The Effect of Folic Acid and Methionine Deficiency and Excess on DNA Damage and Cancer Growth in HT29 Colon Cancer Cells and the Apc Min Mouse Model

A thesis submitted to the University of Adelaide for the degree of Doctor of Philosophy

ARNIDA HANI TEH

School of Medicine, Faculty of Health Sciences, University of Adelaide and CSIRO Health and Biosecurity, Adelaide

November 2016

TABLE OF CONTENTS

ABSTRACT	vii
DECLARATION	х
ACKNOWLEDGEMENTS	xii
PRESENTATION AND PUBLICATION ARISING FROM THE THESIS	xiv
LIST OF ABBREVIATIONS	xv
Chapter 1: General Introduction	1
1.1 Colorectal Cancer	1

Chapter 2: Review: The Influence of Folate and Methionine on Intestinal

Genetic Factor Affecting Colorectal Cancer

1.2

		Tumour Development in the Apc ^{Min/+} Mouse Model	7
2.1	Abstra	act	10
2.2	Introd	luction	11
	2.2.1	Background	11
2.3	The A	pc ^{Min/+} Mouse Model of Intestinal Cancer	16
2.4	Litera	ture Search and Inclusion Criteria	19
2.5	Studie	es Meeting the Inclusion Criteria	20
	2.5.1	Studies Which Investigated Folate Deficiency Only	26
	2.5.2	Studies with Both Folate Deficiency and Excess	30
	2.5.3	Study with Folate as a Multivitamin Component	34
	2.5.4	Study with Methionine	35

6

2.6	Proposed Mechanisms for the Effects of Folate and Methionine on		
	Intesti	nal Tumour Growth in Apc ^{Min/+} Mice	35
	2.6.1	Modulation of Nucleotide Synthesis Caused by Folate	
		Deficiency or Excess	36
	2.6.2	DNA Methylation Changes Due to Deficiency of Methyl	
		Donors Which May Alter Gene Expression	38
	2.6.3	Altered Polyamine Metabolism Which May Affect the Rate of	
		Cellular Division	39
2.7	Knowl	edge Gaps and Conclusions	40
Chapte	er 3:	Hypotheses and Objectives	51
3.1	Hypot	heses	51
3.2	Aims		52
Chapte	er 4:	<i>In Vitro</i> Studies – I	
Chapte	er 4:	<i>In Vitro</i> Studies – I The Effect of Folic Acid and Methionine on Cell Growth and	
Chapte	er 4:	<i>In Vitro</i> Studies – I The Effect of Folic Acid and Methionine on Cell Growth and Genome Stability in HT29 Cells	53
Chapte	e r 4: Object	<i>In Vitro</i> Studies – I The Effect of Folic Acid and Methionine on Cell Growth and Genome Stability in HT29 Cells	53
Chapte 4.1 4.2	e r 4: Object Hypot	<i>In Vitro</i> Studies – I The Effect of Folic Acid and Methionine on Cell Growth and Genome Stability in HT29 Cells tive	53 53
Chapte 4.1 4.2 4.3	e r 4: Object Hypot Introd	In Vitro Studies – I The Effect of Folic Acid and Methionine on Cell Growth and Genome Stability in HT29 Cells :ive heses uction	53 53 53 53

4.4.2 Preparation of Medium with Different Folic Acid and

4.4.1 HT29 Cell Culture

Methionine Concentrations 56

55

	4.4.3	HT29 Cell Proliferation		58
		4.4.3.1	Growth Observation of 14 Day Culture of HT29 in	
			96 Well Plates	58
		4.4.3.2	HT29 Cell Proliferation in Various Folic Acid	
			and Methionine Concentrations	60
	4.4.4	Genomic Stab	ility and Cytostasis of HT29 Cells	62
		4.4.4.1	Preliminary Analysis of Growth Observation of 14	
			Day Cultures of HT29 in 24 Well Plates	62
		4.4.4.2	DNA Stability in HT29 in Various Folic Acid and	
			Methionine Concentrations	65
	4.4.5	CBMN-Cyt As	say	65
	4.4.6	Statistical Ana	alyses	73
4.5	Result	S		74
	4.5.1	HT29 Cell Pro	liferation	74
	4.5.2	DNA Stability	in HT29 Cells	83
		4.5.2.1	Nuclear Division Index (NDI)	83
		4.5.2.2	Apoptosis	86
		4.5.2.3	Necrosis	86
		4.5.2.4	Binucleated Cells with Micronuclei	90
		4.5.2.5	Binucleated Cells with Nucleoplasmic Bridges	90
		4.5.2.6	Binucleated Cells with Nuclear Buds	91
4.6	Discus	sion		95

