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Strange nuclear matter within Brueckner-Hartree-Fock theory

. Vidana, A. Polls, and A. Ramos
Departament d’Estructura i Constituents de la Mde Universitat de Barcelona, E-08028 Barcelona, Spain

M. Hjorth-Jensen
Department of Physics, University of Oslo, N-0316 Oslo, Norway

V. G. J. Stoks
Centre for the Subatomic Structure of Matter, University of Adelaide, Adelaide SA 5005, Australia
(Received 10 September 1999; published 20 January)2000

We have developed a formalism for microscopic Brueckner-type calculations of dense nuclear matter that
includes all types of baryon-baryon interactions and allows us to treat any asymmetry in the fractions of the
different speciegn, p, A, 37, 3%, 3%, E7, andE°. We present results for the different single-particle
potentials, focusing on situations that can be relevant in future microscopic studies of beta-stable neutron star
matter with strangeness. We find that both the hyperon-nucleon and hyperon-hyperon interactions play a
non-negligible role in determining the chemical potentials of the different species.

PACS numbgs): 26.60+c, 21.65:+f, 13.75.Ev, 21.30-x

[. INTRODUCTION —1),YY (S=-2,—-3, and—4). The work of Ref[13] con-

The properties and composition of dense matter at supraentrated mainly on isospin-saturated systems, i.e., systems
nuclear densities determine the static and dynamical behawith the same fraction of particles within the same isospin
ior of stellar mattef{1-5]. The study of matter at extreme and strangeness multipleb=1/2, S=0 (HEUIFOOHS and pro-
densities and temperatures has received renewed interest dges, T=0, S= 117 (é)d T=1,S=-1 G2 'E+)’ and
to the possibility of attaining such conditions in relativistic | — +/2» S=—2 (£ ,E7). In this way, the complications

heavy-ion collisions at GSI, and in the near future at CER,\lassociated with different Fermi seas for each species of the
and Brookhaven ’ same isospin-strangeness multiplet were avoided an@the

It is believed that at extremely high densities, deconfineMatrix in each sector was independent of the third compo-

ment will take place resulting in a transition from hadronic to "€Nt of isospin.

quark matter. The transition point and its characteristics will 't iS Well known, however, that the presence of electrons
depend crucially on the equation of state of matter in thecauses nuclear star matter to be equilibrated against the weak
d3-decay reactions for neutron fractions much lar@efactor

in the f fh ™ -y, wil of 10 or more th_an that for proton$14—1_a. Also, tr_]e in- _
ness, in the form of hyperons\,2) or mesons K ), wi crease of negatively charged leptons with baryonic density

soften the equation of state and will delay the transition.”’. . :
Most investigations up to date have been made in the framé’yIII trn into a decrease when the appearance of negatively

work of the mean field approach, either relativigi;7] or pharged baryons biacomes energetically more favorable. This
nonrelativistic, with effective Skyrme interactiong]. Mi- 1S the case of th&™ hyperon, since neutralizing the proton

croscopic theories, on the other hand, aim at obtaining thgnarge With% ™ instead ofe™ will remove two energetic
properties of hadrons in dense matter from the bare freB€Utrons P>~ «—nn) instead of one ge”—n). Itis clear,
space interaction. In this sense, Brueckner theory was devell€refore, that a microscopic study @fstable nuclear matter
oped a long time ago and successfully helped to understantfith hyperons requires the treatment of highly asymmetric
the properties ofnonstrange nuclear matter starting from Matter, both in the nons:trangeosec(prgtons VS neutrons
interactions that reproduce a huge amouniof scattering @nd the hyperonic oneX(" vs %~ and ™). In the present

observables. A first attempt to incorporate strangeness in tHRRPer we extend the study of RgL3] to allow for different

form of hyperons within Brueckner theory was made in Refsfractions of each species. We will also explore the effect of

[9,10], the latter extended to investigations of beta-stabldn€ recently availablerY interaction on the single-particle
nuclear mattef11]. A missing ingredient in these works was Potential of the hyperons, a crucial ingredient to determine
the hyperon-hyperonY(Y) interaction and the results of the baryqnlc density at which the dlffergnt hyperons appear.
single-particle potentials or binding energy per baryon with 82U @M is to present a thorough analysis of the properties of
finite amount of hyperons were simply orientative. the_ d|fferent_baryon_s in dense_ matter, tal_<|ng into account

The recent availability of a baryon-baryon potenfia?] their .mutual |nteract|or)§. We will explore d|ffe(ent baryonic
covering the complete S8)xXSU(3) sector has allowed us densities and compositions that are relevant in the study of
to incorporate théf Y potential in a microscopic calculation N€utron stars.
of dense matter with nonzero hyperon fract[d3]. The in-

. . . - Il. FORMALISM
corporation of all possible baryon-baryon interactions re-
quired the solution of th&-matrix equation in coupled chan- In this section we present the formalism to obtain, in the
nels for different strangeness sectdis\l (S=0), YN (S= Brueckner-Hartree-Fock approximation, the single-particle
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energies oh, p, A, 27, 3% 3%, £, andE° embedded in A. Effective BB interaction

an infinite system composed of different concentrations of The effectiveBB interaction orG matrix is obtained from
such baryons. We first construct effective baryon-baryorthe bareBB interaction by solving the corresponding Bethe-
(BB) interactions(G matriceg starting from new realistic  Goldstone equation, which in partial wave decomposition
bareBB interactions, which have become recently availableand using the quantum numbers of the relative and center-
for different strangeness channgl]. of-mass motionfRCM) reads

((BgBy)K'KL"S'(3)T,M1|G()|(B1B,)kKLS(J) TMy)

=((B3B4)K"KL"S"(J)TM+|V|(B1B,)kKLS(J)TM)+ >, >, > | k'2dk’((B3B,)k"KL"S"(J)

L’ S BB
e 6BE(kI!K;T!MT) ~
XTM+|V|(BB)k’'KL'S (J)TM BB)k’'KL'S'(J
TIVI(BB) ()TMy) T KAV —((BB) )
w— - —Mg—Mg+in
2(Mg+Mg) 2MgM3

