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CONTENTS

AssrRnc'r. This thesis exploits the power of the categorical approach to homotopy theory to produce a

summary of the theory of principal bundles. A systematic consideration of the problems of the reduction

and the extension of structure group is therefore possible and a variety of techniques in each case are explored

and related to one another. These techniques are each applied to show the relation between the reduction

and the extension of the structure group of a principal bundle and the vanishing of familiar characteristic

classes. Of particular interest is the discovery of a systematic approach to the Dixmier-Douady class for

string structures in the case of both continuous and differential loops. Finall¡ I relate the theory of principal

bundles with the restricted unitary group, (Jr"", as structure group to reduced K-theory, demonstrating a

link between the second Chern class of a bundle in reduced K-theory and the Dixmier-Douady class of the

corresponding principal U'""-bundle.
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CHAPTER 1

PRINCIPAL BUNDLES: DEFINITIONS AND EXAMPLES

1. PRELIMINARIES OF BUNDLE THEORY

Early in the development of the theory of fibre bundles it was realised that the set of transformations

allowed on the fibre is crucial. For example (see Steenrod 1951 pg 4) the twisted torus is a genuinely twisted

circle bundle over the circle if one allows oneself the use of only the identity and 180 degree rotation as

operations on the fibre. But the twisted torus is homeomorphic to its straight sibling and, in the context of

the full rotation group of the circle, is just a trivial bundle. By the time Husemoller wrote "Fibre Bundles"

in 1966 the importance of the structure group was such that general fibre bundles were defined as bundles

associated to a principal bundle, a bundle who's fibre and structure group are identical. This thesis will

therefore be exclusively concerned with the theory of principal bundles.

DnprNrrror.¡ 1.1 (PRINCIPAL BUNDLE). A numerable, locally trivial, principal fibre bundle

P(M,G,rp)

with structure group and fibre G a topological group, base space M and projection zrp is a topological space

P, called the total space, and a continuous, surjective map

rp;P-+M

such that

1) there is a free, right continuous action of G on P and M is the quotient of this action, M : PIG

2) the fibre over r € M, P* :: rþr (r) is homeomorphic to G for all r e M

3) there is a numerable cover {Uo,a € á} of M and G-equivariant homeomorphisms ho such that

ho: Pl[]o = r;r(u.) -+ (Jo x G

p r+ (trp(p),h.,",(p))

where ho,*:P, -+Gisitself aG-equivarianthomeomorphism. Thecollectionof pairs {(U",h.):oe A}is

called a trivialisation of P.

4) for all r € Uo,B the map

¡r,P(r) i: ho,, o hP,t, 
" 
G -+ G

3



4 1. PRINCIPÄL BUNDLES: DEFINITIONS AND EXAMPLES

is a homeomorphism of G and may be identified with an element of G via the inclusion, G .+ Homeo(G),

of left multiplication. Furthermore, we require that the map

go,B : Uo,B -+ G

r r+ g",p(x)

be continuous. These maps, ga,p are called the transition functions of P(M,G,np).

NorB 1.1. The condition of numerability on the cover in 3 is important but largely technical. A cover

is numerable provided it subordinates a locally finite partition of unity. Hausdorff spaces are paracompact if

and only if eveiy cover is numerable. Husemoller (p 48) summarises these details. All references to principal

bundles will now be to numerable principal bundles.

No'rp 1.2. The condition of local triviality, 2, is crucial to the theory of bundles I shall develop. It is

satisfied in a wide variety of examples but local triviality cannot be assumed, especially in the case of infinite

dimensional groups. Henceforth all references to fibre bundles, principal and otherwise, are to locally trivial

fibre bundles.

Nore 1.3. G-equivariant trivialisations correspond uniquely to local sections of P. That is maps

so : Uo '+ P Trp o sa - idu..

Onesets ho(r)::pls.(n) wherepls"(r) istheuniqueelementof Gsuchthatp:so(r).g.Inthiscaseitis

easytoseethat go,g:sp(r)ls.(r). Ishallwrite{so,ho,Uo},{to,Uo}or{ho,t/'}dependingonemphasis.

NorB 1.4. One may define a smooth principal bundle in the case where P, M and G are all manifolds.

In this case G is required to be a Lie group and the maps ?rp, ho, ho,r, ga,B and g',p(r) are all smooth.

Norp 1.5. When it is unimportant I shall drop rp fromthe notation and refer to the principal G-bundle

P(M,G).

Nore 1.6. One of the most important examples of principal bundles and one that will occupy the ma-

jority of this thesis can arise when I/ is a closed subgroup of a Lie group, G. In this case right multiplication

by elements of 1{ gives a free, continuous, right action of 1l on G and G lH is a Hausdorff space. This

gives us all we need for a principal I/-bundle except local triviality which need not hold (See Borel p 35 for

an example). So far as I am aware, the question of when r: G -+ GIH defrnes a locally trivial principal

H-bundle has not yet been resolved in general. So long as r : G -+ G lH has local sections local triviality

is assured. It is a theorem of Gleason (1950) that this holds when fl is compact and it is a theorem of

Michael (1970) that this is also the case when G is a Banach Lie group (a smooth manifold modelled on

Banach spaces for which multiplication and taking inverses are smooth operations) and /{ is a closed Banach

Lie subgroup of G. In these cases at least, G is a principal ff-bundle over the homogeneous space G/fI,

G:G(GlH,H).



r. PRELIMINARIES OF BUNDLE THEORY

For completeness and for later use I now give Husemoller's general definition of a fibre bundle.

DeprNrrloN 1.2. (LOCALLY TRIVIAL FIBRE BUNDLE) Let P(M,G,np) be a principal G-bundle

and let G act non-degenerately and continuously on the left of the topological space f'. Then G acts on the

rightofPxFby
@, Í)-s i: (P.9, s-t'Í)

The topological quotient space of P x tr' modulo this G-action, Q :: (P x F)lG, and the projection

Te:Q---+M

l@, Í)1,+ np(p)

together form the F-bundle associated to the principal G-bundle, P.

No.re 7.7. By way of example, a vector bundle V(M,Fn,U(F,n)) is the F'-bundle associated to its

frame bundle.

Norn 1.8. If -F is itself a principal G-bundle, tr.(N,G) then one can take the associated left action of

G on P, g.p i-- p o g-r , and construct the space

Q:(PxF)lG.

Q is both an -F-bundle over M and. a P-bundle over N. One has the following diagram of commuting

proìections. The fibre of each projection is indicated in the middle of the map.

F t P FxP ' > P

I J

5

G IG (]

N( P (FxP)lG '>M
I will exploit this, and other examples of multiple bundle structures on the same space' later on.

Returning to principal bundles, its now time to make precise what is meant by a map which preserves

principal bundle structure.

Dnr,rrur'rroN 1.3. (PRINCIPAL BUNDLE MORPHISMS) Let fI be a topological subgroup of a topo-

Iogical group G and let Q(N,H) and P(M,G) be principal bundles. A bundle morphism from Q to P is a

continuous map,

þ:Q-+P

such that

f . it takes fibres, Q,, of Q homeomorphically into their image which is contained in a fibre, Po, of. P

ô,=ôlQ,iQ,1ó(Q*)ePa

for some A e M.
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2. it commutes with the action of H on Q

ó(".h) : þ(r).h

for all re N and h€ Iy'. Sucha/induces acontinuousmap

þ' : N -+ M, ó'(r) : y.

NorB 1.9. An injective bundle morphism is called a bundle injection. If it is also bijective and its

inverse is a bundle map then it is called a bundle isomorphism. In this case {' is a homeomorphism from .ðl

to M.

No'rp 1.10. A principal G-bundle is called trivial if and only if it is bundle isomorphic to M x G. Note

1.3 entails that a principal G-bundle is trivial if and only if it has a section defined over all of its base space,

i.e. a global section.

No16 1.11. The class of principal G-bundles together with bundle morphisms as maps forms a category,

Bun(G). A given topological space, M, defines the subcategory of all principal G-bundles ovet M , Bun¡¡(G).

It is of note that this latter category is a groupoid (every morphism is an isomorphism). (See Husemoller pg

42.) The relation defined by bundle isomorphism is an equivalence relation on Bun(G) and Bun¡a(G)' In

what follows we shall be interested in isomorphism classes of principal G-bundles and in the new categories,

Bun(G) I - and Bun¡a(G) I -. Elements of BunTa(G)/ -, isomorphism classes of bundles, shall be denoted

< P > where P is a principal G-bundle. Note that Bun¡a(G)l - is a category with only identity maps

s\nce Bun¡¡(G) is a groupoid. I now move to the first solution to classifying the element's of Bun¡v,t(G)l -.

PRoposrrroN 1.1. (TRANSITION F\¡NCTIONS AND NON-ABELIAN COHOMOLOGY) Let P(M,G)

be a principal G-bundle.

1) The transiti,ons functions of P define a cocycle in Z(M,A) - the group of continuous Cech one-cocyles

with coefficients in G.

2) Giuen an element, € e Z(M,G) one may construct a principalG-bundle whose transition functions

are (.

3) Two pri,ncipal G-bundles, P1(M,G) and Pz(M,G) with transition functions (1 and (2 are bundle

isornorphic iJ and, onty if {1 and, Q2 are in the same class ol H'(M,G) - the fi,rst Cech cohomology set of

M with coefficients in G. We write

[P'] : [€¿] tr2L

( Pr ):( Pz > tl and, onlY iÍ lPr]: lP2]
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Norp 1.12. This is a standard result, for a proof the reader is referred to Husemoller (pg 61) for the

details beyond the following sketch. Let go,p be transition functions fot P(M,G). Then

.cÔa,þ,t : 9a,0 o 9þ,t o 9t,a

: ho o h,r o hp o h;t o h, o hll

: id@-,p,,) for all d, þ,^1.

This proves part 1. Part 3 is more subtle. By taking {t/"} to be a common refinement of covers which trivialise

Pr and P2 we may choose [P¿] : l{Sno,p,¿¡"}] to be transition functions derived from the trivalisations

{t¡o,(Jo} with z : I,2. Then [Pr] : lPr] means there are continuous maps

fo:Uo -+ G

such that

gto,P:Íoogzo,Pofil

One now sets

þ: P1-+ P2

st.(r).g r+ s2.(r).9.f .(r)

for all g €G anð, verifies that þ is independent of the choice of o (hence well defined on all of M) and that

{ is a bundle isomorphism.

Norp 1.13. The group of cocycles, Z(M,G), and the set HL(M,G) are part of the general theory

of cohomology with coefficients in (a possibly) non-abelian group. The presheaf used is the presheaf of

continuous functions from M to G. Note that elements of. HL(M,G) are defined as equivalence classes over

refinements of the cover of M chosen. If we take Pr and Pz to be the same bundle in part three of the

proposition we see that the cover chosen for a trivialisation does not affect the cohomology class of the

resulting transition functions. Part 3 also gives us a one to one correspondence between isomorphism classes

of principal G-bundles and the cohomology class of their transition functions

Bun ¡a (G) I -<---+ Hr (M, G)

< P ><---+ [P].

Given a set of transition functioas, {go,p,t/"} one can construct the corresponding principal G-bundle by

starting with the disjoint union of locally trivial bundles,

X ::IIo(Uo x G).

Then one defines an equivalence relation on X, (r,g) - (n',g') if and only if Í: tr' and there are a and B

such that g : go,B(x).g' as well as a G-action on P :: Xl - by

l@, s')l's : l@, s' .g)l'

7



8 1. PRINCIPAL BUNDLES: DEFINITIONS AND EXAMPLES

It is easy to verify that this G-action is well-defined and that P(PIG,G) is a principal G-bundle with

{g",p,Uo} as a set of transition functions'

Nora 1.14. The homotopy invariance of Cech cohomology suggests an important theorem of bundle

theory. Given two homotopic maps

f¿:N-+M (i:1,2)

and

l{,l e Ht(M,G) t: {so,p,uo}

we know that the pullback cocycles

Íi G) : {eo,p o Íi, Íi | (U.)}

define the same class i\ Hr(M,G),

/i[€] ,: t/i(4)l : [/;(€)] = l;Ê1.

it remains only to define the pullback of a principal G-bundle to transport this result to Bun(G)l -.

DBrtxttlox 1.4. (THE PULLBACK BUNDLE) Let P(M,G) be a principal G-bundle and let / : .Ò{ -+

M be a continuous map. The pullback of P over N, /*P(N,G), is defined to be the set of pairs (*,p)¡

where ø € l/ and p € P¡6¡. We define the projection, ?r , and G-action of /*P by

r((r,p)¡):r, (r,p)t.S:(x,p.g)¡ for all ø € N, pe P andg e G.

There is a map

f':f*P-+P
(r,p) ¡ ,+ p.

/*P has the topology that it inherits as a subspace of N x P. One verifies that the projection and G-action

defined above are continuous and that /' is a bundle map.

TnBoRBIT¡ r.2. (HOMOTOPY INVARIANCE OF THE ISOMOîPHISM CLASS OF THE PULL-

BACK BUNDLE)

1) Let P(M,G) be a principal G-bundle and let h, Íz , N --+ M be homotopic rnaps. Then the pullback

bundles, fiP and fiP, are isomorphic.

2) Let Pl(N,G) and Pz(N,G) be two principal G-bundles and let Q be a G-bundle morphism from P2

to P1 . Then P2 is isomorphic to the pullbaclc bundle ó'. (h) where $t is the map of basespaces induced by S .

Pnoor'. Part 1: As noted above, cohomology theory says that

Íi?l: r;lPl

and by 1.1(3) it follows that

< rïP >:< ÍiP >
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Part 2: Put

tþ : P2 -+ ó'* (Pr)

P è (x,ó(ù)a,

forallp€Pzandø€Mgívenbynp,(p):r.BydefinitionÓ(p)€Ptó,(,)soTy'iswell-defined

,þ (p. ù : (r p, (p. s), ö(p. s))

: (trp,(p),ó(ù.s)

: (",ó(ù).s

: rþ(ù.s

Hence, Ieaving the reader to verify continuity, ry' is an isomorphism since it is a G-bundle morphism in

Bunpl(G). c.f. Note 1.11. tr

2. THE HOMOTOPY CATEGORY

The above result tells us that our investigation of Bun(G)l - can be moved into the homotopy category

of pointed sets since the isomorphism class of a pullback principal G-bundle is invariant under homotopies

of the pullback map. We shall now digress briefly into homotopy theory to continue our investigation of the

classification problem for Bun¡¡(G)l -.
In order to gain the benefits of the general setting afforded by homotopy theory we need to be precise

about the category of sets in which we are working. The largest amenable category is,9Pe, the category of

pointed, path connected topological spaces with pointed continuous maps. (Note that matters arising due

to base points are peripheral to my concerns and notationally distracting so I shall generally suppress base

pbints in my notation but it should be remembered that all spaces and maps in SPs and CWs are pointed.)

Given a continuous map between two pointed topological spaces, f : X -+ Y, I shall denote the class of

pointed spaces homotopic to X and Y by (X) and (Y) and the homotopy class of the map / bV [/]. If

X e (Y) then I shall write X -Y for "X is homotopic to Y". We write HSPy for the category SPsl - of.

homotopy classes of pointed spaces and homotopy classes of pointed continuous maps.

