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ABSTRACT

Many real-world applications rely on multiple data sources
to provide information on their interested items. Due to
the noises and uncertainty in data, given a specific item, the
information from different sources may conflict. To make re-
liable decisions based on these data, it is important to iden-
tify the trustworthy information by resolving these conflicts,
i.e., the truth discovery problem. Current solutions to this
problem detect the veracity of each value jointly with the re-
liability of each source for every data item. In this way, the
efficiency of truth discovery is strictly confined by the prob-
lem scale, which in turn limits truth discovery algorithms
from being applicable on a large scale. To address this issue,
we propose an approximate truth discovery approach, which
divides sources and values into groups according to a user-
specified approximation criterion. The groups are then used
for efficient inter-value influence computation to improve the
accuracy. Our approach is applicable to most existing truth
discovery algorithms. Experiments on real-world datasets
show that our approach improves the efficiency compared
to existing algorithms while achieving similar or even better
accuracy. The scalability is further demonstrated by exper-
iments on large synthetic datasets.

Categories and Subject Descriptors

H.2.8 [Information Systems]: Database Management—
Data Mining; 1.2.m [Computing Methodologies]: Artifi-
cial Intelligence—Miscellaneous

Keywords

Truth discovery; problem scale reduction; recursive method;
consistency assurance

1. INTRODUCTION

The increasing amount of data generated from the World
Wide Web and the recently emerged Internet of Things
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(IoT) applications pose challenges to database research, char-
acterized by the volume, velocity, variety and veracity fea-
tures of Big Data. With advanced data extraction and col-
lection technologies, information about a real-world entity
can be obtained from various sources in both cyber and phys-
ical worlds. The data provided by distant sources are inher-
ently unreliable, due to the uncertain data—noises, missing
updates, missing values, transmission errors, or maliciously
manipulated data. Thus, multi-source data for describing
the same entity are liable to be conflicting. To support re-
liable decisions based on or to exploit the maximal value
from multi-source data, it is critical to identify the trustwor-
thy information from the multi-source inputs. This problem
is non-trivial because the reliability of sources is often un-
known a priori and ground truths are in most cases unavail-
able. To complicate the matter, the number of sources and
entities in a truth discovery problem can be extremely large,
which requires high scalability of truth discovery algorithms.

While the truth discovery problem has been studied from
different perspectives [12], it remains inefficient. Waguih
et al. [18] experimentally evaluated the performance of sev-
eral truth discovery algorithms on three computing nodes
on both real-world and synthetic datasets with various con-
figurations, and concluded that most algorithms have effi-
ciency problems. For example, both the algorithms based
on Maximum Likelihood Estimation (MLE) and those on
probabilistic graphical approaches were too computationally
expensive to be applied to large scale problems. Moreover,
to pursue higher accuracy, recent approaches incorporate
more factors, such as the hardness of fact [7], the effect of
random guess [16], and data sufficiency [10], making them
increasingly complex and less efficient.

To the best of our knowledge, no studies have focused on
improving the efficiency of truth discovery algorithms. We
perceive that the issue in truth discovery is a hybrid tech-
nical problem, which inspires us to strategically reduce the
problem scale and pursue approximate solutions in exchange
for higher efficiency. Based on this insight, we propose an ap-
proximate approach focusing on reducing the problem scale.
In a nutshell, we make the following contributions:

e We investigate the characteristics of real-world data-
sets and propose an approximate truth discovery ap-
proach, which groups sources and values to reduce the
problem scale and considers the inter-group influence
to improve truth discovery accuracy. The approach
can achieve a personalized balance between the effi-
ciency and accuracy of truth discovery algorithms ac-
cording to a user-specified criterion.
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Figure 1: The number of values claimed by each
source: most sources claim very few values.

e We propose a number of content-based and mapping-
based methods for grouping sources and values, re-
spectively, to reduce the problem scale. In particular,
we model content-based grouping as an optimization
problem and solve it by a recursive algorithm with the
branch and bound strategy.

e We present the methods for improving the truth dis-
covery accuracy, by amending the estimated veracity
scores of values without manual intervention.

e We conduct experiments using both real-world and
synthetic datasets to evaluate the proposed approaches,
which show the significant improvements of the effi-
ciency of existing truth discovery algorithms without
necessarily sacrificing the accuracy.

The rest of the paper is organized as follows. We dis-
cuss the observations that motivate our work and define the
truth discovery problem in Section 2. Section 3 introduces
our approach. The experimental results are reported in Sec-
tion 4. We discuss the related work in Section 5 and give
some concluding remarks in Section 6.

2. PRELIMINARIES

2.1 Observations and the Motivation

This work is motivated by two sources of observations:
real world datasets and existing truth discovery algorithms.

2.1.1 Real-World Datasets

We investigate the distribution of values on different sources
and items in various real-world datasets (e.g., Figure 1 and
Figure 2 show the results in population [14] and biogra-
phy [14] datasets, respectively). We observe long tail phe-
nomenon [10] in most investigated datasets, which has the
following characteristics: i) most sources claim very few val-
ues and ii) most items have very few distinct values claimed.

