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Abstract 

Chronic rhinosinusitis (CRS) is a heterogenous disease characterised by the 

symptomatic inflammation of the nose and paranasal sinuses for more than 12 weeks. 

These symptoms include nasal obstruction, nasal discharge, facial pain and pressure, 

resulting in a considerable impairment of a patients’ quality of life. CRS is sub-

categorised into two types based on the absence (CRSsNP) and presence of nasal 

polyps (CRSwNP) visualised within the middle meatus. Interestingly, although 

CRSsNP patients may lack easily identifiable polyps, the mucosa of these patients may 

show variable degrees of polypoid change. This raises the question as to whether the 

proposed classification system is an over simplification and that CRSsNP and CRSwNP 

in fact only represent two extremes of phenotype along a broader spectrum of 

immunologically different disease processes. Recently, research into CRS has identified 

a dysregulated immune response as a major contributor to the aetiopathology of disease, 

however few studies have utilised flow cytometry to phenotype the cells present. This 

thesis examines both the local and systemic populations of different adaptive and innate 

immune cells in the tissue and blood of CRSsNP and CRSwNP patients along different 

degrees of polypoid change within the same patient. 
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Chapter 1: Introduction 

1.1 Chronic Rhinosinusitis  

CRS is characterised by the persistent inflammation of the nose and paranasal sinuses 

for more than 12 weeks.1 Two or more of the symptoms present should include nasal 

blockage/obstruction/congestion, nasal discharge, facial pain or pressure and the 

reduction or total loss of sense of smell. This is confirmed by either endoscopy; 

showing signs of nasal polyps, mucopurulence, oedema and nasal obstruction and/or by 

inflammation on radiological examination where the Computed Tomography (CT) 

shows mucosal changes within the osteomeatal complex or paranasal sinuses.1 

The prevalence of CRS has been shown to be among the ten most disabling chronic 

conditions; with sufferers having a significantly impaired quality of life.2 3,4 Up to 16% 

of the population suffer from the condition in the United States.3 In the Asia-Pacific and 

Europe prevalence is lower with only 1% suffering from the disease in a nationwide 

survey in Korea, and 10% in Australia and in 19 centres around Europe.5,6 
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1.2 Pathology of CRS 

CRS is considered a multifactorial inflammatory condition where intrinsic and extrinsic 

factors play a role in its initiation and manifestation. 

 

 

 

  

 

 

 

 

 

1.2.1 Extrinsic factors 

Tobacco 

Tobacco smoking, both active and passive has been clinically associated with CRS. 

Zhou et al reported the negative effect that smoking can have on mucociliary clearance. 

CRS 

Intrinsic factors Extrinsic factors 

Anatomy 

Genetics 

Allergy 

Asthma 

Immunity 

Tobacco 

Viruses 

Fungi  

Bacteria 

Figure 1.1 Pathology of CRS. Chronic rhinosinusitis is a multifactorial inflammatory 

condition which involves intrinsic factors such as anatomy, genetics, allergy, asthma and the 

immune system interplaying with extrinsic allergens and pathogens.  
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Although in a transient event cilia beat frequency is thought to be protective, the 

increased exposure of an irritant leading to increases in cilia beat frequency is thought 

to lead to a pro-inflammatory state. They observed that cilia beat frequency is increased 

both in smokers and non-smokers exposed to second-hand smoke when compared to 

non-smokers not exposed to smoke at all.7 Goblet cell hyperplasia is decreased in CRS 

patients’ sinonasal mucosa whereas squamous cell metaplasia is increased in patients 

exposed to tobacco smoke in CRSwNP patients.8 Olfactory function is also found to be 

adversely impaired with increased exposure to tobacco smoke further adding to the 

growing evidence of tobacco smoking’s negative effects on sinonasal mucosal 

functions.9 

Pathogens 

Viruses 

Patients presenting to the clinic with CRS often report that their symptoms developed 

after infection with a common cold.10 Although rhinovirus is linked to damage of the 

epithelial barrier, studies investigating the precise role in CRS haven’t yet been able to 

reach consensus in the part it plays either in the pathophysiology of CRS.11,12 

Fungi 

Fungi are thought to play a role in a small proportion of CRS patients (Cleland et al, 

Zhou et al, in press).  However, Ponikau’s group has advocated a greater role for fungi 

suggesting that they may play a role in the majority of CRS patients. In his study most 

patients with CRS had detectable fungal hyphae in the mucus that was obtained from 

their sinuses.13 However in their study fungus was found in nasal secretions regardless 

of whether the patient had CRS or was a healthy control.  Current thinking is that 

Aspergillus and Alternaria play the most important role in CRS especially in allergic 
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fungal sinusitis, which is associated with nasal polyps and double densities on CT scan.   

In immune compromised patients fungus can become invasive resulting in vasculitis, 

ischaemic necrosis and life-threatening disease.14 

Bacteria 

Bacterial colonisation in the sinonasal cavity is common. Commensal bacteria found in 

control samples include coagulase negative Staphylococcus, corynebacterium sp. and 

S.aureus.15 Cultures in CRS report a predominance of Heamophilus influenzae, 

Streptococcus pneumoniae and Moraxella catarrhalis in the absence of antibiotics, 

whereas other studies report a predominance of S. aureus and P. aeruginosa.16 Since 

the yield of anaerobic bacterial cultures in CRS has been quite variable, non-culture 

dependent techniques such as pyrosequencing are now being used to study the bacterial 

abundance in health and disease.17 

Bacterial biofilms 

Biofilms are made up of a polymeric extracellular matrix encasing communities of 

bacteria and are one of the main survival techniques utilized by bacteria to protect them 

from environmental stress.18 Bacteria living in biofilms are also known to have 

enhanced resistance to antibiotics compared to their planktonic counterparts.19 In CRS, 

the presence of biofilms has been linked to more severe disease pathology.20 

Interestingly, patients with biofilms not only have a more severe disease phenotype 

preoperatively but also have worse outcomes postoperatively, reflecting the importance 

of biofilms in sinus disease.21 

Superantigens 

Viruses, fungi and bacteria all have a role in the superantigen hypothesis; the peptides 

they contain on their surface as well as excrete are able to activate and induce a large 
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proportion of T lymphocytes. S.aureus enterotoxins have been shown to be a 

pathogenic factor in CRS.22 These enterotoxins are able to induce an inflammatory 

response characterised by potent Th2 type inflammation and expansion of polyclonal 

IgE formation.23 

1.2.2 Intrinsic factors 

Anatomy 

Half of all patients diagnosed with CRS have two or more anatomic variations, whereas 

a third have a single anatomic variation.24 A deviated nasal septum is most common 

amongst disease sufferers, followed by unilateral concha bullosa and a bent middle 

turbinate.25 These anatomic variations can contribute to the blockage of the osteomeatal 

units, impaired drainage and ventilation pathways of the sinuses and can inevitably 

increase the risk of sinus mucosal disease.26 

Mucociliary clearance 

The mucociliary system responsible for mucus movement across the beating cilia is an 

integral part of the host’s mechanical defence mechanism. It is believed that when 

ciliary function is impaired, respiratory secretions stagnate resulting in the ineffective 

clearance of pathogens. Consequentially in the paranasal sinuses, this stagnation may 

lead to inflammation that ultimately develops into a chronic inflammatory state, which 

can exist both with and without the presence of an active infection.27 

Genetics 

Genetic susceptibility is thought to play a role in CRS. There is evidence for family 

groups that have an abnormally high prevalence of CRS.28 In addition patients with 

CRS are more likely to report a family history of CRS compared to those without 

CRS.6,29 The cystic fibrosis transmembrane regulator (CFTR) gene, which encodes a 
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chloride channel and regulatory protein in cystic fibrosis sufferers, has also been found 

mutated in patients with CRS and thought to be associated with the development of 

CRS.30 Human Leukocyte Antigen (HLA) genes that function in antigen presentation 

by B cells, dendritic cells and macrophages have had alleles associated with disease in 

CRS.31 Although other studies have looked at genetic variations in genes thought to 

play a role in the innate and adaptive immunity in CRS such as a single-nucleotide 

polymorphisms in pattern recognition taste receptors; there are very few and the results 

haven’t yet been replicated.32,33 

There is, however, an abundance of studies looking at gene expression differences 

between CRS with and without nasal polyps.34 The majority of these have focused on 

the adaptive immune response, especially the genes involved in the T cell response. In 

CRS with polyps, increases in messenger RNA expression for genes linked to the Th2 

type inflammation and the eosinophil recruitment pathway have been described as key 

players in the disease.35,36 Innate immune responses have also been a focus with 

Jardeleza et al reporting an increase in genes regulating the nitric oxide pathway in 

polyp patients.37 NOD-like receptor mRNA, responsible for the response to microbial 

and host-derived danger signals, has also been found to be higher in nasal polyps 

compared to the nasal mucosa.38  Toll-like receptor molecule mRNA levels have been 

reported down-regulated in patients with polyps, resulting in the reduced ability of the 

host to sense danger signals from foreign antigens. This dysregulation of receptor 

signalling indicates a genetic link to an impaired innate immune pathway in CRS.39 

Immune function 

Abnormalities in immune function may play a profound role in CRS, with initial studies 

finding that the disease is prevalent in individuals with human immunodeficiency 

virus.40  It is also found in people with common variable immunodeficiency disorder 



7 
  

and has been thought to play an important role in its aetiology.41 This coupled with 

abnormal T cell function testing and low IgA in some patients accounts for the 

immunocompromised state in CRS.42 

Allergy 

Although there are numerous studies reporting the involvement of allergy in CRS the 

results are varied with some studies claiming allergy as an important factor and 

potentially even a subtype of CRS whereas others claim it to be unrelated to the disease 

process.43,44 Currently, the term allergy is being used based on a clinical history of 

reactions to any environmental agents as well as rhinoconjunctivitis, drug 

hypersensitivity, and food allergy.45 The term is used alongside with atopy, defined as 

skin prick test and/or specific IgE positivity to at least one common aeroallergen. 

Allergic rhinitis is defined as a symptomatic presentation of allergy defined by 

sneezing, runny/itchy/blocked nose and itchy eyes when exposed to an allergen.45,46 The 

lack of a common definition of allergy at least in part results in the varied reports of its 

importance in CRS. 

Asthma 

Asthma has been associated with upper airway diseases since the 1990’s.47 It is thought 

to be present in at least half the diagnosed CRS population and histopathologically 

appears to be quite a similar disease process.48,49 Eosinophilic inflammation, basement 

thickening and the erosion of the epithelium that cause prominent damage to the 

epithelial layer are similar characteristics of the two diseases that are absent in healthy 

controls.49 Most recently, in a cross-sectional survey, The Korean National Health and 

Nutrition Examination Survey listed asthma as the only significant associated risk 

factor in nasal polyposis.43 Rhinosinusitis is more common in patients with severe 

steroid dependent asthma compared to those with mild to moderate asthma, 84% of 
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patients with severe asthma have abnormal CT scans. 50,51 Interestingly, endoscopic 

sinus surgery for the alleviation of symptoms of CRS has been shown to improve 

asthma based on both a quality of life questionnaire and an asthma control test.52 

 

      

 

Figure 1.2. Computed tomography of healthy and diseased sinus. Computed tomography 

showing an asymptotic patient with no mucosal thickening of the sinuses (A) and a patient with 

mucosal thickening of ethmoid and maxillary sinuses (B). 

 

1.2.3 Sinonasal Polyps 

CRS is divided into two disease phenotypes based on the presence or absence of nasal 

polyps. According to the current European position paper (EPOS)54 on CRS, nasal 

polyps should be visualised endoscopically, arising bilaterally from the middle meatus 

into the nasal cavity, allowing the classification of CRS patients into CRS with nasal 

polyps (CRSwNP) and CRS without nasal polyps (CRSsNP).53 Nasal polyps are grape-

like structures which are composed of edema, inflammatory cells, connective tissue, 

mucous glands and capillaries encased in pseudostratified epithelium.54 In western 

A B 
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countries, CRSwNP is thought to differ from CRSsNP by having a more eosinophilic 

Th2 type disease as opposed to Asian CRSwNP counterparts that have more of a 

neutrophilic inflammatory infiltrate.55,56 

   

 

 

 

 

 

The current medical practice involves antibiotics, systemic and topical steroids as the 

appropriate treatment in the management of CRS.1  Topically administered 

glucocorticoids have been studied immensely and a pooled meta-analysis of eight 

studies comparing intranasal corticosteroids to placebo demonstrated significant benefit 

in terms of symptom scores for the topical steroid group.36 Maximum medical therapy 

often includes a 10-day course of antibiotics, bidaily topical corticosteroids as well as a 

three-week tapering dose of systemic corticosteroids. Patients that fail maximal medical 

therapy have the option of undergoing endoscopic sinus surgery if symptoms persist. 

Figure 1.3. Sinonasal polyps. CRS is divided into two disease phenotypes based on the 

absence (A) of nasal polyps or presence of nasal polyps visualised bilaterally in the middle 

meatus (B). 

A B 
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Surgery allows for the removal of polyps, polypoid mucosa and diseased tissue with 

opening of the sinus drainage pathways and an improvement in nasal and sinus 

aeration.1 

1.2 Innate Immune System 

1.2.1 Overview 

The innate immune system is the body’s first line of defence against inhaled irritants, 

allergens and commensal organisms. The sinonasal epithelium plays a major role in this 

defence by not only providing a physical barrier to these foreign particles but also by 

being able to sense danger signals and coordinate an appropriate immune response.  The 

cells that lie within the epithelium and subepithelial layers, as well as the vast array of 

protein receptors they express and cytokines they are able to release, are crucial in the 

immune response. In a healthy state the epithelium surveys danger and battles foreign 

antigens and danger signals by releasing cytokines and chemokines which are able to 

activate and recruit immune cells to the site of tissue damage. In CRS we see 

considerable differences in the different components that make up this innate response 

leading to the hypothesis that the innate immune system is deregulated in CRS patients 

and accounts at least in part to the disease process by supporting the ongoing 

inflammation essential to the disease process.57 

1.2.2 Sinonasal Epithelium 

The sinonasal epithelium consists of ciliated pseudostratified columnar and cuboidal 

cells scattered with goblet cells.58 The cells are held together by tight junctions and rest 

on a basement membrane consisting of collagen.  The intercellular junctional 

complexes composed of tight junctions, adherence junctions and desmosomes maintain 
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the structural cohesive integrity of the epithelial layer.59 In contrast, gap junctions allow 

for communication between cells and propagate signals across the epithelial surface.60 

 

 

Figure 1.4. Sinonasal epithelium. Ciliated pseudostratified columnar and cuboidal epithelial 

cells scattered with goblet cells resting on a collagen basement membrane.  

 

1.2.3 Mucociliary system 

Mucus is produced predominantly by the mucous glands present in the submucosa and 

to a lesser extent by goblet cells. It covers the sinonasal epithelium assisting the 

mucociliary function of the innate immune system by trapping foreign particles. 

Ciliated columnar cells contribute directly to the mucociliary function. They trap 

inhaled agents in the mucus and then propel the trapped particles to the pharynx where 

it is swallowed and enters the stomach in order to be further degraded by gastric acidity 

and gastric enzymes.61 The mucociliary transport system is impaired in patients with 
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CRS. This may be due in part of the increase seen in mucus viscosity following the 

release of mediators of inflammation together with the altered function of the periciliary 

stratum, which in turn slows down the mucociliary transport wave as detected by 

experimental charcoal powder.62 Recently studies of the epithelium have found that 

pendrin, an epithelial anion transporter protein expressed by surface epithelial cells is 

increased in CRSwNP and correlated with the mucus component protein Muc5AC. This 

indicates that pendrin might modulate the mucus production in these patients.63 

1.2.4 Pattern Recognition Receptors 

Germline-encoded pattern recognition receptors (PRRs) are responsible for the 

recognition of danger and damage signals.64 They are able to recognise highly 

conserved microbial molecular structures termed pathogen-associated molecular 

patterns (PAMPS) and danger associated molecular patterns (DAMPS) released during 

host tissue injury and death. Their activation leads to unique signalling pathways that 

lead to the transcription of genes that regulate inflammation as well as more specific 

immune responses, activating arms of the adaptive immune system. 65 

Toll-Like Receptors 

Toll-like receptors (TLR) are a group of highly conserved PRRs found on epithelial, 

fibroblast, endothelial and innate and adaptive immune cells such as dendritic cells and 

macrophages, B-cells and T-cells.66,67 They are a type I transmembrane domain 

glycoprotein comprised of an amino (N) terminal ectodomain that contains leucine-rich 

repeats that mediate ligand recognition, a single transmembrane spanning domain that 

determines cellular localisation and a carboxyl-terminal globular cytoplasmic 

Toll/interleukin-1 (IL-1) receptor (TIR) domain that mediates downstream signalling.67  

10 TLRs (TLR1-10) have been identified in humans.68 Of those TLR2, TLR3, TLR4 
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and TLR9 have been shown to be expressed on airway mucosa and may play a 

contributing role to the development of CRS.1 

TLR2 expression is found to be higher in CRS patients compared to controls. It is also 

relatively higher in CRS patients with biofilms compared to those without, which is not 

surprising considering this TLR is essential in detecting bacterial and fungal wall 

components.69 In addition, TLR2 is found on dendritic cells, T cells and B cells and it 

combines with TLR1 or TLR6 in order to form TLR1/2 and TLR6/2 heterodimers. 

Activation of these receptors results in signalling, through the myeloid differentiation 

primary response gene 88 (MyD88) dependent pathway, activating the transcription of 

Nuclear Factor Kappa B  (NF-kB).70  The outcome of this activation is a multitude of 

downstream effects. In a mouse model of asthma, intranasal TLR2 activation has been 

shown to promote the expansion of allergen-specific regulatory T cells.71 In TLR2-/- 

animals, the intraepithelial cell tight junctions are compromised leading to an increase 

in mucosal inflammation.70 TLR2 expression and activation is also correlated with TGF-

β1 and collagen deposition in CRS and gives further insight into the importance of TLR2 

in the regulation of mucosal immunity.72  

TLR3 is located on the intracellular or cell surface of fibroblasts and epithelial cells as 

well as in the endosomes of myeloid dendritic cells and macrophages.73 It recognises 

double stranded ribonucleic acid (RNA) (dsRNA) from viruses as well as RNA released 

from damaged cells.74 Activation of TLR3 can lead to a response in both the MyD88-

dependent and MyD88-independent pathway. In this pathway, TLR3 is able to directly 

lead to the production of type I interferons and inflammatory cytokines.75 

In mice, TLR3 has been shown to be upregulated following influenza exposure. When 

challenged with influenza TLR3-/- mice have significantly reduced inflammatory 
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mediators including RANTES, interleukins as well as a lower number of CD8+ 

lymphocytes in the bronchioalveolar airspace.76 Although most of the focus of TLR3 

has been on viral dsRNA, airborne fungi have also been shown to induce TLR3 

expression on nasal epithelial cells.77 Recently data has suggested an opposing effect of 

ds DNA to TLR3; Alternaria sp. were found to inhibit the production of Interferon-B 

by suppressing TLR3 expression.78 Allergen exposure in symptomatic allergic rhinitis 

also down-regulates TLR3 expression. Together this data indicates that TLR3 is 

involved in both protective immunity and pathogenic inflammatory tissue damage.79 

TLR4, a cell surface TLR, was the first mammalian TLR identified. It is present on 

monocytes, macrophages, neutrophils, immature dendritic cells and B cells. It was 

initially found to be responsible for the recognition of lipopolysaccharide (LPS), a 

component of the gram-negative bacterial outer membrane.80 TLR4 associates with 

CD14, an anchored membrane protein which is necessary for LPS recognition to form a 

functional LPS receptor complex. The TLR4/LPS complex forms a heterodimer with 

myeloid differentiation factor 2 (MD-2) in order to recognise a common pattern in 

structurally diverse LPS molecules.81 The sensing of LPS by the heterodimer leads to 

the activation of the MyD88-dependant pathway activating (NfK-B) resulting in the 

immense production of inflammatory cytokines and chemokines.82 TLR4 is also 

activated by viral and fungal proteins as well as endogenous ligands such as necrotic 

cells, heat shock proteins and fibrinogen.83,84 Responding to these ligands can result in 

activation of both the MyD88-dependent pathway and MyD88-independent pathway. 

