Evolution of Shear-enhanced Compaction Bands and Pure Compaction Bands: An example from the Willunga Basin, South Australia

Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology

Samuel Rodney Standish White October 2014

ABSTRACT

Shear-enhanced compaction band (SECB) and pure compaction band (PCB) evolution was constrained at Sellicks Beach, analysing measurements from 247 deformation bands recorded at 12 field locations, from outcrop of the Port Willunga Formation and Heatherdale Shale in the Willunga Basin, South Australia. Three distinct deformation band sets were identified with dominant strike orientations of NW-SE, and subordinate strike orientations of NNW-SSE and WNW-ESE. Sets one and two are defined as two sub-sets of SECBs, forming conjugate sets in outcrops of the Port Willunga Formation. Set three was defined as PCB by definition, forming perpendicular to the maximum principal shortening direction. Deformation bands were further characterised by deformation band style; i) sharp; ii) gradual, and; iii) diffuse, and deformation band fills; i) reorientated bioclasts fill (normal fill); ii) black lithic fill, and; iii) micrite fill.

Deformation band conjugate set dihedral angles, band interactions, microstructural and petrophysical properties were used to define the three generations of deformation bands and their temporal evolution. They were formed in response to rotation of stress orientations during basin formation and reactivation, and inversion of the large-scale Willunga Fault at Sellicks Beach during the Middle Eocene and Pliocene.

Thin sections revealed increasing cataclastic failure in deformation bands analysed, enabling for identification of an evolutionary sequence of; i) diffuse, to; ii) gradual, to; iii) sharp, and finally; iv) black lithic. This sequence demonstrates progressively higher amounts of cataclasis and shear.

Thin sections were further used, as well as core samples to produce porosity values of deformation band types, with reductions of porosity values coinciding with higher amounts of cataclasis and shear. Thus, the Port Willunga Formation at Sellicks Beach provides insight into deformation band characteristics and evolution in carbonate rocks, which have not previously been studied in detail.

KEYWORDS

Shear-enhanced compaction band, Pure compaction band, Willunga Basin, Port Willunga Formation.

TABLE OF CONTENTS

Abstract	i
Keywords	i
List of Figures	3
List of Tables	4
Introduction	5
The Geological Setting of the Willunga Basin	8
Lithological descriptions and Geology of Sellicks Beach	9
Data and sample collection at sellicks beach, s.a	11
Defromation bands observed at sellicks beach, s.a	14
Deformation Band Sets	16
Strike Rotation	21
Band Thickness, Frequency and Density	22
Band Thicknesses	22
Frequency and Density	23
Deformation Band Styles and Fills	24
Deformation Band Styles	24
Deformation Band Fills	26
Deformation band Petrophysical and microstructural Properties	27
Discussion	30
Deformation Band Sets	30
Deformation Band Set 1	30
Deformation Band Set 2	31
Deformation Band Set 3	32
Controls over Horizontal stress orientations	34
Dispersion and Densities at Sellicks Beach	35
Thin Section Petrography and Microstructure of Deformation Bands	36
Porosity of Deformation Bands	39
Deformation Band Generation History	40
Implications for Reservoir Systems	42
Implications for water storage in the Adelaide plain sub-basin	43
Conclusions	44
Acknowledgments	46
References	47

Appendix A: Structureal analysis	49
Appendix B: Porosity	55
Appendix C: Extended field mapping	59
Appendix D: Face maps 1 to 5	65
Face map 1	65
Face map 2	65
Face map 3	66
Face map 4	66
Face map 5	67

LIST OF FIGURES

Figure 1: Geological map of Sellicks Beach, showing the location of; the Willunga
Fault; the Heatherdale Shale; the Port Willunga Formation, and; the Alluvial fan
sediments. Figure adapted from Cann et al. (2014)
Figure 2: Map of Sellicks Beach showing all face maps (FM1 to FM5), grid maps (GM1
to GM3) and field sites studied (FS1 to FS4). Inserts are rose diagrams (with numbers
corresponding to face maps, grid maps or field sites on map), which show strike
orientations of all planes measured
Figure 3: a) Grid map 1 of a wave-cut platform, correlated to face map 4, showing DB1,
DB2 and DB3; DB1 and DB2 are planar and DB3 is anastomosing (wavy) in geometry.
b) Close up sketch from face map 1, showing cross-cutting relations between DB1, DB2
and DB3
Figure 4: Stereonets of all DB poles to planes collected at Sellicks Beach (unfolded to
bedding) Deformation band sub-sets and set. a) All poles to planes collected at Sellicks
Beach (black). b) Sub-set A, all north dipping poles to planes (red). c) Sub-set C, all
east dipping poles to planes (black). d) Sub-set B, all south dipping poles to planes
(green). e) Sub-set D, all west dipping poles to planes (orange), and deformation band
Set 3, near vertical-to-vertical (black).
Figure 5: a) Face maps 1–5, digitised and dihedral angle schematic; displaying
deformation band set relationships in outcrops of the Port Willunga Formation at
Sellicks Beach. a) Deformation Band Set 1 (red), Deformation Band Set 2 (blue) and
Deformation Band Set 3 (yellow). b) Mean dihedral angle of Deformation band Set 1.
(For an enlarged version of each face map see Appendix C)
Figure 6: Histogram of deformation band thicknesses for from face map locations 1 to 5
at Sellicks Beach22
Figure 7: Histogram of deformation band frequency from face map locations 1 to 5 at
Sellicks Beach
Figure 8: Close up photos of deformation band styles hosted by the Port Willunga
Formation at Sellicks Beach. a) Sharp, b) Sharp (Micrite), c) Gradual and d) Diffuse.
(Red indicates the inner zone and blue line indicates outer zones)
Figure 9: Close up photos of deformation band fills hosted by the Port Willunga
Formation at Sellicks Beach. a) Reorientated Bioclasts (Normal fill), b) Black Lithic
Fill and c) Micrite Fill. 26
Figure 10: a) Schematic illustration showing the arrangement of the conjugate set in
Deformation Band Set 1 to the reactivated and inverted reverse sense Willunga Fault.
Sub-set A, dipping north (red). Sub-set B, dipping south (Blue). (Fault, dipping to the
north) b) Mean dihedral angle of Deformation band Set 1 and deformation band
formation angle to the H_{max} at Sellicks Beach; dihedral angle (red) and deformation
band formation angle (blue).
Figure 11: Schematic illustration showing the conjugate set arrangement of
Deformation Band Set 2 to the Willunga Fault; Sub-set C, dipping east (red), Sub-set D,
dipping west (Blue). (Fault, dipping north)
Figure 12: Schematic block diagram depicting maximum horizontal stress (H _{max})
orientations during the formation of the Willunga Basin and generations of deformation
band sets at Sellicks Beach. a) Termination of normal faulting. b) Transpressional
phase. c) Onset of inversion
primo e e e e e e e e e e e e e e e e e e e

LIST OF TABLES

Table 1: Face map locations with GPS coordinates, length, height and orientation	12
Table 2: Wave-cut platform grid map locations, correlating face map number, GPS	
coordinates, length along face map and distance from face map	12
Table 3: Field site locations with GPS coordinates, south of the Willunga Fault at	
Sellicks Beach.	12
Table 4: Rock sample locations with GPS coordinates of thin section and core samp	les.
	13
Table 5: Breakdown of Deformation band sets collected from each of the 11 field	
locations hosted by the Port Willunga Formation at Sellicks Beach	14
Table 6:Thin section sample images, descriptions and porosity; and core sample	
absolute porosity of all rock samples collected at Sellicks Beach.	28
absolute porosity of all rock samples collected at Sellicks Beach	28