Since the complexity of truth discovery is fundamentally
determined by the problem scale—characterized by the num-
ber of links' between sources and values, an intuitive solu-
tion for improving truth discovery efficiency is to reduce the
number of nodes (sources and values) and links. We focus
on two types of nodes in developing our approach:

e Sources that claim very few values. While such sources
make up a major portion of all sources, their associa-
tion with values are sparse. This makes it more likely

1A link exists between a source and a value only when the
source claims the value.
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Figure 2: The number of values claimed for each
item: some data items have large numbers of values
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for different data items (Note that some values are
not shown because they fall out of the range of dis-

play).

for different sources to claim the same set of values on
the data items. Without extra information, truth dis-
covery methods assess sources’ reliability solely based
on the sources’ inputs. Hence, the sources that claim
the same sets of values will always receive the same
assessment results, and repetitively computing the re-
liability for each of those sources becomes unnecessary.

e [tems with large numbers of values. Intuitively, when
the values of an item become enormous, they easily
become close. To verify this point, we investigate the
value distribution of data items and observe varying
distributions on different data items. For example,
the claimed population sizes of sarajevo (Figure 3a)
are distributed rather unevenly, with some values ex-
tremely close to each other and others well separated.
In contrast, the claimed birth dates of George W. Bush
(Figure 3b) are dominated by a single value. Indeed,
in many practical cases, especially those where the op-
timal solution is difficult to reach, users do not usually
care about the minor differences. Thus, we can pro-
vide approximate solutions and only offer more precise
results per users’ requests.

2.1.2  Truth Discovery Algorithms

We investigate the truth probability® distribution of ex-
isting truth discovery algorithms during each cycle of itera-
tion, if the algorithms require iteration, to examine if they

2 Truth probability means the probability of being true, which
is calculated by normalizing the evaluation results, or verac-
ity score, of each distinct value.



0.03 0.015
3 —+— Sums 3 t—— Avg-Log
5 0.02 =
2" 2 0.010
3 3
5 0.01 5
2 T 2 0.005
3 L 3
8 0.00 8
2 o
& ‘ ‘ & 0.000 ‘ :
1.1 12 13 1.4 1.1 12 13 1.4

Population of Dallas, Texas (million) Population of Dallas, Texas (million)

0.04990

$ 0.060 —— Estimate2 | 3 TruthFinder
= =
2 2 0.04988
[} D
D 0.054 @
o [s}
= 2 0.04986
3 3
S 0.048 8 | S
a : : Q@ 0.04984

11 1.2 1.3 1.4 11 12 13 14

Population of Dallas, Texas (million) Population of Dallas, Texas (million)
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their third cycle of iteration over the different pop-
ulation sizes of Dallas, Texas.

produce consistent evaluation results. Here, by consistency,
we mean similar values should get similar truth probabili-
ties. For example, in determining a city’s population size,
two similar values, e.g., 8,390,482 and 8,416,535, should have
similar truth probabilities. In contrast, the truth probability
of 3,517,424 should be more different, since the value is less
similar to the former two values. Enforcing consistent evalu-
ation is crucial for ensuring the accuracy of truth discovery,
as it improves the robustness of truth discovery algorithms
in terms of smoothing the fluctuations and anomalies in the
evaluation results. Intuitively, the truth discovery results
cannot be justified without ensuring consistency because it
would be insensible to assign very different truth probabili-
ties to two values if they are extremely close.

Unfortunately, existing truth discovery algorithms lack
consideration of such consistency, which obtain rather fluc-
tuating truth probability distribution over the distinct val-
ues for the same item (as shown by the examples in Fig-
ure 4). Yin et al. [20] and Dong et al. [5] propose to improve
the consistency by considering the inter-value influence in
evaluating the values. They amend the evaluation results of
an arbitrary value by:

c"(v)=0o(v)+p- Z a(@) - sim(v',v)

v/ #v

(1)

where v" and v are two different values for the same item,
sim(v',v) € [0,1] is their similarity; o and ¢* are the ve-
racity scores® of v before and after the amendment, respec-
tively; p € (0,1] is the influence factor which represents the
influence strength.

Such amendment can significantly add to the computation
load of truth discovery algorithms. It also requires manually
defining the influence strength, which is sometimes tricky.
Since in practice, we often regard a value as true as long as
it is sufficiently close to the truth, a practical approximation
may avail the amendment method in two aspects: i) reduc-

#Veracity score does not necessarily equal to the truth prob-
ability, but a higher score indicates a higher truth probabil-

ity.
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ing the computation load and ii) avoiding the necessity of
manually determining the influence strength.

2.1.3 A Motivating Example

Based on above analysis and insights, we propose an ap-
proximate truth discovery approach, which groups sources
and values to reduce the problem scale and considers the
inter-group influence to improve the truth discovery accu-
racy. Now we illustrate our approach with an example.

EXAMPLE 1. Suppose we want to corroborate the birth
dates of some historical figures. Five data sources provide
such information and only s1 provided all the true values
(Table 1). A naive voting would incur a computation load
of (645)+ (644)%2 = 31—for each of the three items (i.e.,
people), the algorithm performs two steps: i) scanning the
six records to get the times of occurrence of each distinctive
values, i.e., 5, 4, and 4 for the three items, respectively, and
11) checking through the five distinctive values to find out the
most frequently occurring value as the estimated truth. The
average accuracy 15 0.5.

By considering the inter-value influence, the computation
load is increased to (6 4+ Py +5) 4+ (6 + Py +4) %2 = 75—
between the two steps, the algorithm takes an additional step
to calculate the mutual influence between each pair of differ-
ent values, which is a permutation (denoted by P). The
resulting accuracy s 1.

