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Deep-inelastic structure functions in a covariant spectator model
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and Institute for Theoretical Physics, University of Adelaide, S.A. 5005, Australia
(Received 6 September 1996

Deep-inelastic structure functions are studied within a covariant scalar diquark spectator model of the
nucleon. Treating the target as a two-body bound state of a quark and a scalar diquark, the Bethe-Salpeter
equation(BSE) for the bound state vertex function is solved in the ladder approximation. The valence quark
distribution is discussed in terms of the solutions of the BD556-282(197)05107-2

PACS numbgs): 11.10.St, 13.60.Hb

[. INTRODUCTION selves to the S(2) flavor group. The inclusion of
pseudovector diquarks and the generalization t¢35tlavor
In recent years many attempts have been made to undedse relatively straightforward extensions and will be left for
stand the nucleon structure functions measured in leptofuture work. It should be mentioned that the quark-diquark
deep-inelastic scatterin@I|S). Although perturbative QCD Lagrangian used here does not account for quark confine-
is successful in describing the variation of structure functiongnent inside nucleons. However, the use of a confining quark-
with the squared momentum transfer, their magnitude andiquark interaction should also be possible within the
shape is governed by the nonperturbative physics of composcheme that we use.
ite particles, and is, so far, not calculable directly from QCD. As an important result of our work we find that the vertex
A variety of models has been invoked to describe nucleoriunction of the nucleon is highly relativistic even in the case
structure functions. Bag model calculations for exampleof weak binding. Furthermore, we observe that the nucleon
which are driven by the dynamics of quarks bound in astructure functiorF, is determined to a large extent by the
nucleon bag, quite successfully describe nonsinglet unpolarelativistic kinematics of the quark-diquark system and is not
ized and polarized structure functiofsee, e.g.[1,2] and  very sensitive to its dynamics as long as the spectator system
references thereinHowever, such calculations are not rela- is treated as a single particle.
tivistically covariant. The outline of the paper is as follows. In Sec. Il we intro-
A covariant approach to nucleon structure functions isduce the spectator model for deep-inelastic scattering. Sec-
given by so-called “spectator models[3-5]. Here, the tion Il focuses on the scalar diquark model for the nucleon
leading twist, nonsinglet quark distributions are calculatedvhich yields the quark-diquark vertex function as a solution
from the process in which the target nucleon splits into aof a ladder BSE. In Sec. IV we present numerical results for
valence quark, which is scattered by the virtual photon, and &e quark-diquark vertex function and the nucleon structure
spectator system carrying baryon number 2/3. FurthermordynctionF;. Finally, we summarize and conclude in Sec. V.
the spectrum of spectator states is assumed to be saturated
through single scalar and vector diquarks. Thus, the main
ingredient of these models are covariant quark-diquark ver- [l. DEEP-INELASTIC LEPTON SCATTERING
tex functions. IN THE SPECTATOR MODEL
Until now, vertex functions have been merely param- . . . .
etrized such that the measured quark distributions are repro- Inclusive deep-inelastic scattering of leptons from had-
duced, and no attempts have been made to connect them S iS described by the hadronic tensor
some dynamical models of the nucleon. In this work we
construct the vertex functions from a model Lagrangian by 1
solving the Bethe-Salpeter equati¢BSE) for the quark- w :_J 4pniq-£ P v
diquark system. However, we do not aim at a detailed, quan- W (a,P) 27 d*eTYP|IX()IOIP), (@)
titative description of nucleon structure functions in the
present work. Rather, we outline how to extract quark-
diquark vertex functions from Euclidean solutions of thewhereP andq are the four-momenta of the target and ex-
BSE. In this context several simplifications are made. Wechanged virtual photon, respectively, aitlis the hadronic
consider only scalar diquarks as spectators and restrict ouelectromagnetic current. In unpolarized scattering processes
only the symmetric piece olv*”=W"# is probed. It can be
expressed in terms of two structure functiofg and F»,
*Electronic address: kkusaka@phys.metro-u.ac.jp which depend on the Bjorken scaling variable,
Electronic address: gpiller@physik.tu-muenchen.de x=Q?%2P-.q, and the squared momentum transfer
*Electronic address: athomas, awilliam@physics.adelaide.edu.a@z= —q2:
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o’ P.
W(g,P) = —gﬂ”+q—q2q—)Fl<x,Q2>+ Pﬂ—qﬂgﬁ) 772,
. VP~Q)F2(X.Q2)

In the Bjorken limit (Q?,P-q—c; but finite x) in which we
work throughout, both structure functions depend up to loga-

rithmic corrections orx only, and are related via the Callan- P-k
Gross relationf,=2xF;. P
The hadronic tensoWW*” is connected via the optical
theorem to the amplitud&*” for virtual photon-nucleon for- FIG. 1. The diquark spectator contribution to the virtual forward
ward Compton scattering: Compton amplitude in the Bjorken limit.