The starting energw corresponds to the sum of nonrela- and theXN(XZ =) channel in isospiT = 3/2:
tivistic single-particle energies of the interacting baryons in-
cluding their rest masses. Note that we use the kinetic energy

spectrum for the intermedia®B states. The variablds k',

k" andL, L', L” denote relative linear momenta and orbital
momenta, respectively, whilg is the linear center-of-mass
momentum. The total angular momentum, spin, isospin, ang _
. . S n the S=
isospin projections are denoted ByS T, andM, respec-
tively. As usual,Qgg(k’,K;T,My) is the angle average of
the Pauli operator which prevents the intermediate barfgons

andB from being scattered to states below their respective

Fermi moment&® andk® . This angle average is shown
in Appendix A, together with the expressions that define the Gzn—ar Gzn-zn Gznoss |,
Pauli operator in a particulaim(M ) channel in terms of the
basis of physical states. Although we keep the inlfexin
the bare potential matrix elements, they do not really have a
dependence on the third component of isospin since we corpF=1
sider charge symmetric and charge independent interactions.
Therefore, the dependence of tBematrix on the third com-
ponent of isospin comes exclusively from the Pauli operator,
since, as can be clearly seen in Appendix A, it acquires a
dependence okl when different concentrations of particles Gas—zn Gas—as Gasoss |,
belonging to the same isomultipléte., different values for Gys.z=n Gsyoas Gssoss
the correspondingg’s) are considered.

In comparison with the pure nucleonic calculation, this
problem is a little bit more complicated because of itsandT=2,
coupled-channel structure. Whereas for the strangeness sec-
tors 0 and—4 there is only one particle channeNN and
2 E, respectively and two possible isospin states<£0,1),
in the S=—1(S=-3) sector we are dealing with the
AN(AE) and2N(2E) channels, coupled td=1/2,

(Gsnosn)(Gszosz)-

—2 sector we must consider the channald,
A3, EN, andXX in isospin state3 =0,

Gar—anr Gar—zn Gaaoss

Gssan Gssoz=n Gssoss

Gznozn Ganoas Genoss

(Gss—sy)-

In addition, each b0f3813p3354 has a X2 matrix sub-

structure to incorporate the couplings betweénS) states
having the same total angular momentdnirhis submatrix

GAN— AN GAN%EN) (GAEﬂAE Gazs=
Gyz-az Gsz_s= reads

Gsnoan  Ginosn

025802-2



STRANGE NUCLEAR MATTER WITHIN BRUECKNER- ... PHYSICAL REVIEW &1 025802
(L=J,5=0|G|L=J,S=0) (L=J,5=0|G|L=J,S=1)
(L=J,5=1|G|L=J,S=0) (L=J,5=1|G|L=J,S=1)

for spin-singlet—spin-triplet coupling=J,S=0-~L=J,S=1) and

(L=J-1S=1|G|L=J-1S=1) (L=J-15=1|G|L=J+1,S=1)
(L=J+158=1|G|L=J-1S=1) (L=J+1S=1|G|L=J+1S=1)

for tensor couplingl(=J—-1S=1-L=J+1S=1).

B. Baryon single-particle energy in the Brueckner-Hartree-Fock approximation

In the Brueckner-Hartree-Fock approximation the single-particle potential of a bBryaich is embedded in the Fermi
sea of baryon8, is given, using the partial wave decomposition of Genatrix, by

(1+¢p)°
1 2 (2J+l)[1_(_1)L+S+TfSB].*SBZ*TB]-*TBz]|<TBlTBZMSrBl)M§_BZ)|TMT>|2

(B2) _
] Kg.)=
By (ks,) 2 ILST My

kmax
xf k?dkf(k,kg, )(B1B;KKLSTM|G’[Eg, (kg )+ Eg,(Kg,) + Mg + Mg ]|B1B2;kKKLSTM),  (2)
0
if both types of baryons are identical, or by

(1+¢g)° k

(B2) _ 1 (Bp)pg(B2) 2| M2
Ug? (k) =— J’L;’MT (23+1)[(Tg Tg, MTYMT? | TMY)| fo k2dkf(k kg,)
X (B1B,;KKLSTM|G[Eg (kg ) +Eg,(Kg,) + Mg +Mg ]|B1B,;KKLSTMy), (3)

if they are different. In the actual calculations, we consider all partial waves Jigtbh The IabeIsSBl,SB2 (TBl'TBz) denote
the spin(isospin of baryonsB; and B,, respectively, anc(TBlTBZM(TBl)M(TBZ)HMT} is the Clebsch-Gordan coefficient
coupling to total isospiT. The variablek denotes the relative momentum of tBgB, pair, which is constrained by
(Bp)
. kg 2+ &g Kp, @
max 1+ éBl 1

with §Bl:MBZ/M51- Finally, the weight functiorf(k,kBl), given by

( kl(:BZ) ~&p ke,
1 for ks ——— -1
1+£s,
f(k.kg,)={ O for |£g ke, — (1+ &5 )k >kE? )
kD2 g ke, — (1+ &g, )K]2
- P15 i otherwise,
4¢p, (1+&p kg K

results from the analytical angular integration, once the an- @)

gular dependence of th&-matrix elements is eliminated. UBi(k):Z Ug "(k), (6)
This is done by choosing appropriate angular averages for Bi

the center of mass of th&,B, pair and for the value dﬁB2

which enters in the determination of the starting energy. See () . .
Appendix B for details. where UBiJ (k) is the potential of the baryorB; due

If the baryonB; is embedded in the Fermi seas of severalto the Fermi sea of baryonB;. In this expressionk

baryonsB,,B,,Bs, ..., including its own Fermi sea, then denotes the single-particle momentum of partiBle The
its single-particle potential is given by the sum of all the nonrelativistic single-particle energy of barydh is then
partial contributions, given by

025802-3
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f°k? 0 ' . . .
Eg(k)= 57—+ Us(K). %
2Mg ,
R ECT . L EOd — | Tew
This is precisely the single-particle energy that determines ~ -20 //;:;»- A(old)//‘///’——:@?fj;y\:;}
the value of the starting energy at which theGg g,..5.8, L S S
matrix in Eq.(2) [or (3)] should be evaluated. This implies a IR il |-

self-consistent solution of Eqfl), (2) [or (3)], and(7). The
Fermi energy of each species is determined by sekitgy
the corresponding Fermi momentum in the above expression