The MyD88-independent pathway needs TRIF-related adaptor molecule (TRAM) for the 

activation of TIR domain-containing adaptor inducing interferon-B (TRIF) proteins in order 

to result in the production of interferons.82 
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TLRs were first studied in CRS in 2005 with the finding by Dong et al that TLR4 

mRNA was expressed in nasal epithelium as well as overexpressed in the epithelium of 

CRS compared to controls.39 Since then other studies have looked at TLR4 proteins 

confirming the increase found in CRS compared to control patients.85,86 TLR4 increases 

in the nasal epithelium could result in an increase in inflammation seen in CRS patients 

and a recent study has also addressed that the increase in TLR4 plays an important role 

in the remodelling of CRSsNP. The increase in TLR4 was correlated with upregulated 

TGF-B1 production and collagen deposition as well as neutrophil infiltration and a T 

helper 1 (Th1) skewed inflammatory response.87 

TLR9 is expressed by numerous immune cells including B cells, NK cells and 

plasmacytoid dendritic cells and responds to both bacterial and viral DNA.88-90 This 

results in the activation of the MyD88 downstream signalling cascade and potently 

induces inflammatory cytokines such as interleukin 12 (IL-12), tumour necrosis factor α 

(TNF-α) and antiviral cytokine interferon α (INF-α).91 In the respiratory system TLR9 

is thought to reduce T helper 2 (Th2) dependent inflammation by the induction of an 

increased Th1 response.92 Apart from its role in host defence against invading 

pathogens, TLR9 is also involved in the pathogenesis of a range of autoimmune 

disorders.68 In systemic lupus erythematosus (SLE) is has been well documented that 

unlike other most other TLRs playing a mostly detrimental role in disease, TLR9 has a 

protective effect with the absence of TLR9 leading to more a more extreme disease 

phenotype.93 This is also apparent in CRS where functional TLR9 protein has been 

found decreased in CRSwNP compared to non-diseased controls.94 

NOD-like Receptors 

NOD-like receptors (NLR) contain a central nucleotide binding and oligomerization 

domain and are a group of highly conserved cytosolic receptors.95 As an integral part of 
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the innate immune system, they function by sensing DAMPS. In microbes, they 

recognise viral RNA, fungal hyphae and peptidoglycan. In the environment, they 

recognise asbestos, silica and alloy particles as well as ultraviolet radiation. They also 

recognise antigens from self, including adenosine triphosphates (ATPs), cholesterol 

crystals and uric acid.96 NLRs are present on macrophages, monocytes, dendritic cells, 

neutrophils and epithelial cells.97,98 In humans, 22 NLR proteins have been identified. 

Their activation leads to the induction of an immune cascade resulting in distinct 

functions that can be divided into four groups; inflammasome formation, signal 

transduction, transcription activation and autophagy.99 

Inflammasomes are multimolecular protein complexes that assemble in the cytosol after 

immune activation. NLRs form inflammasomes once activated and result in the 

activation of capsase-1 activity. The caspase activation implements the activation of an 

array of downstream effectors, each of which lead to inflammation or cell death.100 The 

role of inflammasomes in chronic inflammation has been a research interest in recent 

years.  Genome-wide studies have found associations with single nucleotide 

polymorphisms within inflammasomes to be associated with Crohn’s disease.101 

Deficiencies in inflammasomes have also been linked with increased susceptibility to 

colitis suggesting an important role for inflammasomes in mucosal diseases.102 The 

involvement of inflammasomes has been documented in CRS, with both the 

inflammasome and signalling pathways being upregulated in CRS patients with S. 

aureus biofilms, implying that S. aureus biofilms and subsequent inflammasome 

activation play a role in triggering an inflammatory response in these patients.103 

CD180 

CD180, also called radioprotective 105 (RP105) is a TLR-like receptor that has a 

similar structure to other TLRs, consisting of conserved leucine-rich repeat domains.104 
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It is the most recent receptor to be identified and as yet has no natural known ligand. It 

is found on B cells, dendritic cells and macrophages. It acts similarly to TLR4 in its 

dependency on another molecule for its expression and signalling, MD1. Just like the 

TLR4/MD2 complex, MD1 is associated with the extracellular domain of CD180.105 

Interestingly, is has recently been discovered that CD180 is a physiological regulator of 

TLR4 signalling. The direct interaction of the CD180/MD1 to the TLR4/MD2 receptor 

complex inhibits LPS binding.106 It is thus thought to be important in preventing over 

amplification of the TLR4 response which can lead to endotoxin shock.107 

CD180 has been studied mostly in autoimmune diseases. CD180 negative B cells have 

been shown to be increased in the peripheral blood of SLE patients and this correlates 

with SLE disease activity and Immunoglulin (Ig)G production.108 Interestingly, CD180 

antigen binding results in receptor internalisation and these CD180 negative B cells 

produce IgM and IgG antibodies suggesting that CD180 negative B cells represent 

pathogenic and possibly autoreactive B cell subsets.109 These CD180 negative B cells 

are also significantly increased and suggested hallmarks of other autoimmune diseases 

including Sjögren syndrome and dermatomyositis. 110,111 
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1.2.5 Complement 

The complement system is a group of 30 membrane-bound and circulating proteins that 

play a major role in the innate immune systems host defence.112 The proteins are 

activated in a cascade-like fashion through three different pathways; the classical 

pathway, the lectin pathway and the alternative pathway.  The classical pathway is 

initiated by IgM or IgG and referred to as the antibody dependent pathway.113 The 

lectin pathway is initiated by specific C-type lectins which recognise patterns found in 

the outer layers of yeast and fungal microorganisms. The alternative pathway resembles 

the innate immune system and is activated by large complex polysaccharides such as 

those in microbial walls.114 

 

Figure 1.5. TLR function in CRS. TLR2 responds to lipoteichoic acid, TLR3 to viral DNA, 

TLR4 with co-accessory molecule MD2 to LPS, TLR9 to bacterial and viral DNA and TLR-

like receptor CD180 forms with co-accessory molecule MD1.  
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Together these pathways are responsible for the body’s ability to fight infection by 

providing an immediate response against invading pathogens. This causes the lysis of 

pathogens both by antibody-independent and dependent mechanisms, chemotaxis, 

phagocytosis and cell adhesion.115 Complement is also involved in the bridging of 

innate and adaptive immunity by promoting B cell activation and the clearance of 

apoptotic and necrotic cells.116 

Complement proteins have also been shown to be involved in disease processes. In 

asthma, they are responsible for inflammatory cell infiltration, mucus secretion and 

increases in vascular permeability.117 Complement has been made known to account for 

autoimmune disease causing inflammation and tissue damage particularly in the case of 

SLE.118 Deficiencies in complement have also been shown to account for microbial 

reinfections with S. aureus, a prominent microbe in CRS with the bacterial proteins 

being able to block complement receptors and in turn result in the evasion of 

phagocytosis.119 

1.3 Cells of the Innate Immne System 

1.3.1 Dendritic cells 

Dendritic cells (DCs) are highly specialised antigen-presenting cells (APC) that have a 

key role in the immune system due to their ability to bridge both the innate and adaptive 

immune arms. They do this by capturing antigens in response to both pathogen or self 

danger signals via PAMPS and DAMPS that are recognised by the various PRR they 

contain on their surface.120 Upon sensing these pathogens the dendritic cell engulfs 

particles, slowly degrades the matter and in turn matures. This results in the 

upregulation of co-stimulatory and MHC I and II molecules allowing the antigen to be 

presented to naïve T cells causing their activation and proliferation.121 DCs are present 
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in parts of the body that are exposed to the environment as well as organ entry points. 

They are found in large quantities in lymphoid tissues (lymph nodes, tonsils, spleen, 

thymus, bone marrow and Peyer’s patches) but may also be found in small amounts in 

non-lymphoid organs and make up 0.0 to 0.59% of all leukocytes in peripheral 

blood.122,123 Phenotypically they can be described by the expression of integrins CD11c, 

CD103 and CD24.124 These classical DCs can further be subcategorized into three types 

based on both their function and phenotype; plasmacytoid DC (pDC) and two types of 

myeloid DCs, mDC1, and mDC2. 

pDCs express the key marker CD303, a type 2 transmembrane lectin receptor that is 

involved in cell adhesion, capture, and processing of antigens.125 The antigens that 

stimulate pDCs include viruses such as herpes simplex virus, human immunodeficiency 

virus type 1 and influenza virus through TLR7 and TLR9. The cells are also stimulated 

by bacteria such as S. aureus and microbial DNA.126 In response to these stimuli 

activated pDCs produce a range of cytokines and chemokines including INF-α/β, TNF-

α, IL-1 and IL-6. This attracts and activates Th1 polarized cells and NK cells. It also 

induces B cell activation and antibody production, further instigating a role for pDCs in 

the activation of both host innate and adaptive immune systems.127,128 Considerable 

amounts of pDCs have been detected in the nasal epithelium. Hartmann et al. have been 

able to show both pDCs and SDF-1, the pDC major chemoattractant, to be expressed in 

the nasal epithelium. pDC numbers were shown to be further increased in patients that 

had recently had an upper respiratory tract infection. The pDC numbers were lower in 

patients with allergies compared to healthy individuals and absent in patients 

undergoing treatment with glucocorticoids.129 In CRS, numbers of pDC cells are 

significantly increased in nasal polyp tissue compared to healthy non-inflamed mucosa. 
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Interestingly, in the sinonasal epithelium, patients with polyps and allergy had lower 

pDC numbers than those with polyps alone.130 

mDC1 and mDC2 can be differentiated by the expression of c-type lectins BDCA-1 and 

BDCA-3 respectively.131 mDCs express TLR1, TLR2, TLR4, TLR5 and TLR6 

suggesting that they are more responsive to bacterial antigens.132 mDC1 are found more 

frequently than mDC2 in tissues. They produce high levels of pro- and anti- 

inflammatory cytokines such as interleukins IL-10, IL-12 and IL-23 causing the 

activation of innate and adaptive immune cells, pDCs, cytotoxic T cells as well as Th1 

cells.133,134 mDC2 in contrast mostly produce interferons and high levels of antiviral 

cytokines resulting in the activation of Th2 type immunity.135,136 Kirsche et al have 

findings to support this theory in CRS. They found a Th2 skew in CRSwNP patients 

based on a decreased Th1/Th2 ratio in CRSwNP compared to CRSsNP and controls and 

correlated this to a lower mDC1/pDC ratio in these patients.137  Other studies, however, 

found an increase in mDCs in CRSwNP and have attributed this as one of the many 

causes of inflammation of the disease.130,138 

1.3.2 Macrophages 

Macrophages play an important role in maintaining tissue homeostasis. They are one of 

the major effectors of the innate immune system and are located in all tissues, have 

great plasticity as well as anatomical and functional diversity.139 They were initially 

classified as making up part of the mononuclear phagocyte system, which consisted of a 

family of cells comprising bone marrow progenitors, blood monocytes, and 

tissue macrophages.140 Monocytes and macrophages express CD14 on their surface, a 

specific pattern recognition receptor.141 Macrophages can be differentiated from 

monocytes based on their expression of 25f9, a marker of macrophage maturation.142 It 

was for a long time thought that macrophages residing in tissue were relying on bone 
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marrow-derived blood monocytes for their replenishment. However, in recent years, 

evidence suggests that tissue macrophages are from two origins, one is established 

prenatally from the primitive yolk sac and the other monocyte-derived.143 Embryonic 

macrophages are derived from the mesoderm and initially responsible for the 

homeostatic functions associated with developmental tissue remodeling and 

vascularisation.144,145 These tissue macrophages are found in cellular compartments 

within the tissue they reside in and are thought to then be self-sufficient and 

independent from further hematopoietic input.146,147 

Alveolar macrophages are of specific interest because much like in the sinonasal 

mucosa these macrophages reside on the epithelial surface and are more in contact with 

the direct environment than macrophages in other tissues. Embryonic macrophages 

appear to colonise the lung after birth and differentiate into alveolar macrophages and 

live independently of blood monocyte input. If these resident tissue macrophages are 

depleted, a second type of macrophage can develop in adulthood from tissue infiltrating 

monocytes.148 This pathway is generally considered more pathological but also has 

homeostatic and inflammatory functions.149 

Macrophages, like the name suggests, function in phagocytosing apoptotic cells and 

cellular debris both in developmental stages and in adult life. They also have an 

immunological role and the ability to adapt to their environment. This has led to their 

further classification of M1 classically activated and M2 alternatively activated 

macrophages.150,151 Mimicking T cell nomenclature, the pro-inflammatory M1 

macrophages were labeled because of their differentiation in response to the Th1-

derived IFN-γ in cell-mediated immunity to intracellular infection. M2 macrophages, 

considered anti-inflammatory, differentiate mainly in response to Th2 cytokines such as 

IL-4 in response to extracellular parasitic infection.151 
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In CRS, macrophages came to light by a study done by Shun et al looking at local 

chemokines that may contribute to disease pathogenesis. They suggest that nasal polyp 

fibroblasts may contribute to nasal polyp development by the production of CCL2 to 

promote macrophage recruitment.152 In the gut mucosa, resident macrophages 

stimulated by their PRR secrete cytokines and show strong bactericidal activity.153 In 

inflammatory bowel disease (IBD), CD14+ macrophages have recently been implicated 

in the contribution to disrupting the epithelial barrier through the deregulation of tight 

junction proteins as well as the induction of epithelial cell apoptosis.154 

Interestingly, the same plasticity that defines a macrophages function, the ability to 

change phenotype according to their tissue environment, is what has proven 

troublesome in their characterisation. Most studies have been carried out in mice and 

there is a great divergence in cellular markers between not only animal models but also 

diseases and tissue states. In the intestinal mucosa for instance, macrophages in the 

large and small intestine differ in phenotype, as they do from healthy bowels and those 

with diseases such as ulcerative colitis and Crohn disease. Due to these difficulties, 

research on macrophages is still scarce, especially in diseases such as chronic 

rhinosinusitis.155,156 

1.3.3 Eosinophils 

Eosinophils are circulating leukocytes distinguished from their bone marrow derived 

counterparts by the cytoplasmic specific granules they contain.157   From the bone 

marrow, eosinophils are released and continually replenished into the blood stream 

making up 1-3% of the cells in the periphery.158 Although they express a multitude of 

surface receptors common to other innate cells, eosinophils are also host to the unique 

surface receptors IL-5Ra, CCR3 and Siglec proteins.159 
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The IL-5Ra receptor binds to T cell cytokine IL-5 which has the most prevalent impact 

in the production and regulation of eosinophils. IL-5 production is attributed to Th2 

cells as well as the epithelium which is capable of secreting the cytokines TSLP and 

IL25. These cytokines activate Th2 cells and lead to the production of IL-5, resulting in 

the promotion of eosinophilia. The resulting IL-5 signalling is responsible for the 

generation of eosinophils from progenitor cells, eosinophil activation and survival. 

Interestingly, IL5 also promotes the further release of IL-5 from eosinophils, resulting 

in a positive feedback loop. IL-5 is mandatory in the chemotaxis of eosinophils from 

the blood to tissue and is also responsible for the recruitment of eosinophils into tissues 

in inflammatory diseases.160-162 

Once stimulated, recruited eosinophils elicit their bactericidal response by the 

extracellular release of their cytoplasmic granules. This secretory pathway occurs by 

picmeal degranulation; the vesicular transport of small particles that are then released to 

the cells surface. This resulting response to cytokines such as INFγ leads to the 

development of these granule protein vesicles while leaving eosinophils viable and able 

to respond to further stimuli.163 Four of the major eosinophil granule proteins released 

include eosinophil cationic protein (ECP), major basic proteins (MBP1 and MBP2), 

eosinophil-derived neurotoxin, and eosinophil peroxidase (EPO). These proteins 

activate other immune cells and are major contributors to the toxicity of 

microorganisms through the generation of reactive oxidants as well as direct killing of 

bacteria.164 

Eosinophils also play an essential role in the pathology of disease, especially chronic 

inflammation in diseases such as asthma, eosinophilic oesophagitis as well as CRS. 

Allergic asthma has been extensively studied both in humans and mice models and it 

has been shown that allergic asthma is associated with eosinophilic inflammation in the 
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airways. 165 The proinflammatory mediators derived by eosinophils are major 

contributors to airway epithelial damage, hyperresponsiveness, mucus secretion and 

airway remodelling, hallmarks of chronic respiratory and sinonasal inflammation. In 

allergy the antigens are responsible for the cascade of signalling which marks the Th2 

cell recruitment and cytokine production resulting in the attraction of eosinophils to the 

airways.166 

It has long been thought that eosinophils are central in the inflammation seen in the 

sinonasal mucosa.167 Polyp development has been of particular interest with many 

studies finding increased numbers of eosinophils in CRSwNP patients compared to 

those without any polypoid change.168,169 Polyps from Caucasian cohorts have shown to 

be largely eosinophilic in nature compared to Asian counterparts that are mostly 

neutrophilic.170 CRSsNP on the other hand has remained for the most part absent of 

eosinophil infiltration seen in CRSwNP. Interestingly although not common, patients 

with CRSsNP and an abundance of eosinophils have been shown to be highly 

unresponsive to medical and surgical interventions.171 

Evidence that eosinophils play a role in the ongoing inflammation in CRS is further 

described by studies showing that RANTES, a key attractant cytokine for T cells and 

monocytes is found in all nasal polyps predominantly in eosinophils and epithelial cells 

and at a forty times higher abundance than in control tissues.172,173 The increase of IL-5 

in nasal polyps as well as chemokines and eotaxins that are able to recruit eosinophils 

directly even in the absence of IL-5 to the site of inflammation are also increased in 

CRSwNP patients further adding to the pathophysiology of the disease. 54,174 

Eosinophilia is so prevalent in CRS that CRSwNP patients that present with thick 

mucus production, loss of smell, recurrent bacterial infections and long term 
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inflammation that are found to have an abundance of eosinophils in their polyps are 

further subclassified into Eosinophilic Chronis Rhinosinusitis (ECRS) and non-

ECRS.175 The majority of these patients are Caucasian patients that have recurrence 

after surgery and are most difficult to treat both medically and surgically.176 

1.3.4 Mast cells 

Mast cells originate from haematopoietic cells in the bone marrow as mast cell 

precursors. They travel through the circulatory system by transendothelial migration 

into tissues and finally mature in the tissue microenvironment in which they reside.177 

They are found in most vascularised tissue and are most abundant at body surfaces that 

interact with the environment such as mucosal tissue in the respiratory system, the gut 

as well as the skin.178 Mast cells express a wide variety of cell surface receptors 

including immunoglobulin Fc recepts required for defence through antigens of acquired 

immunity; complement receptors, NLRs and TLRs for defence through antigens of 

innate immunity. They are differentiated from other immune cells such as the 

phenotypically similar basophil based on the expression of c-kit stem cell factor 

CD117.179 

Upon activation, cross-linking of B-cell derived IgE to high-affinity IgE receptors leads 

to the release of an array of potent mediators including the degranulation of preformed 

mediators stored in the cell’s cytoplasmic granules.180 These include vasoactive amines, 

histamine, proteases, proteoglycans as well as cytokines and growth factors. This 

reactivity to antigens identifies mast cells as key effector cells or in IgE-mediated 

hypersensitivity and important in allergic diseases.181 Asthma is characterised by 

ongoing mast cell activation. Gene clustering studies show increases of expression of 

mast cell proteases in airway epithelial brushings in asthmatic subjects.182 Elevated 

levels of mast cell secreted proteins tryptase and prostaglandin D2 are elevated in 



27 
 

bronchoalveolar lavage fluid of asthmatics compared to those without asthma.183 

Ultrastructural analysis of mast cells in lung tissue also shows that asthmatics have 

more degranulation than people without atopy and asthma184. 