Chapter 5: In Vitro Studies – II

The Effect of Folic Acid and Methionine on Telomere Length and

		DNA Methyla	tion in HT29	99	
5.1	Object	tive	ive		
5.2	Hypot	heses	eses		
5.3	Introd	uction		99	
5.4	Mater	ial and Methoo	ls	102	
	5.4.1	Study Design		102	
	5.4.2	14 Day Cultur	e of HT29 Cells	104	
	5.4.3	DNA Isolation		104	
	5.4.4	Telomere Len	gth Assay	106	
		5.4.4.1	Quantitative Real-time Polymerase Chain Reaction		
			(qPCR) for Telomere Length	106	
		5.4.4.2	qPCR for 36B4 Single Copy Gene (SCG)	107	
		5.4.4.3	Calculation of Telomere Length	107	
	5.4.5	DNA Methyla	tion Assay	108	
	5.4.6	Statistical Ana	alyses	109	
5.5	Result	s		110	
	5.5.1	Telomere Len	gth	110	
	5.5.2	DNA Methyla	tion	115	
	5.5.3	Correlation		120	
5.6	Discus	sion		120	

Chapter 6: In Vivo Studies – I

		The Effect of Folate and Methionine on Cancer Development in	
		the Apc ^{Min/+} Mouse Model	125
6.1	Object	ive	125
6.2	Hypoth	neses	125
6.3	Introdu	uction	125
6.4	Materi	al and Methods	127
	6.4.1	Mouse Model	127
	6.4.2	Genotyping	128
	6.4.3	Study Design	129
	6.4.4	Diet	133
	6.4.5	Animal Welfare	136
	6.4.6	Body Weight	138
	6.4.7	Food Intake Observation	138
	6.4.8	Sacrifice of Mice at End of Experiments	138
	6.4.9	Organs Weight and Size	139
	6.4.10	Haematocrit Measurement	139
	6.4.11	Plasma Methionine and Folate Measurement	139
	6.4.12	Tumour Measurement in APC ^{Min/+} Mice	140
	6.4.13	Tissue Folate and Methionine Measurement	141
	6.4.14	Statistical Analyses	143
6.5	Results	5	144
	6.5.1	Body Weight	144
	6.5.2	Food Intake	144

	6.5.3	Organ Weight and Size	147
	6.5.4	Haematocrit Level	150
	6.5.5	Plasma Folate and Methionine	153
	6.5.6	Folate and Methionine Concentration in Mucosal Tissue of the	
		Small Intestine (MTSI)	156
	6.5.7	Intestinal Tumour Incidence in the Apc ^{Min/+} mice	161
6.6	Discus	sion	167
	6.6.1	Strength of study	172
	6.6.2	Weakness of study	172
	6.6.3	Conclusion	173

Chapter 7: In Vivo Studies – II

		The Effect of	Folic Acid and Methionine on Genomic Instability in	n
		the Apc ^{Min/+} [Nouse Model	174
7.1	Objec	tive		174
7.2	Hypot	heses		174
7.3	Introd	uction		174
7.4	Mater	terial and Methods		176
	7.4.1	Mouse Mode	l and Dietary Regimen	176
	7.4.2	Study Design		177
	7.4.3	Blood Collect	ion for Whole Blood Micronucleus Erythrocyte Assay	/ 179
		7.4.3.1	Acridine Orange Staining	179
	7.4.4	DNA Isolatior	from the Colon Tissue	182
	7.4.5	Telomere Ler	ngth Assay	183

