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Vector meson dominance and ther meson
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We discuss the properties of vector mesons, in particular ther0, in the context of the hidden local symmetry
~HLS! model. This provides a unified framework to study several aspects of the low energy QCD sector. First,
we show that in the HLS model the physical photon is massless, without requiring off field diagonalization. We
then demonstrate the equivalence of HLS and the two existing representations of vector meson dominance,
VMD1 and VMD2, at both the tree level and one loop order. Finally theS matrix pole position is shown to
provide a model and process independent means of specifying ther mass and width, in contrast with the real
axis prescription currently used in the Particle Data Group tables.@S0556-2821~99!02807-6#

PACS number~s!: 12.40.Vv, 11.30.Qc, 11.30.Rd, 12.39.Fe
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I. INTRODUCTION

There is no reliable analytic means for calculating lo
and medium energy strongly interacting processes with
underlying theory, QCD. Despite progress in numerical st
ies of QCD both via the lattice@1# and QCD-motivated mod
els @2#, pre-QCD effective Lagrangians involving the o
served hadronic spectrum continue to play an important
in studies of this sector. We shall be concerned in this w
with the interactions of the pseudoscalar and vector mes
as described by the hidden local symmetry~HLS! model@3#.

The focus of our paper will be ther resonance. As the
lightest and broadest of the vector octets it plays an imp
tant role in phenomenology and is presently the subjec
interest as a possible indicator of chiral symmetry restora
in heavy ion collisions@4#. It also serves as a guide for phy
ics in other sectors. As we shall see the interaction of ve
mesons and photons in the HLS construction is clos
analogous to the SU~2!^U~1! symmetry breaking of the
electroweak interaction. The traditional determination of
r mass and width has been plagued by model depende
which as we show can be avoided by use of theS-matrix
pole, closely following developments in the study of theZ0.

Our paper is structured as follows: we begin with a br
outline of the HLS model and discuss the generation of v
tor boson masses by the spontaneous breaking of the g
chiral symmetry through the Higgs-Kibble~HK! mechanism
@5#. In Sec. III we consider the relationship between the
HK masses and thephysical vector masses, using a two
channel propagator matrix for the photon-r system. This al-
lows one to consider the effect of mixing in the dressing
the bare propagators and when this is properly considered
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dressed photon is seen to be massless as required, wi
the need for a change of basis.

Section IV is devoted to a comparison of the two co
monly used representations of vector meson domina
~VMD ! ~referred to hereafter as VMD1 and VMD2 follow
ing the convention of Ref.@6#!, both of which can be ob-
tained as special cases from the HLS Lagrangian of Ref.@3#.
Note that VMD2 is the most commonly used version and
often in the literature, simply referred to as VMD or ‘‘th
vector dominance model’’@7#. Using the pion and kaon form
factors we explicitly demonstrate their equivalence at the t
level ~which is trivial! and at one-loop order, where care
required. This treatment is performed in the general casa
Þ2, wherea is the HLS parameter@3#, for which we intro-
duce VMD1a and VMD2a in an obvious manner.

Finally, as the vector mesons are resonant particles,
study the effect of the large width on the determination
model independentr parameters. TheS-matrix pole position
is shown to provide a truly model-independent and, furth
more, process-independent parametrization of ther meson.

II. HIDDEN LOCAL SYMMETRY AND VMD

The HLS model allows us to produce a theory with vec
mesons as the gauge bosons of a hidden local symm
These then become massive because of the spontan
breaking of a chiralU(3)L ^ U(3)R global symmetry. Let us
consider the chiral Lagrangian@8#

Lchiral5
1

4
Tr @]mF]mF†#, ~1!

whereF(x)5 f pU(x) in the usual notation. This exhibits th
chiral U(3)L ^ U(3)R symmetry underU→gLUgR

† . We can
write this in exponential form and expand

F~x!5 f pe2iP~x!/ f p5 f p12iP~x!22P2~x!/ f p1¯ ;
~2!
©1999 The American Physical Society20-1
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therefore, substituting into Eq.~1! we see that the vacuum corresponds toP50, U51. That is,F has a non-zero vacuum
expectation value which spontaneously breaks theU(3)L ^ U(3)R symmetry as this symmetry of the Lagrangian is no
symmetry of the vacuum. The massless Goldstone bosons contained inP, associated with the spontaneous symmetry break
then correspond to the perturbations about the QCD vacuum and we can think of expansions in this field as give
Hermitian matrixP5PaTa where the Gell-Mann matrices are normalized such that Tr@TaTb#5dab/2. So for the pseudoscalar
one has