1 propagators of the quark and diquark, respectively, while
—ImT#(q,P)=W**(q,P). (3 is the quark-diquark vertex function. To obtain the hadronic
tensor, the scattered quark and the diquark spectator have to
In the Bjorken limit the interaction of the virtual photon with be put on mass shell according to E8):
a valence quark from the target leads to a spectator system

carrying diquark quantum numbers, i.e., baryon number 2/3 S(k+q)—ima(mg— (k+a)?)(mg+K+d),
and spin 0 or 1. In the spectator model it is assumed that the _ X
spectrum of spectator states can be saturated through a single D(P—k)—ims(mg—(P—k)?). 6)

scalar and pseudovector diqudB«5]. In the following we

will restrict ourselves to contributions from scalar diquarks The vertex functiorl® for the target, which in our approach
only. The generalization to include a pseudovector diquarks a positive energy, spin-1/2 composite state of a quark and
contribution is left for future work. The corresponding @ scalar diquark, is given by two independent Dirac struc-

Compton amplitude i$Fig. 1) tures:
TEY(Q.P) = 5. T d' UPYT(K.P—K)S(k on .2y 1 28 conay | ()
§(@P)={zt5 X Wu( )T'(k,P—k)S(k) L(k,P=K)|(p-kz-m2 = PRk + 1 37 JACO(P),

6
X y*S(k+q)y'S(k)D(P—-Kk)I'(k,P—k)u(P), ©
(4 Where A (P)=1/2+P/2M is the projector onto positive
energy, spin-1/2 states ahi= \/P? is the invariant mass of
where the flavor matrix has to be evaluated in the nucleothe nucleon target. Note that according to the on-shell con-
isospin space. The integration runs over the quark momerdition in Eq. (5) the scalar function$37, will depend onk?
tum k. The Dirac spinor of the spin-averaged nucleon targebnly.
with  momentum P is denoted byu(P). Furthermore, From Egs.(3)—(6) we then obtain for the valence quark
S(k)=1/(my;—Kk—ie) and D(k)= 1/(m2D— k’—ie) are the contribution to the structure functid,:

5 1 2 dk? m,+M)2—m3 | fo"(k?)?2
eoto0-( 2] e[ B (R 110

3 2 2 2 2
(1677 e mg—K mg—k 4
2m 2mg\ (mg+M)2—md ]13"(k?)f3"(k?)
R P [ R % x| 2
M M mg—k 2
2 2 2 2 2 2 2 one,2\2
m;—Kk 2m 2m 2mg\ “(Mmg+M)“—m (k<)
q q q q q D_(T2
+ +1-|— +2X)+|(1———| x+|1- .
{4 vE 1 ( Vi ) (1+20)+| 1- =] x+|1-— ) e } 7 (7)
|
The upper limit of thek? integral is denoted by regular vertex functior{®'—0 for x—1 and thus the struc-
) ture function automatically has the correct support.
K2 —x|l m2— Mp ®) Since the spectator model of the nucleon is valence-quark
max 1-x)° dominated, the structure functiéh® in Eq. (7) is identified

with the leading twist part of ; at some typical low momen-
Note thatkﬁqax—woc for x—1. This implies that for any tum scale,u?<1 GeV?. The physical structure function at
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large Q%> u? is then to be generated via? evolution. g+MgP kTP
It should be mentioned that the Compton amplitude in Eq a d

(4) and also the expression for the structure function in Eq. _ o
(7) contain poles from the quark propagators attached to the P -
quark-diquark vertex functions. From E@®) it follows that

-k+MpP

these poles do not contribute whh<<mp+mg. This con- -q+MpP
dition is automatically satisfied if the nucleon is con5|d_ered -k-g(My-Np)P
as a bound state of the quark and diguark, as done in the
following.

In the next section we shall determine the vertex function, ,
T, or equivalentlyf{" and f$" from Eq. (6) as solutions of a
ladder BSE.

FIG. 2. The Bethe-Salpeter equation for a quark-diquark system
he ladder approximation.

tion the BSE for the vertex function of a positive energy,

spin-1/2 model nucleon can be written @ee Fig. 2
I1l. SCALAR DIQUARK MODEL FOR THE NUCLEON