-60 | 4 /_
C. Energy density and binding energy per baryon / /
o _

U, (k) [MeV]
|

8

\M

-

The total nonrelativistic energy density and the total -80 - T T
binding energy per baryom3/A, can be evaluated from the S ’
baryon single-particle potentials in the following way: %0 *,=0.25x, #,=0-5%
_1000.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 15
@ d%k [7%k% 1 K [fm ] K [fm ] K [fm™]
e=22 f el v 12 ) B )
B Jo (2m) 2Mg FIG. 1. Momentum dependence of the single-particle potentials
for the different species gt=0.17 fm 3, hyperon fractiorxky=0,
B i ) and several nucleon asymmetries.
A p’

ric nuclear matter, we see that neutrons and protons have the

wherep is the total baryonic density. The density of a given same single-particle p(_)tentlal, of th_e order-e79 MeV at

baryon species is given by zero momentum. Looking at the middle and left panels we
see how, as the fraction of protons decreases, the protons

K3 gain binding while the neutrons lose attraction. This is a
pp= Fe =Xgp (10) consequence of the different behavior of ti#l interaction
3m? ’ in the T=0 and T=1 channels, theT=0 channel being

_ _ o substantially more attractive. The potential of the proton is
where xg=pg/p is the fraction of baryorB, which is of  built from moreT=0 thanT=1 pairs and hence becomes

course constrained by more attractive. Thé single-particle potential in symmetric
nuclear matter turns out to be aroun@®8 MeV atk=0 and
2 Xg=1. (11) has a smooth parabolic behavior as a functi_ork.ofl’his

B result is larger than the value 6f30 MeV obtained when

one extrapolates to largk the swave A single-particle en-

Il RESULTS ergy of several hypernuclg¢R0]. It is also much larger in

magnitude than the value of around24 MeV [21-23

We start this section by presenting results for the singlewhich is obtained using the 1989 version of the Nijmegen
particle potential of each baryon species, as a function of th& N potential[19] with the standard choice for the spectrum
baryon momentum, for several baryonic densities and varief the intermediater N states in the Bethe-Goldstone equa-
ous nucleonic and hyperonic fractions. We have focused otion. The value of the single-particle potential d=0 of
results for the Nijmegen modéé) of the recent parametri- —20 MeV is somewhat more attractive than that obtained
zation[12], since it gives, together with modéf), the best  with the 1989 potential of aroune- 17 MeV. The function
predictions for hypernuclear observabl&g], apart from re-  Us-(k) remains pretty constant in the range of momenta
producing theY N scattering scattering data as well as theexplored. Apart from the different size, the new single-
other models. We will restrict our calculations to matter particle hyperon potentials also show a totally different be-
composed of neutrons, protons;s and 3 ’s, since these havior with increasing asymmetry than that observed for the
last two hyperons species are the first ones to appear as tpetentials obtained with the 1989 Nijmeg¥mM interaction.
density of 3-stable neutron star matter increafe¥|. Thisis  While the oldA single-particle potential turns to be slightly
confirmed on the recent study (8] where, up to the den- more attractive with increasing neutron fractire., going
sity 1.2 fm 3 considered theres ~ andZ° baryons are ab- from the right panel to the left opethe new one becomes
sent. slightly more repulsive. The changes for te single-

In Fig. 1 we show our results for nonstrange nuclear matparticle potential are more drastic. While the 1989 interac-
ter at normal densitypo=0.17 fm 3, and three proton frac- tion gives a3~ potential which shows a little change with
tions (x,=0.5¢y, 0.2%y, and 0, wherexy is the fraction increasing neutron fraction, the név~ potential becomes
of nonstrange baryons, which in this case is 1. We also showtrongly attractive. The value &=0 for theX~ potential
the hyperon single-particle potentials, denoted with the labethanges from about20 MeV in symmetric nuclear matter
“old,” obtained with the Nijmegen 1989 version of tHéN  to —37 MeV in neutron matter. This has important conse-
interaction[19]. In the right panel, corresponding to symmet- quences in the composition of dense matter: if hyperons feel

025802-4



STRANGE NUCLEAR MATTER WITHIN BRUECKNER- ... PHYSICAL REVIEW (1 025802

0 . . . — is assumed to come from only~ (top panel or split into
St B by 2~ andA hyperons in a proportion 2:1, henge-=2xy/3
= T T T ) A T andx, =xy/3 (bottom panels The panels on the right cor-
3 100  n ] P respond to symmetric proton-neutron compositio < x,,
= - - TR o S // -
g P - n =0.5y, wherexy=0.9) and the ones on the left correspond
ju i 7 —
_150 L K025, X0 1 055 1,0 _ to a higher proportlon of ne_utronsxp(— 0.25y, X,
=0.75«y). Starting at the upper-right panel we observe that
-200 = % f - = the presence ok~ hyperons already breaks the symmetry
between the proton and neutron single-particle potentials in a
I~ symmetric nucleonic composition, the neutrons feeling
2 around—10 MeV more attraction. This is due to a different
2 behavior between th& "n interaction which only happens
P st 1 | via the attractiveT=3/2 channel and th& ~p interaction
x,=0.25x,, x,=0.33x, xp=0.5xN, x,=0.33x, ) X X
’ that also receives contributions from the very repulsive
-200 05 0 00 o8 0 s =1/23N component. In cht, Fhe difference between the
k [fm'] k [fm™"] neutron and proton potentials is not as pronounced as we