Interestingly, mast cells have a longer lifespan than the average immune cell in tissues 

and hold onto their function by being able to replenish the contents of their secreted 

granules allowing them to be activated repeatedly.185 These tissue-resident mast cells 

are also able to expand at sites of inflammation and are responsible for the maintenance 

of epithelial barriers, regulating cell turnover, permeability, and progenitor 

recruitment.186 In the digestive system, mast cells are thought to have both a pathogenic 

and a protective role. They produce immunosuppressive cytokines such as TNF-a and 

IL-10 which promote tolerance mediated by Treg cells.187 They are also able to produce 

cytokines that promote inflammation and inhibit tumor cell growth by releasing TGF-B 

and interleukins.188 In CRS, although mast cell numbers are unchanged between 

CRSwNP patients and healthy nasal mucosa, mast cell degranulation has been found 

elevated in CRSwNP compared to both matched inferior turbinate samples and ARS 

inferior turbinates. 189,190 This is confirmed by Patou et al. that reported enhanced mast 

cell mediators in CRSwNP compared to controls when tissue fragments are stimulated 

by anti-IgE on a human nasal challenge model.191 Whether the mast cell effectors play a 

protective role against pathogens or are contributing to the ongoing inflammatory state 

in CRSwNP still needs to be elucidated. 

1.3.5 Neutrophils 

Neutrophils are leukocytes with a polymorphic nucleus that have critical roles in innate 

immune defence. They are one of the most produced cells in the bone marrow and 

depend on the cytokine granulocyte colony stimulating factor (G-CSF) for their 

maturation.192 Circulating neutrophils are the first line of defence and not surprisingly 
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they are the most prominent circulating lymphocyte in humans.193 Neutrophils enter 

tissues in a process termed neutrophil recruitment which is made up of a cascade 

consisting of transmigration of the neutrophil into tissue.194 However, they have a short 

lifespan of up to five days after recruitment.195 Mature neutrophils exert their function 

by degranulation, respiratory burst and the generation of neutrophil extracellular traps 

(NETS).196,197 They protect the host from microbial pathogens and minimize side 

effects from apoptotic and injured cells. Interestingly, neutrophils are thought to be 

fairly unresponsive to single stimuli. The exposure to initial stimuli primes the cell 

allowing a rapid and maximum neutrophil activation such as radical oxygen generation 

and phagocytosis upon activation by a secondary stimulus.198-200 

Once activated neutrophils phagocytose particles, which are frequently opsonised by 

IgG at a rapid pace. This uptake marks in the fusion of the phagocytic vacuole with 

preformed granules within the cell to form the phagosome. This result in the concurrent 

increase in oxygen consumption associated with the ROS generated by the activation of 

NAPDH oxide which results in the killing of engulfed pathogens.201 Degranulation also 

occurs during pathogen engulfment or neutrophil activation via neutrophil-associated 

PAMPs, resulting in the release of extracellular vesicles containing proteinases and 

antimicrobial peptides.202 The discovery of NETS has paved the way for neutrophils to 

once again be in the research spotlight as the most recent area of current lymphoid 

research. 197 This method of host defence involves neutrophils extruding a meshwork of 

chromatin fibres containing granule-derived antimicrobial peptides and enzymes over 

pathogens resulting in neutrophil cell death and pathogen entrapment.203 Most recently 

neutrophils have also been implicated in the regulation of adaptive immunity. They 

have long been known to be capable of producing cytokines and play a role in T cell 

responses. Neutrophils have also been shown to produce BAFF and are able to 
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accelerate plasma cell generation and antigen-specific B-cell IgG and IgM 

production.204-206 

Neutrophils were first considered to have an important role in CRS after a study using 

IHC showing neutrophils to be activated in CRSwNP patients with cystic fibrosis 

compared to CRSwNP without cystic fibrosis.207 Van Zele et al. later showed that 

CRSwNP had an increased numbers of neutrophils as well as MPO, the most abundant 

neutrophil enzyme, compared to controls.55. On the contrary levels of MPO are lower in 

CRS with biofilm compared to CRS without biofilm suggesting the absence of 

neutrophils a detriment in CRS disease.208 This recruitment of neutrophils to mucosal 

sites is driven by IL-8, derived from nasal epithelial cells in response to PRR 

stimulation by antigens.209 Neutrophil accumulation in CRS depends on both ethnicity 

and the absence or presence of nasal polyps. Neutrophil infiltration is observed to be 

higher in CRSwNP than in CRSsNP, however, due to a higher eosinophilic/neutrophilic 

ratio in CRSwNP disease than CRSsNP, CRSsNP is termed the CRS subtype of 

neutrophilic nature.1,210  In studies of polyps from Chinese patients, neutrophilic and 

eosinophilic infiltration appears to be less than in Caucasian polyps, however, the ratio 

of eosinophilic/neutrophilic infiltration was markedly reduced in Chinese patients 

terming these ‘neutrophilic’ polyps.56,170 With neutrophils being able to play a role in 

the resolution of chronic inflammation as well as pathology in the inflammatory state 

their role in CRS is not yet clear. 

1.3.6 Innate Lymphoid Cells 

Innate lymphoid cells (ILCs) are the most recent group of innate cells to be identified. 

They comprise a host of subsets including cytotoxic NK cells, lymphoid tissue inducer 

cells (LTi) and more recent ILC1, ILC2 and ILC3.They are characterised by classical 

lymphoid morphology but lack the cell surface expression of surface molecules 
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stemming from the same lineage giving them lineage marker negative origin (Lin-) 

nomenclature. The non-cytotoxic ILC subsets release cytokines responsible for the 

initial immune regulation before an adaptive immune response can be mounted.  The 

different ILCs have been defined by Th cell nomenclature based on the differential 

requirements they have for transcription as well as the effector cytokines they release 

that lead to their distinct functions.211,212 

ILC1 cells were only definitively discovered and named in 2013213. They are called 

ILC1 due to having a cytokine expression profile similar to Th1 cells. Their 

transcription is controlled by transcription factor T-bet, and in response to IL-12, they 

produce INFgamma. They are able to be distinguished from NK cells as they lack the 

cytotoxic granules perforin and granzyme B and NK markers CD16 and CD94.213 The 

frequency of ILC1 is thought to be in low amounts in the steady state, however, in the 

same study that initially described them they were found at high frequencies in the 

inflamed mucosa of people with Crohn’s disease. ILC1 have also been implicated in 

pathogenic infections: an elevated population was found in patients with chronic 

hepatitis B along with the elevated ILC1 transcription factors and effector cytokine 

INFgamma and cytokine IL-12.214 

ILC2 cells are important mediators of allergic inflammation. Upon discovery, they were 

considered members of the Th17 family, IL-17 cytokine family that respond to IL-25 in 

a similar fashion to Th2 cells.215  We are now aware that ILC2 rely on GATA3 for their 

transcriptional regulation and that they are activated by IL-25, IL-33, and TSLP, the 

cytokines that are otherwise prominently produced by epithelial cells.216,217 ILC2 are 

defined as lineage negative cells that express various cell surface markers listed in  

Table 2.2.211 ILC2 are found at minute frequencies in the blood and are mostly 

abundant at mucosal barriers whereupon stimulation they rapidly expand producing vast 
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amounts of IL-5 and IL-13.218 Mjosberg et al. first studied them in humans in nasal 

polyps, the gut, and the lung. Since this initial discovery ILC2 have further been 

implicated in CRS with studies suggesting their enrichment in CRSwNP and CRS 

patients with allergy.44 This enrichment of ILC2 in CRSwNP has also been linked with 

Th2 cell amounts and high tissue and blood eosinophilia.219 In allergic rhinitis, ILC2 are 

increased in the periphery of patients with seasonal allergic rhinitis during pollen season 

as well as in patients with allergic rhinitis after cat allergen nasal challenge.220,221 

The ILC3 population consists of ILC3 and previously mentioned LTi cells that are 

present from embryogenesis and an essential inducer of the development of prenatal 

lymph nodes and peyer’s patches.222 The ILC3 are differentiated from other ILC based 

on their dependence on transcriptions factors RAR-related orphan receptor gamma t 

(Rorγt) and aryl hydrocarbon receptor (AHR).223 In the adult, the ILC3 are formed in 

the bone marrow and reside mostly in the mucosa.224  After activation mostly through 

epithelial-derived cytokines IL-23, ILC3 are a major source of IL-22 and IL-17225. In 

the mucosa of IBD patients, ILC3s have been shown to accumulate and promote tissue 

inflammation by the uncontrolled overproduction of IL17A and IL-22.226 Interestingly 

in other recent studies ILC3 have been implicated in being involved in shaping the 

commensal microbiota in the gut and preventing microbial dissemination that could 

drive an inflammatory response. 227,228 Although they are yet to be established in CRS, 

ILC3 are emerging as an important subset of inflammatory disease such as in the 

pathogenesis of psoriasis. Immunotyping of psoriasis patients has revealed that IL-17A 

and IL-22 producing ILC3 are found in greater numbers in both the skin and peripheral 

blood of these patients compared to healthy individuals and thought to contribute to the 

pathogenesis of this disease. 229 
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Figure 1.6. ILC function in mucosa homeostasis. ILC effector functions promote 

immunity at mucosal surfaces. ILC1 protect against viruses and intracellular bacteria by 

producing INFγ. ILC2 protect against helminthes by producing IL-4, IL-5, IL-9 and IL-13. 

ILC3 protect against extracellular bacteria by producing IL-17A and IL-22. Adapted from 

Artis et al. Nature, 2015.  

ILC2  ILC1  ILC3  
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1.4 Adaptive Immune System 

1.4.1 Overview 

The adaptive immune system’s main function is to provide defence against invading 

pathogens. The majority of responses are destructive and hence it is vital that the 

system is able to distinguish what is foreign to self. The adaptive immune response is 

mediated by lymphocytes with two main responses; antibody mediated by B cells and 

cell mediated by T cells, which will be discussed in detail in this section. 

1.4.2 B Cells 

B cells and the antibodies they produce are crucial in the adaptive immune response. B- 

lymphocytes arise haematopoetic precursor cells in the bone marrow. During their 

development, they are structured along the functional rearrangement process of 

immunoglobulin gene segments which ultimately enables them to give rise to a B cell 

repertoire that is responsive to more than 5 x 10^13 antigens.230,231 Once this 

rearrangement is complete B cells termed immature B cells migrate from the bone 

marrow to the spleen to differentiate into naïve, follicular or marginal zone B cells.232 

Naïve cells are characterised by the expression of the IgD protein on their surface and 

lack CD27, a member of the tumour necrosis factor superfamily and implicated in B 

cell activation. 233  These B cells are termed naïve because they are yet to encounter 

their antigen. Once antigen activation occurs, naïve B cells can develop into antibody-

secreting plasmablasts, plasma cells or memory B cells.234,235 

The initial and rapid B cell antibody response are dominated by plasmablasts located in 

peripheral immune organs. They undergo rapid clonal expansion which leads to the 

generation of large amounts of terminally differentiated short lived antibody producing 

plasmablast cells in the periphery.236 Combined with CD19+, plasmablasts express 
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memory antigen CD27 and CD38, a molecule involved in cell adhesion and signal 

transduction.237 They are identified as CD19+IgD-CD27+CD38high. Plasmablasts after 

antibody production are then able to survive longer and differentiate into long living 

plasma cells that lose the expression of CD19 but are identified based on their 

expression of CD38 and CD27.238,239 

Memory B cells classified as CD19+CD27+IgD-CD38- cells, are able to remember 

encounters with antigens. This allows them to respond to antigens at a faster rate and 

with a more robust antibody response than naïve B cells encountering an antigen for the 

first time.240 241  

 

 

 

Mature B cells can further be sub-classified based on their location into follicular B 

cells, marginal zone (MZ) B cells and B1 cells. Most recirculating B cells are homed to 

B-cell follicles located in lymphoid tissues adjacent to T cell follicles. They are present 

Naïve B cell 
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Figure 1 7. B cell maturation. Naïve B cells have left the bone marrow yet to encounter an 

antigen. Upon antigen encounter they can differentiate into short-lived antibody producing 

plasmablasts, long lived antibody producing plasma cells or memory B cells that are able to 

produce a more robust response upon encounter with the same antigen the naïve B cell was 

exposed to.  
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in the lymphoid follicles of the spleen and lymph nodes and are responsible for 

presenting antigens to activated T cells.242 Follicular B cells express monoreactive B 

cell receptors (BCR) or the IgD or IgM isotype composed of membrane 

immunoglobulin and heavy and light chain aminoacids.243. They participate in T cell 

dependent immune responses; activation of their receptors by antigens leads to the 

internalisation, processing and presentation of the antigen to T cells.243 They are also 

able to participate in T cell independent responses in times that they recirculate the bone 

marrow and respond to blood borne pathogens.244 MZ B cells are found in the marginal 

zones of the spleen, ready to screen pathogens and antigens found in blood. They 

express monoreactive BCRs as well as high levels of TLRs, providing a B cell link to 

the innate and adaptive immune systems.245 B1 cells are located in peritoneal and 

pleural cavities and at mucosal sites facilitating the screening of pathogens in tissues 

most susceptible to damage from the environment. They are the main producers of 

naturally occurring antibodies.246 

Aside from antibody production and antigen presentation, B cells are also capable of 

suppressor functions. Regulatory B cells (Bregs) carry out this suppressive function. 

Mizoguchi et al. initially discovered them in mouse models of disease as a small subset 

of B cells that are able to produce IL-10.247,248 Later, studies suggesting their presence 

in humans emerged where they were considered to limit inflammation. These CD19+ B 

cells have been found to have a high expression of glycoproteins CD24 and CD38 

functioning in cell adhesion and signal transduction.249,250 They use IL-10 or direct cell 

to cell contact to supress T cell proliferation and the production of pro inflammatory 

cytokines.250 

B cells have been implicated in various inflammatory and autoimmune diseases. In 

CRS, total B cells as well as further subtyped naïve, plasma and memory cells, have 
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shown to be enriched in nasal polyps compared to tissue from control patients.251 This 

is thought to account for the elevation of antibodies seen in these patients further adding 

to the deregulated local inflammatory state in CRS.252,253 Systemic Lupus 

Erythromatosis SLE is a B-cell mediated autoimmune disease thought to be due to 

autoreactive B cells surviving in the periphery. The B cell persistence, and production 

of autoantibodies accounts for the inflammatory response, which is characteristic of in 

the immunopathology of the disease.251 Inflammatory bowel disease (IBD) is another 

disease associated with deregulated B cell responses. The activation of B cells is 

increased, causing an abnormal accumulation of antibody secreting plasma cells in the 

intestinal mucosa.254 This is thought to not only contribute to the inflammation of 

intestinal tissue but also account for evident mucosal tissue damage.255 

1.4.3 T cells 

Each T lymphocyte expresses a unique TCR on the surface as the result of 

developmental selection upon maturation in the thymus.256,257 These T cells start out 

residing in secondary lymphoid organs and are termed naïve T cells as they have yet to 

encounter a foreign antigen.258 Once they encounter this antigen by a presentation with 

an APC such as a dendritic cell they display them on the surface by MHC protein.259 

Once activated T cells undergo clonal expansion and migrate through the tissues to sites 

of antigen presence.260 These activated T cells capable of effector function include 

cytotoxic T cells, CD8+ T cells and helper T cells, CD4+ cells.261  Once the antigen is 

eliminated most T cells die, leaving behind memory T cells that may survive for years 

in lymphoid organs and resident tissues, able to be activated once again in response to 

the same antigen that initiated the naïve T cell they initially mounted a response from. 

262,263 
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Th1 and Th2 cells 

Naïve CD4+ T cells differentiate into effector cells. Initially two subsets were 

identified, Th1 and Th2.264 Th1 cells differentiate as a result of the interaction of TCR 

and the CD4 receptor along with MHC II complex presented by APC.265 Once activated 

these APCs continue to be involved in Th1 cell differentiation by the production of 

IL12, a dominant cytokine in the development of IFN-gamma producing T cells.266 

Several transcription factors are important in coordinating the differentiation of Th1 

cells, the main one being T-box transcription factor (T-bet).267,268 Not only does T-bet 

promote the differentiation of Th1 cells, it also supresses the development of Th17 cells 

which have opposing functions.269 Th1 cells are involved in the elimination of 

intracellular pathogens, mostly due to their production of IFN-gamma. IFN-gamma 

causes the activation and recruitment of phagocytes such as macrophages to sites of 

infection resulting in the clearing of pathogenic microbes.270,271 Th1 cells can also 

produce TNF-alpha T cell growth factor IL2,272,273 responsible for the development of 

Treg and primary and memory CD8+ T cells leading to the enhanced overall adaptive 

immune response.274,275 

Th2 differentiation is dependant on cytokines IL-4 and IL-2. The major transcription 

factor involved in the Th2 lineage differentiation includes IL-4 induced STAT6, which 

up-regulates the expression of the master regulator GATA3.276 GATA3 is also capable 

of enhancing Th2 cytokine production whilst suppressing Th1 differentiation by down-

regulating STAT4.277 Th2 cells are known to be involved in the response to 

extracellular parasites such as helminths and play a major role in allergic disease. Key 

effector cytokines include a range of interleukins (IL-4, IL-5, IL-9, IL-13, IL-10, IL-15) 

and amphiregulin leading to an eosinophilic response characteristic of inflammatory 

and allergic disease. 
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The first description of T cells in CRS showed elevated levels of both Th1 and Th2 

cytokines in CRS, with a further abundance of Th2 cytokines associated with atopy. 48 

A follow-up study reported that IL-5, a prominent Th2 cytokine in CRS was 

independent of atopic status.278 Interestingly this discrepancy has now been thought to 

be due to ethnic differences in the sample population. In Caucasians, CRSsNP is 

skewed towards a Th1 phenotype with high levels of INF-gamma whereas CRSwNP is 

considered Th2 skewed with an abundance of IL-5.55 A comparative study on both 

Chinese and Belgian polyps concluded that there is a Th2 bias in Caucasian polyps 

compared to a Th1/Th17 bias in Chinese polyps.56 CRSsNP, however, remains to be 

Th1 biased regardless of ethnicity,1,279 with the Th1 cytokine as well as the TGF-beta 

receptor being increased in CRSsNP compared to CRSwNP.280,281 

Th17 cells 

Th17 cells emerged ten years ago as a newly discovered CD4+ T cells that produced 

IL-17 by a lineage distinct to that of Th1 and Th2.282 They are considered as a cell with 

both protective and pathogenic functions. They play an important part in the adaptive 

immune system by the generation of inflammation. However, this inflammation, if 

sustained, may result in inflammation-associated pathologies such as tissue damage and 

the disruption of mucosal homeostasis. Th17 cells are characterised by CCR6+, a CC 

motif 6 chemokine receptor protein.283 The main cytokines they produce are IL-17A, 

IL-17-F, IL-21, and IL-22. Both IL-17A and IL17F cause the up-regulation of pro-

inflammatory cytokines and chemokines.284 IL-17A is thought to have a more 

protective and regulatory role than its’ IL-17F counterpart. In the airways, IL-17A has 

been shown to cause a release of chemokines that recruit neutrophils and fungicidal 

peptides.285,286 In a mouse model of ulcerative colitis, IL-17A has been shown to 

mediate an effect on T cell driven mucosal inflammation by reducing the maturation of 
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Th1 cells.287 The cytokine also strengthens tight junctions by inducing claudin and 

mucin expression further implying its ability to function in a protective role.287,288 

IL-21 functions in the production of proinflammatory cytokines TNF, IL-6 and 

INFgamma in the mucosa as well as aiding in the recruitment of neutrophils.289,290 In 

the gut it is considered to be pathogenic with neutralising antibodies to the cytokine 

being protective and reducing inflammation in mice.291 It is also implicated in a range 

of autoimmune diseases. IL-21 has been shown to be increased in active SLE and could 

be responsible for the generation of plasma B cells in the disease state.292 Stimulation of 

mucosal T cells with IL-21 results in an increase in Th1 and Th17 responses further 

adding to the inflammatory state in patients with IBD. 293  IL-22, by contrast, has been 

found to induce intraepithelial cell activation and survival by moderating Treg cell 

subsets.294 IL-22 is capable of inducing proliferative and anti-apoptotic pathways as 

well as producing antimicrobial peptides, which help prevent tissue destruction and 

promote repair.295 Apart from IBD Th17 responses have been implicated in the 

pathophysiology of a number of inflammatory disorders, including rheumatoid arthritis, 

systemic lupus erythematosus, asthma and CRS 296,297. In CRS, studies have assessed 

Th17 abundance by IL17 expression. Although the early research did not find an 

increase in IL17 production in CRS 298,299, two more recent studies in the adult Chinese 

population have reported increased IL-17 in CRS, suggesting a possible role of Th17 

cells in this condition 298,300. Further research is needed in order to characterise the 

presence as well as the nature of the immune function of Th17 cells in CRS. 