Husemoller (1966) demonstrates the important classification results for principal G-bundles in the full

generality of the category of pointed, topological spaces, ^9Po and it would be foolish to overlook the generality

of this result. However, it is much easier and sufficient for many of the purposes of this thesis to work in an

important subcategory of ^9P6. This is the category of pointed, path connected spaces with the homotopy type

of a CW-complex, CWo. CW-complexes are significantly better behaved than general topological spaces.

Any map between two CW-complexes whose associated maps on the homotopy groups are all isomorphisms

(a weak homotopy equivalence) is, in fact, a homotopy equivalence. Moreover, CWo is a large subcategory of

SPo in at least the following senses. It contains all differentiable manifolds (of infinite and finite dimension),

it is closed under the operation of taking continuous loops and CW-complexes can be used to approximate

I



10 1. PRINCIPAL BUNDLES: DEFINITIONS AND EXAMPLES

arbitrary spaces in SPe. That is, for ever space y € ^9Po there is a space X e CWo and a weak homotopy

equivalence f : X -+ Y. If Xl and X2 are two CW-approximations to Y then then X1 = Xz. This can be

used to define a further equivalence relation, weak homotopy equivalence, on SPo. Yt - Yz if and only if

thereisanX€CWsandweakhomotopyequivalences,¿:X-+Y(i:1',2). lshallwrite(()21))forthe

weak homotopy class of Yr. Note that if f :Y1 -+ Y2 is a weak homotopy equivalence then Y - Yz. For a

summary and proof of these results about CW-complexes see, for example, Spanier (Ch 7 , sections 6 and 8).

Flom an abstract point ofview, algebraic topology can be regarded as the study offunctors and cofunctors

from ,jPe, to some other category of pointed sets, ,SS which descend to functors on fISPo. Such (co)functors

are called homotopy (co)functors. The algebra comes in when we consider further structures on ,9,5 such as

when ^9S 
is the category of of groups with homomorphisms for maps, GG. The topology comes from using

the homotopy category so that spaces of the same homotopy type correspond to the same algebraic group

and homotopic maps give rise to the same homomorphisms.

To be specific, let us consider an obvious (co)functor by chosing a topological space' X, in ,SP6 and

defining the functor and cofunctor

óx : SPo -+ XX

Y r+ IX,Y)

óx : SPo -+ YY

Y + lY,Xl.

Here [X, Y] denotes the homotopy classes of maps from X to IZ. The categories X X and YY are categories

of pointed sets, the point (in the latter case) being the homotopy class of the trivial map

O:Y-+rs

for øe the preferred point of X. The morphisms of X and Y are defined by pre and post compositions with

maps / : Y -+ Y' . For example, if [9] e [X, Y] then

dx(/)([s]) :Íos.

It is elementary that þx and, @¡ descend tu þ6) and @1¡¡¡ on If,9Ps.

An obvious and crucial question for algebraic topology is "Under what conditions on X is þy (o. dx)

a (co)functor into the category of groups?". Spaces for which @¡ is such a functor are called co-I/ spaces

and spaces for which @x is such a cofunctor are called 11 spaces. (For a look at the preliminary theory of H

spaces and co-H spaces the reader is referred to Whitehead pp 116-127). I will mention only some salient

points without proof.

CONSISTENCY: If X1 is a co-H space and X2 is an fI space then the group structures defined on

lXr,Xzl are the same. The homotopv class of the trivial map is always the identity.

PLURALITY: In general, a space may have more than one ff or co-H structure defined on it.
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TOPOLOGICAL GROUPS: Topological groups are always f/ spaces under pointwise multiplication of

functions.

LOOPS AND SUSPENSIONS: For any spaces X and Y the sets ÏEX,YI and [X,Q"Y) are isomorphic

groups. In general, lX is always a co-H space where EX is the suspension of x

EX:: X x Il -

(q,tt) - (r2,t2) if and only if tt : tz - 0,1 or nr : n2 : no

0"X is the space of continuous, based loops {l : 
^91 

-+ X} equipped with the compact open topology. Since

the spheres are all suspensions, So = !^9q-1, we see another route to demonstrating that the homotopy

groups are well-defined and well behaved under homotopy'

3. CLASSIFYING SPACES OF HOMOTOPY COFUNCTORS

A classifying space for a homotopy cofuntor S : S Ps -i ,9,9 is a space B €. S Po such that Ó : ÓB and of

course all spaces in the homotopy class of B have this property. An element u € /(B) is called universal for

{ if and only if for every space X € ,9P0 and every element u e Ó(X) there is a unique homotopy class of

maps, [/,,s] with /,,s : X -+ B such that

, : ó(f ,,n)(").

A universal element defines a one to one correspondence between elements /(X) and lX,Bl for all spaces'

X e SPs via

a + (1",n)'

It is elementary to show that for any pair of classifying spaces with universal elements, {Br,ut} and {F2,u2},

that the maps fur,s, and fur,a, define an homotopy between .B1 and 82. Thus, the classifying space for any

cofunctor, if it exists, is uniquely defined up to homotopy.

Everything said above about classifying spaces could have been restricted to CWs and it is remarkable

(see Spanier Ch 7 section 7) that in this case every homotopy cofunctor, {, from CWs into a category of

pointed sets has a classifying space, Bcwo € CWs and a universal element, ucwo € Ó(Bcw") (note that my

definition of universal element differs from Spanier's but the content of some of his results is that the two

definitions are equivalent). There are two homotopy cofuntors of particular interest to us.

3.T. CASE 1 - ABELIÀN CECH COHOMOLOGY.

þ: CWs -+ GG, X -+ Hq(X,A)

where A is an abelian group. In this case the classifying spaces are the Eilenberg-Maclane spaces, K(A,q).

It is an important theorem of algebraic topology that the Eilenberg-Maclane spaces are completely classified
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up to weak homotopy by the property

nr(K(A,q)):
0 ifp*q,

A ífp:q.

Eilenberg-Maclane spaces are thus uniquely classified up to homotopy equivalence in CWs. Eilenberg-

Maclane spaces play a crucial role in obstruction theory and attempts to decompose spaces in the homotopy

category. Since / is a cofunctor into the category of groups all Eilenberg-Maclane spaces are H-spaces and it

can be shown that they all possess a unique fI structure. Some examples which can be verified by computing

their homotopy groups are

(a): 51 is a K(Z,I))
(b): CP-, infinite complex projective space in the topology induced from the norm topology on 17, an

infinite dimensional Hilbert space, is a K(V',2).

(c): U(17), is contractible in both the uniform norm (Kuiper (1950)) and strong operator (Dixmier and

Douady (1963)) topologies so that the uniform norm projective unitaries, PU('11)" and the strong

operator projective unitaries, PU('11)"" are both K(V',2)'s.

(c)z L(Z.,oo), infinite Lens spaces arc K(2n,7)'s.

3.2. CASE 2: NON-ABELIAN CECH COHOMOLOGY/ISOMORPHISM CLASSES OF

PRINCIPAL G_BUNDLES.

ó(X):: HL(M,G): Aun¡v(G)l -

Theorem 1.2 states that þ is a homotopy cofunctor on ^9Ps and we therefore know that it has a classifying

space and a universal bundle when restricted to CWs. However, Milnor's construction (see, for example,

Husemoller (1966)) furnishes a universal bundle, EG(BG,G) over all ,9P0. This is a principal G-bundle,

EG(BG,G) such that for all spaces M e SPo and bundles P e Bun¡,¡(G) there is a map,

f:M-+BG,

defined uniquely up to homotopy such that

<P>-<l*EG>.

Thus we have a second answer to the classifying problem for isomorphism classes of principal G-bundles

over a space M.

Bun¡a(G)l -- lM,BGl: H|(M,G)

The map / is called the classifying map for P and from now on I shall write, where desirable, P(M,G,f)

for a principal G bundle with classifying map /. Note that we now have a topological way to answer the

primarily algebraic question, under what circumstances is f/l (M,G) a group for all M? This is so if and

only if BG is an H-space.



3. CLASSIFYING SPACES OF HOMOTOPY COFUNCTORS 13

The existence of classifying spaces and universal bundles for principal G-bundles is an initially surprising

and important theorem of bundle theory. Typically, however, classifying spaces are complicated topological

spaces and, aside from Milnor's construction, it can be difficult to find concrete examples of universal

bundles or classifying spaces. However, when one restricts oneself to CWo one can make better progress. Let

Eov/oG(BoraroG,G) denote any bundle which is universal for the homotopy cofunctor Ht(-,G) restricted to

CI,Vo. Note that though there is a BsvroG e CWs, BcwoG need not be a CW-complex. It is a theorem

that a principal G-bundle, P(M,G), is a CWs-universal bundle if and only if its total space is weakly

contractible. That is, zro(P) : 0 for all q. In general, one can define the notion of an n-CWs-universal

principal G-bundle, E\w"G(B\woG,G¡, as one which acts as a classifying space for all CW-complexes of

dimension n or less. So that if M is a CW-complex and dim M 1 n

Bun(M,G)l - : lM,BZw"Gl

ItisatheoremthataprincipalG-bundle P(M,G) isn-universalif andonlyif itisn-connected. Thatis

no(P) :0 for all q < n

One can let n J oo and attain the result on all CWs. (For proofs of these results see Husemoller pp 53

57 and Steenrod pp 99 - 101). The contractibility of the total spaces of CWo-wiversal bundles means that

the classifying map, f , of. E6soG(BcwoG,G,/) is a weak homotopy equivalence. Thus B¿¡aroG defrnes a

weak homotopy class of spaces with the classifying map of any CWs-Dniversal bundle over a CW-complex

realising the CWo-approximation of it's image. An interesting example of this situation arises with realisation

of E¿yyoSr asU(11)(PU(H),,5t).PU(11)"isinCWo sinceitisaBanachLiegroupandinparticularan

infinite dimensional manifold. It is known, however, that PU(11)"o is not homotopic to PU(71)" and thus

U ('11) 
".(PU 

(71) 
"o 

,,91 ) is a Cl7o-universal bundle with its base space in SPs but not in CWo . PU ('11) " is

thus a Clls-approximation of PU(17)"o The identity map id: (Ju -+ [/,o defines a continuous Sl-bundle

morphism between U,('17)(PU"(?/),^9t) ardU('tl)"o(PU('11)".,^91). the associated commutative diagram

of homotopy groups gives that id : PU (11)" -+ PU ('11) 
", is a weak homotopy equivalence).

The Gauss map first suggested the existence of universal bundles. Let's consider a principal bundle,

P(M,SO(n)), of the classical group SO(n) (" > 1) over a closed manifold M. These bundles are in bijective

correspondence with oriented .R' bundles over M . The former being the frame bundles of the latter. Consider

the oriented Steiffel manifold

V (n, N) ': {(r, W) : u e W, W an n - dim oriented subspace of ,RN}.

V(n,N) defines a principal-SO(n) bundle over the oriented Grassmanian

G(n,ll) ,: {W ;W is an n - dim oriented subspace of RN}

and one can verify that it is n-universal for large -fü. We now embed P in ,RN for some large ll and define

f:M-+G(n,N)
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fr r+ Pr.

One can see without too much difficulty that / is the classifying map for P. If we let N J oo then V (n, æ)

is contractible and the infinite, oriented Grassmaniat G(n) : G(n,oo) is a CWs-classifying space for SO(n).

Another way, this time in the complex case, to discover the infinite Grassmanian a.s a Cl7¡-classifying

space is via Kuiper's contractibility result for tJ(77),. We embed U(n) ínU(17)" by splitting offthe first

n vectors from an orthonormal basis for'J7. ?1 ;: Cn O ?lt. Then t/(rz) is the closed subgroup of U(H)"

whose elements fix every vector in'J7' andU('17')" is the closed subgroup whose elements fix every vector in

C". Note that(I('17'). is contractible, that the obvious right actions of these subgroups onU(11)" commute

and that U(11'). is a closed sub-Banach Lie group of. U('11)". Thus t/(?l)"(U(11)"lU(17')u,U('ll')") is

a principal Ll('17').-bundle (see Note 1.6) and so 6 : (U(71)"|U(H')") is contractible. This entails that

E(ElU(n),t/(n)) is aCWo-tniversalbundle(seeNotel.6andrememberflnatU(n) isacompactLiegroup).

We have recovered the Grassmanian as a CWs-cla,ssifying space for U(n) since G(n,) : EIU(n). Now, the

Peter Weyl Theorem states that every compact Lie group, G, can be embedded in t/(n) for some r¿ so the

inclusion G .-+ U(n) induces afreeright action of Gon -Ð. Thus, solong as the inclusionis closed, E(ElG,G)

is a Cl7s-universal bundle for the compact Lie group G.

Although it is often the case there is no general guarantee that one can find a closed embedding of a

topological group or even a Lie group inU(11), (or even u('11)"" which would could suffice since U(?l)"o is

also contractible). A general construction for the classifying space of any topological group was provided by

Milnor. For a full account the reader is referred to Husemoller (Ch 4 section 11). In this construction we

see the importance of the condition of numerability in the definition of a principal G-bundle. One starts by

defining the infinite-join of G as the set of formal sums

x: {(t,.0¡ : i{tn,a,)}
i=l

where ú¿ € [0, 1], g¡ € G, only finitely many ú¿ are non-zero and ![r tt: I' Then one places an equivalence

relation on X by

(t,g) - (t',g') if and only if (ú: ú':0) or (t: ú' and g: g').

and sets

EG:: Xl - .

To place a topology on EG the following maps are used,

t¡ : EG -+ [0,1]

D(to, si) + ti

sj I t jt((0,11) -+ c

D(¿n, g¡),+ g¡.
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.EG is given the coarsest topology which makes all the !¡ and új continuous. With respect to this topology,

the G-action

l{t,, s¿).s :: \(tn, tn's)

is continuous. One can show that EG is thus the total space of a principal G-bundle, EG(BG,G) where

BG : EG lG and one proves that EG is a universal bundle for ^9Ps. I shall merely outline the key step

in defining the classifying map in this proof. Given a principal G-bundle, P(M,G), a trivialisation (ho,Uo)

with transition functions {go,p,Lr,} and subordinate partition of unity {po,Uo}, define the classifying map

for P with r €. Uoo by

fos:M-+BG

, * lDØ"("),g",."("))l

(here, [ ] denotes equivalence classes of the G-action in EIG). The map is independent of the choice of a6

since, if one chooses another a¿ with fr e Uo then

f .'@) : lDØ"@), s',"' ("))l

: li(''(')' I o'oo(')'s'"''' (") )l

: lÐ(P"("), g''.0 ("))l

: f",o(r)

4. CHARACTERISTIC CLASSES

We have seen that principal G-bundles are classified by the first cohomology class deflned by their tran-

sition functions. In general, principal G-bundles give rise to a number of classes in the integral cohomology

of their base spaces which contain information about the bundle and are cofunctorial. Such cohomology

classses are called characteristic classes of the bundle. More precisely we have the following'

DnplNrrroN 1 .5 . (CHARACTERISTIC CLASSES) A characteristic class, c(P) , of a principal G-bundle,

p(M,G) is an element of the the cohomology of the base space of the bundle which is cofunctorial on SPo.