_ _ ~ move to the lower panel on the right, where sokie hy-

FIG. 2. Momentum dependence of the single-particle potentialperons are replaced by hyperons which act identically over
for the different species gi=0.3 fm ~ and hyperon fractioky  hrot0ns and neutrons. In the upper left panel, where we have
=0.1. The right panels correspond to symmetric nuclear mattefy, - o554 the neutron fraction in the nonstrange sector, we
X”=X.P=O'EXN’ th'le the left ones are for asymmetric nuclear mat- observe the typical pattern for the nucleon single-particle po-
ter with x,=3x,=0.75y . In the top panels the hyperonic fraction . .1 mmented on Fig. 1: the particle with the smallest
is built exclusively from3,~ (xs-=Xy) while in the bottom ones fraction (i h i hg. ) pb' di H th
there is a fraction of\’s (x,=xy/3) andS s (Xs = 2xy/3). raction (|._e., e pro ohshows more binding. However, this

behavior is partially compensated by the presence of a sea of

substantially more attraction, their appearance in dense m %(Sn)vl?écrlle?rg\ﬂidc?: at;:zﬁtt'igfrevr\);gs;?ot%g;R/iugloar:%%
ter will happen at lower density. We note that our results gie-p P ’

with the 1989 Nijmegen interaction are consistent with thosJeelS more atiraction, as a consequence of having replaced

shown in[11], where the sam¥ N interaction is used. Some some r_epglswé p pairs by att_ract|ve2 n ones._TheA
differences are found in the magnitude of the single-particl 0S€S b'nd'.ng pecause the F.erml sea .Of neutrons is larger and
potentials which should be ascribed to the use of a con—hEIr contrlt_)utlon to theA single-particle energy explores
tinuum spectrum prescription in the case[d1]. higher relative momentum components of the effective

Having established how the nucleons affect the Singleinteraction, which are less attractive than the small relative
particle potential of hyperons it is necessary to investigaténonl]leqthum dqfrfles. Fmallyt,)smcedth.e 'iﬁrm' stea tqflhytp))erons IS
the influence of a finite fraction of hyperons on the hyperon ma ',[h Etz : erer;cets 31 served in d'e p? entia ?velsy ﬁ]omg
themselves and on the nucleons. This is visualized in Figs. om the fop paneis 1o the corresponding lower ohvesic

and 3 that show the single-particle potentials of the differengmghmts to replacing~ hyperons byA ones are also
baryons as functions of the momentum. Figure 2 shows re="~." . . N
y g Similar effects are found in the results reported in Fig. 3,

- -3 IO — -

sults atp=0.3 fm~* and a hyperon fractior,=0.1, which which have been obtained for a baryonic density
0 =0.6 fm 3, where it is expected that nuclear matter An

. ] T - equilibrium already contains hyperorfd1]. The single-

0l I~ | particle potential of the\ hyperon is less attractive than that

T for p=0.3 fm~2 while that of theX ~ is very similar. It just

~100 | oA e gains somewhat more attraction when the number of neu-
,,,,,,,,, I T — = trons increase relative to that of protons in going from the
150 F 4 + 1 right panels to the left ones. As for the nucleon single-
%,=0.25%, %,=0 X,=0.5%y, X,=0 particle potentials we observe, also in the left panels, that the
-200 = t — S t attractiveX, " n interaction is enhanced at these high densities
S il T T and makes the neutron spectrum more attractive than the
B R | A 1 proton one, even in the asymmetric situation when one
would expect the protons to be more bound.

To assess the influence of theY interaction we represent
- | the separate contributions building thesingle-particle po-

By m0.5% x,=033% tential in Fig. 4 and those for thE ~ one in Fig. 5, for a

Uy(k) [MeV]

-100

Uy(k) [MeV]

-150

%,=0.25x, x,=0.33x,
200 . . . . baryonic density of 0.6 fm®. The hyperon fraction oky

00 0% 0.0 o5 10 5 =0.1is splitinto fractionss - = 2xy/3 andx , =Xy/3 for =~
[fm ] k [fm ] . .
and A hyperons, respectively. The results on the right-hand
FIG. 3. The same as Fig. 2 for a baryon dengpity0.6 fm™ 2. side of Figs. 4 and 5 correspond to the symmetric nuclear
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40 T T T T T T Xy=0, X,=0, X;=0 Xy=0.1,X,=0, X=X,  Xy=0.1, X,=1/3x, X =2/3%,
p=0.6 fm™, p,=0.1p 300 ————— ————— —————T
o —u” T 1 S S e T R
: ® 200 f R T4 T
UA{) A PRy A - A .7
L ¢ + 4 I~ e N - ———
20 -—— U, > — —
] s 100 | 1 4
[ UA =,
10} 1 , o n n

Total

> 0
o /
P P. P
2 o / .........
~
=)

1 . ] N 200 | T B z i = -
5 ~_ T — e e
20 T 1 2 100t A A T A .
o
-30 | B 4 = 0 n P P
x,=0.25%,, x,=0.33x,, x,=0.5x, x,=0.33x, 'Y e o o
_40 . . . . . . 00 e e Lo
0.0 0.5 1.0 1.5 0.0 0.5 1.0 15 2.0 00 02 04 936 08 0.0 0.2 04 93.6 0.8 0.0 0.2 04 9.36 0.8 1.0
k [fm™'] k [fm”'] p[fm] p [fm”] p [fm ]
FIG. 4. Separate contributions of each species toAthgngle- FIG. 6. Chemical potentials of the different species as functions

particle potential ap=0.6 fm 2 and hyperon fraction,=0.1 split  of total baryonic density, for different nucleonic asymmetries and
into xs-=2xy/3 andx, =xy/3. The right panel is for symmetric strangeness fractions. The top panels correspond to the asymmetric
nuclear matter X,=x,=0.5xy) and the left one for asymmetric nuclear matter case{=3x,=0.75y), while the bottom ones cor-
nuclear matter X, =3x,=0.75¢y). respond to symmetric nuclear mattes, € x,=0.5xy).

case and those on the left to a neutron fraction 3 times larg
than that of protons. We see that the contribution to Ahe symmetric matter is due to the~ hyperons which make the

potentla_ll frqm theA_ hyperons, represe_n_ted by the daSh'neutrons feel more attraction and, consequently Athgairs
dotted line, is attractive and almost negligible, due to awealéxplore the effectiveAN interaction at smaller energies,

attractive AA ef_fect|ve interaction[13] and to the sma_II where it is less attractive. The different contributions to the
amount ofA particles present. On the contrary, the contnbu-zf potential are shown in Fig. 5. Tha hyperons(dot-
tion frgm the 2, hyperonsf is larger, of the prder 610 . dashed lingcontribute very little due to the reduced value of
Mev in nuclear-gymmetrlc matter and sllght_ly Igss " their Fermi momentum. The contribution of the 'S, ~ pairs
nuclear-asymmetric one, which is comparable in size wit long-dashed lingis very important, of the order of 25

the contribution from protons and neutrons. This examplq\/lev in symmetric nuclear matter, and becomes crucial due