P5
1

& S 1

&
p01

1

A6
p81

1

)
h0 p1 K1

p2
2

1

&
p01

1

A6
p81

1

)
h0 K0

K2 K̄0 2A2

3
p81

1

)
h0

D . ~3!
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However, in addition to the global chiral symmetry,G,
the HLS scheme includes a local symmetry,H, in Eq. ~1! in
the following way@3#. Let

U~x![jL
†~x!jR~x! ~4!

where

jR,L~x!5exp@ iS~x!/ f S#exp@6 iP~x!/ f p# ~5!

jR,L~x!→h~x!jR,L~x!gR,L
† . ~6!

Note that this introduces the scalar field,S(x), analogous to
the pseudoscalar,P(x), of Eq. ~3!, though S(x) does not
appear in the chiral fieldU(x) of Eq. ~4!. The general forms
of the transformations are given bygL,R5exp(ieL,R

a Ta) and
h(x)5exp@ieH

a (x)Ta#.
One now seeks to incorporate HLS into the low ene

Lagrangian in a non-trivial way, thereby introducing th
lightest vector meson states@3,9#. The procedure is to firs
re-writeLchiral explicitly in terms of thej components:

Lchiral52
f p

2

4
Tr@]mjLjL

†2]mjRjR
† #2. ~7!

The Lagrangian can be gauged for both electromagne
and the hidden local symmetry by changing to covariant
rivatives

DmjL,R5]mjL,R2 igVmjL,R1 iejL,RAmQ ~8!

whereAm is the photon field,Q5diag(2/3,21/3,21/3) and
Vm5Vm

a Ta whereVm
a are the vector meson fields transform

ing as Vm→h(x)Vmh†(x)1 ih(x)]mh†(x)/g. Suppressing
for brevity the space-time indexm, we can write the vector
meson field matrixVm as

V5
1

& S ~r01v!/& r1 K* 1

r2 ~2r01v!/& K* 0

K* 2 K̄* 0 f
D . ~9!
07402
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Here we have used ideal mixing in defining the barev andf
mesons. Note that the vector meson fieldsVm

a 5K* ,r,v,f
are introduced in the role of gauge fields forH[flavor
SU~3!. However,LA[Lchiral is independent ofV, and in the
HLS model a second piece of the Lagrangian,LV , is intro-
duced:

LA52
f p

2

4
Tr@~DmjLjL

†2DmjRjR
† !#2

LV52
f p

2

4
Tr@~DmjLjL

†1DmjRjR
† !#2. ~10!

The full HLS Lagrangian is then finally defined by@3#

LHLS5LA1aLV , ~11!

where we see that the HLS parametera has now been intro-
duced.

In the absence of the gauge fields,Vm andAm , we see that
Eq. ~10! reduces to

LA5
1

2
Tr@]mP]mP#, LV5

f p
2

2 f S
2 Tr@]mS]mS# ~12!

to quadratic order in bosons. In this caseP and S, would
both be Goldstone bosons, whereP(x) is associated with the
spontaneous breaking of the usual, global chiral symme
G, of LA arising from the vacuum expectation value of t
U(x) fields and analogously forS(x). However, gauge in-
variance allows for their elimination. It is usual to take
special gauge, the unitary gauge, forH, for which the scalar
field no longer appears,S(x)50 @9# ~for a discussion of the
unitary gauge and spontaneously broken symmetries, se
example Sec. 12-5-3 of Ref.@10#!. This is phenomenologi-
cally reasonable as no chiral partner for the pion has b
observed. With this choice we have

jL
†~x!5jR~x![j~x!5exp@ iP~x!/ f p#. ~13!
0-2
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By demandingS(x)50 the local symmetry,H, is lost, but
theg transformations of the global chiral symmetry groupG
will regenerate the scalar field through

j~x!→j8~x!5j~x!g†

5exp@ iS8„P~x!,g…/ f S#exp@ iP8~x!/ f p#. ~14!

However, the system can still maintain the unitarity gau
conditionS(x)50 and global chiral symmetry,G, under the
combined transformation@9#

j~x!→j8~x!5h„P~x!,g…j~x!g†,

h„P~x!,g…5exp@2 iS8„P~x!,g…/ f S# ~15!

where the particular choice of local transformatio
h„P(x),g…, ‘‘kills’’ the scalar field created by the globa
07402
e

,

transformationg. The physical meaning of this is that vecto
fields acquire longitudinal components by ‘‘eating’’ the sc
lar S field through a transformation of the form~to lowest
order in Goldstone fields!