		7.4.5.1	Quantitative Real-time Polymerase Chain Reaction	
			(qPCR) for Telomere Length	183
		7.4.5.2	qPCR for 36B4 Single Copy Gene (SCG)	183
		7.4.5.3	Calculation of Telomere Length	183
	7.4.6	DNA Methyla	tion Assay	184
	7.4.7	Statistical Ana	alyses	184
7.5	Result	S		185
	7.5.1	Whole Blood	Micronucleus Erythrocyte Assay	185
		7.5.1.1	Ratio of Polychromatic Erythrocytes (PCE) to Non	
			Polychromatic Erythrocytes (NCE)	185
		7.5.1.2	Micronucleated Non Polychromatic Erythrocytes	
			(MN-NCE)	186
		7.5.1.3	Micronucleated Polychromatic Erythrocytes	
			(MN-PCE)	187
	7.5.2	Telomere Len	gth	192
	7.5.3	DNA Methyla	tion	196
	7.5.4	Correlation		200
7.6	Discus	sion		202
Chapt	er 8:	Conclusion, G	Seneral Discussion & Future Direction	207
Refere	ences			213
APPEN	IDIX: PA	APER REPRINTS		227

vii

ABSTRACT

Folate and methionine are critical for one-carbon metabolism, impacting DNA synthesis, repair, and methylation processes, as well as polyamine synthesis. These micronutrients have been implicated in colorectal cancer risk. The aim of this thesis was to examine in greater detail the role of folate and methionine in colon cancer initiation and progression by assessing DNA stability and tumour incidence. Studies were performed *in vitro* (using human colorectal adenocarcinoma HT29 cell line) and *in vivo* (using Apc^{Min/+} mouse model).

The *in vitro* studies examining the effects of various folic acid and methionine concentrations within the physiological range on cell proliferation and genomic instability of HT29 cells, showed that restriction of folic acid or methionine inhibited cellular proliferation, while supra-physiological folate induced apoptosis. HT29 cells may be resistant to genome instability induced by folic acid or methionine deficiency under the experimental conditions reported for this study because no significant increases in micronuclei, nuclear buds or nucleoplasmic bridges were observed in the Cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The investigation on the effect of folic acid and methionine depletion on telomere length and DNA methylation in HT29 cells. The length of telomere was positively correlated with DNA methylation.

In the *in vivo* studies using the Apc^{Min/+} mouse model, the effect of supplementing a western-style diet with dietary folic acid and/or methionine on intestinal tumour development was assessed. A total of 113 mice were randomised to receive one of the four diet treatments; New Western Diet (NWD) as control diet, NWD with additional folic acid, NWD with additional methionine, and NWD with additional folic acid and methionine, administered at age of 3 until 13 weeks, with wild type (WT) mice used as controls. Supplementation of folic acid and methionine separately, resulted in marginally lower tumour numbers, when compared to the control diet. However, supplementation with both folic acid and methionine together appeared to annul the

marginal protective effect of supplementing individually. The investigation on the effect of supplementing a western-style diet with dietary folic acid and/or methionine on genomic stability (measured via micronucleated erythrocyte assay on blood sample; telomere length and DNA methylation on the colon tissue) showed insufficient evidence that additional folic acid and/or methionine promotes DNA stability or instability in Apc^{Min/+} or WT mice. Dietary supplementation with folic acid and/or methionine at the levels and duration used in this study did not substantially promote or protect against DNA damage in WT or intestinal cancer-prone Apc^{Min/+} mouse model fed a western-style diet although a marginal effect on tumour number was evident.

In conclusion, the results of this thesis support a role of methionine and folate in affecting intestinal cell proliferation and possibly tumour number. However, the impact of supplementation with folate and methionine on genome stability was marginal.

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent for a copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also

Х

through web search engines, unless permission has been granted by the University

to restrict access for a period of time.

Signature:

Date:

ARNIDA HANI TEH

ACKNOWLEDGEMENTS

Praise to God the Almighty for the successful completion of this thesis. I am grateful to be given the strength to make this materialise eventually.

My sincere appreciation to my highly respectable principle supervisor; Professor Michael Fenech and astonishing co-supervisors, Dr. Caroline Bull and Professor Peter Clifton for the guidance and opportunities given. The knowledge and experience gained are truly appreciated.

I would like to thank these nice people who helped me in this study; Carolyn Salisbury, Theodora Almond and Maryam Hor for helping me in *in vitro* studies and CBMN-Cyt assay; Dr. Erin Symonds, Darien Sander, Ben Scherer, Dr. Varinderpal Dhillon, Dr. Phil Thomas, Dr. Damien Belobrajdic and Thelma Bridle for helping me with the *in vivo* studies; Dr. Nathan O'Callaghan for helping me in telomere length assay; and Kylie Lange for helping me with statistical analysis.