cle?jrly_shct)xvs the irr;portafntthzlﬁ of th\éYTiE(ta/e\raction in to the fact that the neutrofthin solid line and the proton
modifying the properties o yperon. acquires — gotted ling contributions, which amount each one to about

more attraction and its appearance in dense matter becom § MeV in magnitude, almost cancel each other. In the left

more fa_vorable with respect to the situation in which “_“é panel, the replacement of protons by neutrons, lower&the
|nt§ragtlon was neglected. The fact that Fhe neutftinn single-particle potential considerably, by about 25 MeV.
solid line) and proton(dotted ling contributions to theA Again, neglecting th&' Y interactions here would have made
theX ™ potential about 20—25 MeV less attractive.
The analysis of the structure gf-stable matter requires
knowledge of the chemical potentiakg) of each baryon,
100 L U 1 i defined at zero temperature as the single-particle energy of
the Fermi momenturfEq. (7)]. In Fig. 6 we show the chemi-
cal potentials as functions of density for different nucleon
. Total | A asymmetries and hyperon fractions. Note that the curves are
measured with respect to the nucleon mass and contain, in
addition to the nonrelativistic Fermi energy, the baryon mass
0 _ of each species. The top panels show the results for asym-
7777777777777777777777777 metric nuclear matterx,=3x,=0.75y) whereas the bot-
] tom panels stand for the symmetric case. In the left panels
0l - we show results for purely nucleonic mattex & 0), and in
] the central panels we hawg -=x,=0.1, while on the right
x20.25%,, x,=0.33%, %2055, 1,0.33%, panelsxy is distributed intox, = xy/3 andxs-=2xy/3. The
~100 . . . . . . behavior of the chemical potentials when increasing the
00 05 k[;;ﬁq‘] 15 00 05 k[;&?’l] 1520 nycleonic asymmetry as well as the hyperonic fraction fol-
lows closely the trends observed in Figs. 1, 2, and 3 for the
FIG. 5. The same as Fig. 4 for the™ single-particle potential. ~ single-particle potential at densitiep=0.17, 0.3, and

esringle—particle potential are not the same in nuclear-

150 . T T T T T
@ p=0.6 fm ", p,=0.1p

U,-(k) [MeV]
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0.6 fm™3, respectively. We just have to consider here that "0
the curves in Fig. 6 also contain the kinetic energy of the _ g |
corresponding Fermi momentum. It is interesting to com- &
ment on the high density behavior of the chemical potentials,
since this will determine the feasibility of having hyperons in
beta-stable neutron star matter. In symmetric nuclear matter
both the A and theX~ chemical potentials show, from a
certain density on, an increase with increasing density which 0 = t = t t t = t
is very mild as compared to that assumed by phenomenologi _ 1o | I 1
cal Y N interactiond 24]. When the number of neutrons over “g

e T2, My=—1/2
T=1/2, M=1/2

m

Gk ) [MeV
3

ic i H > e - — - — T=3/2,M=-312
that of protons is increase(lop panely the_A_ chemlcal s B v/ S L
potential barely changes because of the similarity betweeré e ISmMER ) T M

the An and A p interaction. However, th& ~ hyperon ac- %; -20
guires more binding due to the dominaBt n attractive &
pairs over theX, ~p repulsive ones. This will favor the ap- © 0 . : . : : : . :
— . 0.0 10 20 30 40 00 10 20 30 40 50
pearance off~ in dense neutron star matter, through the K [ ] k [fm ]
nn—pX "~ conversion, when the equilibrium between chemi-
cal chemical potentials is achieved at both sides. Once a FIG. 7. DiagonalEN G matrix in the 'S, partial wave as a
Fermi sea of®,~ hyperons starts to build up, however, the function of the relative momentum at a densijty-0.6 fm~3, for
neutrons become more attractive, moderating, in turn, th&e different T,My) isospin channels. The right panels are for sym-
appearance of ~ hyperons. As we see, the composition of metric nuclear matterx,=Xx,=0.5y, while the left ones corre-
dense neutron star matter in equilibrium will result from aSPONd t0X,=3x,=0.75y . In all cases¢;-=0.1 andx, =0.
delicate interplay between the mutual influence among the
different species. In fact, one needs to find, at each baryoni&/hen the nucleonic asymmetry is increased by going to the
density, the particle fractions which balance the chemicapanel on the left, the effects of Pauli blocking on the neu-
potentials in the weak and strong reactions that transform thigons are more important than those on the hyperons.
species among themselves. This study, which is beyond thEhis is the reason for the solid curve to appear above the
scope of the present work, will be presented in a separatéotted one, since theT(Mq)=(1/2,+1/2) case receives
publication[18]. contributions from2°p and3 " n pairs in a proportion 1:2
One of the novelties of this work is that we allow for and it contains relatively more neutrons than the case
different concentrations of the baryon species. Therefore, WeT,M 1) =(1/2,— 1/2) with 3~ p and3°n pairs in a propor-
can explicitly treat the dependence of tBematrix on the tion 2:1. In the case of =3/2 we observe that the asymme-
third component of isospin which comes from the Pauli op-try on theX multiplet barely induces any dependence\dp
erator of specie8, B that may have, even when belonging in the G matrix, as can be seen from the bottom panel on
to the same isospin-strangeness multiplet, different Fermiight. However, one can observe differences when going to
momenta. See Appendix A for more details. asymmetric nuclear matter on the left panel since the Pauli
In Fig. 7 we report the diagon@N— 3N G-matrix ele- blocking onX~n pairs M= —23/2) is enhanced over that
ments in thelso channel, as a function of relative momen- on = p pairs M=+3/2). As we can see, in all cases
tum for a densityp=0.6 fm 3, takingx,=0 andxs-=x,  considered here the dependence of@matrix on the third
=0.1. The top panels correspond to the isogpin1/2 chan- component of the isospin is very weak and can almost be
nel and the lower ones to tile=3/2 one. The panels on the neglected. We have also encountered this weak dependence
right are for symmetric nuclear mattek,=x,=0.5y, in the otherBB G matrices. Therefore, a presumably good
while those on the left correspond xg=0.25y . The start-  strategy and less time consuming would be to obtainGhe
ing energy and center of mass is the same for all the curvesatrices in isospin-saturated systems and, afterwards, calcu-
shown in the same plot; thus the dependencéviancomes late the single-particle potentials by folding the “approxi-
exclusively from the Pauli operator. Note that different pairsmate” effective interactions with the different baryon Fermi
of particles contribute to eachT(M;) combination. The seas.
case T,M1)=(1/2,+1/2) receives contributions fro *n We finish this section by reporting in Fig. 8 the binding
and 3% pairs whileX "p and 2°n contribute to T,M1) energy per baryon as a function of density. The right and left
=(1/2,—1/2). In the case of isospili=3/2 one has contri- figures describe symmetric and asymmetrig,=3x,
butions fromXn (M=-23/2), 31,3 p (M1=-1/2), =0.7%y) nuclear matter, respectively. In the top panels, we
3 n,3% (M=+1/2), andXp (M1=+3/2). We ob- show the binding energy witky-=0 for several values of
serve that the curve corresponding to the third component, while in the bottom panels we considef=0 and vary
M+ less affected by Paui blocking is always more attractivethe concentration o, ~ hyperons. The binding energy per
as the phase space for intermediate states, which induce dtaryon, calculated according to E¢8) and(9), is the result
tractive corrections to the potential matrix elements, isof a balance between the average kinetic energy of each
larger. This is clearly seen in the top panel on the right, sincéaryon Fermi sea and the contribution from the mutual inter-
the dotted line contains a channel with the hyperon. actions, given by the average of the single-particle potential