We now determine the vertex functid6) as the solution TI'(q,P)u(P,S)=g j > SEs —np)P]
of a BSE for a quark-diquark system. We start from the (2m)"
Lagrangian X S(ngP+K)D(npP—KI'(k,P)u(P,S),
L= lﬂa(iﬁ—mq)¢a+%¢§ﬁ“¢a—m%¢§ d’a (11)
g where the flavor and color factors have already been worked
+i ﬁfgclﬂgc_lﬁ’ﬂzlﬂc% out. The scattering kernel is given byuachannel quark ex-

change according to the interaction Lagrangian in @y.
g L o Since we are only interested in positive energy solutions,
—i —\/—fgcl//bcflystwI%, (99  We may write the vertex function as

q
where we have explicitly indicated $8) color indices but ~ I'(a,P)=| afy(a,P)+bfa(q,P)+ 1 f2(q.P) A(P).
have omitted flavor indices. We restrict ourselves to flavor (12)
SU(2), where 7, is the symmetric generator which acts on

the isodoublet quark fields with massmg. The charged The arguments of the scalar functiohgq,P) are actually
scalar field¢ represents the flavor-singlet scalar diquark carg? and P- g, but we use this shorthand notation for brevity.
rying an invariant masen,, . Similar Lagrangians have been Wlth a andb we denote as yet unspecified scalar functions
used recently to describe some static properties of thef g2 and P-q which will be chosen later for convenience.
nucleon, such as its mass and electromagnetic cha®®  [The definition off2}, in Eq. (6) corresponds to a specific

e.g.,[6-8]). . o choice ofa andb.]
The nucleon with four-momentur® and spinS is de-

scribed by the bound state Bethe-Salp€B) vertex func- B. Wick rotation

tion I':
After multiplying the BSE in Eq.(11) with appropriate
Te(0[Tera(X) dp(y)|P,S) projectors(which depend ora andb), we obtain a pair of
i coupled integral equations for the scalar functidné&y, P)
= abS(k)D(P—k)lr(k,P—k)U(P,S). andfz(q,P):

(10

. . . d*%k ~
Here,u(P,S) is the nucleon Dirac spinor ant: stands for fa(qyp)zng ———2-Dy[ —q—k— (74— 7p)P]
the Fourier transformatioh[Again, we have omitted S(2) 2m)"

flavor indices} X D (7P +K)Dp(75P—K)Kog(a,k,P)f 5(k,P
We will now discuss the integral equation for the vertex al 7P+ KIDo(70P k) Kep(a.kPITs(k,P),
functionI" in the framework of the ladder approximation. (13

where Dy(p)=1/(mi—p®—ie) and Dp(p)=1/(m3—p?
—ie€) are the denominators of the quark and diquark propa-
For the following discussion of the integral equation for gators, respectively. The indicesand 8 stand for the inde-
the vertex function' we write the quark momentum as pendent Dirac structures of the vertex functioni.e., in the
q+ngP and the diquark momentum asq+ npP. The  scalar-diquark model they run from 1 to 2 according to Eq.
weight factorsn, and »p are arbitrary constants between 0 (12). Consequently, the functiol,, 5(0,k,P) is a 2x2 ma-
and 1 and satisfyyq+ 7p=1. Within the ladder approxima- trix, where its explicit form depends on the definition of the
scalar functionsf (q,P). We use a form factor for the
quark-diquark coupling which weakens the short range inter-
We use the normalizatiotP’|P)=2P%(27)353)(P'~P) and  action between the quark and the diquark and ensures the
Squ(P,9)u(P,9)=P?+P=M+P. existence of solutions with a positive norm. For simplicity,

A. Ladder BSE
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we use au—_channel form fac_:tor which can be conveniently M — Em_(a+|z)<qo< M+ Em.(a‘HZ), (22)
absorbed into the denominator of the exchanged quark ' i

propagator as follows: for anyk. Sincek is an integration variableg  (q+K) will

-~ A? adopt its minimum valuen, atk=—q for i=1. The above
Dq(P)—Dq(p)=Dq(p) AZ—p?—ie’ (14 condition, therefore, simplifies to
As a next step let us analyze the singularities of the integrand (q°— pM)?<mg. (23

in Eqg. (13). For this purpose we choose the nucleon rest

frame whereP = P{Y=(M,0) and put the weight constants
7q and »p to the classical values:

f q° is Wick rotated to pure imaginary values, i.e.,

g“—g~=(igq*q) with real gq*e(—=,), the displaced
poles will move to the second and fourth quadrants. Then,
mg 1-9 after also rotating the momentum‘—>k#=(ik4,IZ), we ob-

qu+ my_ 2 (15 tain the Euclidean vertex function,(k,P() from the
Wick-rotated BSE:

g

mD 1+7] 4
= =—. (16) _ d*ke ~  _ ~
P mgtmg 2 fo(@P)=0” | 53D~k (7g= 70)P”]

Here, we have introduced the asymmetry parameter 0. T o T

n=(mp—mg)/(my+mp), such that the invariant quark and XDq( 7P +k)Dp (0P ~k)

diqguark mass is given by my=m(l1-7) and XKaB(a,E-Pm))fﬁ(R P©), (24)

mp=m(1+ ), respectively, wheren=(my+mp)/2. In the

complexk, plane,Dy(7yP+k) and Dp(7pP—k) will be whered*ke = dk4d3k.

singular for If we are in a kinematic situation where no displaced
0 L poles occur, i.e., Eq(23) is satisfied, we may obtain the
K'==nM=Eq(k)*ie, (17 Minkowski space vertex functiof,(q,P) from the Euclid-

ean solution through

K= oM =Ep(K) Fie, (18) "
BN " - fo(q,P©)=g? f B Dol —a—K— (74— 7p)P©
WhereEq(k)= mg+ k2 andED(k)= m2D+ k2_ The cuts lie a(q ) g (277)4 q[ q (77q 77D) ]

in the second and fourth quadrants of the comgyplane.

