WAITE INSTITUTE II. 8.86 LIBRARY

THE ENZYMES OF NITRATE ASSIMILATION IN SCLEROTINIA SCLEROTIORUM

by

Maskuntjir Abdul Rachim, B.Sc., Ir.

A thesis submitted in fulfilment of the requirements for the degree of

Master of Agricultural Science

Department of Agricultural Biochemistry Waite Agricultural Research Institute The University of Adelaide.

February, 1986

gwarded 29-4.86

PREFACE

Part of the work described in this thesis has been presented at the Australian Biochemical Society Conference (Canberra, 1985) and published in the following journals:

- Some properties of glutamine synthetase and glutamate synthase from Sclerotinia sclerotiorum.
 M.A. Rachim and D.J.D. Nicholas (1985) Proc. Aust. Biochem. Soc. <u>17</u>, 21
- 2. Glutamine synthetase and glutamate synthase from Sclerotinia sclerotiorum. M.A. Rachim and D.J.D. Nicholas (1985) Phytochemistry 24, 2541-2548
- 3. Some properties of nitrate reductase from Sclerotinia sclerotiorum. M.A. Rachim and D.J.D. Nicholas (1986) Phytochemistry 25 (in press)

ACKNOWLEDGEMENTS

I wish to express my deepest and sincerest thanks to my supervisor, Prof. D.J.D. Nicholas, Chairman of the Department of Agricultural Biochemistry, Waite Agricultural Research Institute, The University of Adelaide for his constant encouragement, guidance and constructive criticism throughout the progress of the present investigation and in the preparation of manuscript.

I would also like to thank Mr. D. Hein for his assistance with the $15_{
m N}$ experiments, Mr. B.A. Palk for preparing the photographic prints, Mrs. M. Brock for the skilful typing of the thesis and to all others who helped me from time to time.

I am grateful to my wife Erna for her patience and unfailing encouragement during the course of this investigation.

The postgraduate scholarship from International Development Programme of Australian Universities and Colleges is gratefully acknowledged.

DECLARATION

I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any University. To the best of my knowledge and belief no material described herein has been previously published or written by another person except when due reference is made in the text.

If accepted for the award of a M.Ag.Sc. degree, this thesis will be available for loan and photocopying.

iii

M.A. RACHIM

ABBREVIATIONS

The abbreviations for chemicals and symbols in general follow either the tentative rules of IUPAC-IUB Commission on Biochemical Nomenclature (*Biochem. J.* (1966) <u>101</u>: 1-7) or the Instruction to Authors for the Phytochemistry (*Phytochemistry* (1983) <u>22</u>: 1-7).

CHEMICALS

	ADP AMP ATP BSA BV BVH CDP	Adenosine 5'-diphosphate Adenosine 5'-monophosphate Adenosine 5'-triphosphate Bovine serum albumin Benzyl viologen Benzyl viologen (reduced) Cytidine 5'-diphosphate
	CMP	Cytidine 5'-monophosphate
	CMP	Cytidine 5'-triphosphate
	Cyt b557	Cytochrome b557
	DCPIP	2,6-Dichlorophenolindophenol
	DEAE-cellulose	Diethylaminoethyl cellulose
	DTT	Dithiothreitol
	EDTA	Ethylenediamine tetraacetic acid
	FAD	Flavin adenine dinucleotide
	FADH ₂	Flavin adenine dinucleotide (reduced)
	FMN	Flavin mononucleotide Flavin mononucleotide (reduced)
	FMNH ₂	
	GDP	Guanosine 5'-diphosphate Guanosine 5'-monophosphate
2	GMP	Guanosine 5'-triphosphate
	GTP IDP	Inosine 5'-diphosphate
	IMP	Inosine 5'-monophosphate
	ITP	Inosine 5'-triphosphate
	MSX	L-methionine-DL-Sulphoximine
	MV	Methyl viologen
	MVH	Methyl viologen (reduced)
	NADH	Nicotinamide adenine dinucleotide (reduced)
	NADP+	Nicotinamide adenine dinucleotide phosphate
		(oxidized)
	NADPH	Nicotinamide adenine dinucleotide phosphate
	*	(reduced)
	NEM	N-ethylmaleimide
	p-CMB	p-chloromercuribenzoate
	SDS	Sodium dodecyl sulphate
	-SH	Sulphydryl group
	SVD	Snake venom phosphodiesterase
	TCA	Trichloroacetic acid
	Tris	Tris (hydroxymethyl) aminomethane
	UDP	Uridine 5'-diphosphate
	UMP	Uridine 5'-monophosphate
	UTP	Uridine 5'-triphosphate