|
(3
o
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60 L R T T T appearance of hyperons in beta-stable matter, the softening
of the equation of state, and its implications on the properties
0 F — p=0 + —— p=0 g
= [ o1p S b01p of neutron stars are deferred to a future st{g].
2 ——— p,=0.3p T 03
= 201 x,=0.25%,, X,-=0 e T —-— p,=0.1p without YY 7
g i "/}/ %,=0.5%, x,=0 A ;{/
e o IV. CONCLUSIONS
-20 ——t———— I In this work we have developed the formalism for micro-
scopic Brueckner-type calculations of dense nuclear matter
R b e ,’Zjé_;p T with strangeness, allowing for any concentration of the dif-
) —— = p-=03 - —— = py=0.
2 ol pid) p S A gz_ﬂ)_lgwmm ferent barypn species. _ .
< e %, 20.5% 5,20 = By relating the Pauli operator to the different pairs of
® e A . /’ - physical particles that contribute to the particuldr, i)
el T e channel(see appendix A we have been able to obtain the
20 T2 07 o6 o8 0 o0z o4 o6 os 1 My dependence of the effective interactioB (natrix) be-
p [fm ] p [fm ] tween any two species.

o _ We have seen, however, that the dependence ofGthe
FIG. 8. Binding energy per baryon as a function of the baryonmatrix on the third component of isospin is weak enough to
density. In the top panels we sel-=0 and show results for sev- g0\, in future studies, for a simpler strategy consisting of

eral values ok, , while the bottom panels corresponddp=0 and o yiaining the effective interactions in isospin-saturated situ-
different fractions of%, ~’s. The panels on the right are for symmet-

. - 0 + =k =0
ric nuclear matter, while the left ones correspond to asymmetri(f"lt'o.nS q(g]_):kép)' kg )=k§:2 ).=k§:2 ), k,(:“ ):k% ))- T_he
nuclear matterx,=3x,=0.75). In the case of nuclear symmet- Various single-particle potentials can then be obtained by
ric matter with 10% of hyperons we also show a cufwash-dotted ~ folding the approximate effective interactions with the Fermi
line) where theY'Y interaction has been turned off. seas of the different species.

We have studied the dependence of the single-particle po-
of each species. In order to identify the effects of \hg  tentials on the nucleon and hyperon asymmetries, focusing
interaction on the binding energy per baryon we have als@n situations that can be relevant in future studies of beta-
included a curve corresponding to a calculation with a 10%stable neutron star matter with strangeness. This is why,
of hyperong(eitherA’s or 3. ~'s) where theY Y interaction is ~ apart from neutrons and protons, we have only considered
turned off (dash-dotted line In both cases, turning they  the A andX~ hyperons, which are the first ones expected to
interaction on results in a gain of binding energy which isappear. We have compared the symmetric nuclear matter
larger in the case oF ~. The binding energy per baryon composition &,=X,=xy) with the asymmetric case con-
shows a saturation density, i.e., a density for which the thertaining a large fraction of neutrong{=3x,=0.75y), for a
modynamic pressure is zero, which is too high when wesmall, but relevant, hyperon fraction,=0.1. This fraction
consider the composition with only nucleons. The location ofmay be fully composed by~ hyperons Xs-=Xxy) or con-
this saturation density is little affected when the percentagéain also a small proportion of’s (xy-=2x,=2xy/3). We
of hyperons is increased. When a small amount of nucleonind that the presence of hyperons, especially, modifies
is substituted by hyperons there is automatically a decreastbstantially the single-particle potentials of the nucleons.
of the kinetic energy contribution because the hyperons cafihe neutrons feel an increased attraction due toXhe
be accomodated in lower momentum states and in additiogffective interaction that only happens through the very at-
have a larger bare mass. The analysis of the influence of tHgactive T=3/2 XN channel, while the protons feel a repul-
effective interaction on the binding energy must be madesion as theX ~p pairs also receive contributions from the
separately for\’s andX ~’s. Although the effective\N and  very repulsiveT=1/2 %N one.