Treg 

T regulatory cells (Treg) are commonly differentiated based on their developmental 

function. Inducible Tregs (iTreg), also called adaptive Tregs, are developed in the 

peripheral lymphoid organs after antigen priming, whereas natural Treg (nTreg) are 
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released from the thymus as a distinct lineage resulting in the expression of Foxp3 that 

iTregs sometimes lack. Both Treg cell subsets are CD4+ cells that co-express high 

levels of CD25, 301 a high affinity IL-2 receptor alpha-chain and contain transcription 

factor Foxp3. 302, although some iTreg may or may not express Foxp3.303 There is still a 

lot of discrepancy surrounding Treg, with nTregs being the most understood and the 

main focus of further discussion here. 

Treg cells characterized by CD4+CD25+CD127low surface marker expression have a 

distinct suppressor function, downregulating downstream T cell effector immune 

responses. 304  They mediate their activity by direct cell-to-cell contact and through the 

production of TGF-B and IL10 cytokines. These cytokines downgrade immune 

responses and assist in self-tolerance.305,306 Tregs have been implicated in a range of 

mucosal and autoimmune diseases such as ulcerative colitis and rheumatoid arthritis. 

More recently differences in Treg cell populations have been observed in CRS,306,307 

although some discrepancy does exist in the published literature. Two studies have 

reported a decrease in these cells in patients with CRS.298,299 Both studies defined Tregs 

using only Foxp3 expression whereas a more recent more definitive study defining Treg 

as CD4+CD25+FoxP3+ cells, has observed an increase in mucosal Tregs in CRS 308. 

This increase in Tregs in the mucosa could account for a defect in the immune defence 

against pathogens by the suppression of Th1 and cytotoxic T cells.309 However, as this 

is the first definitive study of Tregs in CRS further studies would be beneficial to 

elucidate whether they are contributing to the ongoing inflammation in the sinuses, as 

well as to determine which sinonasal tissue types they are found in.  
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Figure 1.8. T helper subsets. Naïve T cells in the presence of IL-2 and TGF-β differentiate into 

Tregs that promote immune tolerance. In the presence of IL-12 they differentiate into Th1 

subsets that protect against intracellular pathogens. In the presence of Il-2 they differentiate into 

Th2 cells which protect the host against extracellular pathogens. In the presence of TGF-β, IL-6 

and IL-21 they differentiate into Th17 cells that protect against extracellular bacteria and cause 

inflammation. Adapted from Bailey et al. Front. Immunol. 2014.  
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Chapter 2: T regulatory and Th17 cells in Chronic 

Rhinosinusitis with polyps 
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2.1 Abstract 

Introduction: Chronic Rhinosinusitis (CRS) is categorised into two types based on the 

absence (CRSsNP) and presence of nasal polyps (CRSwNP). Although CRSsNP 

patients lack nasal polyps, the mucosa may show variable degrees of polypoid change. 

This raises the question of whether or not the classification system is an over 

simplification and that CRSsNP and CRSwNP only represent two phenotypic extremes 

along a broader spectrum of immunologically different disease processes. To 

investigate this, adaptive and innate immune cells were compared in the different tissue 

types within CRSsNP and CRSwNP patients.  

Methods: Tissue from 15 CRSwNP, 6 CRSsNP and 8 healthy control patients was 

obtained prospectively. Non-polypoid mucosa, polypoid tissues and polyps were 

obtained at the time of endoscopic sinus surgery and analysed using Flow Cytometry 

for various adaptive and innate immune cell subsets. 

Results: In the polyps from CRSwNP patients there were significantly more T 

regulatory (Treg) cells (12.86 +/- 12.60 vs 2.83 +/- 4.68) and Th17 cells (16.12+/- 11.75 

vs 2.31+/- 2.13) compared to the polypoid tissue from CRSsNP patients. Cellular 

infiltrates in the non-polypoid or polypoid mucosa of the different patient categories 

showed no difference in CRSwNP, CRSsNP and control groups. 

Conclusion: This observational study identified an increase in Treg and Th17 cells in 

CRSwNP patients implying that these cells may be implicated in polyp development. 

Importantly it also identified a similar inflammatory infiltrate in non-polyp or polypoid 

mucosa across control, CRSsNP and CRSwNP groups inferring that polyps should be 

sampled when studying CRSwNP. 
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2.2 Introduction 

T helper (Th) cells, key players in the adaptive immune system, have recently been 

implicated in a variety of chronic diseases56,310,311. In a non-disease state, cells of the 

adaptive immune system work together with cells of the innate immune system to 

mount an effective immune response.  The dysregulation of this response causes 

immune dysfunction and prohibits the clearance of invading pathogens resulting in an 

ongoing inflammatory state. Th cells, once stimulated, have the capacity to differentiate 

into Th1, Th2, Th17, follicular helper T cells and Treg each of which has a specific 

immune-modulatory function312. 

Treg cells characterized by CD4+CD25+CD127low surface marker expression have a 

suppressor function, down regulating downstream T cell effector immune responses304.  

They mediate their activity by direct cell-to-cell contact and through the production of 

TGF-B and IL10 cytokines. These cytokines downgrade immune responses and assist in 

self-tolerance305,306.  In humans, these cells have been implicated in a range of mucosal 

and autoimmune diseases such as ulcerative colitis and rheumatoid arthritis. More 

recently differences in Treg cell populations have been observed in chronic 

rhinosinusitis (CRS)306,307, although some discrepancy does exist in the published 

literature. Two studies have reported a decrease in these cells in patients with 

CRS,298,299, whereas a more recent study has observed an increase in mucosal Tregs in 

CRS 308. 

Th17 cells have a crucial role in the induction of immune-related tissue injury and are 

characterized by the production of IL-17A, IL-17F, IL-6, TNF-α, and IL-22313,314. 

Pathogenic Th17 responses have been implicated in the pathophysiology of a number of 

inflammatory disorders, including rheumatoid arthritis, systemic lupus erythematosus, 
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asthma and CRS 296,297. In CRS, studies have assessed Th17 abundance by IL17 

expression. Although early research did not find an increase in IL17 production in CRS 

298,299, two more recent studies in the adult Chinese population have reported increased 

IL17 in CRS, suggesting a possible role of Th17 cells in this condition 298,300. 

CRS is considered an inflammatory disease that is regulated by T cell subsets56. 

Currently, the disease is sub-categorised into two types based on the absence (CRSsNP) 

and presence of nasal polyps (CRSwNP) visualised within the middle meatus53. 

Interestingly, although CRSsNP patients may lack easily identifiable polyps, the 

mucosa of these patients may show variable degrees of polypoid change. This raises the 

question as to whether or not the proposed classification system is an over 

simplification and that CRSsNP and CRSwNP in fact only represent two extremes of 

phenotype along a broader spectrum of immunologically different disease processes. 

To investigate this, we examined the local and systemic populations of different 

adaptive and innate immune cells in the tissue and blood of CRSsNP and CRSwNP 

patients. Furthermore, we examined tissue with different degrees of polypoid changes 

in the same patient. 

2.3 Materials and Methods 

Patient Groups   

This study was approved by the Human Research Ethics Committee of the Queen 

Elizabeth Hospital, Adelaide, Australia.  Tissue samples and blood specimens were 

prospectively collected at the time of endoscopic sinus surgery from control patients, 

CRSsNP and CRSwNP patients. Control patients were patients undergoing endoscopic 

sinonasal procedures without clinical or radiological evidence of sinus disease. CRS 
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patients were patients who fulfilled the diagnostic criteria set out in the recent position 

papers by the American Academy of Otolaryngology and Head and Neck Surgery and 

the European Position Statement on Chronic Rhinosinusitis1,315. Patients with CRS were 

further sub-classified according the absence or presence of visible polyps present within 

the middle meatus on nasal endoscopy. Exclusion criteria included minors < 18 years, 

pregnancy, malignancy, immune disorders and the use of antibiotics or oral 

corticosteroids in the month preceding surgery. All patients provided informed written 

consent prior to enrollment. Patients were classified as atopic if they had positive RAST 

and/or skin prick testing.  Demographic and clinical data was collected on all patients 

prior to the commencement of the study. 

Specimen collection 

Tissue samples were collected at the time of endoscopic sinus surgery from the ethmoid 

sinuses. Structures were defined as polyps when they extended into the middle meatus 

as defined by the EPOS guidelines53. In contrast, polypoid structures were more 

confined and did not extend into the middle meatus. They had a typical cobblestone 

macroscopic appearance. Differentiation between polyp, polypoid or mucosa was done 

by the operating surgeon (PJW, AP). From CRSwNP patients, polyps, polypoid tissue 

and non-polypoid mucosa was collected. Polyploid and non-polypoid mucosa was 

collected from CRSsNP patients, and in control patients, non-diseased mucosal tissue 

was obtained as part of the endoscopic approach.  Peripheral blood samples were taken 

from each patient just prior to the operation.  

Immunophenotyping of tissue and peripheral blood using flow cytometry 

Heparinized peripheral blood was lysed for 15 minutes using Pharmlyse (Becton 

Dickinson Biosciences, San Jose, CA, USA). Tissue samples were washed and 

dissected into pieces ≤ 2mm before being prepared into a single cell suspension by 
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enzymatic digestion with 2 mg/ml collagenase type II (Sigma-Aldrich, MO, USA) and 

0.04 mg/ml DNAse I (Roche Applied Sciences, Vilvoorde, Belgium) for 45 min at 

37°C. Cell suspensions were filtered through a 100 µm nylon mesh and washed in PBS.  

All cells were stained with Fixable Viability Dye eFluor® 780 (eBioscience, San 

Diego, CA, USA) at 4°C for 30 minutes to exclude dead cells before staining with the 

following antibodies from Becton Dickinson Biosciences (San Jose, CA, USA) listed in 

Table 2.1. The antigens used to describe individual cell types are listed in Table 2.2. 

Eight colour flow cytometry was performed using a gating strategy based on 

fluorescence minus one controls as specified in Figure 2.1, 2.2, 2.3 and 2.4. 
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Table 2.1. Flow cytometry antibodies  

Target Antigen Clone Conjugation 

CD4 SK3 FITC 

CD25 M-AZ51 BV421 

CCR4 1C6 PECY7 

CCR6 11A9 BV510 

CXCR3 HIL-7R-M21 PE 

CD127 1G1 AF647 

CD45 2D1 PERCP 

CD3 VCHT1 FITC 

TCR-gd 11F2 PE 

CD19 SJ25C1 BV510 

CD16 3G8 AF647 

CD56 NCAM16.2 BV421 

CD4 

CD8 

SIC3 

RPA-T8 

BV510 

PECY7 

CRTH2 BM16 BV421 

HLA-DR G46-6 BV510 

Lineage Cocktail L27, SK7, 

SJ25C1,3G8,NCAM16.2, 

MP9 

FITC 

CD123 9FS AF647 

CD11c  B-ly6 
 

PE 

CCR3 5E8 BV510 

CD66b GH1/61 AF647 

CD16 
 
3G8 

 

PE 

CD14 
 
M5E2 

 

PECY7 

25F9 G10F5 FITC 
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Table 2.2. Markers used for cell classification 

Cell type Target antigen 

Th1 CD45+CD4+CXCR3+ 

Th2 CD45+CD4+CCR4+ 

Th17 CD45+CD4+CCR6+ 

Treg CD45+Cd4+Cd25+CD127low 

GammaDelta T cell CD45+CD3+TCRgd+ 

T cell CD45+CD3+ 

B cell CD45+CD19+ 

Natural Killer Cell CD45+CD3-CD16+Cd56+ 

Plasmacytoid Dendritic cell CD45+CD123+HLADR+Lin-CD11c- 

Myeloid Dendritic cell CD45+CD123-HLADR+Lin-CD11c+ 

Basophil CD45+Cd123+HLADR- 

Mast cell CD45+CD117+CD11c+ 

Macrophage CD45+CD14+25F9+ 
 

Eosinophil CD45+CD16-SSChigh 
 

Neutrophil CD45+CD16+CD66B+ 
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Figure 2.1. Flow cytometry gating strategy of Treg, Th1, Th2 and Th17 cells. Live cells 

were identified (A) and CD45+CD4+ Th cells gated (B) to identify CD25+CD127low Treg (C), 

CXCR3+ Th1 (D), CCR4+ Th2 (E), and CCR6+ Th17 cells (F). 
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Figure 2.2. Flow cytometry gating strategy of total T cells, CD4 T cells, CD8 T cells, TCR 

gamma delta T cells, NK cells and B cells. CD3+ T cells were selected from Live CD45+ 

cells (A), then separated into CD4+ and CD8+ T cells (B) and TCR gamma delta cells (D). 

CD3-CD19+ gating identified B cells (E). CD16+CD56+ gating identified NK cells (C) from 

live CD45+ cells. 
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Figure 2.3. Flow cytometry gating strategy of mast cells, basophils, plasmacytoid and 

myeloid dendritic cells. CD45+ live cells gated on CD117+ identify mast cells (A) and 

CD123+HLADR- identify basophils (B). Lineage negative HLADR+ (C) cells are further gated 

to identify CD11c+CD123- myeloid and CD123+CD11c- plasmacytoid dendritic cells (D).  
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Figure 2.4. Flow cytometry gating strategy of eosinophils, macrophages and neutrophils. 

High side scatter CD45+ live cells are further divided into CD16- to identify eosinophils (D), 

and CD16+CD66b+ neutrophils (C). CD45+ live cells gated on CD14+CD163+ identify 

macrophages (B).  

 

 Statistical analysis 

The Kruskal-Wallis test was used for the comparison of data from the three independent 

disease groups of patients. Mann-Whitney test was used for comparison of two 

independent disease groups. For within group comparisons, data was analysed using a 

linear mixed effects model with specimens treated as random factors. Log 

transformations were applied to the data due to violations of the distributional 

assumptions of a linear model. The results were back transformed to the numeric scale 
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prior to reporting. As a result, subgroup comparisons represent the ratio of two 

geometric means. All data were analysed using SAS v9.3 (SAS Institute Inc., Cary, NC, 

USA). Tests were two-tailed and significance was assessed at the 5% alpha p< 0.05)  

2.4 Results 

Patients 

Twenty-nine patients used for this study included 15 CRSwNP, 6 CRSsNP and 8 

Controls. Their demographic information is summarized in Table 2.3. Tissue and blood 

specimens were examined from each of the three patient groups by means of flow 

cytometry using cell surface markers that define Th1, Th2, Th17, Treg, Gamma Delta T 

cells, total T cells, B cells, natural killer cells, plasmacytoid dendritic cells, myeloid 

dendritic cells, basophils, mast cells, macrophages, eosinophils and neutrophils. 

 

Table 2.3.  Patient demographics for T cell study 

  Controls CRSsNP CRSwNP 

Number 8 6 15 

Median Age (IQR) 66 (50-73) 53 (42-70) 50 (44-68) 

Male/Female 1/7 4/2 8/7 

Asthmatic/non-asthmatic 1/7 1/5 7/8 

Allergic/non-allergic/NA 2/6 3/3 4/4/7 

Previous ESS: 0/1/≥ 2 n/a 2/2/2 7/7/1 
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Cellular comparison between the non-polypoid mucosa of CRSwNP, 

CRSsNP and control patients 

Cellular infiltrates in the mucosa of the different patient categories showed no 

difference between the three groups. 

Cellular comparison between the CRSwNP polyp, CRSwNP polypoid and 

CRSsNP polypoid tissue 

CRSwNP polypoid tissue had significantly more Th17 cells compared to CRSsNP 

polypoid tissue (14.64 +/- 16.87 vs 2.313 +/- 2.134, Mann-Whitney test p≤0.05, Figure 

2.5).  In polyps from CRSwNP patients there were significantly more Treg cells (12.86 

+/- 12.60 vs 2.83 +/- 4.68) and Th17 cells (16.12+/- 11.75 vs 2.31+/- 2.13) compared to 

the polypoid tissue from CRSsNP patients. There were no differences observed in the 

other cell types.  
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Figure 2.5.  Th17 cells are increased in polypoid CRSwNP tissue compared to polypoid 

CRSsNP tissue. Graph shows CRSwNP and CRSsNP polypoid Th17 numbers with mean. 

p≤0.05 Mann-Whitney test. 

 

Cellular comparison within CRSsNP group 

Cellular infiltrate between the non-polypoid mucosa and polypoid mucosa of the 

CRSsNP group showed no statistically detectable difference.   

Cellular comparison within CRSwNP group 

CRSwNP patients however had significantly more eosinophils (6.10 +/- 5.83 vs 2.53 +/- 

2.75), macrophages (7.22 +/- 5.49 vs 4.35 +/- 3.72), mast cells (6.81 +/- 7.54 vs 2.53 +/- 
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2.48), natural killer cells (11.86 +/- 12.53 vs 8.31 +/- 19.23) and TCR gamma delta T 

cells (19.61 +/- 18.07 vs 11.85 +/- 18.31) in the polyps compared to non-polypoid 

mucosa from the same patient. CRSwNP polypoid tissue had significantly more mast 

cells (7.45 +/- 6.89 vs 2.53 +/- 2.48) and natural killer cells (12.84 +/- 18.21 vs 8.31 +/- 

19.23) compared to non-polypoid mucosa of the same patient (Kruskal-Wallis p≤0.05, 

Table 2.4). There were no differences seen between the cellular infiltrate of polypoid vs 

polyp tissue in CRSwNP patients. 