Symbols and Units

A °C cm g g hrkDa K_i K_m L Μ mA mg min mlmт mМ mmole MW μg μ1 μm μМ µmole N nm nmole % P_i p.s.i. U.V. v W

absorbance degree Celcius (centigrade) centimeter gram unit of gravitational field hour(s) kilo dalton(s) inhibitor constant Michaelis-Menten constant litre molar milliampere milligram minute(s) millilitre millimeter millimolar millimole(s) molecular weight microgram microlitre micrometer micromolar micromole(s) normal nanometer nanomole(s) percent inorganic phosphate pound per square inch ultra violet volume weight

TABLE OF CONTENTS

		°		Page No:
PREF	FACE			i
ACKN	IOWLEI	OGEMENTS	ž	ii
DECI	DECLARATION			iii
ABBF	REVIAT	TIONS	×	iv
TABI	LE OF	CONTENT	S	vi
LIST	COF 1	FABLES		ix
LIST	C OF I	FIGURES		xi
SUM	IARY			xiv
			53	÷
1.	INTRO	ODUCTION	I	1
	1.1 1.2		ology of <i>Sclerotinia sclerotiorum</i> e assimilation in microorganisms	1 3
		1.2.2	Nitrate reductase Nitrite reductase Metabolism of ammonia into amino acids	4 8 11
			<pre>1.2.3.1 Glutamine synthetase 1.2.3.2 Glutamate synthase</pre>	12 16
	1.3	Aims of	f the study	18
2.	MATE	RIALS A	ND METHODS	19
	2.1	Cultur	ing Sclerotinia sclerotiorum	19
		2.1.1 2.1.2	Growth conditions Harvesting	19 19
	2.2	Enzyme	methods	20
		2.2.1	Nitrate reductase assay	20
			2.2.1.1 Colorimetric 2.2.1.2 Spectrophotometric	20 21
		2.2.2	Nitrite reductase and hydroxylamine reductase assays	21
			2.2.2.1 Colorimetric	21

Ψ.

ŝ

				Page No:
		2.2.3	Glutamine synthetase assay	23
		*1	<pre>2.2.3.1 Transferase reaction 2.2.3.2 Biosynthetic reaction</pre>	23 24
		2.2.4 2.2.5	Determination of Michaelis-Menten	25 25
		2.2.6 2.2.7	constant (K_m) Determination of inhibitor constant (K_i) Determination of molecular weight	25 25
			2.2.7.1 Gel filtration 2.2.7.2 Electrophoresis	25 26
		2.2.8	Separation and identification of flavin . from nitrate reductase	27
		2.2.9	Adenylylation and deadenylylation of glutamine synthetase	27
	2.3	Genera	l techniques	29
5			Incorporation of ¹⁵ N into washed felts Preparations of columns	29 29
			<pre>2.3.2.1 MatrexGel Blue A 2.3.2.2 Blue Sepharose CL-6B 2.3.2.3 Sepharose 6B 2.3.2.4 DEAE-cellulose</pre>	30 30 30 31
	2.4	Other	determinations	31
		2.4.2	Nitrite Ammonia Protein	31 32 32
	2.5	Bioche	emicals, chemicals and other materials	33
			Biochemicals and chemicals Other materials	33 34
				2
3.	RESU	JLTS		35
	3.1	Nitra	te reductase	35
		3.1.1 3.1.2	Purification Properties	35 36
			 3.1.2.1 Molecular weight 3.1.2.2 Effect of pH 3.1.2.3 Electron donors 3.1.2.4 K_m values for substrate, reductant and cofactor 3.1.2.5 Characterization of flavin 	36 36 36 41 41
		a.	isolated from the purified enzym	
		212	Inhibitor studies	17

vii

47

Page No:

55 56 56 60
60 60 66
66 70
70 75
75 77
77 77 77 82 82
84 89
95
95 99
99 99 99 99
103
112
112 117 122
123 127