Precisely, a characteristic class is a map between the cofunctors Il1 (-,Q) and H" (-,A) , where ,4 is an abelian

group, usually the integers, c(P) e H"(M,,A). If / : N -+ M then "U-P): /-(c(P))'

Norn 1.15. We shall encounter many characteristic classes in the next two chapters and discover some

of the information they hold in terms of the possibility of the reduction and extension of the structure group

of P.

Norp 1.16. Since characteristic classes are cofunctorial, they are determined by their value on the

universal bundle, EG. Hence, if P : P(M,G,/) then

c(P) : c(Í.P): f-(c(EG)).
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We shall ca\l c(EG) the universal characteristic class of c or simply the universal class.

The cohomology groups of the classifying space BG thus completely determine the characteristic classes

of principal G-bundles. Since there is not, in general, an exact cohomology sequence for fibrations as there

is for homotopy more demanding and subtle methods have to be used to investigate the relations between

the cohomology groups of total space, fibre space and base space. The most important of these methods is

that of spectral sequences to which I now briefly digress.

Dpr,r¡¡ruoN 1.6. (SPECTRAL SEQUENCES) For a complete treatment the reader is referred to Chap-

ter 14 of Bott and T\r. Given a bi-graded algebra, E : Do,o(Er'ø), with grading horizontal frltration, ,E'

and differential D such that

l. En :: Drrn, oro(Eo'o)

2. F' '.: Dr¡o:n(Eo'o)

3. D" :: DlF" : Fn -+ Fn*L ,

aspectralsequenceforthepair{,8,D}isasequenceof bi-gradeddifferentialalgebras {8,,d,} suchthat

E,+r = H(Er,d,)

and

{8,,d,} -+ GH(E,D) as r -} oo.

Here, fI denotes taking cohomology with respect to d, and G denotes the natural horizontal grading induced

on H(E,D) via the filtration .E'' 
æ

GH(E,,D) :DHEnfHE"+r
n=L

TnnoRprr,r t.Z. (LERAY SPECTLAL THEOREM) Let P(M,F) be a locally tri,uial fi,bre bund,le and' A

an abelian group. Then there is a spectral sequence of bigrad,ed, algebras, {ø[''o¡(P),d',] conuerging to the

natural horizontal grad¡ng oJ the total Cech cohomology of P, GH*(P,A). The second term in the spectral

sequence i,s deriued from the cohomologies of the fibre and base space uia

El'o (P) : Hp (M, Ho (F))

where Hq (F) d,enotes a presheal which is locally the constant sheaf Hq (F, A) '

Norp 1.17. The spectral sequence is defined by taking a good cover, {U.} for M and lifting it via the

projection, zr , of the bundle to P. One then defines the first graded, algebra of the sequence to be

E?e,q)(P) :: CP (M, Co (F))

This is the group of Cech p-cocycles defined over the cover {zr-1(y")} of P, taking values in the presheaf of

Cech q-cocyles on P. Since {t/"} is a good cover, zr-1(U") is homotopic to F for all o and hence, under the

homotopy invariance of Cech cohomology, we arrive at the cohomology groups of the fibre, F, after applying

dr.
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Noro 1.18. Calculation is much more tractable if the presheaf Hq(F) is globally constant so that we

have standard cohomology with the coefficient group HI(F,, ). This is the case if the action of zr(B) on

the cohomology of the fibres is trivial. Clearly this is the case if r@) : 0. A second way this can occur is

in the crucial hypothesis of the Leray-Hirsch spectral theorem, namely, that there be global cocycles on in

Ho(P,,4) which restrict to generate Ho(F,A) lor all q. In this case the Leray-Hirsch theorem states that,

G Hq (P,,4) : D H',(M , A) Ø Hr (F, A).
i+ j:q

Nora 1.19. One can easily verify that all trivial bundles, P : M x F, satisfy the Leray-Hirsch hypoth-

esis and hence we derive a version of the Kunneth formula.

No'rB 1.20. The total Cech cohomology of any space M, H*(M,,4) is a graded algebra under the

multiplication defined by the cup product (See Bott and T\r for a definition). It is of note that even though

each d, is a graded algebra homomorphism, this does not guarantee that H*(P,,4) and GH(E*,d-) are

isomorphic as graded algebras.

NorB 1.2L. A morphism between two spectral sequences, {8,,d,} and {.t}, d,} is a collection of algebra

homomorphisms

fr: E, -+ F,

which satisfy

r. f,(EÍo")) ç p@,ø)

2. t,@! (r)) : dl (J,@)).

When ó t Q(N,G) -+ P(M,G) is a principal bundle morphism, there is a pullback morphism of spectral

sequences from .8,(P) to E,(Q).

Si: E,(P) -+ E,(Q).

Let u € E|"e): Cv(P,Cq(P,A)). ø is just a Cech p-cycle on P with values in the presheaf Cq(P,A)

and /.(r) is defined to be the pullback of r, þ*(r) e C'(Q,C'(8,4)) : 4"@). One can show that /*
commutes with each d, and so can be defined for all r.

Norn L22. The machinery of spectral sequences is not restricted in its application to principal bundles

or even fibre bundles. All of the above can be carried over to fibrations and fibration maps.

5. COHOMOLOGY OF ,B.91 - PU

As an example I shall calculate the cohomology of B^91 which I realise as the infinite projective unitaries,

PU. We saw above that PU - K(2,2) and hence is simply connected. Now we apply the Leray spectral

sequence to the full unitary group, U, of Hilbert space, U:U(PU,Sr).

We see in Figure 1 that d,:0 for r ) 2 and hence, since the total space is contractible, that each d2 is

an isomorphism. Thus setting e to be a generator of Hr(Sr,Z),

d2(e) : ¿,
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FrcuRp I. El'c (U (PU,S,))

p+1

and we deduce

H'(PU,Z) = lc1l.

Here c1 is called the first Chern class of the universal bundle U(PU,.9r) and [c1] denotes the polynomial ring
generated by c1.

p
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CHAPTER 2

REDUCTION OF STRUCTURE GROUP

1. GENERAL THEORY

The structure group of a general flbre bundle contains important information about the bundle. It is

therefore important to know when one can alter the structure group, reduce or extend it, without in some

sense altering the bundle. This chapter is concerned with the former situation and in a sense' we shall be

investigating when a bundle uses only a subgroup, 1/, of its structure group' G. My treatment closely follows

Husemoller's (Ch 6) but I consider the more general case where f/ need not be closed in G and the more

specific case where r : G -+ G lH defrnes a principal fI-bundle'

Dpr,rNrÏoN 2.I. (L REDUCTION OF THE STRUCTURE GROUP) We say that the structure group

of principalG-bundle, P(M,G)reducestoflif wecanchoosetransitionfunctions, {go,B,Uo} forPwith

range in fI for all a, 13. A reduction of the structure group of P to fI is the class in H|(M,H) of such a

choice of transition functions.

No.rn 2.1. This definition differs from Husemoller's but I use it since it is more intuitive' Theorem 2.2

will prove the equivalence of our deflnitions'

Norn 2.2. If þ: P(M,G) =- p'(tW,G) is an isomorphism of principal G-bundles and the structure

groupof Preducestol/fortransitionfunctionsdefinedbythetrivialisation {to,Uo} then{/oso,Uo}isa

trivialisation of P' giving rise to transition functions taking values only in fl. Hence the structure group of

P reduces to ff if and only if the structure group of P'reduces to -[/ for all P' e< P >. In fact, since the

complete attention of this thesis is on properties of principal G-bundles invariant over their isomorphism

classes I will adopt a sloppiness in notation for isomorphism classes and their representatives.

Norp 2.3. A reduction of structure group need not be unique in the sense that there may be a number

of difierent choices of transition functions for P in the class l{g.,p,t/"}] € Ht(M,G) which are members of

different classes in HL(M,H).

Lprr¡rr,r¡ 2.r. (THE GIH-FIBRE BUNDLE ASSOCIATED TO A PRINCIPAL G-BUNDLE) Suppose

that P(M,G) is a principal G-bund.le and H a closed, subgroup ol G. Then Pf H : PIH(M,GlH,GlS) is

a fibre bund,le with fibre Gf H, structure group GIS and transition functions {p(5",p),Uo}. Where S is the

closed, normal subgroup

S :: ñseG gHg-r
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and p is the canonical projection

p: G ---+ GIS

Pnoor'. One defines the projectiert,'Itp¡¡¡, of. PIH(M,GlH,GlS) on any class, þ of PIH with p e P

by

rP/H[p]) : rp(P).

The fibres of this projection, 
" r) r(*), r e. M , are clearly homeomorphic to G I H and local triviality arises

fromthelocaltrivialityof P. Thealterationof structuregrouparisesasfollows. Gactsontheleftof GIH

by

s.þ'H) : (g'g')H.

Under this action the stabiliser of the coset gIl is the group gHg-r.Hence

S '= lsec(r-t ns)

is the trivial part of the action of G on GIH and we arrive at the new structure group for PIH which is

Gls. n

Norp 2.4. In the case where fI is a normal subgroup of G then GIH is a group and S : fi so that

PIH is a principal G/f/-bundle.

NorB 2.5. Since ,S is a normal subgroup of G, PIS is a principal G/^9-bundle over M and, in fact,

PIH is the GIH-bundle associatedto PlS.

PIH:(PlsxGlH)lGls)

Lemma 2.1 is concerned with the fibre-bundle structure of Pf H but in the case where r : G -+ GIH

defines a principal G-bundle (see Note 1.6) it follows that PIH is the base space of P(PlH,fI) which is a

principal ,I/-bundle (since local sections of r:G -+ GIH and the local triviali$ of P(M,G) allow one to

definelocalsections of rp:P-+PlH). ThusPhasthestructureof abundleof bundles. Thissituationis

nice since when we take P : EG (or even merely EcwoG) to be the universal G-bundle then EG(EG I H, H)

is a principal I/-bundle with weakly contractible total space and hence a CWs-universal f/-bundle. Thus

we have realised BcwoH : EGIH as aGf H-frbre bundle over BG. We can, however, still make a good

deal of progress in cases where r '. G -+ G f H does not define a principal f/-bundle. One considers the

transition functions of a universal Il-bundle EH(BH,fI) as taking their values in G and thus they define

a principal G-bundle, B(BH,G,9) over Bfl (equivalently, on sets g 7 (EH xG)lH). For the question

of the reduction of structure group, it is sufficient to consider the classifying map of B, g : BH -+ BG, in

the homotopy category HSPy and take [S] * u fibration. The problem, however, is that in this case the

homotopy type of the fibre of [9] is not, in general, known.

We are now in a position to state the central theorem of this chapter.
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Tseonpu 2.2. (NECESSARY AND SUFFICIENT CONDITIONS FOR THE REDUCTION OF STRUC

TURE GROUP OF A BUNDLE) Let P(M,G,ne,f) be a principal G-bund,le.

(I) There is a one to one correspond,ence between the following.

1) Reductions of the structure group of P to H.

2) Elements of the set i-t([P]) ç H|(M,H) where i is the rno.p on fi,rst cohomology ind,uced by its

namesake,

i:H.+G

i I Ht(M,H) -+ Ht(M,G).

3) Isomorphism classes of H-bundles, < R(M,H) >, such that there is a bundle inclusion

i : R,-+ P.

l) Homotopy classes of maps, i : M -+ BH such that (with g as defined' aboue) I = S " Î.
(II)IlHisclosedinGthenthestructuregroupof Pred,ucestoHilandonlyiÍPlH(M,GlH,GlS,rp/n)

has a global section.

(ill) ü H is normal inG theni-t(lPl) is non-empty if and only if p(lP)):O where p is the rnap on

first cohomology induced by its namesalce the canonical projection,

p: G ---+ GIH

p: Hr(M,G) -+ Ht(M,GlH).

(IV) Il r : G -+ GIH defines a princi,pal H-bundle then the stracture group of P reduces to H if and

only if and, only if there is a map i such that f : îrEc/H o i. Moreouer, TE7/H : EGIH -+ BG is the

classifying map for B 7 (EG xG)lH and, in the case that M €. CWs, the reductions of the structure group

of P to H correspond, bijectiuety with homotopy classes of maps i

Pnoor. (I)

(1 <+ 2) 2 is just a restatement of the definition of a reduction of structure group.

(2 -+ 3) If [€] : l{h.,p,U"}) e Hr(M,H) and i([{]) : [P] then we may construct bundles Ê and P' such

that [rB] : [(] and [P'] : [P] following Note 1.13. There is an obvious bundle inclusion of R in P' and, since

Pt = P there is a bundle inclusion i: R.-+ P.

(2 <- 3) Given i : -R .+ P, assume, by refining if necessary, that a trivialisation, {to,Uo}, of R trivialises

P also. Let {h",p} be the transition functions associated to this trivialisation. Setting sa: i oúo, yields

local sections of P whose induced transition functions,

9",B@): s.(r)lsp(x) r e uo,p

: t.(x) ltB@)

are precisely {h",p}.Thus [rR] € i-1([P])
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(3-+a) Given[.EG] eH|(BG,G)and[EH)eHL(M,H) wehavethati([,E¡I]):s.lØGl. If thereis

an ,F/-bundle, R(M,f/,/) and inclusion i: R'-+ P then we have,

Í.IEG\: lPl

: i([Ã])

: i(i.lgvl)
: j.t1¡øu1¡ (This is elementary)

: i. g.fÛGl

= (s o î).lncl.

Hence, since -EG is a universal bundle, I = s " Î.
(3 <- 4) If there is an / such that Í = g o ¡ tttutt setting R:- i'nU we have that

¿([n]) = i(i.lEHl)

= i-r1¡øn1¡

: i'g*¡øGy

= (s o î).\øcl
: Í.ÍEGl

: [P].

(tI) (+) Suppose the structure group of P reduces to Il. Let rø be the canonical projection

rn: P -+ PIH

Given local sections, so, of P -+ M whose associated transition functions, {g.,p}, take values in ff , we define

a global section of. rpfH by setting

s'o i: .n¡1 o so ; Uo -+ PlHlU..

The s! piece together to yield a global section of.rp¡¡7 since, given r e Uo,p,

s'B(r) : r¡¡(sp(r))

: rn(so(r).s.,p(r))

: zr¡r(so(ø)) (since go,p(ø) e ä)

(e) If s is a section of rpl¡7 : PIH -+ M then one can define a map,

þ: P ---+ GIH

p,+ þlls(n)

: sl(r)
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where p e P, and lpll"@) is the coset in GIH such that for all g e þlls(r),lp): S.s(t). One then sets

R:: ú-L(ec.H) C P and verifies that in the subspace topology from P, R(M,H,TzIR) is a principal

fI bundle. (For these details, see Husemoller pp 7l-2.) Clearly there is a bundle inclusion i: R'-+ P.