04+ k 0 _%
However, for a bound state,<OM <m,+mp, a gap occurs XDq(7qP™ +K)Dp(7pP™ —k)

between these two cuts which includes the imagihgrsxis. <K K POV (K.pO 25
Next, consider the singularities of the exchanged quark ap( @K PEDT (K PTE. @9
propagator: It should be emphasized that for a given Euclidean solution

fB(T{, P©), Eq.(25) is not an integral equation but merely an
algebraic relation betweef,(q,P®) and f4(k,P®). If,
however, displaced poles occur, i.e., E2P) is not satisfied,
WhereEmi(IZ)= \/mi2+I22 andm;=mgq,A fori=1,2, respec- one needs to add contributions from the displaced poles to
tively. The sum of the second and third terms at the rightthe RHS of Eq.(25). This will lead to an inhomogeneous

hand side(RHS) of Eq. (19) is bound by integral equation for the functiof,(qg,P®), where the in-
homogeneous term is determined by the Euclidean solution

Lo M f 5(k,P©).
M) 4m pLK,
M +Eqm(g+k)=(mp mq)mq+ mp +m, (20 Since the Euclidean solutiorig(q,P(?) are functions of
G 2=—qz=—[(ds)*+q/?], G- P©=iq,M for a fixedM,
it is convenient to introduce four-dimensional polar coordi-

Ko=—q%+ 7M = Ep (4 +K) Fie, (19

nM — Emi(q+ Kys(mp— mq)m— m;. (21 nates:
The diquark should be considered as a bound state of two q°=qecosyy,
quarks which impliesn,<2mg. Together withm;=mj, Ceia
namely, setting the form factor magslarger thanm,, we q'=lald’, (26)
havemp —mgy+m;>0 andmp—my—m;<0. Consequently, R
we find from Egs.(20) and (21) #M+Ep(q+k)>0 and || = gesiney .

M —En (q+k) io f?r any momenta andk. Thiarejore, It Here, 0<aq< and the three-dimensional unit vecpris
—q%+ 7M—Ep (q+k)>0 or -q%+ 7M+Ep, (q+k)<0, parametrized by the usual polar and azimuthal angles

a so-called “displaced” pole will occur in the first or third E{i=(sin0qcos¢q,sinﬂqsin¢q,cos9q). In the following we,
quadrant, respectively. In other words, the displaced poletherefore, considerf ,(q,P(®) as a function ofge and
free condition is cosag. Furthermore, it is often conveniefé@nd traditional
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to factor out the coupling constagt together with a factor d*ke 1 @ 32 (7 . 1
(47)?, and define the “eigenvalue’s ~*=(g/4=)2. Then, j W:Wfo dkEkE;JO daksmza'kzj dQ.
the BSE in Eq(24) is solved as an eigenvalue problem for a (32)
fixed bound state masd.

Multiplying the BSE in Eq.(24) with the Gegenbauer poly-

C. O(4) expansion nomial C}i(cosy,) and integrating over the hyperangig,
In the following we will define the scalar functions reduces the BSE to an integral equation for thie)Qadial
f,(q,P) for positive energy 1 >0) bound states via functionsfy :
P-q . ¢ S < (*
F(q,P>=[f1(q,P>+( —wz T/ fa P AP, MMTo(ge)= 2 2 fo dkeK o0 ke) f(Ke).
(27) (33

i.e., we now make a specific choice for the scalar functiond?ere,A(M) is the eigenvalue which corresponds to a fixed

a andb in Eq. (12). In the rest frame of this model nucleon, bound state maddl. Furthermore, note that the integral ker-
ne

this leads to
P_ 1/t nm, _ -n-m2 7T nZ 1
¢j3;é}§ (q,P@)=T(q,Pu(P?,s) Kep(de Ke)=(—=1)" 14 dagsina Cr(cosng)

f1(q,P'?) 2(" 1 ,

.- x—f daksmzaka(comk)—f dQiki

= .o Xs- (28) mJo 2@
q )
M fa(q,P™)