Vm→Vm2
1

g fS
]mS8. ~16!

Once the scalar field is effectively removed by the unit
ity gauge choice the traditional VMD Lagrangian, that
VMD2, is obtained from an expansion ofLHLS in the pion
field, as per Eq.~2!. The HLS model actually generalize
VMD2, through the additional parameter,a of Eq. ~11!; so
we shall refer to the resulting Lagrangian as VMD2a . It has
the form
LVMD2a52
1

4
FmnFmn2

1

4
VmnVmn2ae fp

2 gFr1
v

3
2
&

3
f G•A

1
2

3
ae2f p

2 A21
a fp

2 g2

2
~r21v21f2!1a fp

2 g2~r1
•r21K* 1

•K* 21K̄* 0
•K* 0!

1]p1
•]p21]K1

•]K21]K0
•]K̄01

1

2
@]p0

•]p01]p8
•]p81]h0

•]h0#

1
i

2
@agr1e~22a!A#•@]p1p22]p2p1#

1
i

4
@ag~r1v2&f!12e~22a!A#•~]K1K22]K2K1!

1
iag

4
@r2v1&f#•@]K̄0K02]K0K̄0#1

iag

2&
r1

•@]K0K22]K2K01&~]p2p02]p0p2!#

1
iag

2&
r2

•@]K1K̄02]K̄0K11&~]p0p12]p1p0!#

1
iag

4
K* 0

•@]p0K̄02]K̄0p01&~]K2p12]p1K2!1)~]K̄0p82]p8K̄0!#

1
iag

4
K̄* 0

•@]K0p02]p0K01&~]p2K12]K1p2!1)~]p8K02]K0p8!#

1
iag

4
K* 2

•@]p0K12]K1p01&~]p1K02]K0p1!1)~]p8K12]K1p8!#

1
iag

4
K* 1

•@]K2p02]p0K21&~]K̄0p22]p2K̄0!1)~]K2p82]p8K2!#, ~17!
0-3
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where for brevity we used the notationr[r0. HereFmn and
Vmn are the standard Abelian and non-Abelian field stren
tensors for the photon and vector meson octet respectiv
The photon and vector mesons therefore acquire Lagran
masses through the HK mechanism@5# with the vector me-
sons also obtaining longitudinal components through
@16#. The HK mass generated for the vector mesons is gi
by

mHK
2 [M25ag2f p

2 . ~18!

The choicea52 @3# reduces VMD2a @Eq. ~17!# to the tradi-
tional VMD2, eliminating the photon-pion contact term an
reproducing the Kawarabayashi-Suzuki-Riazudd
Fayyazuddin~KSRF! relation @11# through Eq.~18!.

For simplicity we shall not consider SU~3! breaking due
to strangeness in the vector meson sector@12,13#, which re-
sults in changes in the vector meson coupling constants
HK masses for theK* andf. One should also note that th
VMD2a Lagrangian does not generate couplings of the v
tors to thesingletcomponent of the pseudoscalar mesons.
be perfectly clear, VMD2a is nothing but the standard HLS
Lagrangian used to deduce the HLS pion form factor in R
@14#. It is a non-trivial extension of the traditional vecto
meson dominance model VMD2, sinceaÞ2 generates no
only a violation of the KSRF relation (mr

252g2f p
2 ), but also

introduces a direct coupling of the photon to the pseudos
lars.

III. DRESSED VECTOR PROPAGATORS AND THE
PHOTON POLE

The physical photon is massless, but the VMD2a La-
grangian in Eq.~17! possesses a photon mass term. To fi
the physical results one obtains from VMD2a , we need to
dress the vector propagators by means of a matrix equa
which accounts for the possible mixings between vector p
ticles @15#. The matrix Dyson-Schwinger equation is give
by

iD mn5 iD mn
0 1 iD ma

0 iGabiD bn ~19!

whereDmn is the dressed propagator matrix andDmn
0 is the

bare propagator obtained from the Lagrangian,

Dmn
0 5S 2gmn1

qmqn

M2 D 1

q22M2 . ~20!

Inverting Eq.~19! we obtain

Dmn
~21!5D0

mn
~21!1Gmn . ~21!

The self-energy matrixGmn is composed of two entities
The first is the polarization functionPmn generated from
loop effects. As can be shown from Eq.~17!, the vector
mesons couple to loops only through conserved curre
@13#, and hence the polarization tensor is transverse

Pmn[~gmn2qmqn /q2!P~q2! ~22!

and from the node theorem@15#
07402
h
ly.
an

.
n

-

nd

c-
o

f.

a-

d

on
r-

ts

P~0!50. ~23!

