WAITE INSTITUTE	ì
LIBRARY	

CENTRAL NERVOUS SYSTEM AND WEB BUILDING IN SPIDERS

David Christopher Lake B.Sc. (Hons) , Dip.Ed. Department of Entomology

December 1983

This thesis is submitted as partial fulfilment for the requirements of the degree of Master of Agricultural Science at the University of Adelaide.

CONTE	ENTS.		1
3	Summary	П	
4	Declaration		
5	Acknowledgements		
6	Introduction		
8	Materials & Methods		
-	Results		
	Web Structure		
12		Introduction	
14		Philoponella	
14	×	Cyrtophora	
15		Nephila	
16	2	Phonognatha	
17		Argiope	
18		Tetragnatha	
19		Celaenia	
	Central Nervo	ous System	
21	Introductio	n	
	Optic Masse	es	
24		Philoponella	
25		Cyrtophora	
28		Nephila	
30		Phonognatha	
32	3	Celaenia	
34		Argiope	
37		Tetragnatha	
,	Central Su	pracesophageal	Structures
40		Philoponella	
42		Cyrtophora	

Nephila

46	Phonognatha
48	Celaenia
50	Argiope
52	Tetragnatha
	Central Body
54	Philoponella
55	Cyrtophora
57	Nephila
59	Phonognatha
60	Celaenia
62	Argiope
63	Tetragnatha
	Summary of Results
65	Optic masses
68	Central supracesophageal structures
71	Central body
	Discussion
74	Webs
81	Brain Stability
83	Simple Supracesophageal Structure
85	-Derived-Supracesophageal Structure
87	Taxonomic Significance
91	Behavioural Significance
95	Appendix 1 (Staining Techniques)
98	Appendix 2
	Figures
	Tables
	Photographic Plates
141	Bibliography

SUMMARY

Using Palmgren silver staining, and other histological methods, the supracesophageal association areas in one Uloborid and six Araneid spider genera are investigated and compared.

The Araneid genera studied share a common, general plan which differs from that found by other authors in non-Araneid genera. This general plan shows to derived sequential modifications from simple The simple Araneid supracesophageal Araneidae. ganglion is characterised by a large and fibrous central body, well developed posterior fibre tracts and The derived poorly developed lateral optic masses. Araneid supracesophageal ganglion is characterised by a smaller, more homogenous central body and a prominent, well developed, anterior nexus of association areas. In particular the lateral optic masses and corpora pedunculata, which are interconnected to the suboesophageal ganglion, show strong development.

The degree of individual association area development may be correlated with the relative importance of visual or tactile sensory modalities, based upon the spiders web building behaviour.

Using the supracesophageal structure as a tool, the taxonomic positions of <u>Celaenia</u> and <u>Tetragnatha</u> within the Araneidae, and the relationship of the cribellate spider family, Uloboridae, to the Araneidae, are discussed.

3

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge, contains no material previously published or written by another person, except where due reference is made in the text of the thesis. Material in this thesis may be copied for private study without written permission.

Signed.

4

I wish to thank the following for their generous help during this work.

Dr R. Laughlin (Waite Agricultural Research Institute) and Mr D. Lee (South Australian Museum) for their supervision.

J. Wannan (BarrSmith Library) for her translation of papers.

State Water Laboratories for use of the photomicroscope.

Solomon Islands Department of Agriculture for permission to collect specimens.

My wife, Jane, for her help with many tedious nights of photography.