5. BIBLIOGRAPHY

ł

131

LIST OF TABLES

Table		Page No:
1	Purification of nitrate reductase	37
2	Electron donors for the purified nitrate reductase activity	40
3	Effects of metal inhibitors on the MVH-dependent nitrate reductase activity	48
4	Effects of inhibitors on NADPH-dependent nitrate reductase activity	49
5	Effects of inhibitors of sulphydryl-groups and flavin respectively on MVH-nitrate reductase activity	50
6	Purification of nitrite reductase	57
7	Effects of various electron donors on nitrite reductase activity	61
8	Effects of flavins on NAD(P)H-nitrite reductase and its associated diaphorase activities	62
9	Stoichiometries for NADPH, NO_2 and NH3 for nitrite reductase	67
10	Effects of metal binding agents on NADPH- dependent nitrite reductase	68
11	Effects of inhibitors of sulphydryl-groups and flavin on NADPH-nitrite reductase	69
12	Effects of preincubation of nitrite reductase with reductant, cofactor and/or substrate on its activity	73
13	Effects of L-methionine-DL-sulphoximine (MSX) and azaserine on the incorporation of ^{15}N -labelled (NH4) $_2$ SO4 into washed cells	74
14	Purification of glutamine synthetase	76
15	Transferase and biosynthetic activities with various divalent cations	81
16	Effects of various nucleotides on transferase and biosynthetic activities	83
17	Effects of various concentration of L-methionine- DL-sulphoximine on transferase activity	88
18	Effects of various amino acids on glutamine synthetase activity	90

]	able		Page No:
-	19	Effects of organic acids on glutamine synthetase activity	91
	20	Effects of snake venom phosphodiesterase on glutamine synthetase activity	96
	21	Purification of glutamate synthase	98
	22	Substrates and NADPH requirements for glutamate synthase activity	102
	23	Effects of amino acids on glutamate synthase activity	107
	24	Effects of various metabolites on glutamate synthase activity	108
a.	25	Effects of various concentrations of azaserine on glutamate synthase activity	109
	26	Effects of various inhibitors on glutamate synthase activity	110

x

LIST OF FIGURES

Figure		Page No:
1	 A. Molecular weight determination of nitrate reductase by gel filtration B. Estimation of subunit molecular weight of the purified enzyme by SDS-polyacrylamide 	38
	gel electrophoresis	•
2	Effect of pH on nitrate reductase activity	39
3	Double reciprocal plots of the effects of various nitrate concentrations on NADPH- and MVH-dependent nitrate reductase activities	42
4	Double reciprocal plots of the effects of various concentrations of nitrate on FMNH ₂ -and FADH ₂ -linked enzyme activities	43
5	Double reciprocal plots of the effects of varying NADPH and FAD concentrations re- spectively on NADPH-dependent nitrate reductase activity	44
6	A double reciprocal plot of the effects of various concentrations of reduced methyl- viologen on nitrate reductase activity	45
2 ⁸⁶ 7	Separation of the flavin component of the purified nitrate reductase by paper chroma-tography	46
8	Inhibitory effects of chlorate and bromate on MVH-nitrate reductase activity	51
9	A Dixon plot of the inhibitory effects of various concentrations of chlorate on the MVH- nitrate reductase activity	52
10	A Dixon plot of the inhibitory effects of various concentrations of bromate on the MVH- nitrate reductase activity	53
11	Effects of various concentrations of nitrite on NADPH-nitrate reductase activity	54
12	Effects of pH on nitrite reductase and hydro- xylamine reductase activities	58
13	Effects of incubation times on nitrite reduction	on 59
14	Effects of various concentrations of substrates on NADPH-nitrite reductase and NADPH-hydroxyl- amine reductase activities	63

Figure	*	<u>Page No</u>
15	Double reciprocal plots of the effects of various concentrations of NADPH on NADPH- dependent nitrite reductase and NADPH- dependent hydroxylamine reductase activities	64
16	Double reciprocal plots of the effects of various concentrations of FAD on NADPH- dependent nitrite reductase and NADPH-hydro- xylamine reductase activities	65 .
17	Effects of various concentrations of cyanide on NADPH-dependent nitrite reductase activity	71
18	Effects of various concentrations of sulphite on NADPH-dependent nitrite reduction	72
19	 A. Molecular weight determination of glutamine synthetase by gel filtration B. Estimation of subunit molecular weight of the purified enzyme by SDS-polyacrylamide gel electrophoresis 	78
20	Effects of pH on glutamine synthetase activity	79
21	Effects of incubation times on glutamine synthetase activity	80
22	Effects of various concentrations of substrates on glutamine synthetase- transferase activity	85
23	Effects of various concentrations of substrates on glutamine synthetase-biosynthetic activity	86
24	Effects of various concentrations of ADP and ATP on glutamine synthetase activity	87
25	Inhibitory effects of glutamate and NH4C1 on glutamine synthetase-transferase activity	92
26	A Dixon plot of the effects of various concen- trations of glutamate on glutamine synthetase- transferase activity	93
27	A Dixon plot of the effects of various concen- trations of ammonium chloride on glutamine synthetase-transferase activity	94
28	 A. Molecular weight determination of glutamate synthase by gel filtration B. Estimation of subunit molecular weight of the purified enzyme by SDS-polyacrylamide 	100

