB1
,k!5

1

a2
@b2kB1

2 1k2#, ~B8!

and akF
(B2)

2bkB1
,k,akF

(B2)
1bkB1

, which have the fol-

lowing upper limit in the value of cosu:

~cosu!max5
k21~bkB1

!22~akF
(B2)

!2

2bkkB1

, ~B9!

giving the result

K2~kB1
,k!5

1

a2 FkB1

2 1k22
1

2b
@~bkB1

1k!22~akF
(B2)

!2#G
~B10!
02580
e-

r

kB2

2 ~kB1
,k!5

1

a2 Fb2kB1

2 1k22
1

2
@~bkB1

1k!22~akF
(B2)

!2#G .
~B11!

In the second case, there is only one possibilitybkB1

2akF
(B2)

,k,akF
(B2)

1bkB1
and the result is the same as

the previous case for the zoneakF
(B2)

2bkB1
,k,akF

(B2)

1bkB1
. The result for the values 0,k,bkB1

2akF
(B2) is

zero becausekWB2
is always larger than its Fermi sea.

This kind of average defines an angle-independent cen
of-mass momentum and a hole momentum~and therefore a
starting energy! for each pairkB1

, k, so the angular integra
tion in Eqs.~2! and ~3! can be performed analytically. Nev
ertheless, we still require to solve theG-matrix equation for
each pair of valueskB1

and k, making the calculation very
time consuming. In order to speed up the procedure we
troduce another average, which gives equivalent results
saves a lot of time. For each external momentumkB1

, we will
only need to solve theG-matrix equation for two values o
the center-of-mass and hole momenta, which are obta
from

K2~kB1
!5

E d3k K2~kB1
,k,cosu!

E d3k

, ~B12!

kB2

2 ~kB1
!5

E d3k kB2

2 ~kB1
,k,cosu!

E d3k

, ~B13!

by limiting the integral over the modulus ofkW to the two
possibilities mentioned above. As before, we have the sa
casesbkB1

,akF
(B2) and bkB1

.akF
(B2) . Let us consider the

first case. Now, when the integral overk in Eqs. ~B12! and
~B13! is limited to 0,k,akF

(B2)
2bkB1

we have

K2~kB1
!5

1

a2 FkB1

2 1
3

5
~akF

(B2)
2bkB1

!2G , ~B14!

kB2

2 ~kB1
!5

1

a2 Fb2kB1

2 1
3

5
~akF

(B2)
2bkB1

!2G , ~B15!

whereas in the zoneakF
(B2)

2bkB1
,k,akF

(B2)
1bkB1

the
expressions are a little bit more tedious:
2-11
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K2~kB1
!5F2

b2~11b2!

a
kF
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4 1b~112b2!kF
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3
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5 G
3F ~akF

(B2)
!2bkB1

1
1

3
~bkB1
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2akF
(B2)

~bkB1
!2G21

, ~B16!

kB2

2 ~kB1
!5F2

2b4

a
kF

(B2)kB1

4 13b3kF
(B2)2kB1

3

2
7

3
ab2kF

(B2)3kB1

2 1a2bkF
(B2)4kB1

1
8b5

15a2
kB1

5 G
e

. J

er

m

A

02580
3F ~akF
(B2)

!2bkB1
1

1

3
~bkB1

!3

2akF
(B2)

~bkB1
!2G21

. ~B17!

When kWB1
50 there exists only one zone of integration,

,k,akF
(B2) , and the average is very simple:

K2~kB1
!5kB2

2 ~kB1
!5

3

5
kF

(B2)2. ~B18!

Finally, in the second casebkB1
.akF

(B2) , there is also

only one integration zonebkB1
2akF

(B2)
,k,akF

(B2)
1bkB1

,
and the corresponding averages are

K2~kB1
!5

3

5
kF

(B2)21kB1

2 , ~B19!

kB2

2 ~kB1
!5

3

5
kF

(B2)2. ~B20!
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