A A interactions are clearly less attractive than ks one, By decomposing thé\ and3~ single-particle potentials
the reduction of kinetic energy is clearly enough to compenin the contributions from the various species, we have seen
sate for the loss of binding energy when a 10% of nucleonghe relevance of considering theY interaction. For a bary-

is substituted by\’s. Notice, however, that we have to con- onic density of 0.6 fm?, a nuclear asymmetry of,=3x,
sider theA A interaction in order to obtain this increase of =0.75¢y, and a hyperon fraction oky=0.1 (split into
binding with respect to the pure nucleonic case. ¥\t Xs-=2xy/3 andx,=xy/3), we find that the hyperonic con-
=30% the loss of kinetic energy is not enough to compendiribution to theA single-particle potential at zero momentum
sate for the loss of attraction from the effective interactionss of the order of-10 MeV[1/3 of the totalJ , (0)] andthat

and less binding energy than the case with only nucleonifor the 3~ is of the order of—25 MeV [1/2 of the total
degrees of freedom is obtained. Looking at the lower paneltls-(0)].

for the 2~ hyperons we observe that the binding energy per In the absence of hyperonic Fermi seas theand 3~
baryon gains more attraction as compared to the case fahemical potentials show a mild increase with increasing
A’s. This is due, essentially, to the larger loss of kineticbaryonic density. The presence of a Fermi sea ofhyper-
energy due to the larger mass of the . In general, the ons slows down this increase, especially for he chemical
replacement of nucleons by hyperons produces a gain ipotential and in the case of asymmetric nuclear matter, due
binding energy and a softening of the equation of state. Théo the very attractivel =3/2 3N interaction acting ort, ™ n
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pairs. This will make the balance between chemical poten- 1 if |,8|Z—IZ|>k(E‘)
tials in the stronqin— 3, ~ p conversion easier and will favor - ’
the appearance & ~ at lower densities. costs=1\ B2K2+k2—k®)? therwi
Finally, we have studied the modifications of the binding —Z,BKk Otherwise.
energy per baryon in symmetric and asymmetric nuclear (A4)

matter when some nucleons are replaced eitheh oy >~

hyperons. As expected, we observe an increase in the bind- Taking the following convention for the isospin states
ing energy, which increases with density, mainly as a resultepresenting the particle basis:

of a decrease in kinetic energy because the hyperons can be

accommodated in lower momentum states and have a larger In)=11/2,-1/2);|p)y=|1/2,+ 1/2), (A5)
mass. This effect will produce a softening in the equation of
state that will influence the behavior of dense matter and the |A)=10,0, (AB)

structure of neutron stars.
27)=11-1); [29=[10; [2")=-[1+1),
(A7)

|2 Y=—|12~1/2); |E®%=|12+1/2), (A8)
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it is easy to obtain the Pauli operator in the coupled-isospin
basis, Qgg(k,K;T,M1), for each strangeness sector. Note
that in the following expressions we have only retained the
dependence on the isospin labels.

1. Strangeness 0
APPENDIX A: PAULI OPERATOR IN THE DIFFERENT

STRANGENESS CHANNELS 1
. . . Onn(T=0M;=0)= E(Qpn‘*’an): (A9)
In this appendix we show how the Pauli opera@yz,
which prevents scattering into occupi®B intermediate -~ AN
states, acquires a dependence on the third component of isos- Qun(T=1M7==1)=Qnn, (A10)
pin due to the different Fermi momenta of barydhandB. 1
The Pauli operator reads Qun(T=1M1=0)=5(Qpn* Qnp), (Al1)
.~ |1 for|aK+k|>kE and |BK—K/>KE, Qun(T=1M7=+1)=Qpp. (A12)
Qea(k,K)= .
0 otherwise,
(Al) 2. Strangeness- 1
. - , . 1 1
wherek and K~are,.respectlvely, the relative and total mo- QAN<T= E’MTZ _ 5) =Qun, (A13)
menta of theBB pair, a=mg/(mg+mg) and B=mg/(mg
+mg). In order to solve the Bethe-Goldstone equation in 1 1
partial wave representatigsee Eq(1)] we need to perform T=> Moz + _) _ Ald
an angle average of the Pauli operator, which reads Qan 2T 2 Qup: (A14)
1 1 1) 1 2
_ = (cosfg+cosg) if cosfg+cosfz>0, Qun| T=5Mr==35]=3Qs0+ 3Qs-p, (ALY
Qea(k.K)=1 2
0 if cosfg+ cosfz<0, 1 1\ 2 1
(AZ) QEN(T:E'MT:+E :§Qz+n+ §QEOP' (A16)
where 3 3
o Qsn T=5Mr=-3 =Qs-n, (A17)
1 if |aK—K|>k®
cosbp=1 a’K2+k?—kE)? . 3 h_2 !
— otherwise, Qsn| T=5:Mr==3]=3Qs0+ 3Qs-p, (A18)
(A3)
3 1) 1
and Qsn T=5Mr=+5 =§Q2+n+ §Q20p, (A19)
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3 3
QEN(T:§1MT:+E):Q2+p- (A20)

3. Strangeness-2

Qaa(T=0M7=0)=Q44, (A21)

1
Qan(T=0M1=0)=5(Qz-p*+Qz0n),  (A22)

1
QEE(T: O,MT: O) = §(Q2+2—+ Q2020+ QE—EJr),
(A23)

Qan(T=1M7=-1)=Qzy, (A24)

1
Qan(T=1M7=0)=5(Qz-p*+Qz0n),  (A25)

Qen(T=1Mr=+1)=Qxo,, (A26)
Qux(T=1Mr=—1)=Qys-, (A27)

Qus(T=1M7=0)=Q,s0, (A28)
Qus(T=1Mr=+1)=Quy+, (A29)

1
sz(TZLMT:—l):5(Q202*+Q2*20), (A30)

1
sz(TZl,MTZO):5(Q2+2*+Q2*z+), (A31)

1
Qux(T=1Mr=+1)=5(Qsox++Qx+x0), (A32)
Qux(T=2M7=-2)=Qs-3-, (A33)

1
Qss(T=2M=—-1)= 5 (Qsos-+ Qs-30), (A34)

1 2 1
QEE(TZZ,MTZO): €Q2+2—+ §Q2020+ 6Q2—2+ ,
(A35)

1
QEE(T: 2Mi=+1)= E(Q202++Q2+20), (A36)
Qss(T=2M1=+2)=Qg+x+. (A37)
4. Strangeness-3
1 1
Quz( T=5.Mr=—5]=Qx=-, (A38)

T=i M=+l
Quz| T=5Mr=+3

=Qxz0, (A39)

PHYSICAL REVIEW C 61 025802

T_l Mo 1 _1 +2
Qsz| T=5.Mr=-35]=3Qs0z-+3Qs-x0,
(A40)
T_l Mo 1 _2 1
Qsz| T=5.Mr=+75]=3Qs+z-+ 3Qxs0z0,
(A41)
3 3
Qsz|T=5.Mr=-5)=Qs-=-, (A42)

(A43)
3 1\ 1 2
Qsz|T=5.My=+7)=3Qs+=-+ 3Qxso0z0,
(Ad4)
3 3
QEE TZE,MTZ‘FE :QE+EO' (A45)

5. Strangeness—-4
1
QEE(TZO,MTZO): E(Qgng‘f‘QEfEO), (A46)
Qz=(T=1M1=-1)=Qz-z-, (A47)
1
QEE(TZJ.,MT:O): E(QEOE"FQ:’EO)' (A48)

Qz=(T=1M;=+1)=Qzozo. (A49)

From the above expressions it is easy to see that in isospin
saturated matter matteri.e., k{M=k®, KkEI=kE
=kE7) andkE?=kE ) the dependence on the third com-
ponent of isospin disappears.