Now suppose a user only wants to know the birth years
and months of these people instead of the exact dates. In
this case, we can simply group the dates in the same year
and month for each people, forming 3, 3, and 2 groups of
dates for the three people, respectively. Moreover, we find s2
and ss claim exactly the same groups of dates, so they can be
grouped to form a joint source. Through such approrimation,
the computation load is decreased to (5+3) %2+ (5+2) = 23
without veracity score amendment and (5+ P54 3) %2+ (5+
P3+42) = 37 with amendment. The resulting accuracy is also
1. For now even if the user still wants an exact date, the
approzimation approach can still deliver the true values with
an accuracy of 1—by selecting the most promising date from
the most promising group for each people using the naive
voting method.

Table 1: A motivating example: five sources provide
information on the birth dates of three historical
figures. Only s; provides all true values.

| | ei;: G. Washington es: A. Lincoln  ez: N. Mandela |

51 Feb. 22, 1732 Feb. 12, 1809 Jul. 18, 1918
s2 Jul. 22, 1743 Feb. 20, 1809 Jul. 9, 1918
s3 May 9, 1721 Jan. 20, 1813 Apr. 22, 1916
s4 Feb. 27, 1732 Jan. 20, 1809  Apr. 16, 1916
s5 Jul. 22, 1743 Feb. 12, 1809 Jul. 18, 1918
s6 Feb. 15, 1732 Jan. 20, 1813 Jul. 18, 1918

2.2 Definitions and Notations

Let E be a set of entities. Each entity e € E' is described
by a set of attributes A.

Each pair (e, a), where e € E, a € A, represents a distinct
data item.

Let S be a set of data sources. Each source s € S pub-
lish some values (that are potentially true) on a subset of
attributes in A regarding a subset of the entities in F.
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Let V (e, a) be the set of all source-claimed values on data
item (e,a). We consider the case where each item has only
one true value, so at most one value in V(e,a) can be true,
while all the other values are false.

We denote by R a set of input records. Each record r € R
describe a source’s claim on a specific item (e, a), which is
a b-tuple: < id,s,e,a,v >, where id uniquely identifies the
record and v is the value claimed by s on (e, a).

We assume all records from different sources have been
transformed to a unified schema. Given a set of input records
R published by a set of data sources S, the goal of truth
discovery is to identify a single true value v* € V(e,a), if
the true value exists, for each attribute entity e € E and
each attribute a € A.

3. THE APPROACH

Our approach facilitates efficient truth discovery by re-
ducing the problem scale and improves accuracy by enforc-
ing consistent evaluation of the truth discovery results. It
has three main components (as shaded in Figure 5) besides
the truth discovery module: content-based grouping—for re-
ducing the number of values, mapping-based grouping—rfor
reducing the number of sources, and veracity score amend-
ment—rfor enforcing consistency. The first two components
are one-time jobs, while the last is incorporated into the
truth discovery process.

e Content-based grouping. This component groups simi-
lar values according to a user-specified approximation
criterion. Each resulting group will be regarded as a
single value by truth discovery algorithms.

o Mapping-based grouping. This component groups the
sources that claim the same portfolio of value-groups.
Each resulting source-group will be regarded as a joint
source by truth discovery algorithms.

e Veracity score amendment. This component amends
the veracity scores of values by considering the inter-
group influence of values. The amended results can be
directly used for estimating the truth.

The following subsections will introduce each of the com-
ponents, respectively.
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3.1 Content-based Grouping

This component aims at reducing the problem scale by
grouping similar values according to a user-specified approx-
imation criterion. We assume user input as a personalized
threshold (i.e., d in Figure 5) on the numerical distance be-
tween the true values estimated before and after using the
content-based grouping methods, meaning any two values
can be grouped together only when their distance is smaller
than d. We notice that treating similar values as a group
does not necessarily impair the truth discovery accuracy: i)
the truth estimated based on single values may be inaccu-
rate by itself and ii) due to the unreliable and unevenly dis-
tributed source inputs, the estimated true and false values
could interleave in the spectrum of all values. Discovering
truth based on the grouped values tends to be more robust
in term of smoothing the local inconsistency and focusing
on a global estimation. We also note that influence might
still exists between the resulting value-groups. For example,
Figure 6 shows an example of three values and the distances
between them compared with the criterion d, where vs can
be grouped with either v or vs. Whichever happens, the
other value will still have an influence on vs from outside
the group. In the worst case, if v2 makes up a group of it-
self, it would be influenced by both the other values from
outside of the group.

Referring to the philosophy of clustering, we expect each
value to be maximally influenced by the (other) values of
the same group while minimally influenced by the values of
other groups, to preserve the accuracy of truth discovery.
Therefore, we define the content-based grouping problem as
follows: given a set of values V and the criterion d (which
value is specific to each data item), find such a division of
V, say Vopt = {V1,Va,...,V,}, that:

Vi, V; € Vopt,i#j

V’uz,vy c ‘/7, (6 Vopt)7 |UCL‘ - 'Uy| < d.

Minimize inf(Vi = Vj) (2)

subject to :

where V; is a value-group, v, and v, are individual values,
inf(Vi — V;) quantifies the influence of V; on V;. The
parameter d enables users to make personalized decisions on
the degree of approximation. Given a larger d, less groups
would be formed, and vice versa.

We prove the NP-Completeness of the content-based group-
ing problem as follows.