The functionP(s) has a branch cut along the real axis b
ginning at the production threshold~for the r this is s
54mp

2 ) and extending to infinity. The second dressing te
comes from the Lagrangian mixing terms between the ve
mesons and photon. For simplicity let us consider the c
with only the photon and ther[r0 @3#; we then have

Gmn5S gmn2
qmqn

q2 D S Pgg Pgr

Prg Prr
D 1gmn

eM2

g S 0 1

1 0D ,

~24!

whereM is the HK mass of ther given in Eq.~18!.
As we shall here only consider amplitudes such

e1e2→p1p2 where the vectors couple to external co
served currents~lepton or pion! the qmqn pieces of Eq.~21!
can be ignored. So defining the scalar part of the propag
through Dmn(q)[gmnD(q2) the surviving part of the
dressed propagator is given by

S Dgg Dgr

Drg DrrD 5S e2M2/g21Pgg2s eM2/g1Pgr

eM2/g1Prg M21Prr2sD
21

,

~25!

where s[q2. A similar formalism has been discussed b
Hung and Sakurai for theg2Z0 system in the electrowea
interaction@16#. The poles,pi , i 51,2, of the two channe
propagator are obtained from

Det@D21~pi !#50. ~26!

The VMD2a Lagrangian given in Eq.~17! is O(e2), where
e[e/g; so we work to this order in the calculation of th
pole positions in the complexs plane. Equation~26! gives

2p5M2~11e2!1Prr1Pgg6H M2~11e2!1Prr2Pgg

1
2„e2~Pgg2Prr!M212eM2Pgr2Pgr

2
…

M2~11e2!1Prr2Pgg
1O~e3!J .

~27!

In power counting with respect toPrr , we see thatPgr and
Pgg are intrinsically ofO~e! andO(e2) respectively: so we
can further simplify:

2p5M2~11e2!1Prr1Pgg6H M2~11e2!1Prr2Pgg

2
2~e2M2Prr22eM2Pgr1Pgr

2 !

M21Prr
1O~e3!J . ~28!

Thus the poles are, toO(e2),

pg5Pgg~pg!1
e2M2Prr~pg!22eM2Pgr~pg!1Pgr

2 ~pg!

M21Prr~pg!
~29!
0-4
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pr5M2~11e2!1Prr~pr!

2
e2M2Prr~pr!22eM2Pgr~pr!1Pgr

2 ~pr!

M21Prr~pr!
.

~30!

Since they couple only through conserved currents, the
larization functions,P(0)50 @15#, and we see that the pho
ton pole resides atq250 as required. The explicit photo
mass term in Eq.~17! is canceled by the photon self-energ
Similarly ther pole is shifted only by corrections ofO(e2)
by mixing with the photon. This result is as we might expe
since the vacuum stateF05 f p in invariant under the U~1!
EM transformation@17#

F→F1 i e~x!@Q,F#, ~31!

and massive vectors correspond to spontaneously bro
symmetries. However, it is slightly more subtle than t
usual case where invariance under a transformation of
form F0→F01 i ea(x)TaF0 requires that there be no La
grangian mass term~asTaF050). The generation of vecto
meson masses in the presence of a massless photon is tr
in the general case by Gottlieb@18#.

HLS can therefore be used to demonstrate ‘‘from fi
principles’’ that the VMD2 Lagrangian is perfectly consi
tent with physical expectations concerning the photon
vector meson masses. However, this is only realized after
above cancellation of the photon mass. For this reason
alternative representation of vector meson dominan
VMD1, was introduced. In the next section we examine
relationship between VMD1 and VMD2 at both tree lev
and one-loop order.

IV. VMD1 vs VMD2

The VMD2a Lagrangian, Eq.~17!, contains a mass term
for the photon. As the physical photon is massless, one m
consider an alternative version with no Lagrangian m
term for the photon@19#, which has been referred to a
VMD1 @6,20#. We shall introduce the term VMD1a for the
general version of VMD1 derived from HLS. As in the pr
vious representation of VMD, VMD1a reduces to standar
VMD1 for the special casea52.

In VMD1a the photon can couple directly to the pseud
scalars and the photon–vector-meson mixing term is lin
in q2 and hence vanishes atq250. As will be shown the two
representations of VMD, VMD1a and VMD2a , are related
by a field transformation, and as such should be physic
equivalent. At the tree level, this equivalence is complete
easy to prove; however, at the one loop level care needs t
taken to ensure all terms are included@21#. We begin with a
discussion of one-loop effects in VMD, starting from th
HLS Lagrangian.