Table 2.4. Cellular comparison using Kruskal Wallis Test between conventional 

Control, CRSsNP and CRSwNP groups as a % of CD45+ cells.  

Cell Type p 

T regulatory  0.040 

T helper 1  0.727 

T helper 2 0.104 

T helper 17 0.011 

CD4 T cell 0.703 

CD8 T cell 0.092 

Bcell 0.125 

Gamma Delta T cell 0.508 

Natural Killer 0.019 

Mast Cell 0.766 

Plasmacytoid Dendritic cell 0.774 

Myeloid Dendritic cell 0.072 

Basophil 0.101 

Macrophage 0.736 

Eosinophil 0.012 

Neutrophil 0.342 

 

Cellular comparison between CRSwNP, CRSsNP and control groups 

Due to finding no statistical difference within the different tissue types in CRSsNP and 

within the CRSwNP polyp and polypoid tissue we compared the three patient groups 
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using conventional methods; non-polypoid mucosa from Control and CRSsNP patients 

and polyps from CRSwNP patients. 

CRSwNP patients demonstrated a significantly higher number of Treg cells (12.86 +/- 

12.60 vs 2.41 +/- 3.24), Th17 (16.12+/- 11.75 vs 2.870+/- 2.512), natural killer cells 

(11.68 +/- 12.53 vs 0.9454 +/- 1.012) and eosinophils (12.92 +/- 12.29 vs 0.9892 +/- 

1.111) compared to CRSsNP patients (Kruskal-Wallis p≤0.05, Figure 2.6).  All other 

cell types assessed were similar between patient groups. No differences were observed 

in the peripheral blood between the different patient groups in any of the cell types. 

 

Figure 2.6. Treg, Th17, NK cells and eosinophils are enriched in CRSwNP polyps 

compared to CRSsNP mucosa. Graph shows CRSwNP polyp, CRSsNP mucosa and control 

mucosa Treg (A), Th17 (B), NK cell (C) and Eosinophil (D) medians with interquartile range. 

p≤0.05 Kruskall-Wallis. 
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2.5 Discussion 

In this study, we found that there is a greater number of resident Tregs, Th17 cells, 

natural killer cells and eosinophils in CRSwNP patients compared to CRSsNP patients. 

Importantly, we found that these cellular differences were not present in either the 

peripheral blood or the non-polypoid mucosal tissue across the different patient groups 

or between polypoid and non-polypoid mucosa of CRSsNP patients or between polyp 

and polypoid tissue of CRSwNP patients. Our findings also show that there is no 

significant difference between the inflammatory infiltrate between controls and 

CRSwNP tissue leading us to speculate that perhaps in a normal situation there is a 

variation of inflammatory cells composed of an intermediate number of eosinophils, 

NK cells, Th17 cells and Tregs. 

CRSwNP has been characterised by a dysregulation of T cells, including Tregs 

298,299,316-319. Tregs are involved in suppressive functions that lead to a down regulation 

in Th1 responses and cellular cytotoxicity320,321. Our study found an increased number 

of Tregs in CRSwNP compared to CRSsNP suggesting that they play a role in the 

impaired immunity in patients with polyps. Excessive suppression of Th1 and cytotoxic 

cells results in a defect in the immune defence against pathogens and could contribute 

to the ongoing inflammation, accounting for the excessive inflammatory state in these 

polyp patients 309.  Our findings support those previously published studies by Sharma 

et al. who reported the mucosa of CRSwNP patients have a higher proportion of Tregs 

compared to CRSsNP patients 308. Pant et al have also reported an increase in Tregs in 

CRS mucosa compared to controls although they did not observe a difference between 

CRSsNP and CRSwNP subgroups   319. Other studies investigating the role of Tregs 
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have however, reported a decrease in CRSwNP compared to CRSsNP and control 

subjects which is contradictory to our results298,299,316. In these studies they determined 

Tregs using either Foxp3 mRNA expression 298,299,316,318 or protein levels as measured 

by Immunohistochemistry (IHC) 317,322. We defined Tregs using flow cytometry as 

CD45+CD4+CD25+CD123low, which is reportedly a more specific natural Treg 

population with suppressor capabilities323.  Furthermore this is one of the largest studies 

using a Caucasian cohort, and differences in inflammatory cell accumulation in nasal 

polyps are reported to be affected by ethnicity56,298.  

To our knowledge this is the first study that has used flow cytometry to examine for 

resident Th17 cells in the mucosa of CRS patients based on cell surface expression of 

CD45+CD4+CCR6+. We found that Th17 cells were increased in CRSwNP compared 

to CRSsNP. Our study supports previous studies that found an increase in Th17 in 

CRSwNP defined by IL17 mRNA expression 324, mRNA expression of the aryl 

hydrocarbon receptor, a receptor supressing Th17 differentiation in CRSwNP 300 and 

IL17 protein 318,325-327. Contrary to our findings two independent studies by Derycke et 

al.328 and Hu et al (32) reported a similar Th17 amount in CRSwNP and CRSsNP with 

the former study also showing no significant difference between CRS patients and 

controls. It should be mentioned however, that unlike our study, both these studies used 

the expression of IL17 as a surrogate marker of Th17 cell presence. Furthermore in the 

Derycke et al study, IL17 levels were recorded following stimulation of their cells 

rather than in a natural unstimulated basal state. Although IL-17 is a prominent cytokine 

of Th17 cells, it has recently been shown to be non-specific to Th17 cells, also being 

produced by gamma delta T cells, lymphoid tissue inducer cells, natural killer cells and 

macrophages 225,329-331. Thus it is not a specific marker for the Th17 cell population and 

could be the reason for differing reports in Th17 cell abundance in CRS. In our study 
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we did not employ surrogate indicators of Th17 presence but rather defined Th17 cells 

using the expression of their specific cell surface marker CCR6+. This surface marker is 

uniquely expressed on Th17 cells 328. Th17 cells have been shown to increase the 

amount of neutrophils as well as eosinophils to areas of inflammation and even account 

for the inflammatory lesions in ulcerative colitis332,333. This increase in Th17 cells we 

found may be one of the factors driving polyp formation and further studies need to be 

undertaken to characterize the intracellular cytokine profiles of these Th17 cells to get a 

better understanding of their function in CRS.  

This study is also the first to comprehensively characterize and compare the cellular 

infiltrates between phenotypically different tissues in the same patient groups. We 

compared the cellular infiltrates of sinus mucosa from control, CRSsNP and polyp 

patients to that of polypoid mucosa in CRSsNP and CRSwNP patients and polyps of 

CRSwNP patients. Interestingly the cellular infiltrate between the non-polypoid mucosa 

of patient categories were shown to be similar in CRSwNP, CRSsNP and control 

groups. Differences were most apparent within the CRSwNP group. Polypoid lesions 

had an abundance of mast cells and natural killer cells compared to non-polypoid 

mucosa. Polyps also had an abundance of mast cells and natural killer cells and in 

addition they also had significantly more eosinophils, macrophages and TCR gamma 

delta T cells compared to non-polypoid mucosa. This study supports other studies that 

have found an increase in eosinophils and macrophages when comparing nasal polyp 

tissue to mucosa in CRSwNP patients334-337. This increase of inflammatory cells in 

polyps is thought to be a part of the disease process and accounts for the persistent 

inflammation seen in these patients56. Although these studies have reported mostly 

similar inflammatory cell dispersal between nasal polyps and mucosa, unlike our study 

they have also reported an increase in neutrophils, CD8 T cells and plasma cells 336. 
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These differences could be due the differing experimental techniques used as well as 

differences in inflammatory cell accumulation in nasal polyps due to ethnicity56,298.  

Interestingly our study showed no difference between the cellular infiltrate of polypoid 

vs polyp tissue in CRSsNP patients.  This finding together with the reports that polyps 

differ in terms of inflammatory infiltrate to non-polypoid mucosa in CRSwNP patients 

suggests that care must be taken when sampling tissue from CRSwNP patients. The 

CRS patient classification based on the standardised European position paper guidelines 

to group CRSwNP patients and CRSsNP patients classifies the polyp not only from an 

anatomical perspective but one that is distinct in immune cell abundance as well1.   

2.6 Conclusion 

In summary, our study identified an increase in Treg and Th17 cells in CRSwNP 

patients implying that these cells may be implicated in polyp development. Importantly 

it also identified a similar inflammatory infiltrate in non-polypoid mucosa across 

control, CRSsNP and CRSwNP groups, which infers that polyps should be sampled 

when sampling CSRwNP patients.   
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3.1 Abstract 

Introduction: Recent studies have implied a role for Th17 cells in CRS with nasal 

polyposis (CRSwNP) patients. However, Th17 cytokine production in CRS is still 

unknown. Here we sought to quantify IL-17A, IL17-F, IL-21 and IL-22 cytokines 

produced by Th17 cells in mucosal tissue and peripheral blood of CRSwNP, CRS 

without nasal polyps (CRSsNP) and control patients. 

Methods: Samples were prospectively collected from CRS patients and non-CRS 

controls. We used flow cytometry to characterise the Th17 cells and their cytokines in 

sinonasal tissue and peripheral blood. 

Results: A total of 36 patients were recruited to the study. CRSwNP patients had 

significantly more IL-17A (9.53 +/- 2.71 vs 1.11 +/ -0.43 vs 0.77 +/- 0.07), IL-17F 

(4.96 +/- 1.48 vs 0.88 +/-0.31 vs 0.56 +/- 0.04), IL-21 (5.55 +/- 2.01 vs 1.60 +/- 0.71 vs 

1.53 +/- 0.55) and IL-22 (4.73 +/- 1.58 vs 0.70+/-0.28 vs 0.88 +/- 0.26) producing Th17 

cells in the polyps compared to CRSsNP and control mucosa per mg of tissue 

respectively. Allergic CRSwNP patients had decreased numbers of IL-21 producing 

Th17 cells compared to non-Allergic CRSwNP. (1.69 +/- 0.57 vs 9.41+/-3.23) per mg 

of tissue respectively, (Kruskal-Wallis p<0.05) 

Conclusion: In summary, our study identified increased amounts of Th17 derived 

cytokines IL-17A, IL-17F, IL21 and IL22 in CRSwNP patient polyps and peripheral 

blood suggesting a local and systemic role for Th17 cells in CRS. Atopic CRSwNP had 

decreased amounts of Th17 derived IL-21 in their polyps implying a potential 

protective role for IL-22 in CRSwNP allergic inflammation.  



68 
 

3.2 Introduction 

T helper 17 (Th17) cells are characterised by CC motif 6 chemokine receptor (CCR6) 

expression and produce the signature cytokines interleukin-17A (IL-17A), IL-17F, IL-

21, and IL-22. Th17 cells play a significant role in the adaptive immune system by 

generating inflammation in response to infection, in particular to Candida albicans and 

Staphylococcus aureus.283 Although vital in protecting the host against pathogens, 

dysregulated inflammation, if sustained, may result in inflammation-associated 

pathologies such as tissue damage and the disruption of mucosal homeostasis. Both IL-

17A and IL17F cause the up-regulation of pro-inflammatory cytokines and chemokines 

such as IL-6, granulocyte colony-stimulating factor (GCSF) and CXCL1 and 

CXCL2).284 In the airways, IL-17A has been shown to cause a release of chemokines 

that recruit neutrophils and fungicidal peptides.285-288,338 On the contrary, excessive IL-

17A production in the synovial fluid of rheumatoid arthritis patients has been 

demonstrated to have a role in the progression of the disease.339 Antibodies targeting 

IL-17A result in a reduction of clinical symptom severity, further highlighting the 

importance of aberrant cytokine responses in differing immune microenvironments.340 

IL-21 intensifies the production of pro-inflammatory cytokines in the mucosa as well as 

aiding in the recruitment of neutrophils.289,290 In the gut mucosa it is considered to be 

pathogenic and antibodies targeted to neutralising the cytokine have a protective and 

anti-inflammatory effect.291 IL-21 is also implicated in a range of autoimmune diseases. 

It has been shown to be increased in active SLE and could be responsible for the 

generation of plasma cells in the disease state292 and epithelial cell activation and 

survival by moderating T regulatory cell subsets.294 IL-22 is also capable of inducing 

proliferative and anti-apoptotic pathways as well as producing antimicrobial peptides, 

which help prevent tissue destruction and promote repair.295  
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Th17 responses have been implicated in the pathophysiology of a number of 

inflammatory disorders, including rheumatoid arthritis, SLE, and asthma. In chronic 

rhinosinusitis (CRS), studies have assessed Th17 abundance by measuring IL-17 

expression. Although early studies did not find an increase in IL-17 production in CRS 

298,299 two more recent studies in the adult Chinese population have reported increased 

IL-17 in eosinophilic CRSwNP, suggesting a possible role of Th17 cells in the 

inflammatory condition.298,300  However, it has been shown that IL-17 can also be 

produced by different immune cell types, including neutrophils and gammadelta T cells 

and thus, differential IL-17 abundance does not necessarily imply changes in Th17 cell 

frequencies.341 Further research is needed in order to characterise the presence as well 

as the nature of the immune function of Th17 cells in CRS.  Recently, we have reported 

an increase in Th17 cell numbers in CRS with polyp (CRSwNP) patients.342 In this 

present study we further characterise Th17 cells by immunophenotyping the IL-17A, 

IL-17F, IL-21 and IL-22 cytokines they produce in the mucosa and periphery of CRSwNP, 

CRS without nasal polyposis (CRSsNP) and non-CRS controls.  

3.3 Methods 

Patient Sample Collection 

This study was approved by the Human Research Ethics Committee of the Queen 

Elizabeth Hospital, Adelaide, Australia.  Specimens were prospectively collected at the 

time of endoscopic sinus surgery from non-diseased controls, CRSsNP and CRSwNP. 

Ethmoid mucosa was used for controls and CRSsNP patients, polyps from CRSwNP 

patients and peripheral blood was collected from each patient prior to their operation.  

Control patients were undergoing endoscopic sinonasal procedures for pituitary tumour 

resections and were without clinical or radiological evidence of past or present 

sinonasal disease. CRS patients fulfilled the diagnostic criteria set out in the recent 
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position papers by the American Academy of Otolaryngology and Head and Neck 

Surgery and the European Position Statement on Chronic Rhinosinusitis.1,315 Patients 

with CRS were further sub-classified according to the absence or presence of visible 

polyps present within the middle meatus on nasal endoscopy. Exclusion criteria 

included minors < 18 years of age, pregnancy, malignancy, immune disorders and the 

use of antibiotics or oral corticosteroids in the month preceding surgery. All patients 

provided informed written consent prior to enrollment. Patients were classified as atopic 

if they had positive RAST and/or skin prick testing. Demographic and clinical data was 

collected from all patients prior to the commencement of the study.  

Cell Preparation  

Tissue samples were washed and dissected into pieces ≤ 2mm before being prepared 

into a single cell suspension by enzymatic digestion with 2 mg/ml collagenase type II 

(Sigma-Aldrich, MO, USA) and 0.04 mg/ml DNAse I (Roche Applied Sciences, 

Vilvoorde, Belgium) for 45 min at 37°C. Cell suspensions were filtered through a 70 

µm nylon mesh and washed in PBS. Lymphocytes were isolated from heparinized 

peripheral blood by Ficoll-Paque PLUS (GE Healthcare, Chicago, USA).  

Flow Cytometric Immunophenotyping 

Cells stimulated with cell stimulation cocktail (eBioscience, San Diego, CA, USA) for 

six hours were washed and stained with Fixable Viability Dye eFluor® 506 

(eBioscience, San Diego, CA, USA) at 4°C for 30 minutes to exclude dead cells before 

cell surface staining with CD4+CCR6+CD45+ to define Th17 cells. Cells were fixed 

and permeabilised before staining with intracellular cytokines IL-17A, IL-17F, IL-21 

and IL-22 (eBioscience, San Diego, CA, USA). Antibody details are listed in 

supplementary Table 3.1. Gates were set on unstimulated and fluorescent minus one 

controls. 
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Table 3.1. Th17 cell flow cytometry antibodies  

Target Antigen Clone Conjugation 

CD45 H130 APC-eFluor-780 

CD4 RPA-T4 Ef-450 

CCR6 R6H1 Pe-Cy7 

IL-17A EBio64DEC17 FITC 

IL-17F SHCR17 PE 

IL-21 EBio3A3-N2 eFluor-660 

IL-22 22URTI Percp-eFluor-710 

 

Statistical analysis 

The data were summarised using means with standard deviations and medians with 

range.  The Kruskal-Wallis test was used for the comparison of data from the three 

independent disease groups of patients. Mann-Whitney test was used for comparison of 

two independent disease groups. All tests were two-tailed and significance was assessed 

at the 5% alpha.  

3.4 Results 

Patients 

Samples from a total 36 patients (12 CRSwNP, 19 CRSsNP and 5 controls) were used 

for this study. Patient demographic information is summarized in Table 3.2. 
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Table 3.2. Patient demographics for Th17 study 

  Controls CRSsNP CRSwNP 

Number 5 19 12 

Median Age (IQR) 54 (52-55) 59 (50-65) 56 (51-61) 

Male/Female 2/3 13/6 10/2 

Asthmatic/non-

asthmatic 

0/5 6/13 6/6 

Allergic/non-allergic 4/9 4/12 8/8 

Previous ESS: 0/1/≥ 2 N/A 10/6/3 6//2/4 

 

Th17 cells are increased in CRSwNP mucosa 

CRSwNP patients had significantly more total CD4+ T helper cells in the polyps 

compared to CRSsNP and control mucosa (90.73 +/- 20.47 vs 39.72 +/-11.14 vs 22.24 

+/- 10.07 per mg of tissue respectively, Kruskal-Wallis p<0.01) (Figure 3.1A). 

CRSwNP patients had more Th17 cells in the polyps compared to CRSsNP and control 

mucosa (40.39 +/- 7.75 vs 16.19 +/- 4.49 vs 9.26 +/- 4.32 per mg of tissue respectively, 

Kruskal-Wallis p<0.01) (Figure 3.1B).  No differences were seen in CD4+ or Th17 + 

numbers in the peripheral blood of control, CRSsNP or CRSwNP patients.  
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Figure 3.1. Percentage of CD4+ (A) and Th17 cells (B) per mg of tissue in control, 

CRSsNP and CRSwNP mucosa. Medians with interquartile range. p≤0.05 Kruskal-Wallis. 

 

Th17 cytokines are increased in mucosal CRSwNP Th17 cells.  

CRSwNP patients had significantly more IL-17A, IL-17F and IL-21 cytokines 

produced by Th17 cells in the polyps compared to CRSsNP and control mucosa (Figure 

3.2A-C).  CRSwNP patients also had more IL-17F producing Th17 cells in the polyps 

compared to CRSsNP and control mucosa. (Figure 3.2B). CRSwNP patients have more 

IL-21 producing Th17 cells in the polyps compared to CRSsNP and control mucosa. 