X Dq[ _a_ K—( U 7p) P(O)]
Here, we have explicitly used the Dirac representation. The X Kaﬁ(a,i, POYD( an(°)+E)
Pauli matricesr act on the two-component spingg, where

the spin labelS=x1 is the eigenvalue of3: o3xs=Sxs.
In terms of the @3) spinor harmonic9}., [9],

X Dp(7pP@—k) (34)

is real, so that we can restrict ourselves to reed)@adial
PR 1 1o~ . functionsf" .
0s(Q) = EXS and Vig(q)=—q-od5d(q), (29 To close this section we shall introduce normalize@d)O
radial functions. Since the scalar functiofig(q,P) and
f,(q,P) correspond to the upper and lower components of

we have the model nucleon, respectively, one may expect that
1o~ f,(q,P) becomes negligible when the quark-diquark system
f1(q,P?)V5é(a) forms a weakly bound state. Thus, one can use the relative
P_q/ot . ; :
‘DJ3;§//22 (q,PO)= a4 q e | magnitude of the two scalar functionis,(q,P)/f,(q.P), as
- sz(q,p(o))yls(q) a measure of relativistic contributions to the model nucleon.

To compare the magnitude of the Wick-rotated scalar func-
(B0 tions f,(g,P) and f,(q,P), we introduce normalized @)

radial functions. Recall the @) spherical spinor harmonics
From Eq.(30) we observe thaf; andf, correspond to the [11,12;

upper and lower components of the model nucleon, respec-

tively.
After the Wick rotation, as discussed in the previous sub- _[22"H(n+ 1) (n—12
section, the scalar functiorfs, become functions ofjz and njim(e, 0, )= a(n+1+1)!
cosag. Therefore, we can expand them in terms of Gegen- NPT _
bauer polynomial<Cl(z) [10]: X 11 (sina)'C, 1 (cosw) Vi (6, ).

(35
_ 2 ‘nen 1
folQe,COST)= X i"l(qe)Ch(cosg).  (31) _
n=0 The integers andl denote the @) angular momentum and
the ordinary @3) orbital angular momentum, respectively.
We have introduced the phaséto ensure that the coeffi- The half-integer quantum numbejsand m stand for the
cient functionsf!, are real. The integral measure in4p  usual @3) total angular momentum and the magnetic quan-
polar coordinates is tum number. We rewrite the Wick-rotated solution
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(I)j:jé//;(a,p(o)) in terms of the spinor harmonics  Note that our normalization_ differs from the commonly
Zniim(a, 0,¢) and define the normalized (@ radial func- gsed ond13], since we are going to apply the vertex _func—
: tion only to processes with the diquark as a spectator, i.e., we
tionsF,(qg) andG,(qg) as ) . : )

do not consider the coupling of the virtual photon directly to
the diquark. The ordinary choice of normalization would not
lead to an integer charge for the model nucleon in the spec-
tator approximation. We, therefore, normalize the valence-

Pt —
®3 282 @.P)

i n ~ quark distribution itself.
2 1"Fr(de) Zn(1/2) 0s(@q:a) Regarding Eq(33) as an eigenvalue equation, we found
=2 " . the “eigenvalue” A (coupling constantas a function of
n— - M2, varying the latter over the range OrB5<M?<
i"lG Z , ’ _ Rk
nzl n(Ge) Zn(1r2 1s(@q. Q) 1.99m2. The eigenvalua was stable, i.e., independent of the

(36)  number of grid points and the maximum valuekgf. Fur-
o _ thermore, for a weakly bound staté,>1.6m, the solutions

The extra factory2 is introduced for convenience. The were independent of the choice of the starting functions.
normalized @4) radial functionsF, and G, are then linear However, for a strongly bound stat®] <1.4m, we found

combinations of they, : that the choices of the starting functions were crucial for
convergence. A possible reason of this instability for a
Fn(de)=f1(de), 37 strongly bound system is because of the fact that we did not
gy 2qe) usg the ©) eigenfungtionsfn an.dGn i.n numerical cz.alcu—
GA%F—S—,&W 2 an N 2n+gE . lations but the functionsf, defined |n.Eq.(31). Since
strongly bound system#] ~0, are approximately @) sym-

(38 metric, a truncated set of functiof§ may be an inappropri-

, i ate basis for numerical studies of the BSE.
Equivalently, we can express the Wick-rotated scalar func- We found that the eigenvalue converges quite rapidly

tions as whenn,,, the upper limit of the @}) angular momentum,
© is increased. This stability of our solution with respect to
f,(qe,cOSY) = 2 i”Fn(qE)Cﬁ(com), (39 Nmax i.s independent oM. We gbserve that con'tri.butions. to
n=0 the eigenvalue. from f(gg) with n>4 are negligible. This
dominance of the lowest @) radial functions has also been
o ) E 2M it ()2 ) observed in the scalar-scalar-ladder mddel] and utilized
,COSw) = — —_— _,(coww). imati i i i
2(Qe &9 Jnnt2) " Qe)Chn-1 as an approximation for solving the BSE in a generalized