Proor. The NP-Completeness proof proceeds via an effi-
cient reduction from the Balanced Graph Partitioning prob-
lem (BGP) [1]. BGP aims at partitioning graphs into equal
sized components while minimizing the number of edges be-
tween different components. The number of components
immediately transforms into d when the values for each sin-
gle data item are evenly distributed in their domain. If we
replace the optimization objective of “the number of edges
between different components” into “the mutual influence
between different sub-graphs”, BGP immediately transforms
into the content-based grouping problem. []

While clustering represents a technique for set division,
we avoid considering clustering as an appropriate solution
for three reasons: i) most clustering methods cannot deter-
mine the optimal cluster number based on a single input
such as d, ii) some do not guarantee to obtain the optimal
results, and iii) it is hard to apply optimization techniques
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Figure 6: An example illustrating the circumstances
that cause inter-group influence. Whichever another
value (i.e., v1 or v3) vy is grouped with, or even v,
makes up a group of itself, it will still be influenced
by at least one other value from outside the group.

such as branch and bound to accelerate the clustering pro-
cess. Another option would be based on graph models. We
could take all distinctive values claimed for a specific data
item as nodes to construct a complete graph. Then we can
remove the edges longer than d (resulting in G) and parti-
tion G so that each resulting sub-graph is still a complete
graph. In this way, the content-based grouping problem can
be solved approximately by adopting existing solutions to
the Maximum Clique Problem (MCP) [19]. Unfortunately,
our problem differs from MCP in that, instead of pursuing
the largest complete sub-graph, it pursues all complete sub-
graphs and the minimal influence among those sub-graphs.
Moreover, even if a MCP solution is applicable, we need to
apply the MCP solution multiple times to find all the com-
plete sub-graphs—by each time finding and removing the
new maximum clique from the remaining graph. Besides se-
vere computation load, this approach does not guarantee to
produce the optimal grouping results.

Our problem is special in that all values are unidimen-
sional and can thus be sorted for given specific data item.
This enables us to employ novel heuristics to improve ef-
ficiency. We propose a recursive solution with branch and
bound technique to optimally assign groups to the values.
The components of this solution are described in Figure 7.

Algorithm 1 invoke invoke

Content-Based Grouping

Algorithm 2
Dividing Sublist

Algorithm 3
Calculating SumInf

Figure 7: The invocation relation between the algo-
rithms for content-based grouping.

Algorithm 1 is the entry of our content-based grouping
solution. Given a specific data item, the algorithm first
sorts the values for the item (line 1), and then compares
the distance between each pair of adjacent values with the
criterion d (lines 4-9). Whenever the distance between two
values surpasses d, the list is divided in-between. Each sub-
list is either regarded as a cluster of itself (if it contains a
single value; lines 12-13) or applied the recursive method
(otherwise; lines 14-18) to find the optimal group assign-
ment. Since no influence exists between different sub-lists
(due to the division criterion d), the grouping results for ev-
ery sub-list together form the grouping results regarding the
given data item.

Algorithm 2 recursively constructs the potentially opti-
mal (and possibly partial) group division for the input sub-
list. It takes a preorder and depth-first traversal of the tree-
like search space. Given a (partial) group division solution,
which is a (either complete or incomplete) list of groups
formed from the sublist, the algorithm first checks whether
the inter-group influence of this (partial) solution exceeds
the historical best—that is the bounding condition, which
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Algorithm 1: Content-Based Grouping

Input: a set of possible true values V; a tolerable deviation
from the true value for the item d.

Output: a set of value-groups {V4|V = UV }.

v‘v‘} <—sort the elements of V;

"
-~
<
S
3
M

/* Split the list of sorted values into sub-lists */

2 x4+ 1; // x is the index for sub-list
3 Ly« {v1}; // initialize the first sub-list
a foreachi=1,2,...,|V|—1do

5 if "Ui+1 — 'Ui‘ S d then

6 |_ Ly« Ly U{vigy1} s // add a value to the sub-list

else

oL

<

T++;

L, < {vit1}; // initialize a new sub-list

*/
// the grouping results

/* Find the optimal group division for each sub-list
LC + 0 ;
foreach L € {L1, Lo, ..
if |L| =1 then

|_ LC + LCU{L};

10
11
12
13

., Lz} do

14 else

/* The initial (partial) group of interest */
15 C <« {v]v is the first element of L};

/* The initial (partial) solution of interest */

16 Solutiong <— {C} ; // which is list of groups ordered
by their time of addition to the list
L «+ L\{v};

/* initial as the maximal possible because no known

17

solution currently exists */
18 Bpest < Maz_Value;
/* call Algorithm 2 */

LC +
LCUDividingSublist(Solutiong,L,d(e, a),Bpest);

19

is the minimal inter-group influence ever achieved by any
complete group division solution. If it does, the solution
will be abandoned; otherwise, the algorithm examines its
completeness—whether the solution contains all the values
of the sublist (line 2). The algorithm returns the solution
and corresponding evaluation result when the solution is
complete (line 4-5; L = 0).

In case the solution is incomplete (line 6), the algorithm
checks whether the first value of the sublist can be added
to an existing group (line 10). If true, the process diverges
into two branches: i) adding the value to the existing group
(lines 11-14) and ii) setting up a new group for the value
(lines 15-18). In the first case, Algorithm 2 invokes itself,
taking the updated solution (with the new value added to
the last group) and the updated sublist (with the first value
removed) as inputs (line 12). If the solution returned by the
self-invocation is not null—meaning the returned solution is
better, the bounding condition (Bpest) will be updated with
the evaluation result of the returned solution. In the second
case, Algorithm 2 invokes itself only under one condition:
the distance between the new value (v) and the last element
of the third last group in Solution is larger than d (line
17). In this case, Algorithm 2 takes the new solution (with
a new group added) and the updated sublist (with the first
value removed) as inputs (line 19). Differing from the first
case, Bpest will not be updated even if a better solution is
found (the returned solution# null)—information from the
last branch can only be passed to its upper-layers (instead
of its siblings) in the tree-like structure.