(III) If .I1 is normal in G then we have the short exact sequence of Lie groups

1 

-) 

¡7 --:--a ç --!-a GIH 
------+ 

I

which, just as with abelian Cech cohomology, induces a long exact sequence in non-abelian cohomology

1 ---------+ H\(M,H) ' , Ho(M,q --l---+ Ho(M,GlH)
(1) 

--\ H.(M,E) ' , HL(M,G) --!-+ Hr(M,qE,

Once again, we exploit the correspondence between Hr(M,G) and Bun¡a(G)l - so that [P] is an element of

Hl (M , G) . Since 1 is exact, we see that the transition functions of P can be taken to have values in f/ if and

only if plPl:0. In that case, and only that case, there is a class in Ht(M,fI), [rR] say, and corresponding

f/-bundle, R(M,H), for which

i[À] : [P] and

i: R-+ P.

(ry) I first show that the structure group of P reduces to fI if and only if there is an / such that

Í:rnclruof. Fo.simplicityltakeP: Í*EG.Itiseasytocheckthatreducingviatheactionof 11 factors

through pulling back bundles. i.e. (/.,8G)lH : Í.(EGIH). We have the following commutative diagram.

P l', EG

rlJJ
pll Ji:--+ EGIH

I n"",ol
JJ
M --\ BG

Ifthe structure group of P reduces to f/ then PIH -+ M has a global section, s: M '+ PIH and we set

it:Í/ros:M-+BH.

/' is clearly continuous. The fact that / : T EG lH o ¡' follo*s from the commutativity of the diagram.

Conversely, given f, put ,R t: i.|øGçøGlH,H)). Every point in R is given by a pair (*,p)i where

r € M and p € EG ¡(x). The obvious inclusion map is

i:R.-+P- l*EG

@,P) i '+ @,P) ¡

and it is straight forward to verify that i so defined commutes with the Il-action on -R and P and is a

homeomorphism onto its image.



That rpç¡¡1 is the classifying map for B : (EG x G)lH follows from the fact that TIEG/H : id,pç¡¡¡ o

TEG/H. Hence the structure group of ri"¡,EG(BG,G) reduces to fI and

[trþ6¡¡¡EG(BG,G)] : i(id.øct nlEG(EG lH, H)l)

: i(IEG(EG IH, H)]

: [B] (by definition of B)
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so that B : B(EG I H,G,rr,ç¡¡¡).

Finally, since EG f H is a Bçpyo if M e CWs, then Bun¡a(H) I -
claimed is evident.

:lM,ÐGlH] and the correspondence

n

Norn 2.6. Extending the sequence 1 is no easy task since it involves defining second and higher degree

non-abelian cohomology. In the case that fI is central one can certainly extend with another boundary map,

d,to H2(M,fI) whose definition is well known. We shall also see this sequence go one step further in the

next chapter but that will require G to be contractible and hence all it's non-abelian cohomology groups can

be taken to be singletons. For a full treatment see Flenkel (1957). Another peculiar feature of the sequence

is that, even though not all of the sets in it are groups, we may still speak of it's exactness - the image

of onemapalwaysequalsthepre-imageof thetrivialco-cycleof thenext. Onealsoseesthat Hï(M,G)is

precisely the continuous functions ftom M to G, C(M,G).

No'rn 2.7. When BH ts an ff-space then HL(M,f/) is a group and the reductions of structure group

of P (should they exist) correspond to members of a left coset of H|(M,H) by exactness,

i-' ([P]) : la).d(c (M, G I H))

Once again using exactness we may identify

d(c (M,G I H)) : C (M, G I H) I i(C (M,G))

Nore 2.8. It would be nice to claim the equivalence between the reductions of the structure group of

P and homotopy classes of maps f such that f : itrEG/H o f ove. all of SPo but this result currently eludes

me. However, since obstruction theory will be one of the primary approaches I use in what follows and

obstruction theory is best understood for maps with domain in CWs, the results of (IV) will be sufficient

for many purposes.

As I mentioned, the advantage of the situation where r : G -+ G/.I/ defines a principal bundle is that we

can realise Bcwo : BcvvoH(B¿woH,G f H,G I S) as a G lH-frbre bundle over B¿soG. Whereas, in general

we do not know the homotopy type of the fibre of g : BH -+ BG considered as a fibration in fISPo. The

following lemma, however, will allow me to gain enough information about the homotopy groups of the fibre

of [9] for all my purposes.



1. GENERAL THEORY 25

Lotvrue 2.3. Let i : H .-+ G be an inclusion ol topological groups. Then there is a commutatiue diagram

of homotopy groups for all q ) 0.

1 ---------+ q(BH) --J--+ ro-t(H) 
--+ 

1

L..| | I

J OJ "'"J J

1 --------+ ro(BH) --j-t ro-r(G) ---------+ 1

Pnoor,. Setting 3 p (EHxG)lH: B(BH,G,f)Ietg'be the bundle morphism g' : B -+.EG covering

g and let i be the obvious bundle morphism i.: EH -+ B coveringid,pç¡¡1 . Then g'oi: EH -+ EG is a

bundle morphism covering g. The commutative diagram above is just the commutative diagram of the long

exact sequences of the fibrations EG(BG,G) and EH(BH,II) with fibre map g'oi (including the weak

contractibility of EG and EH). n

No.rp 2.9. If i, : H.+ G is a weak homotopy equivalence then the commutativity of the diagram

in Lemma 2.3 entails that g*,0 is a weak homotopy equivalence and hence BH - BG. It follows that

Bcwoï - BcwoH and that isomorphism classes of principal G-bundles and isomorphism classes of H-

bundles coincided in CWo.

Before, however, \¡/e can apply Theorem2.2 usefully we need to know some extra theory with regard to

Theorem 2.2 and the obstructions to lifting maps from the base space of a fibre bundle to the total space.

Fortunately, this problem has been studied in depth when the domain of the map is a CW-complex (see

Steenrod pg 777 - 181 or Whitehead pp 297 - 305.) Briefly, Iet us assume that M ls a Cl7'-complex and

that we are trying to lift a map ,f : M -+ B to the total space of the fibre bundle E(B,F,G,rø) such that

thelift, f satisfies 1:røof. We define f overthe zeroskeletonof M by lifting / arbitrarily. Extending

over the l-skeleton of M is only a problem if the fibre, F, is not connected. In general, there is no difficulty

in extending a map from the n-skeleton to the (n + l)-skeleton of M íf. r^(F) is zero. One can be very

precise about the obstruction of lifting / which arises at the first non-trivial homotopy group of tr'.

Tsnonnu 2.4. (THE PRIMARY OBSTRIICTION TO A LIFTING) Let f : M -+ B he a continuous

map uhose domain, M, is aCW compler and E(B,F,G) a fibrebundle ouer M with connected fibre F and

structure group G. Suppose further that r.(F) is the first non-uanishing homotopA group of F, (n > 0).

Then

1) There exists i : Mn -+ E, a lift of f on the n-slceleton on M .

2) There erists a cohomology class, o(f ,E) e H"+r(M,r-(l)), which depends only on the homotopy

class of f withthe property that f has atift, i, onthenll-skeleton of M if and onty if o(f ,E):9.
3) Il S : Mt -+ M is continuous, then

o(Í o g, E) : g. (o(J, E)) e H"+r (M' ,r^(F)).

Norn 2.10. This is proved in Whitehead pp 302
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Norp 2.11. Obstruction theory is a part of homotopy theory and applies to the more general notion of

a fibering, r : E ---+ B. All locally trivial fibre bundles are fiberings'

Norn 2.I2. The script F, .F, is used to denote cohomology taking values not simply in r"(F) but in a

possibly twisted r^(F) bundle over B. However, when this bundle is trivial v/e recover standard cohomology

and this is the case at least when B is simply connected which will cover almost all of my purposes.

NorB 2.13. (3) of Theorem 2.4 is critical for the purposes of this exposition since it makes the pri-

mary obstruction to lifting the classifying map of a principal G-bundle P(M,G,"f), ,rp to a fibre bundle,

E(B6sroG,F, G) over BcwoG into a characteristic class of that bundle. (Typically, E will be the classifying

space of either a subgroup or extension of G). The universal class is the primary obstruction to lifting the

identity map on BcwoG to E, o(id6ç,.8G). One has the following diagram'

EidE

l1
M l BcwoG no , BcwoG

o(P) :: o(f ,E) : f*(o(idB"*oc,E)).

Norn 2.14. Ifthe fibre of. E, F, is an Eilenberg-Maclane space then the primary obstruction is the only

obstruction and / lifts to some f defined on alI M, if and only if. o(f ,E) : O'

No'rp 2.15. The classification of possible tifts of / has been completely solved for the case of vertical

homotopyclassesof lifts. (Averticalhomotopyof amap Î, M + E, Ît, isoneforwhich roi¿: f fot

all ú € [0,1].) In this case, if / and i' are difierent lifts of /, there is a difference cocyle, a^(i,i',n) in

Hn(M,r*(F)) which measures their difference and depends only on the vertical homotopy classes of / and

¡'. F\r.th"r*ore, for any fixed lift of /, ¡0, th" correspondence

î -+ a*Go,i,ø)

defines a one to one correspondence between the vertical homotopy classes of lifts of / and the elements

of Hn(M,r*(F)).This fact along with Note 2.12 is the essence of why Eilenberg-Maclane spaces are the

classifying spaces for abelian cohomology. However, these results on vertical homotopy classes of lifts are of

little use for the purpose of combining this theory with Theorem2.2in order to classify the possible reductions

of structure group of a principal G-bundle. In this instance we consider possible lifts of the classifying map of

a principal G-bundle, P(M,G, f),to BH. Here we are interested in the absolute homotopy classes of possible

Iifts since these correspond to different isomorphism classes of I{-bundles which reduce the structure group

of P. Taking absolute homotopy classes constitutes a further equivalence relation on H"(M,r^(F)) (which

we are considering as the space of vertical homotopy classes of lifts). Hence, I can flnd no more effective,

general method for classifying possible reductions of structure group than that described in Theorem2.2.
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I shall now use this theory to investigate a series of well known examples from bundle theory

2. METRICS ON VECTOR BUNDLES

The canonical starting structure group for a complex vector bundle is G: GL(n,C) since this is the

Iargest subgroup of Homeo(C") whose action on Cn preserves its vector space structure. Consider a rank n

complex vector bundle V(M,C",GL(n,C)) with transition functions {go,p,Uo}. A choice of inner product

on V is a continuous, symplectic linear form

o:V@V->C

where V O V is the rank 2n complex vector bundle with fibre (V Ø V), :: V, @ V* and transition functions

{go,p x go,p,(Jo}. Given an hermitian metric on I/ we can restrict the structure group of V to those elements

of GL(n,C) which leave a invariant on all the fibres of V ØV . This new subgroup is, of course, the unitaries,

H : U(n). Conversely, if the structure group reduces to U(n) then V can be equippecl with an hermitian

metric. Now is it well known that via the polar decomposition GL(n,C) (considered merely as a topological

space) can be written as direct product GL(n,C) : U(n) x W where I4l is homeomorphic to the space

M;(C) of self a-djoint matricies. W is a Euclidean space and hence contractible. We let P(M,GL(n,C),f)

be the frame bundle of V. Reducing the structure group of I/ to [/(n) corresponds to lifting f to BcvvoU(n)'

But from Theorem 2.2 (IV) (since U(n) is compact) BçyyoU(n) is a l,7-fibre bundle over BswoGL(n,C).

Since I,7 is contractible there is no obstruction to lifting any map inlo B¿soGL(n) to BcwoU(n). Hence

every isomorphism class of rank r¿ complex vector bundles has a unique reduction of structure group to

U(n). Note that this also shows that every complex vector bundle has an inner product. The situation is

more general than this since every finite dimensional Lie group, G, is homeomorphic to 11 x E, where fI

is a maximal compact subgroup and E is a Euclidean space. In this case all principal G-bundles can be

considered as principal ff-bundles. In particular, when G : GL(n,R), H : O(n) and every real vector

bundle can be given a Euclidean metric.

3. SEMI-DIRECT PRODUCTS WITH DISCRETE GROUPS

LetussupposethatGhastheformofasemi-directproductG:HX"Zn.Ghasndisconnected
components and fl is the identity component of G. (n may be infinite but shall always be assumed to be

countable, Z*: Z).

I ---+ H --+ C 4 V'. --+ 7

In such circumstances it is natural to seek to reduce the structure group of a principal G-bundle to ff.

Since I1 is normal in G and G lH : V'n, B¿,nyoH is a principal Zn-bundle over BcvroG. In fact, since

r1(BçyyoG) : ro(G) : V,n ar..d similarly r1(Bsv/oí) :0, BcwoH is an n covering space for BcraloG. Since

the general obstruction theory of Theorem 2.4 does not apply to bundles with disconnected fibre we must
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rely on non-abelian cohomology. We have the long exact sequencefor Bçs¡oG,

1 --------+ C(Bç;yyoG,H) - --+ C(B61a4G,q --!---+ C(BswoG,Zn)

--\ Hl (Bov/oG, H) --!---+ HL (B¿ryoG,G) --!---+ Hl (B61roG,Zn).

The universal class obstructing reduction of structure group to the connected component of G is plØGl, an

element of HL(Bcvloç,V'n). One also observes that p: C(BçryoG,G) -+ C(BçyyoG,Z-) Ts onto and hence

by the proof of Theorem 2.3 (III) we see that reduction to the identity component of G is unique when it

occurs. An important example of this is when G : O(n) : SO(n) x"Zz. Reducing the structure group

of an Rn vector bundle to SO(n) corresponds to giving it an orientation. Reducing the structure group

of the tangent bundle, TM(M,R,O(n)), of an n-dimensional manifold to SO(n) is the definition of the

manifold's orientability. The obstruction to orientation isWt, the first Steiffel-Whitney class. Its universal

class is the generator of Ht(Bsv/oO(n),22) :Zz and, in general, Wr(P) e Hr(M,22) for a principal-O(n)

bundle, P(M,O(n)).