APPENDIX B: AVERAGE OF THE CENTER-OF-MASS
AND HOLE MOMENTA

In this appendix we show how to compute an appropriate
angular average of the center-of-mass momentum of the pair

B,B, and the hole momentu»ﬁ32 which enters in the deter-
mination of the starting energy in Eg$2) and (3). The

center-of-mass momentut and the relative momenturk
of the pairB,B, are defined in the following way:

K:kB +kB y (Bl)

ZZBEBJ-_QEBZ. (82)
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From the above expressions it is easy to wKtendKg, in
terms of the extrenal momentuﬁg1 and the relative mo-

mentumk, which is used as integration variable in E¢g)
and(3):

-1 . .
K=—(Kks,~K), (B3)
Ks,= —(BKg, —K) (B4)

PHYSICAL REVIEW (1 025802

K2 (ke k)=
B,\"By’

(12

1
G, ko= 5L (Bka, +K)*— (k)] .
(B11)

In the second case, there is only one possibiﬁ?l’ryB1
- ak(FBZ)<k< ak(FBZ)ﬂL,BkB1 and the result is the same as in
. B B
the previous case for the zonﬁk(F 2)—,3kBl<k<ak(F 2
+Bkg, . The result for the values <0k<,8k31—ak(FBZ) is
zero becaus(iBZ is always larger than its Fermi sea.

The angle average of the center-of-mass momentum is de- This kind of average defines an angle-independent center-

fined as

Jd(cosﬁ)Kz(kBl,k,cose)

P(kBl,k)= , (BD)

J d(cosé)

whereK?(kg ,k,cos6)=(1/a?) (k§l+ k?— 2kg_k cos6), with
0 being the angle betweek, andk. The integration runs

over all the angles for WhicHZBz|<k,(:Bz) . Similarly, for the
hole momentum we have

fd(cosa)szz(kBl,k,cosa)

k_éz(kBl,k): , (B6)

f d(cos6)

where kgz(kBl, k,cos6)=(1/a?)( ,82k§1+ k?—2Bkg k coso).

We can distinguish two cases in performing the angular

integrals,Bkg < ak(FBZ) and kg > ak,(:Bz) . In the first case,
we have two possibilities G k< ak(FBZ)—kBl, for which all
angle values are allowed, giving the result

— 1
K?(kg, k)= — kg, + K1, (B7)
o

— 1
kg, (Ka,,k) =l Bkg, + K21, (B9)

and ak®? - Bkg, <k<ak{"?+ Bkg , which have the fol-
lowing upper limit in the value of co&

K2+ (Bkg,)?— (aki?)?

(€c0SO) ma= 2BkkBl , (B9)
giving the result
w2 1 2 2 1 2 (B2)y2
K (ksl,k)=? kg, Tk —ﬁ[(ﬂksﬁk) —(akg?)7]
(B10)

of-mass momentum and a hole moment(and therefore a
starting energyfor each pairkBl, k, so the angular integra-

tion in Egs.(2) and(3) can be performed analytically. Nev-
ertheless, we still require to solve tlematrix equation for
each pair of valuei{Bl and k, making the calculation very

time consuming. In order to speed up the procedure we in-
troduce another average, which gives equivalent results and
saves a lot of time. For each external momenkgln we will

only need to solve th&-matrix equation for two values of
the center-of-mass and hole momenta, which are obtained
from

f d3k Kz(kBl,k,cose)
[ o
f d3k kéz(kgl,k,cosa)

o

by limiting the integral over the modulus d&f to the two
possibilities mentioned above. As before, we have the same

casesBkg <ak(FBZ) and Bkg >ak(FBZ). Let us consider the
1 1

first case. Now, when the integral oviein Egs.(B12) and

(B13) is limited to 0<k< ak{®?— kg we have

K2(ks,) = (B12)

K3 (ks,)= (B13)

— 1 3
Ko(ke,)=— kél+§<akfz)—ﬂksl)2}, (B14)

—— 1 3
kéz(kBl>7[ﬂ2kél+§<ak<§‘2)—ﬂk51>2}. (B15)

. B B
whereas in the zonezk(F 2)—,8kBl< k< ak(F 2)Jr,GkBl the
expressions are a little bit more tedious:
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— BA(1+B%) (B2)\2 1 3
K2(kg,)=| — T|<‘FB2)|<‘E‘,1Jr B(1+21kEDUE x| (aki)*Bke, + 3 (Bks,)
C 4% ap 2652 6) B3 — ak®?(pkg,)? B (B17)
2 T p\4BT 2% FoBy !
B2 When IZBlzo there exists only one zone of integration, 0
B
+ az,Bk(F 2)“kBl+ 15a2(5+ 3/32)@11 <k< ak(FBZ), and the average is very simple:
_ — 3
1 2 _ 12 _ 21 (B2)2
X (ak(FBZ))Zﬂksl+ §(:8k81)3 K(ks,) =k, (Ks))= g ke =™ (B18)
©) -1 Finally, in the second casﬁkBl> ak(FBz), there is also
2
—ak?(Bke )|, (B16)  only one integration zongkg, — ak(FBZ)< k< ak(FBZ)JrﬁkBl,

and the corresponding averages are

— 28" & B
ke, (ks,) = { KK, 3G, K2(ke,) =§k(§‘2)2+ k3, (B19)
7 83° _
— 3 @BKEVAG + o B g+ L K, (Ks,) =§k(FBZ)2. (B20)
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