We prove that only under the condition specified in line
17 could the new solution possibly be optimal as follows.

PRrROOF. Given a (partial) solution that consists of four
consecutive groups, C;, Cit1, Cit2, and Ciy3, suppose the
minimal distance between the elements of C; and Cii3 is



Algorithm 2: Dividing Sublist

Input: the current (partial) solution of interest Solution, an
ordered list of ungrouped values L; a tolerable deviation
from the true value for the item d, the best evaluation
result of all currently known solutions Bpest.

Output: a couple (Solution, B), where Solution is the
obtained grouping result and B is the corresponding
evaluation result.

1 Beurrent <—CalculatingSumlInf(Solution) //call Algorithm 3
2 if Beurrent > Bpest then
3 | Return null ; // bound the branch with historical best

4 if L =0 then
5 | Return (Solution, Beurrent) ;

// better solution found

6 else
7 v <—the first element (i.e., a value) of L;
/* get the current cluster in formation */
8 Solution.last <—the last element (i.e., a set) of Solution;
9 viFirst <the first element (i.e., a value) of Solution.last;
/* get alternative solutions */
10 if [v — vipirst] < d then
/* Choice 1: add as the new last element/value of
the existing cluster */

11
12

Solution.last < Solution.last U {v};

Result; +DividingSublist(Solution,L\{v},
d(e,a),Bpest);

// Suppose Result, = (Solutiony, B1)

if Result; # null then

13

14 Bpest« By 3 // update known best result; new
bounding condition is set
/* Choice 2: initialize a new cluster by v */

15 Solution.thirdLast <the third last element (i.e., a set)
of Solution;
ViiLast <the last element (i.e., a value) of
Solution.thirdLast;
if AvyLase V|V — ViLast| > d then
Solution < Solution U {v} ; // add as the new
last element/cluster of Solution
Resulty +DividingSublist(Solution,L\{v},
d(e,a),Bpest);
// Suppose Resulty = (Solutionsa, Ba)

16

17
18

19

20 if Resulty # null then
21 |_ Return Results ; // better solution found
22 else
/* only have one choice here */
23 Solution.thirdLast <the third last element (i.e., a set)
of Solution;
24 VilLast <the last element (i.e., a value) of
Solution.thirdLast;
25 if Avsirast V |V — Vsipast| > d then
26 Solution < Solution U {v} ; // add as the new
last element/cluster of Solution
27 Results <—DividingSublist(Solution,L\{v},
d(ev a)vaest)§
// Suppose Results = (Solutions, B3)
28 if Results # null then
29 | Return Results;
30 Return null.

smaller than d. We can easily get a better solution by merg-
ing Ci4+1 and Ciy2. Thus the given (partial) solution could
not be the optimal (partial) solution. [l

For the case that the value cannot be added to an exist-
ing group (line 22), it is tackled in the similar way as we
tackle the second branch above (lines 23-29). Note that, in
Algorithm 2, we intentionally put the first case before the
second, i.e., greedy selection —the first case does not add to
the total inter-group influence, but the second case does.

Algorithm 3 evaluates the (partial) grouping solution for
a specific sub-list. Given a group within the solution, the
algorithm calculates the influence of at most five groups on
this group—two precedent groups (line 6), two succeeding
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groups (line 8), if they exist, and the group itself (line 4).
The algorithm returns the extent (i.e., a ratio) to which the
group is influenced by other groups (line 9). The condi-
tions in line 17 and line 25 of Algorithm 2 ensure a group
is influenced by at most four other groups according to the
user-specified criterion d.

Algorithm 3: Calculating SumInf

Input: A (partial) group assignment solution
Solution = {C;|i = 1,2, ...,|Solution|}, which is a
ordered list of value-groups.
Output: SumliInf, the sum of influence between all pairwise
groups.
1 while C; € Solution do
suMeyr <= 0, SUMpre < 0, sumygo; < 0;

N

3 foreach v € C; do
/* influence by values of the same cluster */
a SUMeyr < SUMeyr + ZU/ECZ,M)/?&) inf(v' — v);
/* influence by values of other clusters */
5 if ¢ > 1 then
6 L SUMpre < SUMpre + Ev’eci,l inf(v' — v);
7 if ¢ > 2 then
8 L SUMpre < SUMpre + Zu/Eci72 inf(v' — v);
9 if i« < |[LC| then
10 L sumyfop <— sumygop + ZU/EC¢+1 inf(v — v);
11 if i < |LC|—1 then
12 L SUM for < SUMfor + Ev’eci+2 inf(v/ — v);

13 SumliInf <

L (sumpre + sumyop)/(sumpre + SUMeyr + sSumyeor);

In Algorithm 3, the influence between two values, e.g., v’
on v, is calculated as follows:

oc=d

inf(v' —v) =

1 ef(ulfv)2/202 (3)

o2

Different from traditional linear combination, we assume
Gaussian density of the influences to a specific value. In this
way, only the similar values would have a major influence on
a value. In particular, for each item, Eq.(3) transforms d into
an acceptable variable domain of Gaussian density function.
We derive different influence domains to represent different
levels of user confidence. For example, suppose a user pro-
poses some d with a confidence degree of 0.8 (€ [0, 1]), which
approximately equals to the Area Under the Curve (AUC)
of Gaussian density function within the domain of (—o, +0),
we get a o which is equal to d in Eq.(3). Given a full con-
fidence of approximately 1, the resulting influence domain
would turn into (—30, +30).