4. ALMOST COMPLEX STRUCTURES

Given a complex, n-dimensional manifold N, one knows that N also has the structure of an oriented, real,

2n-dimensional manifold. The question in the converse situation, whether an oriented, real, 2n-dimensional

manifold, M, also has the structure of a complex manifold, is far more difficult and splits into two sub-

questions. In what follows we shall see how the first and easier of the two questions, whether M has an

almost complex structure, can be answered using the principal bundle theory so far developed. Starting

with M we consider its tangent bundle T M . If. M is to be a complex manifold then there must exist a

continuous choice of complex structure for each of the tangent planes in its tangent bundle. The space

of complex structures on R2n compatible with the usual inner product, J(2n), is the subspace of matrices

{j e M^(Rz") , j' - l, jT : -j}.Choosing a j we can make the indentification

U(n) : {u e Mn(R2^) : uj : ju]¡

whichdefinesaclosedembedding of U(n)inSO(2n). J(2n)may beidentifiedwiththecosetspace of U(n)

ín SO(2n). Then we have

(2) J(2n) = SO(2n)lU(n)

If we take the frame bundle of TM, FM(M,SO(2n),/), which is aprincipal SO(2rz)-bundle, and mod out

by the action of (I(n) on its frbres then we arrive at a J(2n)-bund\e, FMIU(n). A sectionof FMIU(n) is

precisely the continuous choice of complex structure mentioned above and, by Theorem 2.2(3), a necessary

and sufficient condition for the reduction of the structure group of FM foU(n). A section of. FMIU(n) is

called an almost complex structure for M and not all oriented, real, 2n-dimensional manifolds possess one

(".g. S", n> 4).
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Since t/(n) is not normalin SO(2n), J(2n) is not a group and we cannot avail ourselves of non-abelian

cohomology to proceed further. Obstruction theory and the use of Theorem 2'2(4) teq;ires knowledge of

the homotopy groups of J(2n) which can be discovered by judicious use of the homotopy exact and spectral

sequences of 2 considering SO(2n) as a principalU(n) bundle over J(2n). One obtains that J(2n) is simply

connectedand,r2(J(2n)):Zforn)1(whenn=IJisapointandalloriented,realtwodimensional
manifolds have an almost complex structure). Redrawing the lifting diagram for this situation,

BU(n)

I

J

M J+ BSO(}n)

we see that the universal, primary obstruction to an almost complex structure is the generator of

H3(BSo(2n),2): zz'

This class isWz, the third Steifel-Whitney class. Note that J(2n) (n > 2) is not an Eilenberg-Maclane

space and its higher homotopy groups will act as further obstructions to lifting /' Hence the vanishing of

WJ@M) is a necessary but not sufficient condition for the existence of an almost complex structure on M '

5. THE CHERN CLASSES

As I mentioned in Chapter 1, the calculation of the cohomology ring of classifying spaces is an important

labour of bundle theory. I shall conclude Chapter 2 with a quick calculation of H*(BU(n),Z)' (Another

method,usingtheGysinsequence,canbefoundinMilnorandStasheff). Theaction of (I(n) on,92'-1 (the

latter regarded as the unit sphere in C") yields the useful decomposition of U(n) as a principal U(n - 7)-

bundle over S2'-r, (J(n) : U(n)(52^-r,U(n - 1,)). F\-rrthermore, the sphere bundle of the associated

classifying spaces, BU(n-7): BU(n-l)(BU(n),5'n-'), provides a simple definition of the universal nth

Chernclass. If eisthegenerator of H2n-r(Szn-r,Z)consideredasanelementof Ef,o;2'-r)çnU@-1)) and

d2, is the 2nth differential in the spectral sequence of. B(I(n- 1) then the universal nth Chern class is given

by

cn: dzn(e).

pRoposruoN 2.5. (THE COHOMOLOGY RING OF BU(n)) The integral cohomology ring ol BU(n)

is the polynomial ring freelg generated, by the n Chern classes of the uniuersal bundle.

H. (BU (n) ,V') : lcv , ' .., cnf

pnoor. (by induction on n) In the case n:7, BU(l) : BSr and the proposition vr¡as proven in Chapter

1. Suppose that

H. (BU (n - t) ,Z) : lc1, '.., cn-tl'
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Then consid er the Ez.(BU (" - 1)). Since d, is a graded algebra homomorphism for aLl r, He (BU (n - 7),2)

is zero for p odd and 2n - 1 is odd we see that

H2^ (BU (n - r) ,z) : H2^ (B[I (n),2) I < cn >

The result now follows. !



CHAPTER 3

EXTENSION OF STRUCTURE GROUP

We now turn to the question of extending the structure group of a principal G-bundle. In the previous chapter

largely mathematical questions about the existence of extra structure on bundles - metrics, orientations,

almost complex structures - were translated into question about the reduction of the structure group of

those bundles. In this chapter the desire, largely of mathematical physicists, to put extra structure on some

specific bundles will lead to the question of extending the structure group of bundles.

1. TERMINOLOGY AND GENERAL SETTING

Let

(3) 1-+N-+G-+G-+|

be the short exact sequence of a central extension of a Lie group G by a compact Lie group ly' to yield a

third Lie gronp G. We regard N as the kernel of the canonical projection

ptG --+C¡N:C

and we identify G with G7lf . Sin"" N is a compact subgroup o1. G, G has a principal N-bundle structure,

C : C(G,N). We shall be concerned with cases where ô it u non-trivial bundle over G for otherwise the

extension problem is trivially solved. As we saw in Chapter 2, the bundle structure of d allows us to regard

any principal G-bundle, Q(M,G) as a bundle of bundles and, in particular, as a principal N-bundle over

the homogenous space P:=QlN. P is itself aprincipal G-bundle over M and we write

Q :8(M,G) Q: Q(P,N) P : P(M,G) :8lN

We shall also use the symbol " p" to refer to the bundle map

ptQ---+P

p-+þl:pN forallpeQ

DprrunloN 3.1. (EXTENSION OF STRUCTURE GROUP) Given a principal G-bundle P(M,G),lf

there exists a principal ô-bundle, Q@,G) such that

P:p(Q):QlN
31
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then we say that the structure group of P extends to G. An extension of the structure group of P to G is

the isomorphism class of principal ê-bundles, < Q >. The situation is pictured in the following diagram.

¡r.+ G ---!-¡ ç
rlJJ

N '-+ Q --!-a P
tl"oJ J""

M no>M

Norn 3.1. Any such ô-bundle is also a principal N-bundle, Q(P,N,zr) over P with the property that,

when restricted to any fibre of P(M,G), it yields G.

QlP, :: r-t çe,¡ = ¿ for all n e M

Therefore, an obvious way to begin the search for extensions of the structure group of P(M,G) is to examine

the principal l/-bundles over P. As an example, such reasoning readily shows that the universal G-bundle,

EG(BG,G) has only trivial extensions of structure group. Since.EG is contractible any N-bundle, Q(,ÐG,l/)

over it is trivial and so too is the restricted bundle on each fibre.

Q :Q(EG,N) = EG x N

p-L(EG,):Gx'¡y' forall te BG'

Notp 3.2. As with the case of the reduction of the structure group, the extension of the structure group

of P need not be unique.

2. ASSUMPTIONS

Throughout this section I shall restrict myself to CWo in the sense that I will consider only bundles over

CW-complexes. Hence I shall drop the subscript CWs and B should be read as Bcwo everywhere.

Since I shall be examining only cases in which N : ,Sl or V'nI shall make some further assumptions on

,ôy' and G. However, what follows can be used as the basis for a general theory of the problem of extending

the structure group of a principal G-bundle. Let us assume the following extra conditions.

1) N = Sr - K(2,1) or N - Zn- K(2n,0), (n, < oo).

We have already remarked that PU('tl), and, PU(71)"o are B,S1's. (Henceforth, I shall drop the'll and

simply write U, etc.) Similarly UulZn and U,of V'n realise BZn. Since I am restricting my attention to

bundles over CW-complexes, the difference between Uu and, [/"o is often not important and in that case I

shall write [/ to refer to either. However, at other times the difference shall be crucial (since [/"o is not a

Banach Lie group) and then the subscripts shall return.

2) There is an inclusion

i:G.-+U
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which induces an inclusion

i¡N:G+QU::UlN

i(c)lN : itN(G).

Under these circumstances it follows that

(u) [U] e Hr(QU,l/) is a generator

(b) tcl : iiN(du]) e Ht(G,N).

3) We shall further assume that HI(G,N) is singly generated with [ê] one generator'

4) G has no integral cohomology in degree one.

Given a principal G-bundle, P(M,G), there are at least three independent ways to arrive at a class

D(P) e H,(M,N) which depends only on the isomorphism class of P and has the properties

(i) D(P) is trivial if and only if the structure group of P extends to G.

(ii) D(/.P) : f@eD for any map .f : M' -+ M.

I shall sketch each of these three briefly in turn.

3. NON-ABELIAN COHOMOLOGY

Since N is abelian the long exact sequence in cohomology induced by (3) can be extended b H2 (M, N) '

For any space M, we have

(4) | -+ C(M,N) -+ C(M,G¡ -+ c1u,c¡

--\ Hr (M, N) t 
>

Just as in Chapter 2, exactness of (4) and the correspondence of isomorphism classes of principal G-bundles

to elements of HL (M ,G) yields that the structure group of P extends to G if and only if D([P]) e H2 (M, N)

is zero. Also by exactness, the possible extensions are classifiedby i(Ht(M,N)) which we identify with

H,(M,N)ld(c(M,G)).

4. CLASSIFYING SPACES

Just as with the case of reduction of the structure group, there is a bundle relation between the classifying

spaces of the groups involved which allows an obstruction theoretic approach to the problem of the extension

of the structure group.

PRoposluoN 3.1

htt"ndle ouer BG.

(THE RELATION OF BG, BN AND AC) We may talee BG to be a BN-fi,bre

pnoop. From Chapter 2 and the closed inclusion of N '+ ô *" -uy take B,f/ to be a principal G-

bundle over Bô, B,ôl : BN(BG,G). As t]ne CWo-G-universal bundle, EG(BG,G) is certainly a principal

G-bundle we may form the G-reduced product'

3p(BNxEG)lG
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As we saw in I.7, B leads a double life as two different fibre bundles.

B : B(BG,BN,G)

B: B(BG,EG,G)

The first decomposition of B is as a B,ð/-fibre bundle over BG with structure group G. Since the fibre of

the second decomposition of B is EG which is contractible it follows that B has the homotopy typeof BG

and hence is another realisation of the classifying space for G. This proves the proposition. tl

Noro 3.3. To avoid confusion between the two universal G-bundles we shall denote the first as

E'G(B'G,G).

The second, which is the pullback of the frrst by the canonical projection

rt '. B ---+ B'G

we shall denote UV nC@C : B,G) : T\(E'G(B'G,G))'

TsBonpu 3.2. (OBSTRUCTION THEORETIC APPROACH TO THE PROBLEM OF THE EXTEN-

SION OF THE STRUCTURE GROUP) Let P(M,G,l,np) be a principal G-bundle. There is a one to

one correspondence between estensions ol the structure group ol P to G and homotopy classes ol maps,

î, M -+ Bê, suchthat I =nro i. ¡Whererz; B -+ BG is theprojection of B: BG onto BG coming

lrom B's structure as a BN-fibrebundle ouer BG.) Wehaue the lollowing diagram.

B:BG<-BN
nrl

J

utBc
PRoor'. I begin by showing the following equality of G-bundles

EG lN : rz* EG(BG,G)

which we can see from careful inspection of the diagram. (Note that maps have the frbre of each mapping

shown and where relevant, its name.)

EG' +- EG

'l "lJ.t
BN <EG EGxBN u* > EG

"l rl ol-J -J J

Bê, PG'"' (EG x BN)IG u*'n", BG

We have

EG : rf Eê'
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and hence

EGIN : rf (EG'lN) : nr*(BN) : EG x BN

But from the other side of the diagram,

EG x BN =rïEG(BG,G)

and the claimed identity holds.

Now, suppose such an f exists. Set Q :: i-nG' ilt"n

QIN : (i.øC)l¡v

: i. çøc ¡w¡

: Í*EG

^l

Conversely, given a principal ô-bundle Q(M,G,/') such that P : Qf N then

f*EG = P

:elN

= Í,.(EGIN)

-- f'.riEG

- (n, o Í')* EG.

Thus, since EG is a universal bundle, I = n, o /' and extensions of the structure group of P correspond

bijectively with homotopy classes of such f.
¡

No.re 3.4. This treatment is summarised in Coquereaux and Pilch pp 368 - 371 (and they attribute it

to A. Haefliger in "Sur I'extension du groupe structural d'un espace fibre" in C.R. Acad. Sci. 234, 558-60

(1e56)).

Nore 3.5. As for the reduction case, the possible extensions of the structure group of P are given by

the homotopy classes of the set of lifts {Î , tut -+ BG,f : rz " ¡} and we can do no better with homotopy

theory than the classification obtained using non-abelian cohomology.

No.rn 3.6. Since, under assumption 1, BN is an Eilenberg Maclane space If(n +7,A), the primary

obstruction to lifting Í, o(l,AC) e H"+2(M,zr,-,.1(BN)) - H*+2(M,A), is the only obstruction. So the

structure group of P extends to ê if and only \f o(f ,nC¡:0. Flom our review of obstruction theory we

have that for g : N -+ M

o(s o Í, nCl : s* þ(Í,BG)).

EG= Í*ri
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Frcunn 1. ,Ðz (M,G)) ;where A- H1(G,N), B - H2(BG,N)

Hence o(f ,BG) satisfies (i) and (ii) with the universal obstruction class being o(idpç,BG) e ¡1^+z(BG,A).

Now,

H"*'(M,A) = Hz(M,N)

since in the case N : Zn both are H'(M,V,n) and in the case -A/ : ,91, both are Ht (M,V'). This shows that

o$,nG) e H2(M,N).

5. SPECTRAL SEQUENCE APPROACH

Starting with a principal G-bundle P(M,G,/) and the sequence (3) the spectral sequence approach to

the extension problem follows the line of thought mentioned in the introduction of this chapter. We consider

the principal N-bundles over P. Isomorphism classes of these correspond bijectively with the elements of

Hr (P,N). Starting with a cocycle, € € tG] € Hl(G, N), and the inclusion of the standard fibre

i:G=P*.-+P, neM

we seek to extend { over all of P to 4 € Zr(P,N) so that

D(rl) : O

If we can do this then 4 e Ht (P,N) defines a principal N-bundle over P which restricts to ô(G, l/) on each

fibre of P and hence defines an extension of the structure group of P ø G.

Happily the machinery of spectral sequences measures exactly the obstruction to extending {. It requires,

however, that we use cohomology with discrete co-efficients which is possible in the cases that N : V'n and

ly' : 51 since the first case is already discrete and in the second case we may exploit the well known

correspondence between S1-bundles and elements of second integral cohomology, H'(M,,9t) = H2(M,V').

To keep track of the two cases let r:2in the case N :Zn and r:3 in the case ly':,S1 where we shall

use integral cohomology and fl*(-,-ð{) should be read as H*+r(-,V').

BZ

Q,
A\
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Consider lcl e Ht (G, N) : E[o''-t) 1f¡. no* the theory of spectral sequences we have that [G] extends

to a global cohomology class of P if and only if df rcD : 0. In the case where P is the universal bundle

EG(BG,G), the contractibility of EG entails that

df" t E[or-t) : H'(G,N) -+ ø[''ol

must be an isomorphism and hence dfG([G]) must be agenerator of H2(BG,-ðy') and, in particular, is non-

zero. Hence we recover the result of the introduction that EG has only trivial extensions of structure 8roup.

since the differentials of spectral sequences behave well under pullback

d,l U. (GD : f. @3G (Gl)

and we see that d,F" @l) € H2 (BG, N) is a universal obstruction to the extension of the structure group of

a principal G-bundle to ô. specifically it satisfies conditions (i) and (ii) above.

6. THREE "IDENTICAL'' CHARACTERISTIC CLASSES

I would like to prove that the three characteristic classes defined in the previous sections are all the

same. However, I cannot since that would require checking the consistency of the three definitions given for

any given universal bundle which is beyond my technical prowess and would yield no important information

for my purposes. I shall prove instead that all three classes generate H2(8G,.ðl) and then we can speak

of the Dixmier-Douady class of a principal G-bundle P(M,G) as revealed by either of the three methods

above and knowthat this class is precisely defined up to possibly an automorphism of HZ(M,N).