A. VMD2 a form factors

So far we have discussed the generation of masses
longitudinal components for the vector mesons through
HK mechanism. These masses are necessarily real va
07402
o-

,

en

e

ated

t

d
he
an
e,
e
l

ht
s

-
ar

ly
d
be

nd
e
ed,

but are not exactly what is seen in experiment. The vec
meson propagator is modified by the vacuum polarizat
function P(q2) away fromq250, i.e.,

DV~s!5
1

s2mHK
2 →

1

s2mHK
2 2PVV~s!

, s[q2. ~32!

As the physical pseudoscalar fields appear as vacu
fluctuations we may assume a weak field expansion
work to first order in pseudoscalar loops@9#. The polariza-
tion functions, PVV(s), are composed of loops,l (PP8),
from theVPP8 couplings

Prr5g2a2l ~p1p2!/41g2a2l ~K1K2!/16

1g2a2l ~K0K̄0!/16 ~33!

Pvv5g2a2l ~K1K2!/161g2a2l ~K0K̄0!/16
~34!

PK* 0K* 05g2a2l ~K2p1!/21g2a2l ~K0p0!/4 ~35!

PK* 1K* 15g2a2l ~K̄0p1!/21g2a2l ~K1p0!/4 ~36!

Pff5g2a2l ~K1K2!/81g2a2l ~K̄0K0!/8 ~37!

where we have factored out the couplings leaving only
generic loop integrals involving the appropriate pseudos
lars. Note that we have not included the anomalousVPPP
andVVP couplings@22# in the polarization functions, since
these effects are expected to be rather small. Numerical s
ies show that ther→pp→r contribution to the real part o
Prr is a few percent ofmHK[M , but the contribution to the
v physical mass fromv→3p→v is negligible@23#. Similar
behavior is observed in the imaginary part, as ther width
~generated by ImPrr) is muchlarger than that of thev or f.
We may conclude that the two pion loop is the domina
influence1 on the mass shift and that only ther physical mass
is significantly different from its HK value. This is supporte
by the observation that the Bando-Kugo-Yamawaki relat
between the HK masses of thev, K* andf in models of the
SU~3! breaking@12#,

mvmf5mK*
2 ~38!

holds to 0.1%20.4% ~for charged or neutralK* ), whereas
the observedr andv masses differ by a few percent desp
having identical HK masses.

In a similar manner, we can obtain the hadronic contrib
tions loop corrections to vector meson mixing, and can
rive relations between them and the polarization functio
The pure pseudoscalar loop mixings are given by

1See, however, Ref.@21# for a discussion of thef meson.
0-5
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Prv5
g2a2

16
@ l ~K1K2!2 l ~K0K̄0!# ~39!

Prf52
&g2a2

16
@ l ~K1K2!2 l ~K0K̄0!# ~40!

Pfv52
&g2a2

16
@ l ~K1K2!1 l ~K0K̄0!#. ~41!

Note that if isospin invariance is assumed, as it has bee
far, only v-f mixing survives and we notice that

Pff52Pvv522&Pfv . ~42!

Hencer-v mixing is only allowed in the present analysis
isospin violation is admitted through allowingl (K1K2)
Þ l (K0K̄0). However, once isospin violation is allowed, w
should in principle consider the possibility of additional iso
pin violating effects arising fromu-d splitting in our HLS
Lagrangian. For example, to first order in isospin violati
the possibility of anvpp coupling must be considered i
r-v mixing @24,25#. Such a term arises naturally via loo
effects when higher order pseudoscalar terms, for exam
VPPPP, are considered@26#. Alternatively it could be gen-
erated through SU~2! breaking inLV itself, analogous to the
existing studies of SU~3! breaking@12,13#. So far, in studies
of the HLS model such explicit isospin breaking effects ha
been considered only for the anomalous sector@27,28#. For
an investigation of isospin violation in a chiral meson theo
see Ref.@29#.

The possibility of a direct coupling of the photon to th
pseudoscalar field allows for a loop-induced photon–vec
meson mixing, which in the isospin limit~where mK0

5mK1) gives

Prg5
e~22a!

ag
Prr , Pvg5

e~22a!

ag
Pvv ,

Pfg52
e~22a!

&ag
Pff . ~43!

Note that these mixings vanish ifa52 or q250. Since these
vanish atq250, we see that the previous proof of the ma
lessness of the photon remains unaffected.