3.2 Mapping-based Grouping

This component aims at reducing the problem scale by
grouping sources according to their associations with the
value-groups. The mapping-based grouping (Algorithm 4)
involves two steps: i) extracting (line 1-5) and sorting (line
6) each source’s claims and sorting sources by their claim
sizes (line 7), and ii) grouping the sources that make the
same set of claims (lines 8-23): the algorithm only compares
adjacent sources in the sorted list and makes further com-
parison only when the sources have the same claim size (Line
12).

Table 2 shows two examples of the grouping results on the
population dataset [14], where four Wikipedia users provide
the same population size for New Orleans and another four



Algorithm 4: Mapping-Based Grouping

Input: a set of records regarding value-groups R’ = {r’ =<
id,s,e,a,C > |s € S,e € E,a € A, C € Solution(e,a)}.
Output: {SHS}C C S,US;C =SA ﬂ Sk = @}
foreach s; € S do
profile; < 0 ;
foreach ' € R’ do
if 7’.s equals s; then
|_ profile; < profile; U {<' r.e,r’.a,r".C >};

// Initialize claims of s;

[SLI N R VI

=]

| Sort triples of profile;;

7 Sort s; by {|profile;|};
8 i+ 1l k+1;

9 while i < |S| do

10 Sk« {si}; k++ ;
11 J i1+ 1

12 while j < |S| A [profile; |[profile;| do

13 isldentical < true ; // If two profiles are identical

// Initialize source & group index

// Initialize a group

14 foreach m = 1,2,...,|profile;| do
/* tim is the m-th triple in profile; */
15 if t5,m.e ! =triplejm.e || tim.a ! =1t;m.a ||

t?ﬂ,7n~c I = tj,m.C then
16 L isldentical < false;
17

break;
18 if isIdentical then
19 Sk < Sk U{profile;};
20 Jjt++;
21 else
22 | break;

R H

23

users for Mexico Clity. The mapping-based grouping method
reduces the total number of sources (or joint source) of the
dataset from 4264 to 3874. It should be noted that, the
grouped sources do not only receive the same assessment,
but also have the same effect as the group of individual
sources do before they are grouped together in the truth
discovery process.

Table 2: Two examples of the mapping-based group-
ing results on the population dataset [14]: each of
the two cities has four contributors claiming the
same population size.

[ Source [

2442135: Mikelj
4444: Infrogmation
395740: ArielGold
2558878: Duece22
240649: Rune.welsh

3093230: Kwsn
0 (71.104.219.117)
111478: Mixcoatl

Ttem [ Value |

New Orleans, Louisiana 484674

Mexico City 8720916

3.3 Veracity Score Amendment

This component aims at improving the accuracy of truth
discovery by enforcing consistent evaluation of value-groups.
The amendment (Algorithm 5) relies on pre-computed inter-
group influence matrix to update the veracity scores, where
¢(Cy) and ¢(C;) are the original and amended veracity scores
of value-group C5, respectively, and inf(Cy — C}) is the in-
fluence of C'; on another group C;. The matrix is calculated
in a similar way as what Algorithm 3 does in calculating the
inter-group influence. The only difference is that instead of
summing up the influences of all groups, here we separately
calculate the influence of different groups and store this in-
formation in a pentadiagonal matrix. Algorithm 5 calculates
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the veracity score of a value-group by linearly combining the
veracity scores of all relevant groups using their influences
on this value-group as weights. We are aware that there ex-
ist more compact ways to store these quintuples, but they
are out of the scope of this paper.

Algorithm 5 reduces the time complexity of inter-value in-
fluence computing by an order. Suppose Ve € E, Va € A,
[V(e,a)] = V and |LC(e,a)] = G, where LC(e,a) is the
set of all value-groups for data item (e,a). The time com-
plexity of traditional methods is O(L - V) < O(|E||A| - V?),
where L is the number of links between sources and val-
ues. In contrast, Algorithm 5 achieves a time complexity
of O(L') < O(JE||A] - G), where L’ is the number of links
between source-groups and value-groups. Furthermore, Al-
gorithm 5 does not require configuring additional param-
eters, such as p in Eq.(1), but automatically incorporates
the influence of different groups based on probabilities. The
amended veracity scores remain in the same range of the
original scores, therefore require no additional efforts for
normalization.

Algorithm 5: Veracity Score Amendment

Input: a set of value-groups LC(e, a), the correlation matrix for
each item M. o[|V|][|[LC|], where e € E, a € A; a set of
veracity scores {¢(C)|C € LC(e,a)}.

Output: a set of amended scores for each item

{e(C)|C € LC(e,a)}.
1 foreach e € E and a € A do
2 L foreach C; € LC(e,a) do
3

L &) « Eze{i—l,i,i+1} inf(Ca — Ci)c(Ca);

Our approach recommends the group with the highest ve-
racity score as the estimated truth. But we can also es-
timate a single value as truth by using the weighted me-
dian method®. The procedure for weighting the values is
similar to lines 2-12 in Algorithm 3: given each value v of
the recommended group g, we calculate the influence of val-

ues on both inside and outside of the group, i.e., inf(v)

) inside
. v
and anoutside ’

respectively. Then, we assign v with weight
infi(:i)sidc
infi(:i;ide+infgz)tsidc

we can output the weighted median as the estimated truth.