Lnuvre 3.3. ("IDENTITY" OF THE THREE UNIVERSAL CLASSES FOR THE CASE Q : QU ) In

the case that G : QU the three classes DlEqUl, o(idaqu, BU) and LPAU lul) aII generate H2 (BQU, N).

Pnoor,. Assumption3of section2andthepreviousdiscussionof thespectralsequence of EQU(BQU,QU)

implies that Hz(BQtl,1{) is singly generated by dPau(U)). Hence the lemma is true for alau(lU]). The

following formal procedure will prove the lemma for the other two classes.

DIEGI:SinceG:QU:UlN,G=UwhichiscontractibleanditfollowsthatHt(M,[/) :0'

F\rrthermore, this situation allows us to extend the sequence 3 one group further by the trivial group and

we have for all spaces M that

Ht(M,QU) = H'(M,N).

We let M : BG and consider lEGl e H|(BG,UlN). Let

DIEGI: rL

Now consider the principal Qtl-bundle over BG corresponding to 1 in H|(BG,?U). Lets denote it by

P(BG,G, /). We have

P : f* EG and [P] : l"lÐGl
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and hence

t: f.(m)

Since /* is a homomorphism of the the singly generated group fI1 (BG,QU) into itself, it follows that

m: tl. That is [,EG] generates HL(BG,QU) andhence DIEGI generates H2(BG,N) as required.

o(id,sq¡¡,BU): Since U is contractible, U can be taken to be its own universal bundle with base space a

point. We take QU as a realisation of BN and the bundle BU(BQU,BN) is |ust EQU(BQU,QU). Suppose

that o(idßqu , EQ(I): rn which does not generate H2 (BG, N). Let X be a space such that H'(X, N) : Z*.

(TakeX:K(26¡*¡,2) forN:^9rorX:K(Z^,l) forN-Z*).ThenleH2(X,N) definesamap

t: X -+ BQU

since BQ\J is the relevant Eilenberg Maclane space. We have the following lifting diagram.

EQU

I

J

aQU +-J- Y
Now 1.(,ÐQtl) is a principal Qtl-bundle over X and since

o(1, EQII) : 7* (o(idseu, EQU)) : tn :0 e V'*

l.(EqU) must have a section by Theorem 2.4(2) andhencet*EQ[/ is the trivial bundle. This means that

Dlr. EQUI: DIX x QU):0.

But we know that

Dlr. ESUI = t. (DíEQUI) = 1

from directly above. So via contradiction we have proved lhat o(iitBqu,EQU) generates H2(BG,N). ¡

PRoposruoN 3.4. ("IDENTITY" OF THE THREE UNIVERSAL CLASSES FOR ALL GROUPS G

SATISFYING 3.1) For all groups satisfying the assumptions of Definition 3.1 the three classes DIEGI,

o(id,eç,BG) and. a{.Cfçll aII senerate H2(BG,N).

PRoor'. Consider, once again, BG, and, I 7 (EG x QU)lG. B : B(BG,QU,l) is the principal QU-

bundle over BG obtained by regarding the transition function of EG as elements of QU. It follows that via

non abelian cohomology B and.EG give rise to the same class in H2(BG,N). We have

(5) DIEGI: DlBl: l.@lEQUD.

Now we already have that d,PG(tG)) is a generator of. H2(8G,,^{) from the arguments already reviewed in

spectral theory.

Since B : (ÐG x QU)lG we have the obvious bundle inclusion

i: EG.-+ B.



8. CIRCLE EXTENSIONS - THE DIXMIER DOUADY CLASS 39

This induces (see 1.21) a pull back mapping between the spectral sequences of B and EG.

¿* , B@,ø) @) _+ 6fn,ø) çøG)

Considering lul e Eo,'-t)1I}¡ *na ¡C1 e ø[o"-r)çøG) and noting that'i* is the identity when Ç:0 we

obtain the following.

d,?" rcD : dlc(i.lul)

: i.@r(q)

: dl(u))

: Í.@Pau {ul)

Finally, to compute o(id'B6,BG) we have that Bê : B and hence

o(i,d,pç, AC¡ : o(idBç, Í. EQU) : f 
* (o(idsqu, EQU)).

Hence each universal class for G is the pullback by / of the corresponding universal class for QU and since

we know that the latter generate H2(BQU,,ô/) and that d,!G(fGl): Í.@Fa'(IU))) generates H2(BG,N)

it follows that DIEG) and o(id,p6,,EG) also generate HZ(BG,N)' n

I now move to apply this general theory to specific examples.

7. Spi,n(n) STRUCTURES ON SO(n) BUNDLES

We consider the central V'z-extension of Lie Sroups

I -+ V'2 -+ Spi,n(n) -+ SO(n) -+ I (" > 2).

In physics the Dirac operator is defrned over a Hilbert space of spinors which are the square integrable

sections of a Spí,n(n) bundle. It is therefore often important to extend the structure group of a SO(n)-

bundle P(M,SO(n),/) - typically the frame bundle of the tangent bundle of an oriented manifold M -
to Spin(n) in order to define the Dirac operator on M. FYom above we see that the obstruction to such an

extension is a class \n H2(M,V'2).In fact, the universal obstruction class is a generator of

H2@so(n),zz) =1wz(ESo(n)) >= zr.

W2 is the second Steifel-Whitney class of a principal ,9O(n)-bundle and Wz(P) : l.(W2(ESO("))'

S. CIRCLE EXTENSIONS - 
THE DIXMIER DOUADY CLASS

The rest of this thesis shall be concerned with obstructions to circular extensions of the structure group

of a principal G-bundle, i.e. N : 51 . AII such obstructions may be generically called Dixmier-Douady

classes and I shall digress briefly to explain the history of this name.

Dixmier and Douady's work (collated in Chapter 7 of Dixmier's C*-Algebras (1977)) dealt not with

locally trivial flbre bundles but with related objects called continuous fields of algebras which they used, in
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particular, to investigate the structure of type I C*-algebras. A continuous field of elementary C*-algebras

with fixed frbre LC('tl) (the compact operators on ?l) and which satisfies Fell's condition is precisely the

set of sections of a locally trivial bundle of elementary C*-algebras with structure group PU. (Since we

are working in CWo in this chapter we can consider either PLJ, or PU"o as PUu is a CW-approximation

to P(J"o so we apply Lemma 2.3 to i : P(J,.-+ P(J"o and conclude that BPU, - BPU".. Thus, over CW-

complexes, isomorphism classes of principal PU,-bundles and principal PUro-bundles coincide). Dixmier

and Douady discovered a third integral cohomology class, D, which vanished if and only if the continuous

field of elementary C*-algebras arose from a continuous field of Hilbert spaces. Flom the bundle theoretic

perspective of this thesis this is equivalent to extending the structure group of the related elementary C*-

algebra bundle to U(11). Using non-abelian cohomology, Dixmier and Douady were the first to discover the

isomorphism

(6) DtHt(M,PU)=H3(M,V,)

which gives a geometrical correspondent, an elementary C*-algebra bundle or a principal PU-bundle, for

every elementin H3(M,Z). They also showed that the group multiplication in H3(M,Z) corresponded to

tensoring the associated bundles of elementary C*-algebras.

The work of Dixmier and Douady with the projective unitaries has a pleasing explanation in homotopy

theory. The key is to realise that the projective unitaries are a realisation of K(V',2) and hence that any

BPU is a K(V,,3). So the correspondences derived in Chapter 1 provides a proof of 6 via

Hr(M,PU): Bun¡ø(PU)l - - lM,K(V,,3)l= H3(M,V').

Given the importance of PU and principal P[/-bundles in the theory of circular extensions, it would be

nice to discover a concrete example of. a CWs-universal PLl-bundle. The following proposition discovers

an EPU,(BPU,,PU') as a homogeneous space and will allow us to do the same for EG(BG,G) when

G.-+ PUu and zr : PUu -+ PU.IG define a principal G-bundle.

PRoposrrroN 3.5. (A HOMEOMORPHISM OF PU,INTO A CLOSED SUBGROUP OF THE FULL

UNITARY GROUP) There erists ahomeomorphism of PU(11)" onto its closed, image inU(T)", the unitary

group of the Hilbert space of Hilbert-Schmidt operators on'17.

Pnoor. Given [a] e PUu, choose a representative o € [/. Then define

i: PUu -+ U(T)"

la) v+ Ad(a)

where

Ad(a) :T -+ T

t v+ a.t.a*
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The conjugation kills the scalar difference between the possible choices of representatives for a and hence i

is well defined. i is injective because the identity representation of the Hilbert Schmidts on ?l is irreducible.

If i([a]) : i([ó]) it follows that ab* commutes with every u € T and hence

ab* : À.I i.e. lal: [b]

Since PU, is a metric space, I show the continui ty of. i, by considering a convergent sequence ([ø'])pr -+ [a]

ín PII,. By taking n large enough we may assume that the [o,] lie in a neighbourhood of [ø] over which

Uu(P(Ju,Sl) islocallytrivial. Hencewemayassumethatthereisasequence(a.)T=NlainU". trÌomthe

fact that ll(o" - a)lln<u¡ -+ 0 and the equations

(an - a)* .(an - a) :2'1' - al'ø - a* 'an

(an - a)* '(an * a) : al.a - a*.øn

it follows that ai.a -+ 1 and a* .an 4 1. Choose N' such that ai.a: 1 * e and a* .an : 1 + e 
* for r¿ ) -ðl'

where lle llslø¡ is small. Then for n ) Nt

llAd(a") - Ad(a)ll2u,

: sup1ltllr: \ ll(Ad(ø") - Ad(a))tll"

: Sup(lltllr :7) Tr((an't.o., - a.t'a*)* '(an't'oi" - a't'a*))

: Sup(lltllr : L) Tr(an.t* .t.a; + a.t* .t,a* - an.t* .atn.a.t.a* - a.t* a* .an.t.al)

: Sup(lltllr = \) Tr(an.t* .t.a; + a.t* .t.a* - an.t* 't.a* - a.t* .t'al - al.tt .e.t.a * -a't* .e* 't'al)

< sup(lltllT : r) Tr((a, - a).t* .t.(an - o).) + 2lle 11617¿¡

3 Suefltllr: 1) ll(o' - ")ll'n<u¡'lltlllT 
+ z'11e¡",r,

: ll(o, - o)ll2nw¡ + 2.llell611¿¡.

Since llø, -alln<u¡ -+ 0 and ll.llst?¿l -+ 0 as 7¿ -+ oo) llAd(a") - Ad(a)llsg¡ ì 0 as r¿ -+ ôo and thus i is

continuous.

To see that the image of i is closed consider a sequence i([o"]) -+ b where b e U(T)". Define a *-

automorphism of 7 by

b'(t) : limn-*Ad(an)t.

One can verify that b' is a *-automorphism of T, the Hilbert-Schmidt operators on ?1. Since 7 is uniform

norm dense in L(11), b' defines a *-automorphism of LCQI) and is thus of the form Ad(a) f.or some o €

U(11)..Hence b: Ad(a): i([a]) and the image of i is closed.

Finally, to see that i defines a homeomorphism we begin with the metric, p, which defines the topology

on PU('11)".

p(["], [b]) : InÍ(\ e ,s1)llø - À'bll¡røl
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pful,lb))' : (Inf Q, e sl)ll¿ - À.blln<u)'

: rnÍ(À e sL)sup(llull, : 1)((a - À.b)u,(a - ),.b)u)

: InÍ(\ e St)Sup(llullr: t)(2.llullv - 2.Re((au,\.bu))

where (-,-) is the inner product on'Jl. Now, as is customary, let O,,, be the linear operator

Øu,u '.'Jl -+'J[

w r+ (u,w).u

The following properties are easy to check.

(a)= 0.,, eT.
(b): O¡-'.r,I., : Or,, for all non-zero complex À

(c): Orr,r, .@u",ur: (ur, uz)Our,ur.

(d) : llO",, ll B0t) : ll"llullrllu.
(e)z Ad(a).Au,u : Aou,ou.

(f): (O","). : Øo,u.

(g): ?'r(O",") - (r,u).

The map

t 8 t, F| Ou,u

extends to an isomorphism of.'ll Ø ?l with the Hilbert-Schmidt operators on 71. Here the bar denotes the

complex conjugate Hilbert space 71. The operator Ad(a) becomes ø I ø where ø denotes the action of ¿ on

the conjugate space. To prove our result it suffices to work in a neighbourhood of the identity in [/f. Now

for ¿ I ø to be close to the identity operator the spectrum of a must contain a gap (for if the spectrum is

the whole circle then it is not possible for d I ø to be close to the identity. That being the case we can

assume -1 is not in the spectrum of ø by multiplying by a phase if necessary. Assume we have a sequence

a. e U('ll) wirh

llAd(l) - Ad(a^)l$(Ð -+ 0.

Then there is a sequence of self adjoint operators Kn on 7 with an: exp(iK') and the spectrum of Kn a

subset of the intervall'yn,ô'] c [-n,zr]. In fact we may assume

7' : 
rtt,iå'f: rr{(u'K'u))'

6n sup {(u, K^u)}
( llu ll?{ =1)
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Then

llAd(a") - Ad(t)ll: sup{lexpi(À - u) - 1l I À,p elt",ô"1}

- | "*p 
i(6" -'y") - ll

On the other hand

inf lla" - À1ll : lexp[i(ô" - 1ò12] - 1l

: llAd(a^) -,4d(1)ll.

Thus, if llAd,(a)-Ad(a.)ll1(ft) -) 0 as r¿ -| oo then p(lal,["")) -+ 0. Hence i-r :i(PU('11)-) -+ PU(71).

is continuous and thus i is a homeomorphism.

tr

NorB 3.7. IdentifyingPU(H),w\thi(PU(H),)*"havethat PU(H)"isaclosedsub-BanachLiegroup

of U (T).. Thus U(7), (U(T)"lPU(H),, PU(H),) is a CWs-un\versal PU(H)"-bundle andU(T)"lPU(?l)"

is a BPU(H), Similarly, if G .-+ PU(H). induces a principal G-bundle structure, PU(11)"(PU(H)"lG,G)

on PII (H). (if, for example, the image of i, a homeomorphism is a Banach Lie subgroup of PU (H)), then

by composing inclusions , U(7)"(U(nlG,G) is a realisation of the CVI¡e-universal G-bundle.

9. THE FINITE PROJECTIVE UNITARIES

Principal Ptl(n)-bundles arise naturally as the principal bundles associated to matrix bundles, that

is bundles with M^(C) as fibre. The projective unitaries act on M"(C) via conjugation. The theory of

projective unitary bundles has been succinctly described by Plymen and Hayden (1981) and what follows

is a summary of their paper. For an arbitrary connected space M the following commutative diagram of

cohomology groups comes from the corresponding diagram of group extensions and inclusions.

Hr(M,u(n)) ------r Hr(M,PU(n)) o' , H2(M,iL)

111lll
Hr(M,su(n)) --------+ H'(M,PU(n)) o' , H2(M,v'^)

The last vertical map comes from the identificatio n of. V' n Ç ,91 as the nth roots of unity. For a principal

PU(n)-bundle P(M,PU(n)) the commutativity of the diagram yields

DrlPl: DrÍPl.