(40) fermion-fermion-ladder approadhi5].
To compare the magnitude of the two scalar functions
f.(9,P) andf,(q,P) we show in Fig. 3 the normalized(®
radial functionsF, and G,,. As the dependence of on
In this subsection we present our results for the integrah,,,, suggests, radial functions with(@ angular momenta
equation in Eq(33). For simplicity, we considered the quark n>4 are quite small compared to the lower ones. Together
and diquark mass to be equal;=mp=m. In this case the with the fast convergence &, this observation justifies the
kernellczrl‘g1 can be evaluated analytically in a simple manner truncation of Eq.(33) at n=n,,,. Note that even for very
since for »=0 the denominator of the propagator for the weakly bound systems~0.5% binding energy the magni-
exchanged quark does not depend on the nucleon momentugide of the “lower-component”f,(g,P) remains compa-
P. _We fixed the scale of the system by setting the nmase  raple to that of the “upper-component’;(q,P). This sug-
unity. The “mass” parameter in the form factor was fixed at gests that the spin structure of relativistic bound states is
A=2m. ) . nontrivial, even for weakly bound systems. So-called “non-
We solved Eq(33) as follows. First, we terminated the rq|4tivistic” approximations, in which one neglects the non-

infinite sum in Eq.(31) at some fixed valu@,,,.. Then, the leadi e~ oy

| - .._leading components of the vertex functipfy(qg,P) in our
kernel in Eq.(34) for the truncated system becomes a ﬁmtemOdeﬂ are, therefore, only valid for extremely weak bind-
matrix with dimension (X n,,,) 2. Its elements are functions ing ZF—>M only '

of qg andkg. Next, we discretized the Euclidean momenta
and performed the integration ovkg numerically together
with some initially assumed radial functioh§. In this way
new radial functions and an “eigenvalueX’ associated with In the previous subsection we obtained the quark-diquark
them were generated. The value ofwas determined by vertex function in Euclidean space. Its application to deep-
imposing the normalization condition off, such that the inelastic scattering, as discussed in Sec. Il, demands an ana-
resultant valence-quark distribution is properly normalizedlytic continuation to Minkowski space. Here, the scalar func-
We then used the generated radial functions as an input annsf,, which determine the quark-diquark vertex function
repeated the above procedure until the radial functions anthrough Eq.(12), will depend on the Minkowski space mo-

A\ converged. mentag? andP-q.

D. Euclidean solutions

E. Analytic continuation
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FIG. 3. The normalized (@) radial functionsF, and G, from
Eqg. (36) for M=1.8m as functions of the Euclidean momentum

e -

Recall that our Euclidean solution is based on the expan

sion of the scalar functions, in terms of Gegenbauer poly-
nomials in Eq(31). This expansion was defined in Sec. IlIC
for real hyperangleg, with —1<cosx,<1. Consequently,
the infinite sum over the @) angular momenta in Eq. (31)

is absolutely convergent for pure imaginary energifs
Now, we would like to analytically continug® to physical,
real values. The Euclidean hyperanglg is defined in Eu-
clidean space such that

q4
In Minkowski space, cag, is then purely imaginary
(COSaq=—iq0/\/—q2) for spacelike g, and real (cos,

=—q%\Jg?) if q is timelike. Note that the angular momen-

tum sum(31) converges even for complex values of egas
long as|005aq|<1. Then, an analytic continuation &f, to

coswg= (41)

Minkowski space is possible. In terms of the Lorentz invari-

ant scalarg)> andP-q we obtain

P-q

Then, the convergence condition for the sum over tli4) O
angular momenta in Eq31) reads

z=cosy= — sgng?) (42)
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(P-q)?<M?q?. (43)
Even if Eq.(43) is satisfied, the radial functiorf§, them-
selves may contain singularities which prevent us from per-
forming the analytic continuation by numerical methods.

However, note that the Euclidean solutions ffyrare regular
everywhere on the imaginarg® axis. Consequently, the
RHS of the “half-Wick-rotated” equatior{25) contains no
singularities if the displaced pole-free condition in EBJ)

is met. Therefore, in Minkowski space, the radial functions
f, are regular everywhere in the momentum region where
the displaced pole-free conditid23) and the convergence
condition(43) are satisfied. Here, the analytic continuation to
Minkowski space is straightforward. Recall the normalized
0O(4) radial functionsF,, and G, from Egs.(37) and (38),
which are linear combinations gg. Writing them as
Fr(de)=0gFn(d2) andG(de) =q2Gy(qg), we find for the
scalar functiond ,(g?,P-q) from Eqgs.(39) and (40):

o o~

2 _ Fn(_qz) n~1
f(@?P-a)= 2 — o —(Vo*M?)'Ci(2),  (44)

n=0

” 2 Gu(—-¢?
f (P )= — > )

=1 Jn(n+2) M"?
X (NgPM?)"ICE_(2).