. After weighting and sorting the values,

4. EXPERIMENTS

In this section, we evaluate our approach using both real-
world and synthetic datasets. We first discuss the experi-
mental setup in Section 4.1 and then report the experimen-
tal results on real-world datasets in Section 4.2. Since the
real-world datasets are limited in scale and diversity, we fur-
ther evaluated the sensitivity and scalability of the proposed
approach based on synthetic datasets.

4.1 Experimental Setup

We introduce the measures to evaluate the algorithms’
performance and the baselines methods, respectively.

4.1.1 Performance Measures

We apply three measures to evaluate the performance. For
all these measures, a smaller value indicates a better result.

*http://en.wikipedia.org/wiki/Weighted median/



e Mean Absolute Mean Error (MAE). The absolute lin-
ear distance between the estimated truth and the ground
truth.

Root Mean Square Error (RMSE). Compared to MAE,
RMSE amplifies and severely punishes large errors.

Computation Time. The time required for the algo-
rithm to produce a final result, which includes the time
spent on possible pre-processing (such as source/value
grouping), source/value evaluation, and possible post-
processing (such as veracity score amendment).

4.1.2 Baselines

All the following algorithms are used in an unsupervised
manner and compared on numerical datasets:

e Voting: for each item, outputs the value claimed by
the most sources as the estimated truth.

Sums: evaluates sources and values alternately from
each other by iteration.

Awvg-Log: uses a non-linear function (a combination of
logarithm and average functions) to assess sources.

Investment [15]: evaluates values based on their con-
tribution to the assessment of related sources.

2-Estimates [7]: assumes that claiming one value indi-
cates disclaiming (vote against) all unclaimed values.

TruthFinder [20]: considers inter-value influence and
evaluates each value by a probability.

AccuSim [5]: evaluates a value by the a posterior prob-
ability and incorporating the inter-value influence.

Gaussian Truth Model (GTM) [22]: applies generative
models to estimate truths.

In this paper, we focus on discovering a single true value
for each data item from the numerical data, but leave the
incorporation of source dependency and other data types for
future work. We implemented the algorithms in Java 7 and
ran experiments on 3 PCs with Intel Core i7-5600 processor
(3.20GHx8) and 16GB RAM.

4.2 Experiments on Real-World Datasets
4.2.1 Datasets

We employ two real-world datasets® in the experiments
and use the ground truth provided by the original contribu-
tors as gold standards.

The population dataset [14] contains 51,761 records. Each
record describes a user’s answer to a city’s population size.
After eliminating duplication and ambiguity, we got records
about 4,264 sources claiming 49,956 values on 41,197 data
items.

The biography dataset [14] contains 11,099,730 records.
Each record describes a user’s answer to the birth or death
date of a person. After removing the irrelevant, duplicated,
and ambiguous records, we merged the birth and death dates
of the same person made by the same user and got 1,148,644
users and 3,211,983 claims related to 116,499 people.

5Until now, these are the only two public numerical datasets,
which are also used in recent works [22, 14].
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Figure 8: Comparison of computation time.

4.2.2 Comparison Results

Figue 8 shows the comparison of different algorithms in
terms of their computation time before and after adopting
our approach, based on the population and biography data-
sets. The results show that our approach reduces the com-
putation time of the algorithms significantly, for some cases
even by half. The effect is especially evident on the popula-
tion dataset, where claims are sparse. Since our approach is
not applicable to GTM, its computation time remains un-
changed.

In Table 3 and Table 4, we summarize the performance
of the algorithms before and after the adoption of our ap-
proach in terms of MAE and RMSE. The results show that
our approach does not significantly decrease the truth dis-
covery accuracy. Indeed, all algorithms achieve similar or
even higher accuracy than their original implementations
under the optimal configurations of d. This indicates that,
if configured properly, our proposed approach does not only
reduce the computation time, but also improves the truth
discovery accuracy.

Table 3: Comparison on the Population dataset: the
measures marked with asterisk represent the per-
formance after adopting our approach; F# is the
percentage of the estimated truths that have larger
deviations from the actual truths than d.

Method MAE RMSE MAE™ RMSE” F4#(%)
Voting 10327.2 126217.9 9823.4 124992.7 12.92
Sums 3026.25 17023.52 3008.47 17016.24 10.32
Avg-Log 2923.33 16923.36 2910.24 169431.3 9.21
Investment 1787.65 8797.43 1694.53 8634.38 13.84
2-Estimate 1652.29 8429.32 1609.98 8339.99 22.16
TruthFinder 1633.60 8824.09 1632.23 8823.09 8.70
AccuSim 1626.52 8718.10 1498.59 8596.26 9.26
GTM 1523.29 8382.73 1523.29 8382.73 8.87

Table 4: Comparison on the biography dataset: the
meanings of the notations are the same as the ones
in Table 3.