Now the latter of these clearly is clearly torsion of degree n and so all Dixmier-Douady classes of principal

PU(n)-bundles are torsion of degree n. Interestingly, the converse is also true. (See A. Grothendieck,

Le Groupe de Brauer, I. Seminaire Bourbaki, 290 (1965) pp 1-21.) The Brauer group of M, B(M), is

defined to be the torsion part of H7(M,V,): H2(M,SL). For any r e B(M) we can find a principal

PU(n) bundle with Dixmier Douady class ø. As in the infinite case, the correspondence of elements of



44 3. EXTENSION OF STRUCTURE GROUP

Hr(M,PU(n)) with isomorphism classes of elementary C'-algebra bundles (the fibre is now M^(C) not

LC(11)), allows the construction of a geometrical model for the Brauer group. Elements of B(M) ate

isomorphism classes of. M*(C)-bundles for some n, modulo the equivalence of tensor products with the trivial

bundle and multiplication is again given by tensoring the bundles together. Note that the tensor product of

an M*(C) bundle with an M^(C) bundle is an Mn.^(C) bundle and hence we have not discovered a group

structure on Ht(M,PU(n)) but on the infinite union

uË,(ã'(M,PU(n)))l -

where "-" denotes the equivalence relation already mentioned

to. Spinc(n) STRUCTURES (">2).

As well as the double cover of SO(n) by Spin(n) there is also a circle bundle over SO(n) corresponding

to the generator of H2(SO(n),Z):Zz. This bundle is the complex Lie group Spinc (n) which sits in the

following long exact sequence of Lie groups.

1 -+ 51 -+ Spinc (n) -+ So(n) -+ I

A Spinc(n) structure for a principal ^9O(n)-bundIe, P(M,SO(n),/) is an extension of the structure group

of P to Spinc(n). The universal obstruction to the existence of a Spinc(n) structure is the generator of

H3(BSO(n),Z) :1 BWù ): Zz, where B is the Bockstein map (see Hayden and Plymen p 18 for a

definition) and. Wz is the second Steifel-Whitney class. This is precisely the primary obstruction to the

existence of an almost complex structure for M in the case that n is even and P : FM. It follows that

every oriented, real 2rn-dimensional manifold (rn > 1) with an almost complex structure has a Spinc (n)

structure

11. STRING STRUCTURES

We now come to the first of the major examples motivated by mathematical physics. String theory is

based on the idea of modelling particles not by points in the manifolds of space or space-time but by loops

into these manifolds. The bundles which now become important to string theorists are the bundles, called

Ioop bundles, created by looping a principal G-bundle where G is a compact Lie group. FYom a principal

G-bundle P(M,G,/) one forms the bundle L¿P(L¿M,LdG,LÍ) where, in general, L¿X denotes the space

of differentiable loops into a finite dimensional manifold X.

L¿X ;: h , St -+ X,'y is differentiable)

It is well known (see Pressley and Segal Ch 6) that L¿G has a canonical central, circular extension, íþ,

induced from an embedding of L¿G in the restricted unitary group (of which much more in the next and
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final example) which in turn embeds in the projective unitaries of a second Hilbert space71n. Henceforth [/

and, PU will refer respectively to the unitaries and projective unitaries ovet71n.

L¿G .-+ Ur""'+ PU"o

íþ V'oc, s') : i*(J 
"o(PU,o, 

sr)

[íþ] generates H2 (L ¿G, v')

In string theory one typical starts with a principal ,SO(n)-bundle, P(M, SO(n), Í) (" > 2), which is usually

the frame bundle of a tangent bundle, TM , and which has a Spin(n)-structure, Q(M, Spin("), h' We then

form

L¿Q(L¿M, L¿SPin(n), L¿f )

and p is said to have a string structure if and only if the structure Sroup of L¿Q extends to l¿4fiì@)'

A string structure is required since LSpin(n) only has projective unitary representations and one needs

the full unitary representationof L¿íñ,(n,) to define the generalised Dirac-Ramond operator' Of course,

the Dixmier Douady class of LdQ, DlLdQl, is the obstruction to the existence of a string structure for P.

Killingback, in his brief paper "World-sheet Anomalies and Loop Geometry" outlined the above theory of

string structures and proposed that twice DIL¿Q\ was in fact the transgression of the Pontryagin class of

p. Since then Carey and Murray (1991) produced a rigorous proof of Killingback's thesis in the case of

based loops which are smooth except possibly at the base point as did Maclaughlin (1992) in the case of

difierentiable free loops. In what follows I shall summarise these two papers and use the homotopy between

continuous and differentiable loops to link them.

12. QUrCK REVIEW OF THE TECHNTCAL ASPECTS OF LOOP SPACES, LOOP

GROUPS AND LOOP BUNDLES

12.1. NOTATION. Throughout X and M will be finite differentiable manifolds unless noted and G

will be a compact, simply connected Lie group'

Q¿(X,xs)

shall denote the based, differentiable loops into X

Q¿(X,øs) :: {1e L¿(X):7(0) :7(1) : zs}

When the base point is unimportant I shall supress it. (When G is a Lie group re is taken to be the identity.)

L"X and.O"X shall be used to denote the spaces ofcontinuous loops and continuous based loops respectively

whtle LoX and OoX shall be used to denote the spaces used by Carey and Murray consisting of piecewise

differentiable loops and piecewise difierentiable based loops respectively. When X is a topological (Lie) group

then L"X(L¿X) has the structure of a topological (Lie) group under pointwise multiplication of loops. I

shall later show that the difierentiable and continuous loop spaces are homotopic and hence they share many
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properties. When dealing with facts and properties equally applicable to either the differentiable, piecewise

differentiable or continuous loops I shall drop the subscripts and use LX and QX.

12.2. Tf|.f. LOOP MAP. If X and Y are two manifolds and / is a continuous (differentiable) map

f:X-+Y

then there is a continuous (differentiable) map, the loop of /, defined by

Lf:LX-+LY

",/ è I "^l

If P(M,G, /) is a locally trivial principal G-bundle then LP(LM, LG, Ll) is a locally trivial principal .LG-

bundle. Furthermore when P is the universal bundle, EG(BG,G), we see that LEG ís also a contractible

space and hence

BLG: LBG.

AII of this holds mutatis mutandis for the based loops. In the case of differentiable loops, both L¿X and

LoX have the structure of differentiable Flechet manifolds when given the FYechet topology (See Carey and

Murray (1991)).

12.3. TRANSGRESSION. The slant product (see Spanier pg 287) and the evaluation map can be

used to define a homomorphism, called transgression, between the cohomologies of a space and its loop space,

rc. Hq+L(M,A) _+ Hq(LM,A).

Let eu: LM x Sr -+ M be the evaluation map and if, i is the fundamental class of ¡ft(,9t,,4), define Iq by

¡ø. ¡|ø+t(LM x SL,A) _+ Hq(LM,A)

a è ali.

Then

Ta:Iaoe'u*.

f2.4. THE PATH FIBRATION. Working with the loop spaces, L"X and, O"X (or LoX andQoX)

, has the advantage that one can use the path fibration to realise a CWo-universal bundle for O"X (resp.

OeX) if X : G is a compact, simply connected Lie group. Let

P"@)X :- {ô : [0, 1] -+ X, ó is continuous (differentiable and ô(0) : ø0]

Then there is a fibration with fibre 0"X (resp. OoX).

r '. P"q¿¡X -- + X

ô + ð(1)
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FlcunB 2. ,Ez P"X(X,O"X))

H(PU,Z)

H(PU,z)

In the case where X : G P"1¿¡G(G,O"(¿lG) is a locally trivial principal O"1¿;G-bundle and since P"1¿¡G is

contractible, this is a CWs-universal O"1¿¡G-bundle. Under the assumption that X is p connected (p > 1)

e"@)X is l-connected and so E[o,o) 1P"X) : He (X, Hq (Q"X,V,)). We have the graded algebra differentials,

d, and dpar which I draw on the one grid in the Figure.

The contractibility of P"X entails

(7) dq i Hq-L(Q"X,V')= Hq(X,Z') q:p+7 or p*2

13. KILLINGBACK'S RESULT

In this section I continue to confine my attention to cases where G is a compact, connected and simply

connected Lie group and I consider string structures for bundles with fibre Q"G We can consider merely

continuous based loops and maintain the full generality of the situation for the following rearions. Firstly, as

I shall show, the obvious inclusions

Q¿G'-+ QoG'+ Q.G

are homotopy equivalences. This means that, for a Lie group G, isomorphism classes of Q¿G, OoG and

O"G bundles are in 1-1 correspondence via the obvious bundle inclusions. It follows, in particular, that the

problem of flnding a string structure is identical in the case of Q¿G and f,)oG. The following commutative

diagram makes this clear:

Hr(M,QeG) = HL(M,QdG)

ol "lJJ
H2(M, Sr) = H'(M, S:)

For a principal G-bundle over a manifold M, P(M,G), DlAePl = 0 if an only if DlOdPl: 0. This links

the work of Carey and Murray and Maclauglin Moreover since trG is homeomorphic to CIG x G we need

only consider based loops. So if 4t is the obvious projection þ : LG -+ OG the correspondence between circle

bundles and second integral cohomology entails that

ÇÇ¡çt'orrrc, s') : 6.íÇGPa1p¡G, ^91)'

Now þ can be extended to a fibre-map for any L¿(p)G bundle and it follows that L¿(p)P has a string

structure if Q¿6¡P has one.

PRoposruoN 3.6. (HOMOTOPY TYPE OF Q"X AND OdX) Let X be a differentiable manifold, of

f,nite or infinite dimension, then Q"x Qrx and (l¿ haue the same homotopy type.
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Pnoor'. I shall show that the obvious inclusions i:Q¿X.-+çlpx, j:QoX.-+ QcX and joi are weak

homotopy equivalences. Then, since O"X, OoX and Q¿X e CWs, it will follow that they are of the same

homotopy type. Firstly, we start with some standard notation and the caseof j o'i.

In:: {(Ao,... ,An_t) €. Rn:0 < g¿ < 1}

d,In'.: {(y0,.. . ,Un-t) € Rn:U;:0 or I for some i}

C((X, A), (Y, B)) : {f e C(X,Y) : f (A) c B}

Then zro(X) : [(fo, dIq),(X,z¡)]. Recall the 1-1 correspondence between the sets of maps

þ : C(Q',d1"),(Q"x,"o)) + C(9"+r ,dI"+t),(X, ro)).

ÓU)@o,Ur ...,an) : f (at,.. .,a.)(Yo)

(Here øe denotes both the base point of X and the constant loop onto it.) It is well known that þ descends

to a isomorphism on the homotopy groups

þ*:rn({l"X)=n"+t(X).

Observe also that if. g e C ((Iø*t , dIo*tr, (X, ro)) is differentiable then ó-'@) e C ((Iq , dlq), (Q¿X, øs)). So

now we can show that

(¡ o i). : ro(Q¿X) -+ ro(Q"X)

is bijective. Flom 17.8 and 17.8.1 of Bott and T\r, it follows that there is a differentiable map, 9, in the

homotopy class of {(/) (surjectivity of (j "ó),) and that any two differentiable maps, /(/e) and d(/r) which

are continuously homotopic are homotopic via a path of differentiable maps (injectivity of (j o i).). This

argument also shows that j is a weak homotopy equivalence and thus so too is i. n

Let us now turn to the general situation for floG. Start with a principal SO(n,)-bundle, P(M,SO(n), f)
(n > 2), (typically P is the frame bundle of the tangent bundle of a Spin manifold M) that has a Spin(n)-

structure Q(M,Spin("),Î). Note that Spin(n) is 2-connected and so satisfies the hypothesis for equa-

tion (7). The universal Dixmier-Douady class for O"Q-bundles, call it p following Maclauglin, generates

Hs (Bnespin(n),V,) : V,. In order to show the commutativity of the diagram we will need for Killingback's

thesis we first need to consider the classifying map of Q, Î : M -+ BSpin(n). Taking continuous path spaces

as a functor on CWs (the "path of a map", P¿f , is defined in the obvious manner via composition) we obtain

the following diagram of flbrations.

QoM .-+ P¿M 'ol , E : P¿BSptn(n) <- QrBSpin(n)

I I
M -i--+ BSpin(n)

One now applies Note 1.21. Further, assume that M is 2-connected itself which entails that

P f 
.la[o,3) (E) : QoÎ. and, P f.lq[4'o) (E) : i. .



13. KILLINGBACK'S RESULT 49

Thus

dfo* o?rÎ*: Î. "df .

The crucial diagram is comes from simply looping i : M -+ B Spin(n) and moving to cohomology

H3(BLespin(n),2) 
03, n4(asptn(n),2)

".t.J t'J

Hz(epM,v,) dl"' , H4(M,v,)

We have just shown that this is commutative. Since BSpin(n) is 3-connected and M is assumed 2-

connected, d,f; anð, df,oM areisomorphisms by equation (7). Hence df (p) (: ø say) gener ates Ha (B Spin(n),2)

Now,

P has a string struct¡¡s <+ O"f-(¡r) : O

¿f"* (aoÎ'(t )) : o

i.@30ò):o

/.(") : o'

Now, Maclauglin in his Lemma 2.2 shows by analysing the spectral sequence of the bundle

BSO(n)(BSPin(n), BZ2)

that

z'Î.@): Pt(P),

where P1 (P) is the first Pontryagin class of P. Thus when M is 2-connected, the vanishing of half the

Pontryagin class is necessary and sufficient for the existence of a string structure for P.

In the case where M is not 2-connected we encounter technical difficulties with spectral sequences so

that while functorality will ensure that D(Q.Q): QoÎ.|r) stays in the domain of df,^M and, d,f,oM will

remain injective, the range of df,oM is now a coset space of Ho(M,V'), H4(M,V')lB say. We have only that

2.da(aot* Qt)) : [P'(P)] = h(P) + B.

Thus, the vanishing of (Il2)P1Q) is now only a sufficient but not necessary condition for the existence

of a string structure on P.

One drawback of the above method is that differentials of spectral sequences are notoriously difficult to

calculate. The transgression homomorphism, in this case 14, is much more amenable to calculation (as seen

in Carey and Murray say). Maclauglin shows in general that for M p-connected, rq is injective for q < pI2

and in specific that

ra : Ha (B Sptn(n),Z) - H3 (QeB Spin(n),v')



50 3. EXTENSION OF STRUCTURE GROUP

Up to sign ¡a is thus the inverse of da. In particular when M is 2-connected we see that the Dixmier-

Douady class of O"Q is given by

2'D(O"8) : 
'4(Pr(P))

and that the vanishingof P1 (P) is sufficient for the existence of a string structure on P otherwise.

14. THE RESTRICTED UNITARIES

My final example, the restricted unitaries, is an interesting group in quantum field theory and quantum

statistical mechanics as well as pure mathematics. One of its most important features is that it is the

subgroup of the automorphisms of the C AB-algebra which are implementable in the Dirac representation of

the latter as an algebra of particle creation and annihilation operators. To make this precise I shall spend a

Iittle time reminding the reader of the central definitions associated with abstract quantum field theory for

fermions.