Page No:

the purified enzyme by SDS-polyacrylamide gel electrophoresis

Figure	11	Page No:
29	Effects of pH on glutamate synthase activity	101
30	Effects of various concentrations of glutamine on glutamate synthase activity	104
31	Effects of various concentrations of α-keto- glutarate on glutamate synthase activity	105
32	Effects of various concentrations of NADPH on glutamate synthase activity	106

SUMMARY

- 1. This thesis embodies results of an investigation on some biochemical aspects of enzymes involved in nitrate assimilation in a plantpathogenic fungus, *Sclerotinia sclerotiorum*. The enzymes are nitrate reductase, nitrite reductase, glutamine synthetase and glutamate synthase.
- 2. Nitrate reductase, purified 118-fold, had a molecular weight of 210 kDa and was composed of 2 dissimilar subunits of 123 and 107 kDa. In addition to using NADPH as an electron donor, the enzyme also utilized reduced viologen dyes and reduced flavin nucleotides as reductants.
- 3. FAD was isolated from the purified enzyme; however, exogenous FAD was required for maximal activity of NADPH-dependent nitrate reductase in vitro. FMN did not substitute for FAD.
- 4. The enzyme activity was inhibited by metal chelating agents and by flavin and sulphydryl group inhibitors. Azide markedly restricted both NADPH- and MVH-dependent reactions, but inhibition by p-CMB, NEM and amytal was more marked when NADPH was the reductant.
- 5. Nitrite inhibited nitrate competitively in NADPH-dependent nitrate reduction *in vitro*; however, it is unlikely to inhibit nitrate reductase activity under physiological conditions because the K_i for nitrite was three-fold greater than the K_m for nitrate.
- 6. Nitrite reductase, the second enzyme in the nitrate assimilation pathway utilized NAD(P)H, reduced viologen dyes and reduced flavin nucleotides as electron donors. NADPH was the most effective electron donor. Maximal activity of the NADPH-dependent nitrite reductase

was achieved by adding FAD to the assay mixture; FMN however, was less effective.

- 7. Associated with the nitrite reductase enzyme was a hydroxylamine reductase activity as well as diaphorase type activities utilizing either ferricyanide, DCPIP or cytochrome c as an electron acceptor.
- 8. The product of both nitrite and hydroxylamine reductases was ammonia but hydroxylamine was not an intermediate product of nitrite reductase. The stoichiometry of NADPH oxidized to nitrite utilized and ammonia produced in NADPH-dependent nitrite reduction was 3:1:1 and the ratio of NADPH oxidized to ammonia formed in the hydroxylamine reductasemediated reaction was 1:1.
- 9. In the presence of FAD, nitrite reductase was inactivated by preincubation with NADPH, but NADP⁺ was without effect. This inactivation was offset by the substrates (nitrite and hydroxylamine).
- 10. Nitrite reductase was sensitive to metal binding agents as well as flavin- and sulphydryl group-inihibitors. The inhibition by p-CMB and mepacrine respectively, were reversed by adding cysteine and FAD.
- 11. Washed felts readily incorporated ¹⁵NH₄⁺ into cell-nitrogen but this effect was inhibited by both MSX and azaserine, inhibitors of gluta-mine synthetase and glutamate synthase respectively. Since glutamate dehydrogenase was not detected in cell-free preparations, this is further evidence that the glutamine synthetase/glutamate synthase pathway is the main route for the assimilation of ammonia into amino acids.
- 12. Glutamine synthetase, purified by ion exchange and affinity chromatography, had a molecular weight of 490 kDa. The enzyme was composed of 8 identical subunits of 60 kDa. The transferase activity of the

enzyme required Mn^{2+} and ADP for maximal activity whereas the biosynthetic activity required Mg^{2+} and ATP.

- 13. The enzyme was regulated by feedback inhibition involving amino acids and organic acids and by a adenylylation/deadenylylation mechanism. The transferase activity of the enzyme was also inhibited competitively by the substrates of the biosynthetic reaction, namely glutamate and NH4C1, with respect to glutamine.
- 14. Glutamate synthase had a molecular weight of 220 kDa and was composed of 4 subunits of 53.7 kDa. The enzyme had a specific requirement for NADPH, α-ketoglutarate and glutamine as the electron donor, amino acceptor and amino donor, respectively.
- 15. Glutamate synthase was regulated by feedback inhibitors including amino acids, organic acids and nucleotides. The enzyme was markedly inhibited by p-CMB (this effect was reversed by cysteine), O-phenanthroline, α,α'-dipyridyl and azaserine.