Note that the Gegenbauer polynomidl$[ C2_,] together

with the square root factorsyg?M?)" [(Vg°M?)""1] are
nth [(n—1)th] order polynomials ofj?, M?, andP-q and
contain, therefore, ngg?M? factors. Since in the kinematic
region under consideratiofi, (g% P-q) andf,(q%P-q) are
regular, it is possible to extrapolaté (—qg?) and

G,(—9g?) numerically from spacelike? to timelike 9> as
necessary.

Finally, we are interested in the quark-diquark vertex
function as it appears in the handbag diagram for deep-
inelastic scattering. Therefore, we need the functibpgor
on-shell diquarks only. The squared relative momentfm
and the Lorentz scald?-q are then no longer independent
but related by

(45

2
_Mg* Mo

2mp

2

P-g= —qg°+

[(mg+mp)?— MZ]}.
(46)

mg+mp

Then,f; andf, from Egs.(44) and(45) are functions of the
squared relative momentugf only.

In Sec. Il the parametrizatiof6) for the Dirac matrix
structure of the vertex function was more convenient to use.
The corresponding function§?" which enter the nucleon
structure function in Eq(7) are given by

m2 2

) =F1(0%.P-a) + o fa(4%P-0),  (47)

1
fS”(k2)=§fz(q2,P~q)- (48)
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Here, the argumentg? and P- q, of the scalar function$,,
on the RHS should be understood as functionk?hrough

on

Eq. (46), together with the relation ot fa
5.
mp 2
2__ M o (M
q Mg+ Mg ko= my Mg+ Mg mD) ' “9) 4t

As already mentioned, the procedure just described yields *
radial functionsf®" in Minkowski space only in the kine-
matic region where the conditions, Eq23) and (43), are
met. These are satisfied for weakly bound states i
MZ2<(mp+mg)? at moderate values dk®. On the other
hand, the nucleon structure function in E@) at small and

oL N . . .
-200 -150 -100 -50 0

moderate values ox is dominated by contributions from

small quark momenta |k’ <m:. Consequently, the k*/m?

Minkowski space vertex function obtained in the kinematic

region specified by the displaced pole-free conditi@8) FIG. 4. The on-shell scalar function&" (solid) and —f3"

and the convergence conditiéd3) determines the valence- (dashedlas a function of the quark momentuchfor M= 1.8m and
quark distribution of a weakly bound nucleon at small andMma—4-
moderatex.

In the case of strong bindingy?<(my+mp)?, or at  mentum is fixed ah,=4. Figure 4 demonstrates that the
largex, the nucleon structure function is dominated by con-magnitude off{" and f3" is quite similar, even for a weakly
tributions from large spacelike®. Here, the above analytic bound quark-diquark system. Furthermore, we find that for
continuation to Minkowski space is not possible and the sunyeakly bound statesM=1.8m), the dependence df" on
over the @4) angular momenta in Eq31) should be evalu- s negligible in the region of moderate, spacelike
ated first. In principle, this is possible through the Watson-_2<5m?2 "However, for larger spacelike values kf the
Sommerfeld method16-18, where the leading power be- conyergence of the @) expansion in Eq(31) decreases for

havior off ,(q,P-q) for asymptoticP- q can be deduced by any M2, and numerical results for fixed,,, become less
solving the BSE at complex @) angular moment@l9], or  gccurate.

by assuming conformal invariance of the amplitude and us- |, Fig. 5 the structure functioﬁ\{al is shown for various
ing the operator product expansion technique as outlined iDalues ofM?2 using n,,=4. The distributions are normal-

Ref. [18]. . .ized to unity. One observes that for weakly bound systems
HO.WGVE' tr?e use of the r(])peratolr( g_roduckt ex%arllsmﬂ_ Tm =1.99m), the valence-quark distribution peaks around
questionable here, since in the quark-diquark model, Whic} 15 on'the other hand, the distribution becomes flat if

s bekirljg useli:i, Wellhave i(Ttroduce(; ?dform fatctor for th inding is strong 1 =1.2m). This behavior turns out to be
quark-diquark coupling and our model does not correspon ainly of kinematic origin. To see this, remember tR¥t' is
to an asymptotically free theory. Existence of the form factor

also makes the analysis of complex4Dangular momenta given by an2|ntegra[cf., qu' 7] ovezr th% squared quark
complicated. Therefore, a simpler approach is used. It can brgomentumk ' bqunded DK, =X M* =M/ (1=x)]. The
shown from a general analysis that BS vertex functionéa’[ter has a maximum at= 1—mp /M. Therefore, the peak
which satisfy a ladder BSE are regular for spaceliée of the valence distribution for weakly bound systems occurs
when one of the constituent particles is on mass shell. Fur-
thermore, from the numerical solution studied in the previous
section, we found that the magnitude of thé4Dpartial

wave contributions to the functioff" decreases reasonably

fast for large @4) angular momenta, except at very large 55
k?. We, therefore, use the expansion formulé4) and (45)

with an upper limit onn<n,,, to evaluatef®" defined by 2
Egs. (47) and (48) as an approximation. Nevertheless, this
application of BS vertex functions to deep-inelastic scatter-
ing emphasizes the need to solve Bethe-Salpeter equations in ;
Minkowski space from the very beginning, as has been done
recently for scalar theories without derivative coupl[2g]. 05t