From the Lagrangian we can now write expressions
the pion and kaon form factors, defined from the Feynm
amplitude viaMgPP52eFP . In the following we shall
write the HK mass simply asM @see Eq.~18!#. We can go
from the tree level result to the one-loop result by replac
the ordinary Lagrangian interaction pieces by an effect
Lagrangian for the photon pseudoscalar couplings. At
tree level, where the propagators are simplyDV

051/(s
2M2), the form factors are given by

Fp
tree~s!512a/22aM2Dr

0/2512asDr
0/2 ~44!
07402
so

-

le

e

r-

-

r
n

g
e
e

FK1
tree

~s!512a/22aM2@Dr
01Dv

0 /312Df
0 /3#/4

512~as/4!@Dr
01Dv

0 /312Df
0 /3# ~45!

FK0
tree

~s!52~aM2/4!@Dr
02Dv

0 /322Df
0 /3#.

~46!

We note here that in this SU~3! flavor symmetric tree resul
FK0

tree(s)50.
We now consider the effects of loops. As the reson

structure of the vector mesons, generated by loops, is
important part of the phenomenology we might expect loo
to play an important role. The contact term between the p
ton and the pseudoscalars whenaÞ2 induces a one loop
contribution to the photon–vector-meson vertex, which
can introduce through the effective interaction Lagrangia

L gr
eff52

eM2

g
1Pgr52

eM2

g
1

e~22a!

ag
Prr

L gv
eff 52

eM2

3g
1Pgv52

eM2

3g
1

e~22a!

ag
Pvv

L gf
eff 5

&eM2

3g
1Pgf5

&eM2

3g
2

e~22a!

&ag
Pff .

~47!

In a similar way the tree-level propagators are replaced
their one-loop forms to giveDV

151/@s2MV
22PVV(s)#.

Similarly the vector mesons can now mix through pseu
scalar loops. For example, the effect ofr-v mixing, which is
important for the pion form factor, is easily incorporated
replacing ther propagators by

Dr
1→Dr

1@11~ f vg / f rg!AvppDv
1 #. ~48!

As it is not realistic, in the sense of data fitting@24#, to draw
a distinction between isospin violation occurring throughr-v
mixing and intrinsic isospin violation in thevpp vertex
~which could could either be present in the original Lagran
ian or be generated by loop effects@26#!, Eq. ~48! uses
Avpp , the ‘‘effective mixing function’’ that absorbs both
effects to couple thev to the 2 pion final state, through ther
@24,25#,

Avpp5235006300 MeV2. ~49!

Using Eqs.~42! and ~47! the leading resonant terms in th
one-loop expressions for the VMD2a model form factors are
given by

Fp
1 loop~s!5@~12a/2!s2M2#Dr

1@11~ f vg / f rg!AvppDv
1 #

~50!

FK1
1 loop

~s!5~1/2!@~12a/2!s2M2#@Dr
11~1/3!Dv

1

1~2/3!Df
1 2~2&/3!Dv

1 PvfDf
1 # ~51!
0-6
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FK0
1 loop

~s!5~1/2!@~12a/2!s2M2#@Dr
12~1/3!Dv

1

2~2/3!Df
1 1~2&/3!Dv

1 PvfDf
1 #. ~52!

These expressions are one loop in the sense that each o
components in the tree-level amplitudes has been repla
by its one-loop generalization. Without the vector mes
mixing loops, these expressions agree identically with
tree level results fora52 ~as the photon decouples from th
pseudoscalars and pseudoscalar loops cannot be gener!.
We see that the tree level results are protected from m
corrections at the one-loop level fora.2, since vector me-
son mixing effects are small@30#.

B. VMD1a form factors

Although the photon mass term appearing in Eq.~17!
does not result in a massive photon, it is tempting to cho
07402
the
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n
e
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a field redefinition in which it does not appear@3#. The trans-
formation most resembling that used to eliminate the pho
mass term in the electro-weak theory actually removes
pointlike coupling of the photon to ther and thus obscures
VMD @3,31#. We shall consider an alternative transformati
@19# that generates ‘‘current mixing’’@32# between the pho-
ton and vector mesons,

A→A, r→r1eA, v→v1~e/3!A,

f→f2~e&/3!A, ~53!

to derive VMD1a from VMD2a @Eq. ~17!#. Making the sub-
stitutions of Eq.~53! in Eq. ~17! we find that the resulting
Lagrangian for VMD1a is given by
e

LVMD1a52
1

4
FmnFmn2

1

4
VmnVmn2esFr1

v

3
2
&

3
f G•A

1
1

2
a fp

2 g2~r21v21f2!1a fp
2 g2~r1

•r21K* 1
•K* 21K̄* 0

•K* 0!1]p1
•]p2

1]K1
•]K21]K0

•]K̄01
1

2
@]p0

•]p01]p8
•]p81]h0

•]h0#

1
i

2
@agr12eA#•@]p1p22]p2p1#

1
i

4
@ag~r1v2&f!14eA#•~]K1K22]K2K1!