(Figure 3.2C). CRSwNP patients have more IL-22 producing Th17 cells in the polyps 

compared to CRSsNP and control mucosa per mg of tissue respectively, Kruskal-Wallis 

p<0.01 significant only compared to CRSsNP) (Figure 3.2D). Table 3.3 details cytokine 

frequencies for controls, CRSsNP and CRSwNP patients. 
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Figure 3.2. Percentage of IL-17A+Th17+ (A), IL-17F+Th17 (B), IL-21+Th17 (C) and IL-

122+Th17 (D) cells per mg of tissue in control, CRSsNP and CRSwNP mucosa. Medians 

with interquartile range. p≤0.05 Kruskal-Wallis. 
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Table 3.3. Flow cytometry analysis of IL-17A, IL17-F, IL-21 and IL-22 expressing 

Th17 cells in mucosa (Kruskal-Wallis mean +/- SEM) 

 Controls CRSsNP CRSwNP 

Th17+IL-17A  (per mg of tissue) 0.77 +/- 0.07 .11 +/ -0.43 9.53 +/- 2.71 

Th17+IL-17F  (per mg of tissue) 0.56 +/- 0.04 0.88 +/-0.31 4.96 +/- 1.48 

Th17+IL-21  (per mg of tissue) 1.53 +/- 0.55 1.60 +/- 0.71 5.55 +/- 2.01 

Th17+IL-22  (per mg of tissue) 0.88 +/- 0.26 0.70+/-0.28 4.73 +/- 1.58 

 

Th17 cytokines are increased in peripheral CRSwNP Th17 cells.  

In the peripheral blood CRSwNP patients have significantly more IL-17A producing 

Th17 cells compared to CRSsNP and control patients. (Figure 3.3A).  CRSwNP 

patients have more IL-17F producing Th17 cells in the polyps compared to CRSsNP 

and patients (Figure 3.3B). CRSwNP patients have significantly more IL-21 producing 

Th17 cells in the polyps compared to CRSsNP and control patients. (Figure 3.3C). 

CRSwNP patients have significantly more IL-22 producing Th17 cells in the polyps 

compared to CRSsNP and control patients. (Figure 3.3D). Table 3.4 details cytokine 

frequencies for controls, CRSsNP and CRSwNP patients. 
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Figure 3.3. Percentage of IL-17A+Th17+ (A), IL-17F+Th17 (B), IL-21+Th17 (C) and IL-

22+Th17 (D) cells as a % of CD45+ cells in control, CRSsNP and CRSwNP peripheral 

blood. Medians with interquartile range. p≤0.05 Kruskal-Wallis. 
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Table 3.4. Flow cytometry analysis of IL-17A, IL17-F, IL-21 and IL-22 expressing 

Th17 cells in peripheral blood (Kruskal-Wallis mean +/- SEM) 

 Controls CRSsNP CRSwNP 

Th17+IL-17A  (% CD45) 0.73 +/- 0.33 1.55+/-0.62 3.31 +/- 0.93 

Th17+IL-17F  (% CD45) 0.56 +/- 0.04 0.88 +/- 0.31 4.97 +/- 1.48 

Th17+IL-21  (% CD45) 1.43 +/- 0.57 2.46 +/- 0.88 5.48 +/- 1.62 

Th17+IL-22  (% CD45) 0.39 +/- 0.16 1.32 +/- 0.74 3.01 +/- 1.12 

 

Th17 cytokines were equally produced within control, CRSsNP and 

CRSwNP mucosa and peripheral blood. 

There were no differences observed between the amounts of any cytokine produced, IL-

17A, IL-17F, IL-21 and IL-22 within control, CRSsNP or CRSwNP mucosa (Figure 

3.4A-C) or peripheral blood. Kruskal-Wallis (Figure 3.4D-F). 
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Figure 3.4. Percentage of IL-17A, IL-17F, IL-21, and IL-22 Th17 cells in control (A), 

CRSsNP (B) and CRSwNP (C) mucosa and control (D), CRSsNP (E) and CRSwNP (F) 

peripheral blood. Medians with interquartile range. p≤0.05 Kruskal-Wallis. 

 

Th17 cells produce less IL-21 in Allergic CRSwNP  

Allergic CRSwNP patients had decreased numbers of IL-21 producing Th17 cells 

compared to non-allergic CRSwNP. (1.69 +/- 0.57 vs 9.41+/-3.23) per mg of tissue 

respectively, Kruskal-Wallis p<0.05 (Figure 3.5). No differences were seen in CRSsNP 

patients or in the peripheral blood of any of the patient groups. 
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Figure 3.5. Percentage of IL-21n allergic vs non-allergic CRSwNP mucosa. 

Medians with interquartile range. p≤0.05 Kruskal-Wallis. 

 

3.5 Discussion 

This study for the first time demonstrates the cytokine production of Th17 cells in CRS. 

It supports our previous study where we showed an increase in Th17 cells in CRSwNP 

patients compared to CRSsNP and controls. By further defining the cytokines that these 

Th17 cells produce we were able to get a clearer picture of the complex immune 

microenvironment we see in CRSwNP patients. Th17 cells producing IL-17A were 

increased in CRSwNP patient polyps and peripheral blood compared to CRSsNP and 

controls. This IL-17A elevation in Th17 cells could account for the IL-17A abundance 

seen in CRSwNP patients in various studies.343,344 In Japanese populations CRSwNP 

increases in IL-17A cytokine production are correlated with eosinophil numbers.343,345 

A different cohort of Chinese patients has linked IL-17A abundance with elevated 
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releasing chemokines that can recruit neutrophils and fungicidal peptides.285,286 Most 

recently, dysregulated IL-17A production was also found to promote neutrophil 

infiltration resulting in the delay of wound healing and tissue repair in mouse models, 

and could account for the inflammation and airway remodelling seen in certain 

CRSwNP patient subtypes.346 IL-17F, although newly discovered and less studied, is 

very similar in structure to IL-17A and has a similar role.347 This is evident in the 

accumulation of neutrophils in allergic diseases with high IL-17A and IL-17F 

production.348 In our study, IL-17F, much like its IL-17A counterpart was increased in 

the polyps and peripheral blood of CRSwNP patients. Recently, however, in vivo 

studies of an induced model of colitis have shown that IL-17A and IL-17F can have 

differing roles. Mice deficient in IL-17F but not IL-17A have defective airway 

neutrophils in response to allergen challenge demonstrating an important functional 

difference in the IL-17F immune response which warrants further research.349 

Studies in CRS have reported increased levels of IL-21 mRNA and protein using 

ELISA in polyp tissues and peripheral blood. Our study adds to this research suggesting 

the increase may, in fact, be due to increases of IL-21 producing Th17 cells in 

CRSwNP patients.350 IL-21 regulates T and B lymphocyte survival, activation and 

proliferation and in-vitro IL-21 has been shown to have an effect on polyp B cell 

differentiation and IgG and IgA production.350-352 In our study, CRSwNP patients that 

were atopic had remarkably less IL-21 cytokine producing Th-17 cells as evidenced by 

flow cytometry compared to non-atopic CRSwNP. These results are in agreement with 

studies in allergic rhinitis: IL-21 administered at the time of antigen challenge in 

ovalbumin-induced mice reduces allergic symptoms and antigen-specific IgE levels.353 

Further to this, signaling through the IL-21 receptor mediates house dust mite airway 

hyper-responsiveness by enhancing Th2 cytokine production.354 There are 
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discrepancies, however, with other in vivo animal studies suggesting that IL-21 doesn’t 

affect airway remodeling.355 Further studies, focusing on airway remodeling in CRS 

will be needed to elucidate the role of the Th17 cytokine IL-21 in allergic patients.  

Few studies have investigated the role of IL-22 in CRS. Ramanthan et al confirmed the 

presence of the IL-22 receptor IL-21R1 on the surface of nasal epithelial cells and 

discovered lower receptor quantities in recalcitrant CRSwNP compared to CRSsNP and 

controls.356 This was confirmed by another study by Wang et al however, there are 

conflicting reports about cytokine IL-22 levels, with one study showing no statistical 

difference in IL-22 levels between patient groups and the other finding IL-22 was 

significantly higher in CRSsNP mucosa compared to controls.356,357 IL-22 is produced 

by activated T cells as well as innate lymphoid cells and innate immune cells. In our 

study, we show that Th17 derived IL-22 is increased in CRSwNP patients polyps and 

peripheral blood.358 The cytokine is a key mediator of mucosal host defence and 

protects against infections of extracellular antigens.359  IL-22 promotes keratinocyte 

migration and innate immune function as well as tissue repair. 360 Interestingly although 

IL-22 plays a protective role in mucosal diseases such as inflammatory bowel disease 

by enhancing barrier integrity of the intestinal tract, in other diseases such as psoriasis it 

has been eluded to synergise with proinflammatory cytokines and induce disease 

progression.361,362 It is evident that cytokines may have opposing effects in diverse 

tissue microenvironments and further functional studies are needed in order to see 

whether the Th-17 derived cytokines we see elevated in CRSwNP patients are in fact 

playing a protective or pathogenic role in CRS.  
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3.6 Conclusion 

In summary, although Th17 cells were increased in CRSwNP polyps and not in the 

periphery, Th17 derived cytokines IL-17A, IL-17F, IL21, and IL22 are higher in 

abundance in CRSwNP patient polyps and peripheral blood suggesting both a localised 

and systemic role in the disease process. Interestingly, atopic CRSwNP has decreased 

amounts of Th17 derived IL-21 in their polyps implying a potential protective role for 

IL-22 in CRSwNP allergic inflammation.  
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4.1 Abstract 

Background: Recent studies have demonstrated that B cells as well as their chemo-

attractants are elevated in the nasal mucosa of CRS with nasal polyposis (CRSwNP) 

patients. However, the presence of different effector B cell subsets in the mucosa and 

periphery of CRS patients is yet to be characterised.  

Objective: Here we sought to quantify naïve, plasmablasts, plasma and memory B-cells 

in mucosal tissue and peripheral blood of CRSwNP, CRS without nasal polyps 

(CRSsNP) and controls patients. 

Methods: Polyps, mucosa and peripheral blood samples were prospectively collected 

from CRS patients and non-CRS controls. We used flow cytometry to distinguish 

between naïve, plasmablast, plasma and memory B-cells in sinus tissue and peripheral 

blood. 

Results: A total of 45 patients were recruited to the study. CRSwNP patients had 

significantly increased mucosal B-cell numbers compared to controls (3.39 +/- 4.05 vs 

0.39 +/- 1.05 % of live cells respectively, Kruskal-Wallis p<0.01). This included naïve 

B-cells (0.61 +/- 0.94 vs 0.11 +/- 0.24 of live cells, Kruskal-Wallis p<0.03) 

plasmablasts (0.06 +/- 0.26 vs 0.00 +/- 0.00, Kruskal-Wallis p<0.055), and memory B 

cells (0.62 +/- 1.26 vs 0.05 +/- 0.15, Kruskal-Wallis p<0.02). Within the patient groups, 

plasma cells were the most frequent observed cell type.  

Conclusion: In summary, our study identified increased frequencies of different B-cell 

subtypes in CRSwNP patient mucosa but not in peripheral blood. We also found that 

CRSwNP patients had significantly increased B-cell subtypes than CRSsNP and 

controls. These results imply a potential role for mucosal B-cells in the ongoing 

inflammation in CRSwNP patients.  
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4.2 Introduction 

B cells play a fundamental role in the adaptive immune response at mucosal surfaces. 

Once activated, naïve B cells develop into antibody-secreting plasmablasts, plasma cells 

or memory B cells.234,363 The initial and rapid B cell antibody responses are dominated 

by plasmablasts located in the peripheral immune organs. They undergo clonal 

expansion which leads to the generation of large amounts of terminally differentiated 

short lived antibody producing plasmablast cells.364 These plasmablast cells are able to 

differentiate further into long lived plasma cells that continue to produce antibodies 

long-term and are capable of increased survival and circulation throughout the body.236 

Memory B cells are long surviving cells which, upon secondary encounter with the 

same antigen the naïve B cell was exposed to, respond at a faster rate and with a more 

robust antibody response.240,241 

 Chronic rhinosinusitis (CRS) is an inflammatory disease characterised by a unique 

inflammatory microenvironment. Recent studies have demonstrated that B cells as well 

as their chemo-attractants are elevated in the nasal mucosa of CRS with nasal polyposis 

(CRSwNP) patients.252,365 It is documented that CRSwNP patients contain elevated local IgE 

antibodies as well as autoantibodies in polyps, however, the study of B cell subsets in CRS is 

yet to be elucidated.365-367 Using flow cytometry, in this study, we identified naïve and effector 

B cell subsets in the mucosa and periphery of CRSwNP, CRS without nasal polyposis 

(CRSsNP) and non-CRS controls.  

 

4.3 Methods 

Patient Sample Collection 

This study was approved by the Human Research Ethics Committee of the Queen 

Elizabeth Hospital, Adelaide, Australia.  Representative tissue samples (polyps for 
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CRSwNP and ethmoid mucosa for CRSsNP and controls) and blood specimens were 

prospectively collected at the time of endoscopic sinus surgery from control, CRSsNP 

and CRSwNP. Control patients were undergoing endoscopic sinonasal procedures for 

pituitary tumour resections and were without clinical or radiological evidence of past or 

present sinus disease. CRS patients fulfilled the diagnostic criteria set out in the recent 

position papers by the American Academy of Otolaryngology and Head and Neck 

Surgery and the European Position Statement on Chronic Rhinosinusitis.1,315 Patients 

with CRS were further sub-classified according to the absence or presence of visible 

polyps present within the middle meatus on nasal endoscopy. Exclusion criteria 

included minors < 18 years of age, pregnancy, malignancy, immune disorders and the 

use of antibiotics or oral corticosteroids in the month preceding surgery. All patients 

provided informed written consent prior to enrollment. Patients were classified as atopic 

if they had positive RAST and/or skin prick testing. Demographic and clinical data was 

collected on all patients prior to the commencement of the study.  

Cell Preparation  

Tissue samples were washed and dissected into pieces ≤ 2mm before being prepared 

into a single cell suspension by enzymatic digestion with 2 mg/ml collagenase type II 

(Sigma-Aldrich, MO, USA) and 0.04 mg/ml DNAse I (Roche Applied Sciences, 

Vilvoorde, Belgium) for 45 min at 37°C. Cell suspensions were filtered through a 100 

µm nylon mesh and washed in PBS. Heparinized peripheral blood was lysed for 15 

minutes using Pharmlyse (Becton Dickinson Biosciences, San Jose, CA, USA). 

Flow Cytometric Immunophenotyping 

Cells were stained with Fixable Viability Dye eFluor® 780 (eBioscience, San Diego, 

CA, USA) at 4°C for 30 minutes to exclude dead cells before staining with the 

following antibodies listed in Table 4.1. Eight-colour flow cytometry was performed 
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using a gating strategy based on fluorescence minus one controls as specified in 

supplementary Figure 4.1. Naïve B cells were defined as CD19+CD27-IgD+; 

Plasmablasts were defined as CD19+CD27+IgD-CD38high; Plasma cells were defined 

as CD19-CD27+CD38+; Memory B cells were defined as CD19+CD27+ IgD-CD38-. 

 

Table 4.1. B cell flow cytometry antibodies  

Target Antigen Clone Conjugation 

CD3 UCHT1 PerCP-Cy5.5 

CD27 M-T271 BV421 

CD38 HIT2 PeCy7 

IgD IA6-2 BV510 

CD19 HIB19 APC 
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Figure 4.1. B cell gating strategy. Live cells were identified (A) and CD19+IgD+ (B) CD27- 

(C) cells gated to identify CD19+CD27-IgD+ Naïve B cells. CD19+CD27+ (D) cells identified 

and gated on IgD- CD38high and CD38- (E) to identify CD19+ CD27+IgD-

CD38high Plasmablasts and CD19+CD27+ IgD-CD38-. Memory B cells.  Plasma cells were 

gated on CD19- (F) and CD27+CD38+ (G).  

 

Statistical analysis 

The data were summarised using means with standard deviations and medians with 

range.  The Kruskal-Wallis test was used for the comparison of data from the three 

independent disease groups of patients. Mann-Whitney test was used for comparison of 

two independent disease groups. All tests were two-tailed and significance was assessed 

at the 5% alpha.  
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4.4 Results 

Patients 

Samples from a total 45 patients (16 CRSwNP, 16 CRSsNP and 13 controls) were used 

for this study. Patient demographic information is summarized in Table 4.2. 

Table 4.2. Patient demographics for B cell study  

  Controls CRSsNP CRSwNP 

Number 13 16 16 

Median Age (IQR) 63 (49-68) 40 (35-60) 63 (45-68) 

Male/Female 5/8 9/7 11/5 

Asthmatic/non-

asthmatic 

2/11 4/12 5/11 

Allergic/non-allergic 4/9 4/12 8/8 

Previous ESS: 0/1/≥ 2 N/A 6/5/5 9/5/2 

 

B cells are increased in CRSwNP mucosa 

CRSwNP patients had significantly more CD19+ B-cells in their sinus mucosal polyps 

compared to controls (11.9 fold increase, 3.39 +/- 4.05 vs 0.39 +/- 1.05 % of live cells 

respectively Kruskal-Wallis p<0.01) (Figure 4.2). Further sub-classification of total 

CD19+ B-cell numbers showed that all B-cell subtypes were significantly increased in 

CRSwNP patient tissue compared to controls. This included CD19+CD27-IgD+ naïve 

B cells (13.3 fold increase, 0.61 +/- 0.94 vs 0.11 +/- 0.24 of live cells respectively, 

Kruskal-Wallis p<0.03) (Figure 4.3A), CD19+CD27+CD38highIgD+ plasmablasts 
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(1000 fold increase, 0.06 +/- 0.26 vs 0.00 +/- 0.00 respectively, Kruskal-Wallis 

p<0.055) (Figure 4.3B), CD19+CD27+CD38-IgD- memory B cells (1000 fold increase, 

0.62 +/- 1.26 vs 0.05 +/- 0.15 respectively, Kruskal-Wallis p<0.02) (Figure 4.3C) in 

CRSwNP patients compared to controls. No differences were seen in plasma cell 

numbers across the patient groups (Figure 4.3D). No differences were seen in CD19+ 

cell numbers or B cell subtypes in the peripheral blood of the different patient groups 

(Figure 4.4). 

 

 

Figure 4.2. Percentage of CD19+ cells out of total live cell numbers in controls, CRSsNP 

and CRSwNP mucosa. Medians with interquartile range. p≤0.05 Kruskal-Wallis. 
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Figure 4.3. Percentage of Naïve B cells (A), Plasmablasts (B), Memory B cells (C) and 

Plasma cells (D) out of total live cell numbers in controls, CRSsNP and CRSwNP mucosa. 

Medians with interquartile range. p≤0.05 Kruskal-Wallis. 
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Figure 4.4. Percentage of Naïve B cells (A), Plasmablasts (B), Memory B cells (C) and 

Plasma cells (D) out of total live cell numbers in controls, CRSsNP and CRSwNP 

peripheral blood. Medians with interquartile range. p≤0.05 Kruskal-Wallis.  

 

Plasma cells are the most abundant B cell type in mucosa and CRSwNP 

peripheral blood. 

In all tissue samples from control, CRSsNP, and CRSwNP patients, plasma cells were 

the most abundant cell type followed by naïve B cells (Figure 4.5). 

In the peripheral blood of control and CRSsNP patients there were more naïve cells 

than plasmablasts and memory B cells (25.4 and 3.4 fold more naïve cells in control 

and 21.8 and 8.01 fold more in CRSsNP respectively) (Figure 4.6A-B). In the 

peripheral blood of CRSwNP patients there were more plasma cells than plasmablasts 

and memory B-cells. (25.4 and 27.1 fold increase respectively) (Figure 4.6C) 
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Figure 4.5. Percentage of Naïve B cells, Plasmablasts, Memory B cells, and Plasma cells 

out of total live cell numbers in controls (A), CRSsNP (B) and CRSwNP (C) mucosa. 