Special thanks to my parents that never tired of giving support and pray for my success. I am also grateful for the friends that crosses paths; Razinah, Sau Lai, Mansi, Jing Wu, Carly, Anne, Penny, Sarah, Sabbir, Awan, Zati, Min, Yanti, Rafisah, Aida, Fauziah, Liyana, Nadiah, Nadia and Izzah. Thank you for the friendship and company that I never felt alone in this PhD journey. I would also like to acknowledge CSIRO for the studentship opportunity, and to my employer (the National University of Malaysia) and the government of Malaysia (Ministry of Higher Education) for the scholarship provided.

The journey was long and winding. I fell and able to get up again with all help and support that I received. Thank you so much.

PRESENTATION AND PUBLICATION ARISING FROM THE THESIS

Abstract/Poster Presentation

 Arnida Hani Teh, Erin Symonds, Peter Clifton and Michael Fenech. Effects of Low Folate on Cell Growth and Genome Stability in HT29 Cell Lines. 19th International Conference on Nutrition. 4-9th October 2009, Bangkok, Thailand.

Publication

 Teh, A.H., Symonds, E., Clifton, P. & Fenech, M. The influence of folate and methionine on intestinal tumour development in the Apc^{Min/+} mouse model. Mutation Research/Reviews in Mutation Research, 2012. **751**(1): p. 64-75.

LIST OF ABBREVIATIONS

5,10-MeTHF	5,10- methylenetetrahydrofolate
5-MeTHF	5-methyltetrahydrofolate
ACF	aberrant crypt foci
AHT	Arnida Hani Teh
ALT	alternative lengthening of telomeres
ANOVA	analysis of variance
AOM	azoxymethane
Арс	adenomatous polyposis coli
BER	base excision repair
BHMT	betaine:homocysteine methyltransferase
BN	binucleated
СВ	Caroline Bull
CBMN Cyt assay	Cytokinesis Block Micronucleus Cytome assay
Cq	cycle threshold
CSIRO	Commonwealth Scientific and Industrial Research Organisation
Cyto-B	cytochalasin-B
dcSAM	decarboxylated SAM
DFMO	α-difl uoromethylornithine
DHF	dihydrofolate
DMG	dimethylglycine
DNA	deoxyribonucleic acid
DNMT1	DNA (cytosine-5-)-methyltransferase 1

DSH	dishevelled
dTMP	deoxythymidine monophosphate
dTTP	deoxythymidine triphosphate
dUMP	deoxyuridine monophosphate
FAD	flavin adenine dinucleotide
FAP	familial adenomatous polyposis
FDA	Food and Drug Administration
FDR	false discovery rate
Folbp1	folate binding protein
GSK 3	glycogen synthase kinase 3
LRP	LDL receptor related protein
MF	Michael Fenech
MMRs	mismatch repair enzymes
MNi	micronuclei
MN-NCE	micronucleated normochromatic or non polychromatic
	erythrocytes
MN-PCE	micronucleated polychromatic erythrocytes
МТАР	methylthioadenosine phosphorylase
Mthdf1	methylenetetrahydrofolate dehydrogenase
MTHFR	methylenetetrahydrofolate reductase
MTR	methionine synthase
MTSI	mucosal tissue of the small intestine
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NBUDs	nuclear buds

NCE	normochromatic or non polychromatic erythrocytes
NDI	nuclear division index
NPBs	nucleoplasmic bridges
NWD	New Western Diet
NWD+FA	New Western Diet with additional folic acid
NWD+FA+M	New Western Diet with additional folate and methionine
NWD+M	New Western Diet with additional methionine
OD	optical density
PBS	phosphate-buffered saline
PCE	polychromatic erythrocytes
qPCR	Quantitative Real-time Polymerase Chain Reaction
Rfc1	reduced folate carrier 1
RNA	ribonucleic acid
RPMI	Roswell Park Memorial Institute
SAH	S-adenosyl homocysteine
SAM	S-adenosyl methionine
SAMDC	S-adenosyl methionine decarboxylase
SCG	single copy gene
SD	standard deviation
SE	standard error
SHMT1	cytoplasmic serine hydroxymethyltransferase
SHMT1	serine hydroxymethyltransferase
TCF	T-cell transcription factor
THF	tetrahydrofolate

TS	thymidylate synthase
USA	United States of America
WT	wild type