Method MAE RMSE MAE* RMSE™ F# (%)
Voting 237.35 4847.80 213.53 1772.63 22.65
Sums 396.69 5429.37 394.23 5427.46 18.23
Avg-Log 392.26 5296.62 382.33 5263.69 17.41
Investment 3858.90 26237.65 3294.73  24923.98 19.23
2-Estimate 234.42 4723.53 232.53 4694.97 20.83
TruthFinder  660.66 6959.72 661.39 6962.49 15.23
AccuSim 267.62 4844.46 253.28 2823.53 11.46
GTM 228.19 4831.53 228.19 4831.53 13.97




4.3 Experiments on Synthetic Datasets

4.3.1 Datasets Preparation

We generate synthetic data to evaluate the effectiveness
of our approach on larger datasets. In particular, we gener-
ate synthetic records based on a real-world dataset, i.e., by
adding new sources and data items to the population dataset.

We generate a new source by randomly selecting an ex-
isting source as reference—the new source will have exactly
the same number of values on the same sets of items as the
referred source. We then associate a source to the values
in two steps: i) for each item, we divide the whole value
range into a series of intervals, making sure each interval
contains exactly one value. Given two adjacent intervals,
their boundary is the average value of the two values that
reside in the two intervals, respectively; ii) each time we add
new association to a value: we first randomly select an in-
terval which the value to be associated with are supposed to
reside in, namely Z, and then associate the source with the
existing value in Z with a probability p, and with a random
value within the interval Z with a probability of 1 — p. We
assume a slight increase in the total number of sources as-
sociated with the original values by defining p = 0.01(> 0).
Data items are generated in a similar way.

4.3.2  Scalability Experiments

We conduct experiments to investigate the effect of our
approach on improving the algorithms’ scalability. We first
fix the number of data items and vary the number of sources
from 1,000 to 10,000, thus increasing the number of values
for each data item. Then we fix the number of sources and
vary the number of data items. Figure 9 shows how the
reduced amount of computation time changes as the number
of sources and the number of data items grow, after applying
our approach. The results show the reduction amount keeps
increasing as the two numbers grow. Since d remains fixed in
both above experiments, the number of value-groups formed
by our approach does not significantly change. But generally
the more sources considered, the larger the source-groups
tend to be, as the sources has a higher chance to be merged
into an existing group. Experiments with respect to both
above numbers reveal that the reduced computation time
grows at lease linearly with the increased record size.

4.3.3  Sensitivity Experiments

We study the impact of d to the effectiveness of our ap-
proach based on a synthetic dataset of 10,000 sources and
45,000 data items, where each item has on average 1 to
1,000 distinct values. Figure 10 shows the algorithms’ per-
formance with respect to a varying d within the range of
[0, SD/10], where SD is the standard deviation of all values
for each data item—therefore, each item will have no more
than 100 groups. Specially, when d = 0, the problem de-
grades to the circumstance of estimating the truths without
adopting any grouping methods. We observe an exponen-
tial decrease in the computation time of all algorithms as d
grows. As for the error rates, both MAE and RMSE tend to
be low when d is small, but gradually increase as d grows.

5. RELATED WORK

Truth discovery has been a longstanding problem in the
data quality research community [4, 13]. We classify existing
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Figure 9: Computation time reduction under: (a)
varying number of sources, (b) varying number of
data items.

truth discovery approaches into four categories and review
them in this section.
Primitive methods. These methods take the mean, median,
or magjority voting results of the values for each data time
as estimated true values [3]. They are efficient but often in-
accurate due to the neglect of varying reliabilities of sources
in the real world.
Iterative algorithms. These methods jointly compute source
reliability and confidence of value through an iterative pro-
cedure. Multiple ingredients, such as the inter-value influ-
ence [20], inter-value exclusion[7], source dependency [5],
hardness of fact [7], as well as human knowledge [15] are
incorporated to pursue more accurate estimation.
Probabilistic models. Many researchers model truths as la-
tent variables in probabilistic graphical models to support
truth discovery [16, 22]. Such models generally require tremen-
dous computation time.
Optimization approaches. Yin and Tan [21] and Li et al. [11]
respectively model the truth discovery problem as optimiza-
tion problems and developed corresponding solutions.
Other related approaches include crowdsourcing [9] and
web search [2, 17]. Crowdsourcing systems assess worker
quality in accomplishing their crowdsourcing tasks while web
search methods recommend trustworthy source links to an-
swer user’s queries. Truth discovery differs from crowdsourc-
ing in pursuing only the factual truths and from web search
in operating on well-formatted records instead of raw data.
The most related research is on source selection. Dong et
al. [6] propose to select only partial sources for truth dis-
covery, so as to reduce the integration cost while ensuring
certain accuracy. Li et al. [9] present a framework for discov-
ering the common characteristics of high quality workers, so
as to facilitate the selection of high quality workers for future
tasks. Gupta et al. [8] evaluate source quality and select only
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Figure 10: Comparison of algorithms’ (a) computation time, (b) MAE, and (c) RMSE, under varying d.

trustworthy sources for each group of entities (obtained by
clustering) to improve truth discovery accuracy. To the best
of our knowledge, there is no previous work that specializes
on improving the efficiency of truth discovery, nor utilizing
grouping methods to reduce the problem size, which is the
main contribution of this paper.

6. CONCLUSION

In this paper, we propose an approximate truth discovery
approach, which improves the truth discovery efficiency via
problem scale reduction. We develop content-based group-
ing and mapping-based grouping methods to reduce the sizes
of sources and values, respectively. Veracity score amend-
ment methods are used to improve the truth discovery ac-
curacy with efficiency. The approach features approximate
truth discovery according to a user-specified criterion, which
can achieve a personalized balance between the efficiency
and accuracy. The approach has been applied to several
existing truth discovery algorithms. Experiments on both
real-world and synthetic datasets demonstrate the effective-
ness of our approach.
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