1
iag

4
@r2v1&f#•@]K̄0K02]K0K̄0#1

iag

2&
r1

•@]K0K22]K2K01&~]p2p02]p0p2!#

1
iag

2&
r2

•@]K1K̄02]K̄0K11&~]p0p12]p1p0!#

1
iag

4
K* 0

•@]p0K̄02]K̄0p01&~]K2p12]p1K2!1)~]K̄0p82]p8K̄0!#

1
iag

4
K̄* 0

•@]K0p02]p0K01&~]p2K12]K1p2!1)~]p8K02]K0p8!#

1
iag

4
K* 2

•@]p0K12]K1p01&~]p1K02]K0p1!1)~]p8K12]K1p8!#

1
iag

4
K* 1

•@]K2p02]p0K21&~]K̄0p22]p2K̄0!1)~]K2p82]p8K2!#. ~54!

This removes the photon mass term as well as the constantV•A terms from Eq.~17! and introduces a new coupling of th
photon to the pseudoscalar fields

L gP
VMD15 ieAm@~]mp1p22]mp2p1!1~]mK1K22]mK2K1!#. ~55!
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The field redefinition in Eq.~53! also introduces theq250 vanishing mixing of the photon and vector mesons through
vector meson kinetic terms~this is discussed in detail in Ref.@6#!. Together with Eq.~55! we then have the effective interactio
Lagrangian

L gV
VMD1a5

e

g F S 2s1
2

a
PrrD rm1S 2

s

3
1

2

a
PvvDvm1S&s

3
2
&

a
PffDfmGAm. ~56!

We are now in a position to write the VMD1a form factors, as derived from the HLS model. The tree level result is

Fp
tree~s!512asDr

0/2 ~57!

FK1
tree

~s!512~as/4!@Dr
01Dv

0 /312Df
0 /3# ~58!

FK0
tree

~s!52~as/4!@Dr
02Dv

0 /322Df
0 /3#. ~59!

We see that Eqs.~44!–~46! and Eqs.~57!–~59! are identical@recalling that Eqs.~52! and similarly~59! are zero# and that the
two representations of VMD are thus equivalent, while the leading resonant terms for the one-loop result are given

Fp
1 loop~s!5@~12a/2!s2M2#Dr

1@11~ f vg / f rg!AvppDv
1 # ~60!

FK1
1 loop

~s!5~1/2!@~12a/2!s2M2#@Dr
11~1/3!Dv

1 1~2/3!Df
1 2~2&/3!Dv

1 PvfDr
1# ~61!

FK0
1 loop

~s!5~1/2!@~12a/2!s2M2#@Dr
12~1/3!Dv

1 2~2/3!Df
1 1~2&/3!Dv

1 PvfDr
1#, ~62!

which are identical to Eqs.~50!–~52!.
It is worthwhile now to briefly explain how the one loop results have been obtained. The simplest case is the pio

factor of VMD1a . From the effective Lagrangian one has~ignoring, for simplicity, the isospin violating piece!

Fp
1 loop~s!512@as/22Prr~s!#Dr

1 . ~63!

The procedure we have followed is to eliminate thePrr(s) term appearing in the numerator of Eq.~63!. Doing this also
cancels the leading one associated with the pointlike coupling of the photon to the pion current,

Fp
1 loop~s!5$@s2M22P~s!#2@as/22P~s!#%Dr

15@s~12a/2!2M2#Dr
1 . ~64!
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The other expressions are obtained similarly. Recall
P(0)50 @15# all form-factor normalization conditions ar
clearly maintained (Avpp in our model is generated only b
loops!. We can now clearly see the agreement between
one loop results for VMD1a and VMD2a . This highlights
the importance of including loop effects in VMD studies.