Medians with interquartile range. p≤0.05 Kruskal-Wallis. 

 

Figure 4.6. Percentage of Naïve B cells, Plasmablasts, Memory B cells, and Plasma cells 

out of total live cell numbers in controls (A), CRSsNP (B) and CRSwNP (C) peripheral 

blood. Medians with interquartile range. p≤0.05 Kruskal-Wallis. 

 

4.5 Discussion 

CRS is an inflammatory condition characterised in part by a dysregulated adaptive 

immune response. Earlier studies using flow cytometry and immunohistochemistry 

have found increased mucosal B cell numbers in CRSwNP patients.252,253,368 Utilizing 

flow cytometry and a combination of lineage markers, we further defined B-cell subsets 

in CRS patients and showed increased numbers of naïve B-cells, plasmablasts and 
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memory B-cells in CRSwNP tissue but not in peripheral blood. This is in support of 

studies by Psaltis et al that showed an increase in total B cell numbers as well as 

different B cell subpopulations in CRSwNP tissue compared to controls.253 In addition, 

the B cell cytokine B cell Activating Factor (BAFF), important in B cell IgG class 

switching, and its receptor Transmembrane Activator And CAML Interactor (TACI, 

alias TNFRSF13B), required for the survival of activated B cells and plasmablasts in 

vitro, are found elevated in CRSwNP compared to healthy subjects.365,369  

We observed that plasma cells were the most abundant cell type compared to other B-

cells in the CRSwNP mucosa, however, although elevated, we didn’t find any 

statistically significant differences in plasma cell numbers between patient groups. 

Other studies show that CRSwNP patients harbor an increased number of plasma cells 

as well as increased concentrations of immunoglobulins IgA, IgG and IgE within the 

polyps but not in the blood.55,252,253,370 These discrepancies on the number of plasma 

cells between the different studies could be due to the different methods used. For 

example, Hulse et al cultured their biopsies for four days and used CD138+ to 

characterize plasma cells unlike our use of fresh biopsies and the use of CD19-

CD27+CD38+ markers.252  

Most recently, a study investigating B cells in non-atopic CRSsNP patients found an 

influx of IgE-expressing plasmablasts present in the mucosa that were virtually absent 

in control tissue or peripheral blood.371 Our study also demonstrates that plasmablasts 

are increased in numbers within CRSsNP and CRSwNP tissue further indicating the 

presence of an ongoing active immune response in these patients. The accumulation of 

BAFF as well as the elevation of plasma and plasmablast cells in CRSwNP patients 

supports the theory of a secondary lymphoid microenvironment, which favours the 

activation of naïve B cells in polyp patients.372  
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Although effector B cell presence and antibody production has historically thought to 

be protective, studies have shown that the accumulation of antibodies such as IgA and 

IgG results in the accumulation and degranulation of eosinophils, one of the main 

factors associated with polyp formation.373-375  Together, our finding of increased B cell 

subtypes in the tissue but not in the blood of CRSwNP patients supports the hypothesis 

that there is a local immune microenvironment within the chronically inflamed 

sinonasal mucosa that contributes to the ongoing inflammation in CRS, and potentially 

to polyp formation.  

4.6 Conclusion 

In summary, our study identified increased frequencies of different B-cell subtypes in 

CRSwNP patient mucosa but not in peripheral blood. In CRSwNP we also found 

plasma cells were the most abundant effector B cell. These results imply a potential role 

for B cells in the chronic inflammation in CRSwNP patients. 
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Chapter 5: Discordant frequencies of tissue-resident and 

circulating CD180-negative B cells in chronic rhinosinusitis 
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5.1 Abstract 

Background: The unconventional Toll Like Receptor (TLR) CD180 is implicated in 

chronic inflammatory diseases, however, its role in chronic rhinosinusitis (CRS) has yet 

to be investigated. Here we study the expression of CD180, its homologue TLR4 and 

Myeloid Differentiation factor MD1 on mucosal and systemic immune cell populations 

in relation to serum IgG levels.    

Methods: A total of 70 patients were recruited to the study. Mucosal and peripheral 

blood samples were prospectively collected from CRS patients and non-CRS controls 

without evidence of sinus disease. The expression of TLR4, MD1 and CD180 was 

investigated using qRT-PCR, immunohistochemistry and flow cytometry. Serum IgG 

levels were determined using ELISA.  

Results: CRS with nasal polyp (CRSwNP) patients had significantly increased mRNA 

expression of CD180 and MD1 compared to controls (5.54 and 2.1fold respectively, 

P<0.01). B-cells lacking CD180 were lower in CRSwNP tissue compared to CRSsNP 

and controls (21.07 +/- 6.41 vs 41.61 +/- 7.82 vs 40.06 +/- 8.06, P<0.01) but higher in 

blood (39.18 +/- 8.3 vs 17.95 +/- 7.82 and 12.49 +/- 4.92, P≤0.05).  

Conclusion: Changes in mucosal and peripheral CD180 expressing B-cells were 

identified in CRSwNP patients compared to CRSsNP and controls. This suggests a role 

for these cells in the dysregulated immune response in these patients. 

  



101 
 

5.2 Introduction 

Toll like receptors (TLRs) play a critical role in the initial activation of the innate 

immune system and in the promotion of adaptive immunity. They represent a group of 

pattern recognition receptors responsible for sensing highly conserved microbial 

motifs.66,67 Of the 10 human TLRs, TLR4 was the first to be identified.376 By forming a 

heterodimer with the secreted protein Myeloid Differentiation factor 2 (MD2), TLR4 is 

responsible for the recognition of lipopolysaccharide (LPS), a component of the gram-

negative bacterial outer membrane.80 CD180 (alias RP105/LY64) is an orphan member 

of the TLR family with a role in B-cell activation and is most closely related to 

TLR4.104 Containing conserved extracellular leucine-rich repeat (LRR) domains, 

CD180 acts similarly to TLR4 in its dependency on another molecule for its membrane 

localisation and signalling, Myeloid Differentiation factor 1 (MD1).105 Unlike TLR4 

and other TLRs, CD180 lacks a cytoplasmic Toll/ interleukin-1 (IL-1) receptor (TIR) 

domain, which is a key signaling domain unique to the TLR system. Regardless, 

CD180-ligation initiates a B-cell Receptor (BCR)-like signaling cascade that is 

independent from TLR signaling adaptors and induces affinity maturation and antibody 

responses that are partially T cell independent.377,378  

CD180 is found most abundantly on immune cells, including B-cells, dendritic cells and 

macrophages, and, as such, has been implicated mainly in diseases involving 

dysregulation of the immune system.105 CD180 ligation leads to internalization of 

CD180 and potent antigen-specific IgG responses.378 B cells lacking CD180 surface 

expression are elevated in the peripheral blood of patients with autoimmune diseases 

including Sjögren syndrome and dermatomyositis.110,111 In patients with SLE, CD180 

negative B cells have been associated with disease activity and IgG production 
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suggesting that these cells represent pathogenic, and possibly autoreactive, B cell 

subsets.108  

Chronic rhinosinusitis (CRS) is considered an inflammatory disease with a dysregulated 

immune response. Of the 10 human TLRs, TLR2, TLR3, TLR4 and TLR9 have been 

shown to be expressed in airway epithelium and may play a contributing role to the 

development of CRS.1  Previous studies have demonstrated that B cells are elevated in 

the nasal mucosa of CRSwNP patients252 however, the expression and localisation of 

CD180 within the sinonasal mucosa is yet to be identified. Here we sought out to 

identify whether CD180 was expressed in nasal tissue and investigate the local and 

systemic populations of immune cells expressing TLR4MD1 and CD180 in relation to 

IgG levels in serum.    

5.3 Methods 

Patient Sample Collection 

This study was approved by the Human Research Ethics Committee of the Queen 

Elizabeth Hospital, Adelaide, Australia. Tissue samples and blood specimens were 

prospectively collected at the time of endoscopic sinus surgery from control, CRS 

without nasal polyps (CRSsNP) and CRS with nasal polyp patients (CRSwNP). Control 

patients were undergoing endoscopic sinonasal procedures without clinical or 

radiological evidence of sinonasal disease. CRS patients were patients who fulfilled the 

diagnostic criteria set out in the recent position papers by the American Academy of 

Otolaryngology and Head and Neck Surgery and the European Position Statement on 

Chronic Rhinosinusitis.1,315 Patients with CRS were further sub-classified according to 

the absence or presence of visible polyps present within the middle meatus on nasal 

endoscopy. Exclusion criteria included minors < 18 years, pregnancy, malignancy, 
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immune disorders and the use of antibiotics or oral corticosteroids in the month 

preceding surgery. All patients provided informed written consent prior to enrollment. 

Patients were classified as atopic if they had positive RAST and/or skin prick testing. 

Demographic and clinical data was collected on all patients prior to the commencement 

of the study. 

Cell Preparation  

Tissue samples were washed and dissected into pieces ≤ 2mm before being prepared 

into a single cell suspension by enzymatic digestion with 2 mg/ml collagenase type II 

(Sigma-Aldrich, MO, USA) and 0.04 mg/ml DNAse I (Roche Applied Sciences, 

Vilvoorde, Belgium) for 45 min at 37°C. Cell suspensions were filtered through a 100 

µm nylon mesh and washed in PBS. Heparinized peripheral blood was lysed for 15 

minutes using Pharmlyse (Becton Dickinson Biosciences, San Jose, CA, USA). 

Flow Cytometric Immunophenotyping 

Cells were stained with Fixable Viability Dye eFluor® 780 (eBioscience, San Diego, 

CA, USA) at 4°C for 30 minutes to exclude dead cells before staining with the 

following antibodies listed in Table 5.1 as per manufacturer recommendations. Eight-

colour flow cytometry was performed using a gating strategy based on fluorescence 

minus one controls as specified in Figures 5.1 and 5.2 (for B-cells). B-cells were 

defined CD19+, dendritic cells CD11c+CD14+ and epithelial cells cytokeratin+. Naïve 

B cells were defined as CD19+CD27-IgD+. Plasmablasts were defined as CD19+ 

CD27+IgD-CD38high. Memory B cells were defined as CD19+CD27+ IgD-CD38-. 
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Table 5.1. B cell and CD180 flow cytometry antibodies  

Target Antigen Clone Conjugation 

MD2 18H10 FITC 

TLR4 HTA125 AF488 

CD180 G28-8 PE 

CD19 SJ25C1 APC-Cy7 

Cytokeratin C11 APC 

CD14 MφP9 PerCP 

CD11c B-ly6 PE-Cy7 

CD3 UCHT1 PerCP-Cy5.5 

CD27 M-T271 BV421 

CD38 HIT2 PeCy7 

IgD IA6-2 BV510 

TLR4 HTA125 AF488 

CD180 G28-8 PE 

CD19 HIB19 APC 
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Figure 5.1. B cell CD180 Gating strategy. Live cells were identified (A) and CD19+IgD+ (B) 

CD27- (C) cells gated to identify CD19+CD27-IgD+ Naïve B cells. CD19+CD27+ (D) cells 

identified and gated on IgD- CD38high and CD38- (E) to identify CD19+ CD27+IgD-

CD38high Plasmablasts and CD19+CD27+ IgD-CD38-. Memory B cells.  CD180 expression 

then gated on per cell type (F). 

 

Figure 5.2. Gating strategy for CD180 PE expressing B-cells shown for control (A), 

CRSsNP (B), and CRSwNP (C) mucosa. 
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mRNA expression analysis 

Nasal mucosa (for control and CRSsNP patients) and polyps (for CRSwNP patients) 

were collected intra-operatively. The specimens were stored in RNALater at -80°C 

prior RNA extraction. Total RNA extraction was performed using the RNeasy Lipid 

Tissue Mini Kit (74106, Qiagen, Hilden, Germany) as per manufacturer’s instruction.  

Complementary DNA (cDNA) synthesis was performed using the QuantiTect Reverse 

Transcription kit (205313, Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. TaqMan real-time PCR assays (Thermo Fisher Scientific, Massachusetts, 

USA) MD-1 (Hs00169454_m1), CD180 (Hs00194403_m1) and TLR4 

(Hs00152939_m1) were used. The cDNA was pre-amplified with pooled Taqman gene 

expression assays for 16 cycles of 95°C for 15 sec and 60°C for 4 min. The pre-

amplified cDNA and Taqman gene assays were prepared as per Fluidigm BioMark HD 

System Protocol (Fluidigm Corporation, CA, USA). Both samples and assays were 

loaded on to a 48.48 Dynamic Array chip (BMK-M-48.48, Fluidigm Corporation, CA, 

USA) and primed into the matrix using IFC Controller MX (Fluidigm Corporation, CA, 

USA). Real-time PCR was conducted using Biomark HD Platform (Fluidigm 

Corporation, CA, USA) and programmed as follows: 95°C for 1 min and 35 cycles of 

96° C for 5 sec and 60°C for 20 sec. Data acquisition and analysis was performed using 

Fluidigm Real-Time PCR Analysis Software v4.1.2 (Fluidigm Corporation, CA, USA). 

Delta-cycle threshold (ΔCt) values were calculated in reference to an endogenous 

control gene, hypoxanthine phophoribosyltranferase (HPRT) 1. Delta-ΔCt (ΔΔCt) 

values for CRSsNP and CRSwNP patients were normalised to non-CRS controls. All 

gene expression data was presented as fold ratio (2-ΔΔCt).  
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ELISA 

Serum IgG levels were determined using a Ready SET Go ELISA kit according to the 

manufacturer’s instructions (ABCAM, Cambridge, UK). Results were expressed in 

pg/ml. 

Immunohistochemistry 

Formalin-fixed paraffin-embedded tissue blocks were sectioned in 4µm thickness. 

Slides were de-paraffinized and serially rehydrated. Antigen retrieval was performed by 

submerging the slides in sodium citrate buffer (10 mM sodium citrate, 0.05% Tween 

20, pH 6.0) in a pressure cooker for 10 minutes. After cooling at room temperature 

(RT), tissue sections were incubated in 3% H2O2 for 10 minutes to block endogenous 

peroxidases. Sections were then sequentially blocked in 2.5% normal horse serum for 

10 minutes, then incubated in a humidified chamber with antibodies targeting CD20 

(1:20, ab9475, ABCAM, Cambridge, UK) and CD180 (1:100, ab12627, ABCAM, 

Cambridge, UK) at 4⁰C overnight. Slides were incubated with 1:200 diluted secondary 

anti-rabbit AF488 and anti-mouse CY3 antibodies (Jackson ImmunoResearch Labs 

Inc., West Grove, PA, USA) for 1 hour at RT in the dark. 200 ng/mL of DAPI (Sigma-

Aldrich, MO, USA) was added to resolve nuclei. Slides were mounted and visualized 

by using a LSM700 confocal laser scanning microscope (Zeiss Microscopy, Germany). 

Statistical analysis 

The data were summarised using means with standard deviations and medians with 

range. Pearson's correlation coefficient was used to describe associations 

between CD180 negative B cells and IgG levels. The Kruskal-Wallis test was used to 

assess the effect of patient groups on CD180 negative B cells; post hoc 

comparisons were made using the Mann-Whitney test. One-way ANOVA and Games-

Howell post hoc analysis used to analyse gene expression data using IBM SPSS 
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Statistics, Version 23.0 (IBM Corp., Armonk, NY, USA).  All tests were two-tailed and 

significance was assessed at the 5% alpha.  
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5.4 Results 

Patients 

Samples from a total of 70 patients were used for the flow cytometry study. These 

included samples from 25 patients (9 CRSwNP, 12 CRSsNP and 4 controls) to 

determine CD180 expression on B cells, dendritic cells and epithelial cells, and samples 

from a further 45 patients (16 CRSwNP, 16 CRSsNP and 13 controls) to phenotype 

CD180-expressing B cells. Patient demographic information is summarized in Tables 

5.2 and 5.3. For the gene expression analysis, a total of 45 patients were included (21 

CRSwNP patients, 17 CRSsNP patients and 7 controls). 

Table 5.2. Patient demographics CD180 expression on B cells, dendritic cells and 

epithelial cells 

  Controls CRSsNP CRSwNP 

Number 4 12 9 

Median Age (IQR) 61 (43-72) 51 (46-64) 52 (47-67) 

Male/Female 2/2 9/3 7/2 

Asthmatic/non-

asthmatic 

0/4 3/9 5/4 

Allergic/non-allergic 1/3 6/6 5/4 

Previous ESS: 0/1/≥ 2 N/A 7/3/2 5/2/2 
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Table 5.3. Patient demographics CD180 on B cells 

  Controls CRSsNP CRSwNP 

Number 13 16 16 

Median Age (IQR) 63 (49-68) 40 (35-60) 63 (45-68) 

Male/Female 5/8 9/7 11/5 

Asthmatic/non-

asthmatic 

2/11 4/12 5/11 

Allergic/non-allergic 4/9 4/12 8/8 

Previous ESS: 0/1/≥ 2 N/A 6/5/5 9/5/2 

 

Increased mRNA expression levels of CD180 andMD1 in CRSwNP patients 

We first determined whether there were differences in CD180 expression in the nasal 

mucosa of our different patient groups. In CRSwNP patients, there was a significant 

increase in the mRNA expression of`CD180 and MD1 in CRSwNP compared to control 

mucosa (5.54 and 2.1fold respectively, Kruskal-Wallis p≤0.005). No difference was 

observed in TLR4 expression. A comparison of the fold-changes between CRSwNP and 

CRSsNP relative to controls is shown in Figure 5.3. 
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Figure 5.3. Graph showing the relative mRNA expression of MD1 and CD180 in control, 

CRSsNP and CRSwNP patient sinonasal mucosa, normalised to an endogenous control 

gene (HPRT1). Error bars indicate SD.  

 

Immunofluorescence shows CD180+ and CD180- B cells within CRSwNP 

tissue 

We next used immunofluorescence analysis to determine the localisation of CD180 

expressing cells within the nasal tissue. CD180 expression was detected in immune 

cells within the submucosa. Co-staining with the B-cell marker CD20 showed that 

CD180 was expressed in some, but not all B-cells (Figure 5.4).  
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Figure 5.4. Representative image of B-cells (CD20-antibody, red staining) and CD180+ 

cells (green staining) in CRSwNP tissue. Arrow represents co-localisation of CD20 and 

CD180 in inlet (2x enlarged). Scale is 50um. 

 

CRSwNP patients show increased numbers of CD180+CD19+ B-cells and 

CD180+CD14+CD11c+ dendritic cells. 

We next quantified the levels of CD180-expressing cells in nasal mucosa. Flow 

cytometry showed that CRSwNP patients had significantly more CD180 expressing 

cells compared to CRSsNP and controls (Figure 5.5A). There were significantly more 

CD180+CD19+ B-cells in both CRSwNP (2.1 fold increase) and CRSsNP (1.6 fold 

increase) vs control (Figure 5.5B) and more CD180+CD14+CD11c+ dendritic cells in 

CRSwNP (2.2 fold increase) compared to CRSsNP patients (Figure 5.5C). In contrast, 

CD180+cytokeratin+ epithelial cells were less frequent in CRSwNP compared to 

CRSsNP and controls (Figure 5.5D). Table 5.4 details cell frequencies for controls, 

CRSsNP and CRSwNP patients for each of these cell types. There were no differences 

observed in the total, or relative, expression of MD1,and TLR4 in any of the cell types.  