0t

IV. NUMERICAL RESULTS

X

In this section we present results for the valence contribu-
tion to the nucleon structure functid®y from Eq.(7), based FIG. 5. The valence-quark distributioR}® from Eq. (7) for
on the numerical solutions discussed above. First, we showifferent binding for the model proton. The solid, dashed, and dot-
in Fig. 4 the physical, on-shell scalar functiof' for a  dashed lines show the results for weald £ 1.99m), moderate
bound state maddl = 1.8m. The maximal @) angular mo- (M =1.8m), and strong §1=1.2m) binding, respectively.
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FIG. 6. Contribution of the “relativistic componentfS" to the FIG. 7. As in Fig. 6, but for moderate binding for the model
structure functiorF‘{a' from Eq.(7) for a weakly bound model pro- proton (M =1.8m).
ton (M =1.99m). The solid line denotes the total valence distribu-
tion F}?. The dashed line shows the contributionsF§', which
are proportional tdf3". The aim of this work was to outline a scheme whereby

structure functions can be obtained from a relativistic de-
at x~1/2 for mp=m,. For a more realistic choice scription of a model nucleon as a quark-diquark bound state.
mp~2mg, the valence distribution would peak at-1/3. For this purpose we solved the BSE for the nucleon starting
The more strongly the system is bound, the le&s, varies  from a simple quark-diquark Lagrangian. From the Euclid-
with x. This leads to a broad distribution in the case of stronggan solutions of the BSE we extracted the physical quark-
binding. Thus, the global shape &t is determined to a diquark vertex functions. These were applied to the spectator
large extent by relativistic kinematics. model for DIS_, and the valence-quark contribution to the

Note that successful fits to the measured nucleon valencgructure functiorf; was calculated. .
contribution toF, exhibit at low mass scales a significant _Although the quark-diquark Lagrangian used here is cer-
maximum atx~1/3 [21,27]. This behavior is in agreement tainly not realistic, and the corresponding BSE was solved

with our result forF¥@ in the case of weak quark-diquark PY @PPlying several simplifications, some interesting and
pseful observations were made. We found that the spin struc-

we hesitate to compare our results with data. For exampl ure of the n_ucleon,_ seen as a .relativistic quark-diquark
ound state, is nontrivial, except in the case of very weak

we would need to treat vector diquarks explicitly, including =, ) 7
their mass difference from the scalar diquafRk8]. Never- binding. Correspon_dlngly, the valence-quark contrlb_ut_lo_n to
theless, from the results we have obtained we can certainrlrg1e structure function is governed by the hanrelativistic
conclude that in terms of quark-diquark degrees of freedo omponent of the nucleon vertex function only for a very
the nucleon has to be viewed as a weak bound state. weakly bound state. Furthermore, we opserveq that t.he shape
To investigate the role of the relativistic spin structure ofOf th_e unpolanze_d .va'llen.ce—qua_rk distribution is mainly de-
the vertex function we discuss the contribution of the “rela-term_mEd by relat|V|st|c_ Kinematics ar_1d does not depend on
tivistic” component f3" to the nucleon structure function details of the quark-diquark dynamics. However, at large
E¥a Figure 6 show Zth t th ntribution frof§’ is negli quark momenta, difficulties in the analytic continuation of
1 - Flgure & Shows that the co utio S M€Y the Euclidean solution for the vertex function to Minkowski

gli\? Iflfgé?a Hvery t\]N ezikly blo u'n('j .qgalrk—g?quark state space emphasize the need to treat Bethe-Salpeter equations
(M=1. ). Here, the “nonrelativistic,” leading compo- in Minkowski space from the very beginning.

nentf$" determines the structure function. However, even for
moderate binding the situation is different. In Fig. 7 one
observes that the contribution from the “relativistic” com-

ponent is quite significant foM =1.8m. Nevertheless, the This work was supported in part by the Australian Re-
characteristicx dependence, i.e., the peak of the structuresearch Council, BMBF, and the Scientific Research Grant
function atx~1/2, is still because of the “nonrelativistic” No. 1491 of Japan Ministry of Education, Science, and Cul-
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