In what follows it is crucial to polarise standard Hilbert space ?7 - 7l¡ Ø 11- by infinite dimensional

subspaces 'Jll and ?l- which are the range of the self adjoint projections Pa and P- respectively, Id4:

P+ + P-. The restricted unitary group relative to a polarisation is defined by

[J,""(11,P+) : {u eU(11) : P¡uP¡ is Hilbert Schmidt}.

Typically the Hilbert space and polarisation are understood and omitted from the notation. [/'"" is not

equipped with any of subspace topologies it might have received from U(11). There are in fact two other

topologies of interest on [1,"". The first of these (I will write [/."rr) is defined by the metric p,

p(ur,uz): lP1(ur - uz)P+l + lP + -(rr - u2)P + -l
+ lP..(u1 - uz)P-lns + lP-(u1 - u2)P¡lns.

Where I l¡rs denotes the Hilbert-Schmidt norm on the Hilbert-Schmidts. It is known (see Pressley and

Segal p 80) that (J,""y is a Banach Lie group. The second topology on U,"" (I shall write U,""2) is defined

using the strong operator topology on the on-diagonal components and the Hilbert-Schmidt topology on

the off-diagonal components. It makes (J,""2 rnto a topological group (see Carey (1984) section 2 for a full

account). The first topology is finer than the second and thus the identity id,: U,""1 4 Ur""2 is continuous.

It can be shown that id is a weak homotopy equivalence. When considering merely the set U'"" or when

discussing properties which apply equally toU,"" in either topology I shall simply write U'"".

If ( , ) denotes the inner product on ?1, then theCAR (canonical anti-commutation relation) algebra

over'11, CAR(17) is defined to be the C*-algebra generated by the set

{o(/),o.("f), I eH}

whose elements satisfy the canonical anti-commutation relations

a(l).a(s) + o(e)o(/) :6
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"U).". b) + a(s.).a(f) : U, s).

The ø-(/) correspond to creating a fermion in the state /, the ø(/) correspond to the

a fermion. The anti-commutation relations capture the Pauli exclusion principal fo¡ fermions. Any unitary

u e U(11) allows one to define an automorphism of C,ArR(?l) in the obvious manner by

a"((a(l)) : a(u.Í) a"((a. U)) : a*(u.f)

Automorphisms of this form are called Bogolibuov transformations. If we take 'J[ to l¡e the solution space

to the Dirac equation,'17+ the space of positive energy solutions (particles) and,'J1- the space of negative

energy solutions (anti-particles) then the Dirac representation of. CAR(fl) makes the vacuum state, o, into

a state containing all anti-particle states and no particle states. Mathematically this is given by a state on

cAR(11)

u (a* ( f 1) ..' a* Í ̂ ) 
a(s.) .'. a(g t) : 6 1*,n¡det (g a, P - I ¡)

Since CA-R(71) is simple, any representation is trivial or faithful and since the G.ò/.9 representatio'rr, ,tr 
,

defined by ø, is not trivial it maps faithfully into B('11"). Additionally, zr is an irreducible representation.

The precise statement of my introductory remarks is the theorem (see Shale and Stinespring 1965) that,

given a Bogoliubov transformation o(u), there exists a unitary W(u) e U(11") such that

r (a(u) (a( f )) : r (a(u. Í )) : Ad(w (u) ) (" (o(/) ) : w (u) r (a( I ))W (")-

if and only 1f u € U,"r(71). Since zr irreducible, W (u), is uniquely defined up to a scalar which is killed by

the adjoint. Hence the above defines an embedding (continuous in either topology on Ur"r)

i : U,"" .-+ PU (77") 
"o

of the restricted unitaries of 'H in the projective unitaries on '17o. It is a corolla.ry of a proof of Carey's

(see Carey 1984 Lemma 2.10) that i(U,"") is closed in PU('17,)",. In fact, i2 : (J7¿s2 -+ i(U,""2) is a

homeomorphism of topological groups. This and the fact that id i Ur""r ) Ur""z is a weak homotopy

equivalence means that i1 i U,."t -+ i1(Ur""1) is a continuous homomorphism of topological groups onto it's

closed image which is a weak homotopy equivalence.

We shall see below that H2((Jr"",Z):V'. The canonical central extension of (Jr"r, Ûr"r, defined by the

generator of H2 ([Jr"r,V,), is g\ven by

Û, 
" " 

((J, 
" ", 

s' ) : i. u ('ì7,),, (P u ('11 *) 
",,,s1 ) .

Hence the assumptions of Section 2 are fulfilled for either topology onUr"". Finally, note that (Jr"" is a

disconnected group with V' path connected components (see Carey and O'Brien 1981 for a definition of a

topological index, ín: Ur"" ---+ Z) and we denote the connected component by Ufr". Flom now on I shall

drop reference to the different (yet as always isomorphic) Hilbert spaces over which (J,"" and P(J are defined

and it shall be understood that P[/ refers to the projective unitaries on']7n and not 71. Furthermore it will

not matter whether we are considering Uy¿s1 ot Ur"r2 (for example, isomorphism classes of principal bundles

I
A
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with these two groups as structure group are in bijective correspondence in CWs) and so I shall simply write

(J,"" from now on. Also P[/ shall denote PU"o for the final sections'

That ends the requisite introduction and I now turn to consider the homotopy properties of U'"", its

role as a classifying space for t/(oo) and the relation between Ur"" and. PU bundles.

]-5. U,"" AS A CLASSIFYING SPACE

The group of unitaries with determinant, D consists of those operators of the form 1* trace class. By

considering D('H+), Pressley and Segal (see Ch 6) show that there is a principal 2-bundle over [/$" with

contractible total space and hence t/$" is a BD. So If"" is a CWs-classifying space for D and U(-),

ul."-BD-BU(æ).

It is known (see Pressley and Segal Ch 6) that 2 is of the same homotopy type as the direct limit of the

finite unitaries:

D - U(æ): ,lL(u(rr)).

Since the homotopy groups of U(oo) are well known by Bott periodicity we have that

To(Ur"") :
Z, q even,

0 q odd.

(This result has elsewhere been proven via methods more closely tied to [/'""'s structure as a group of

operators, see Carey (1983).) t/(oo) and BU(æ) are extremely important spaces in algebraic topology

because they are the classifying spaces for reduced K-theory.

PnoposruoN 3.7 (THE HOMOTOPY TYPE OF U,", k, 8U,"")

8U,", - U(-) U,"" t O"t/(oo)

PRoor. It is known that the embedding of Q¿II(n) ] (J,." extends to i : O¿[/(oo) ] U,"" and one can

check that this is a weak homotopy equivalence and hence a homotopy equivalence (see Pressley and Segal

pp 82-5 for these details). Now, by Proposition 3.6 O¿U(oo) = O"[/(oo), so U,"" = O¿tl(oo). Remember also

that via the path fibration BQ"G: Go and that (restricting as we are to CW6) H - G entails BH - BG.

Thus

BfI,"" - BQ¿U(æ) - B0"t/(oo) - t¡(-)
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Noro 3.8. Now K,t(X) of a space, X, is defined to be the stable isomorphism classes of vector bundles

over the reduced suspension of X, !X. Thus,

Kt6):lÐX,BU(æ)l

: lX,Q"BU(æ)l

: lX,BQ"U(æ)l

- fx, BU,""l

: Bunx(Ur"").

Elements of É1 correspond bijectively with I/(oo)-bundles over EX whilpt [/,""-bundles correspond bijectively

with O"t/(oo)-bundles. So our correspondence becomes a mapping between t/(oo)-bundles over the reduced

suspension of a space and 0"[/(oo)-bundles over that space. We now exploit this observation.

16. THE DIXMIER DOUADY CLASS AND THE SECOND CHERN CLASS

Regarding (Jr"" as a subgroup of PU via the inclusion mentioned in Section 11, we may ask when can

we reduce the structure group of a PU-brndle, P(M, PU, Í) to U,""? Now, P[/ is not a Banach Lie group

in the strong operator topology so there is no guarantee that r : PU -+ PU f Ur." defines a principal U'""-

bundle. Hence, I use the theory of the more general setting of Theorem 2.4 4 and translate the question of

the reduction of structure group from PU to (J,"" into a search for maps / such that / : g o i. Where we

take g : 8U,"" -+ BPU to be a fibration with fibre .F.

8U,", - t/(*)
nl
J

Bp(I - K(v,,3) *-J- u.
In general we know that if there were a section o1 g, s, then this would entail the existence of group

homomorphisms

g* : H*(BPU,Z) -+ H*(ÙU,"",V')

s* : H* (8U,"",2) ) H* (B PU,V')

such that

s*og*:(gos)*:id.

It is a group theoretic result that this implies that H* (B PU,Z) would be a direct summand of H* (8U,"",V').

But we know (See Bott and Tu pp 245-246)that H.(BPU,Z)t'as torsion where as H*(8U,"",2)is afree

group. Therefore the sought after section cannot exist and the structure groups of some P[/-bundles do not

reduce to Ur"r.

The situation in specific instances depends in part on the homotopy groups of the fibre, .F , which we

can compute in this case by noting that i*,0 : ro(U,.r) -+ rn(PU) is an isomorphism for q - 2 and null
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otherwise. It follows by Lemma 2.3 that g+,q i lrq(Bur"") -+ ro(BPU) is an isomorphism for q - 3 and null

otherwise. By considering the long exact homotopy sequence of the fibration

F.-+ BH 3 ac

we see that

to(F):
Z, q oð.d 13,

0 qevenor3

Now the cohomology, H*(K(V,,3)), of K(V,,3) is zero for n:1 and torsionfor n ) 3 (see Bott and Tb pp

245-246). Hence obstructions to lifting / can lie only in H2"+4(M,Z) ("> 1). So the structure group of

any PU-bundle over a space with free, even (greater than fourth) cohomology groups reduces to Ur.r.

We can cast this question of reducing the structure group of a U,", bundle in a slightly different light

by exploiting the correspondence between Ur""-bundles over a space M and Kr(M). There is a well known

isomorphism of cohomology,

Ðq : Hq(M,v,)= go+t(EM,z)

which one can obtain from the Mayer-Vietoris sequence for (EM, C M, C M) (where "C M" denotes the cone

of M) or by using the adjoint relation between I and fl" considered as functors on CWs

@ 1Q"K(V',q+ 1) : K(Z,q)) <---+ (EM \ xlZ,s+ 1)).

The suspension isomorphism can be used to link the Dixmier-Douady class of a Ç",-bundle over M to the

second Chern class of the associated t/(oo)-bundle over EM as follows.

PRoposruoN 3.8. - THE DIXMIER DOUADY CLASS AND THE SECOND CHERN CLASS: Let

P(M,(J,"",f) be aprincipal(J,""-bundle ouer M and,EP(EM,U(*)) the associøtedU(æ)-bundle (element

ol Kt(M)) ouer M. Then

t3(D(P)) : x.cz(EP)'

PRoor. Include U(1) -+ t/(oo) by À r+ À.1dy1-¡. Notice that this inclusion kills the first homotopy

group of t/(oo) to make t/(oo)/U(1) 2-connected. The second Chern class of a t/(oo)-bundle can be defined

in an analogous manner to that for a(I(n)-bundle as the primary obstruction to lifting the the classifying

map of EP,El, to the total space of the bundle BU(l)(BU(*), U(æ)lU(t)).

BU(I) <- t/(oo)/U(l)

J

ÐM \ BU(oo)

(8) c2(Ð P) -- o(E f ,B U ( 1 ) ) : Ð Í. (o(id su1-¡, Btl (1) ) )
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Now, the adjoint relation between I and O" and the construction of the primary obstruction to a lift

relates (via E3) o(Ef ,BU(7)) to the primary obstruction to lifting defined in the following diagram.

o.(U (æ) I U (t)) .+ Q,BU (I)

t
B(J,"": Q"BU(æ) /- U

(e) >t (o( Í,o"BU(1) ) ) : Ð3 (Í * (o(ida 
" 
nu (*), o"By ( 1) ) ) ) : o(Ð Í, BU (r)) : cz(E P)

Now consider the case where M : 53 (thus lM is homotopic to ^54). One can show by considering

long exact sequences of the fibration t/(n)(^92n-r,(J(n - t)) (" large) that the Hurewicz homomorphism is

an isomorphism on rs(9U,""): zra(U(oo)). Using duality between homology and cohomology, let [/] e

rs(BUr"") correspond to, D, the universal Dixmier Douady class. Note that / induces isomorphisms, /* and

-f 
*, on third homotopy and cohomology respectively. So we have that Í. (D) generates H3 (Ss ,V').

By the adjointness of I and O", [X.f] generates ra(BU(æ)) and defines an isomorphism, Ð/*, on fourth

homotopy. One can also show that

Ðf* | H4(Btl(*), z) --+ H4(54,2)

is a surjection taking c2, the universal second Chern class, to a generator of. H4(54,V'). Setting P - l* E(J,es

we see that c2(EP) : ÐÍ. (cz) and thus c2(ÐP) is a generator of. Ha(Sa,Z). Now !3 : ff3(S3, V,) = H4(54,V')

so, applying equation 9, we see that f.(o(ide.BU(æ),O"BU(oo))) generates }ft(St, V'). Th:us

J. þ(ideßu1-¡, 0"8[/(oo))) : +/- (D)

Since /* is an isomorphism, it follows that D : to(ida.Btl(-), O"BU(oo)). Now applying equation 9 we

see that tt(D) - Lcz as required. !

Norn 3.9. To sum up, the structure of group of a PU-bundle, Q(M,P[/) reduces to U,", if and only if

there is àUr"" bundle, P(M,Ur"") whose Dixmier-Douady class coincides with that of Q. This, we have just

seen, happens if and only if there is a U(oo)-bundle, ÐP(ÐM, t/(*)) over EM such that c2(ÐP) : t3 (D(8)).

We know from above that one cannot, in general, construct a t/(oo)-bundle with an arbitrary second Chern

class on any given space. This differs from the case for the first Chern class where one can always find a

line bundle, and hence a t/(oo)-bundle, for any given element of. HZ(M,Z). Note that any U.""-bundle,

P(M,U,"") defines a class \n Hr(M,V,) whlch is the obstruction to reducing the structure group of P to

U1"". By similar arguments to those above on can show that this corresponds (via Xl) to the first chern

class of the U(oo)-bundle over ÐM which corresponds to P.
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17. CONCLUDING REMARKS

This thesis has heavily exploited the power of the categorical approach to homotopy theory to produce

a summary of the theory of principal bundles. A systematic consideration of the problems of the reduction

and the extension of structure group has therefore been possible using non-abelian cohomology, obstruction

theory and spectral theory. I have also briefly sketched the mathematical reasons for being interested in such

problems and some of the information contained in the structure group of a bundle. For example, my final

example, Ur"" is an important group in the quantum field theory of fermions since it is a natural choice of a

physically meaningful structure group for a C AB-bwdle. Its relation to the functors of If-theory and the

mathematical machinery there developed may prove informative. For the reader's time and attention, many

thanks.
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