A B A B 
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Figure 5.5. Percentage of CD180+ cells out of total live cell numbers in controls, CRSsNP 

and CRSwNP sinonasal mucosa (A). Percentage of CD180+ CD19+ B-cells (B), 

CD14+CD11c+ dendritic cells (C) cytokeratin+ epithelial cells (D) in controls, CRSsNP 

and CRSwNP. Medians with interquartile range. p≤0.05 Kruskal-Wallis. 
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Table 5.4. Flow cytometry analysis of CD180 expression on CD19+, CD14+CD11c+ 

and cytokeratin+ cells in in mucosa (Kruskal-Wallis mean +/- SEM) 

 Controls CRSsNP CRSwNP p value 

CD180+ cells  

(%live cells) 

0.98+/- 0.33 0.76 +/- 0.21 2.42 +/- 0.58 p≤0.01 

CD180+CD19+ 

(%CD180) 

25.43 +/- 3.36 41.94 +/- 4.964 53.36 +/- 5.92 p≤0.05 

CD180+CD14+CD11c+ 

(%CD180) 

5.37 +/- 1.46 5.30 +/- 1.33 12.00 +/- 2.46 p≤0.05 

CD180+cytokeratin+ 

(%CD180) 

12.45 +/- 3.30 7.94 +/- 1.59 3.93 +/- 1.18 p≤0.05 

 

B cells lacking CD180  

B cells lacking CD180 surface expression were decreased in CRSwNP mucosa 

compared to CRSsNP and controls (1.9 fold). In contrast, in the peripheral blood, 

CD180 negative B cells were elevated in CRSwNP patients compared to CRSsNP 

patients and controls (3.1 fold) (Figure 5.6A-B).  Cell numbers for each of these patient 

groups for CD180 negative cells are shown in Table 5.5. B cells lacking the CD180 

receptor were most likely to be naïve B cells in control mucosa and plasmablasts in 

CRSsNP and in CRSwNP mucosa, although this was only statistically significant for 

the control and CRSwNP group. (Figure 5.7A-C) Table 5.6 details cell numbers for 

each of the patient subgroups. 

In the peripheral blood there was an even spread of CD80 negative CD19+ cells on the 

naïve, plasmablast and memory B cells. (Figure 5.7D-F) There was a positive 
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correlation between peripheral blood B cells lacking the CD180 receptor and serum IgG 

levels in all groups (control r = 0.36, CRSsNP r = 0.33 and CRSwNP r = 0.17) 

 

Figure 5.6. Percentage of CD180- B cells in mucosa (A) and blood (B) in controls, CRSsNP 

and CRSwNP. Medians with interquartile range. p≤0.05 Kruskal-Wallis. 
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Table 5.5. Flow cytometry analysis of CD180 expression on B cells in mucosa and 

blood* (Kruskal-Wallis mean +/- SEM) 

 Controls CRSsNP CRSwNP p value 

CD19+ B-cell  

(%live cells) 

0.58+/- 0.29 0.89 +/- 0.29 3.82 +/- 1.35 p≤0.01 

Memory B cells 

(%live cells) 

0.05 +/- 0.04 0.12 +/- 0.09 0.68 +/- 0.39 p≤0.05 

Plasmablast cells 

(%live cells) 

0.01 +/- 0.00 0.01 +/- 0.00 0.11 +/- 0.07 p≤0.05 

Naïve B cells  

(%live cells) 

0.11 +/- 0.07 0.19 +/- 0.10 0.61 +/- 0.23 p≤0.05 

CD180 negative B-

cell+ (% B-cell) 

40.06 +/- 8.06 41.61 +/- 7.82 21.07 +/- 6.41 p≤0.01 

CD180 negative B-

cell+ (%B-cell)* 

12.49 +/- 4.92 17.95 +/- 7.82 39.18 +/- 8.3 p≤0.05 
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Table 5.6. Flow cytometry analysis of CD180 negative B cell subtypes in mucosa 

(Kruskal-Wallis mean +/- SEM) 

 Naïve B cells 

(%live cells) 

Plasmablasts 

(%live cells) 

Memory B cells 

(%live cells) 

p value 

Controls 21.35 +/- 7.04 11.10 +/- 11.10 3.64 +/- 2.77 p≤0.05 

CRSsNP 26.26 +/- 6.85 57.93 +/- 15.55 12.32 +/- 3.91 p>0.05 

CRSwNP 14.09 +/- 3.86 43.94 +/- 11.43 8.62 +/- 2.91 p≤0.05 

 

 

Figure 5.7. Percentage of Naïve B-cells, Plasmablasts and Memory B cells lacking the CD180 

receptor in control (A), CRSsNP (B) and CRSwNP (C) mucosa. Percentage of Naïve B-cells, 

Plasmablasts and Memory B cells in control (D), CRSsNP (E) and CRSwNP (F) blood. 

Medians with interquartile range. p≤0.05 Kruskal-Wallis.  
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5.5 Discussion 

The innate immune system, through conventional and unconventional TLRs, plays a 

critical role in the initiation and maintenance of inflammatory diseases. The 

unconventional TLR CD180 has largely been studied as a B-cell receptor, but it is 

expressed by a wide variety of cells including monocytes, macrophages, dendritic and 

epithelial cells.379 Our study aligns with these findings and confirms that CD180 is 

expressed mainly on B-cells, but also on dendritic cells and epithelial cells within the 

sinonasal mucosa. CD180 is critically involved in the host immune response to 

infection by modulating the activity of TLR2 and TLR4.380,381 Consequently, aberrant 

expression of CD180 has detrimental effects on establishing immune responses 

particularly to infections with pathogens that are sensed by TLR2 and TLR4. This is 

exemplified in CD180-/- mice that are shown to be impaired in their ability to control 

low-grade Mycobacterium tuberculosis infections, which are dependent on TLR2 

sensing for immune response induction.380 Staphylococcus aureus infections, which are 

potentially involved in CRS disease recalcitrance382,383, also activate immune cells 

mainly through TLR2 sensing, and it has been shown that the concerted action of 

TLR2, TLR4 and CD180 is required to shape the inflammatory response against S. 

aureus infections.384,385  

In B-cells, CD180 activation leads to receptor internalisation and signalling resulting in 

B cell proliferation and activation.386 Our data indeed shows that CD180 is expressed 

on all B-cell subtypes and that those subtypes, in particular plasmablasts, are increased 

in number in CRSwNP tissue. This suggests that there is an ongoing recruitment of 

naïve B-cells into the tissue in CRS accompanied by an ongoing activation of those 

cells into plasmablasts in association with elevated CD180 expression in those cells.  
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Our study also shows that CD19+ B cells lacking CD180 surface expression are 

decreased in CRSwNP tissue but increased in the systemic circulation compared to 

CRSsNP and controls. When investigating B cell sub-populations we found that these 

mucosal CD180 negative B cells were mainly plasmablasts in CRSwNP and CRSsNP 

tissue, whereas CD180 was uniformly expressed in the different B-cell subtypes in the 

periphery. Since CD180 activation leads to receptor internalisation and signalling, it 

could be postulated that the reduced surface expression of CD180 in blood B-cells in 

CRSwNP patients reflects B-cell activation. A lack of CD180 receptor expression on a 

significant proportion of circulating B cells has been found in autoimmune syndromes 

including SLE, dermatomyositis and Sjögren’s syndrome 387 and is positively correlated 

with severity of disease and levels of autoantibodies in SLE patients.108 In addition, 

injection of activating anti-CD180 mAb into mice has been shown to result in intrinsic 

B-cell proliferation and differentiation, accompanied by rapid increases in IgG levels.388 

Whilst we did not identify differences in total systemic IgG levels between CRS 

patients and controls as reported by others 389, our study did find a moderate positive 

correlation of peripheral CD180 negative B-cell numbers with total IgG amounts in 

serum. Further research is needed to determine whether CD180 negative blood B cells 

in CRSwNP reflect disease activity and may account for increased IgG amounts in 

those patients.  

5.6 Conclusion 

In summary, our study identified decreased tissue resident CD180 negative B-cells in 

CRSwNP patients compared to CRSsNP and controls. In contrast, CD180 negative B 

cells were elevated in CRSwNP blood compared to CRSsNP and controls. These results 

imply a potential role for CD180 B cells in the antibody-mediated immunity in 

CRSwNP patients.  
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Chapter 6: Discussion  

CRS is considered a multifactorial inflammatory condition of heterogeneous nature. It 

is broadly subcategorised into two types based on the absence and presence of nasal 

polyps visualised in the middle meatus.53 Although broad, this definition has been 

useful in a clinical setting.390 In Western countries CRSwNP have been thought to be an 

eosinophilic driven Th2 disease which is steroid responsive and has hence been able to 

guide therapy.56,391 In the past, clinical subtypes of CRS have been considered including 

allergic fungal rhinosinusitis and eosinophilic mucus chronic rhinosinusitis.392,393 The 

emergence of studies in non-Western populations reporting a wide spectrum of 

immunologic disease profiles such as the involvement of both Th1 and Th2 subtypes in 

CRSwNP, historically believed to be a Th2 type driven disease, further warranted the 

need to look at CRS subtypes perhaps not only from a clinical perspective but from an 

immune perspective as well.56 We raised the question as to whether or not the proposed 

classification system was an over simplification and that CRSsNP and CRSwNP in fact 

only represent two extremes of phenotype along a broader spectrum of 

immunologically different disease processes. To investigate this, we examined the local 

and systemic populations of different adaptive and innate immune cells in the tissue and 

blood of CRSsNP and CRSwNP patients. Furthermore, we examined tissue with 

different degrees of polypoid changes in the same patient. 

Our results showed that the cellular infiltrate between the non-polypoid mucosa of 

patient categories were shown to be similar in CRSwNP, CRSsNP and control groups. 

Differences were most apparent within the CRSwNP group. CRSwNP polypoid lesions 

had an abundance of mast cells and natural killer cells compared to non-polypoid 

mucosa. Polyps also had an abundance of mast cells and natural killer cells compared to 
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non-polypoid mucosa and in addition they also had significantly more eosinophils, 

macrophages and TCR gamma delta T cells compared to non-polypoid mucosa. Our 

study supports other studies that have found an increase in eosinophils and 

macrophages when comparing nasal polyp tissue to mucosa in CRSwNP patients334-337. 

The accumulation of inflammatory cells in polyps is thought to be a part of the disease 

process and accounts for the persistent inflammation seen in these patients. Interestingly 

our study showed no difference between the cellular infiltrate of polypoid vs polyp 

tissue in CRSsNP patients.  This finding together with the reports that polyps differ in 

terms of inflammatory infiltrate to non-polypoid mucosa in CRSwNP patients suggests 

that care must be taken when sampling tissue from CRSwNP patients. The CRS patient 

classification based on the standardised European position paper guidelines to group 

CRSwNP patients and CRSsNP patients classifies the polyp not only from an 

anatomical perspective but one that is distinct in immune cell abundance as well.1   

With this knowledge, we next evaluated the presence of adaptive immune cells in CRS 

by sampling mucosa from controls and CRSsNP patients and polyps from CRSwNP 

patients. CRSwNP has been characterised by a dysregulation of T cells, including Tregs 

298,299,316-319. Tregs are involved in suppressive functions that lead to a down regulation 

in Th1 responses and cellular cytotoxicity.320,321 Our study found an increased number 

of Tregs in CRSwNP compared to CRSsNP suggesting that they play a role in the 

impaired immunity in patients with polyps. Excessive suppression of Th1 and cytotoxic 

cells results in a defect in the immune defence against pathogens and could contribute 

to the ongoing inflammation, accounting for the excessive inflammatory state in these 

polyp patients. 309  Our findings support those previously published studies by Sharma 

et al. who reported the mucosa of CRSwNP patients have a higher proportion of Tregs 

compared to CRSsNP patients 308. Pant et al have also reported an increase in Tregs in 
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CRS mucosa compared to controls although they did not observe a difference between 

CRSsNP and CRSwNP subgroups319. Other studies investigating the role of Tregs have 

however, reported a decrease in CRSwNP compared to CRSsNP and control subjects 

which is contradictory to our results,298,299,316 In these studies they determined Tregs 

using either Foxp3 mRNA expression or protein levels as measured by 

Immunohistochemistry (IHC). 317,322 We defined Tregs using flow cytometry as 

CD45+CD4+CD25+CD123low, which is reportedly a more specific natural Treg 

population with suppressor capabilities323.  Furthermore this is one of the largest studies 

using a Caucasian cohort, and differences in inflammatory cell accumulation in nasal 

polyps have been reported to be affected by ethnicity.56,298 

We for the first time using flow cytometry examined resident Th17 cells in the mucosa 

based on cell surface expression of CD45+CD4+CCR6+. We reported that Th17 cells 

were increased in CRSwNP compared to CRSsNP. This was able to settle some 

discrepancies found in other studies that reported increases in Th17 in CRSwNP 

defined by IL-17 mRNA expression 324, in CRSwNP 300  and IL-17 protein ,318,325-327 

and those that found similar Th17 amounts in CRSwNP and CRSsNP.328 Even though 

IL-17 is a key cytokine of Th17 cells, it has recently been shown to be non-specific to 

Th17 cells, also being produced by gamma delta T cells, lymphoid tissue inducer cells, 

natural killer cells and macrophages.225,329-331 Thus it is not a specific marker for the 

Th17 cell population and could be the reason for differing reports in Th17 cell 

abundance in CRS. In our study we did not employ surrogate indicators of Th17 

presence but rather defined Th17 cells using the expression of their specific cell surface 

marker CCR6+. This surface marker is uniquely expressed on Th17 cells.328 Th17 cells 

have been shown to increase the amount of neutrophils as well as eosinophils to areas 

of inflammation and even account for the inflammatory lesions in ulcerative 
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colitis.332,333 This increase in Th17 cells we found may be one of the factors driving 

polyp formation and hence further studies needed to be undertaken to characterize the 

intracellular cytokine profiles of these Th17 cells to get a better understanding of their 

function in CRS.  

We demonstrated the IL-17A, IL-17F, IL-21 and IL-22 cytokine production of Th17 

cells in CRS. Th17 cells producing IL-17A and IL-17F were increased in CRSwNP 

patient polyps and peripheral blood compared to CRSsNP and controls. IL-17F, 

although newly discovered and less studied, is very similar in structure to IL-17A and 

has a similar role.347 The accumulation of both cytokines is found in allergic diseases 

with high neutrophil production.348 IL-17A is known to cause the induction and 

activation of neutrophils and neutrophil activating cytokines and in the airways by 

releasing chemokines that can recruit neutrophils and fungicidal peptides.285,286 Most 

recently, dysregulated IL-17A production was also found to promote neutrophil 

infiltration resulting in the delay of wound healing and tissue repair in mouse models, 

and could account for the inflammation and airway remodelling seen in certain 

CRSwNP patient subtypes.346  

Few studies have investigated the role of IL-22 in CRS. Ramanthan et al confirmed the 

presence of the IL-22 receptor IL-21R1 on the surface of nasal epithelial cells and 

discovered lower receptor quantities in recalcitrant CRSwNP compared to CRSsNP and 

controls.356 This was confirmed by another study by Wang et al however, there are 

conflicting reports about cytokine IL-22 levels, with one study showing no statistical 

difference in IL-22 levels between patient groups and the other finding IL-22 was 

significantly higher in CRSsNP mucosa compared to controls.356,357 IL-22 is produced 

by activated T cells as well as innate lymphoid cells and innate immune cells. In our 

study we show that Th17 derived IL-22 is increased in CRSwNP patients polyps and 
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peripheral blood.358 Interestingly although IL-22 plays a protective role in mucosal 

diseases such as inflammatory bowel disease by enhancing barrier integrity of the 

intestinal tract, in other diseases such as psoriasis it has been eluded to synergise with 

pro-inflammatory cytokines and induce disease progression.361,362  

Our study further added to cytokine research in CRS that reported increased levels of 

IL-21 mRNA and protein using ELISA in polyp tissues and peripheral blood. We 

suggest that the increase may in fact be due to increases of IL-21 producing Th17 cells 

in CRSwNP patients.350 IL-21 regulates T and B lymphocyte survival, activation and 

proliferation and in-vitro IL-21 has been shown to have an effect on polyp B cell 

differentiation and IgG and IgA production.350-352 In our study, CRSwNP patients that 

were atopic, had remarkably less IL-21 cytokine producing Th-17 cells as evidenced by 

flow cytometry compared to non-atopic CRSwNP. These results are in agreement with 

studies in allergic rhinitis: IL-21 administered at the time of antigen challenge in 

ovalbumin-induced mice reduces allergic symptoms and antigen specific IgE levels.353 

Further to this, signalling through the IL-21 receptor mediates house dust mite airway 

hyper-responsiveness by enhancing Th2 cytokine production.354 There are discrepancies 

however, with other in vivo animal studies suggesting that IL-21 doesn’t affect airway 

remodelling.355 Further studies, focusing on airway remodelling in CRS will be needed 

to elucidate the role of the Th17 cytokine IL-21 in allergic patients. It is evident that 

cytokines may have opposing effects in diverse tissue microenvironments and further 

functional studies, such as those using IL-21 to stimulate B cell activation and 

proliferation are needed in order to see whether the Th-17 derived cytokines we see 

elevated in CRSwNP patients are in fact playing a protective or pathogenic role in CRS.  

Utilizing flow cytometry and a combination of lineage markers, we defined B-cell 

subsets in CRS patients and showed increased numbers of naïve B-cells, plasmablasts 
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and memory B-cells in CRSwNP tissue but not in peripheral blood. We defined B cells 

further based on their expression of toll like receptor CD180.  Once ligated with antigen 

CD180 internalizes and produces potent antigen-specific IgG responses.378 We showed 

that CD180 is expressed on all B-cell subtypes and that those subtypes, in particular 

plasmablasts, are increased in number in CRSwNP tissue. This suggests that there is an 

ongoing recruitment of naïve B-cells into the tissue in CRS accompanied by an ongoing 

activation of those cells into plasmablasts in association with elevated CD180 

expression in those cells.  

Our study identified decreased tissue resident CD180 negative B cells in CRSwNP 

patients compared to CRSsNP and controls. In contrast, CD180 negative B cells were 

elevated in CRSwNP blood compared to CRSsNP and controls. A lack of CD180 

receptor expression on a significant proportion of circulating B cells has been found in 

autoimmune syndromes including SLE, dermatomyositis and Sjögren’s syndrome 387 

and is positively correlated with severity of disease and levels of autoantibodies in SLE 

patients.108 In addition, injection of activating anti-CD180 mAb into mice has been 

shown to result in intrinsic B-cell proliferation and differentiation, accompanied by 

rapid increases in IgG levels.388 Whilst we did not identify differences in total systemic 

IgG levels between CRS patients and controls as reported by others 389, our study did 

find a moderate positive correlation of peripheral CD180 negative B-cell numbers with 

total IgG amounts in serum. Further research is needed to determine whether CD180 

negative blood B cells in CRSwNP reflect disease activity and may account for 

increased IgG amounts in those patients.  
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Chapter 7: Conclusion 

In conclusion, this PhD thesis has provided novel insights into the role of the immune 

system in CRS. Firstly, we have identified differences within the mucosal and polypoid 

immune microenvironment of a polyp patient and have determined that the polyp is the 

hub of cellular activity that should be sampled when studying CRSwNP patients.  We 

have also identified increases in B cells, Tregs as well as Th17 cells and their cytokines 

in CRSwNP patients, implying that these cells may be implicated in polyp 

development. We hope that continued research in this area will ultimately result in a 

better understanding of the complex endotypes of the disease and direct investigations 

into a targeted therapeutic approach.  
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