So we see the equivalence of VMD1a and VMD2a ,
which we might suspect on principle as the physics mus
independent of the choice of fields. However, this is o
true if one works consistently to one loop order in the fo
factors, including loop-induced photon-vector-meson m
ings. In addition to this, care must be taken to distingu
between the HK and the physical mass of ther. Such effects
were not included in Ref.@14#, leading to somewhat differen
results for data fits using VMD1a and VMD2a ~note that in
this paper the ‘‘HLS’’ fits refer to what we call VMD2a
here!. For the kaon form factors it would be interesting
more systematically include and study the effects of SU~3!
symmetry breaking on this analysis@12#. One should note
however, that including SU~3! symmetry breaking effects
will not spoil the effect of the transformation, given in E
~53!, on the VMD Lagrangian.
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It should also be noted that the initial investigation in
generalizations of VMD1 and VMD2 performed in Ref.@14#
can be interpreted as evidence for preferri
VMD1a /VMD2a to VMD1/VMD2. Indeed, in order to get
an acceptable fit to the form factor data, it was necessar
introduce an additional term (11e)51.16760.008 affecting
the resonance contribution in the standard VMD1 form fa
tor and interpret this as anad hocuniversality violation.2 We
might, in light of the above discussion, make a connect
between (11e) and the HLSa/2. Similarly, the ‘‘HLS’’ fit
of Ref. @14#, i.e., a VMD2a type fit, finds significant excur-
sion from the traditionala52, namely,a/251.18260.008.
One should then remark that the results of Ref.@14# give
additional evidence for the underlying equivalence
VMD1a and VMD2a . It would be very interesting to refit the
data with the full 1-loop expressions for the form facto
given here.

2Heree is merely a fitting parameter, note/g as defined earlier.
0-8
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V. MASSES, WIDTHS AND S MATRIX POLES

BecausemHK is above threshold, the vector meson po
pV , ‘‘slips down’’ onto the second Riemann sheet to a loc
tion on the complex plane satisfying

pV2mHK
2 2PVV~pV!50. ~65!

In some sense the discussion of masses and widths for
stable particles is an artifact of convention, because only
pole position,pV , defined in Eq.~65! is process independen
and hence physically meaningful@33#. Model dependence is
of course, unavoidable when comparing various resona
models and their different associated vector meson ma
and widths.

However, model-independent definitions of the mas
and widths can be conveniently defined from the pole po
tion through the identification

pV[m̄22 im̄Ḡ ~66!

~or through the slightly old-fashioned formApV[m̃

2 i G̃/2). For narrow resonances such as thev and f, the
pole is directly accessed by the choice of a momentum in
pendent Breit-Wigner form in the fit to data and the mas
and widths generally quoted correspond very closely to th
in Eq. ~66!. However, as a result of the large width of ther,
one generally sees an attempt to model the possibles depen-
dence ofPVV modifying the naive Breit Wigner~see, e.g.,
Refs.@34,35#!. For the pion form factor, wherer parameters
are extracted, this amounts to the isospin pure contribu
~that not including thev @25#! being given by a function

Fp~s!5
f ~0!

f ~s!
h~s!, h~0!51 ~67!

wheref (s) has the appropriate cut beginning ats54mp
2 and

the functionh(s) models any small deviations from elasti
ity. Though this in itself is perfectly acceptable, the quot
values of mass and width are defined through their value
the real axis@35,36#

Ref ~mRe
2 !50, Im f ~mRe

2 !52 imReGRe, mRe,GRePR

~68!

to emulate the Breit-Wigner form factor along the real a
@37#,

lim
s→mRe

2

f ~s!5s2mRe
2 1 imReGRe. ~69!

These are not tied to the pole position and are hence
model dependent. Indeed, phenomenology suggests sp
forms for the functionf (s), which in turn influence the pa
rameter values for the functionf (s). This has led to consid
erable difficulties in comparingr parameters obtained b
various authors as has been noted by the Particle Data G
~PDG! as early as 1971~see p. S62 of Ref.@38#! and is also
discussed in the most recent Particle Data listing~see Eidel-
man’s review on p. 364 of Ref.@39#!. Indeed the differences
between many quoted values for ther mass and width arise
merely from model dependence, rather than discrepancie
07402
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physical data, as discussed by Gardner and O’Connell@25#
for the e1e2→p1p2 data of Barkovet al. @36#.

This is a well-known problem for the parametrization
broad resonances. The model dependence of the determ
tion of the mass and width of theD~1236! was discussed in
the 1971 Particle Data listing@38#. The solution, through the
model independent pole prescription, was then provided
the 1972 listing@40#. Höhler’s recent review of this~see p.
624 of Ref.@39#! concludes that in contrast to the conve
tional real axis parameters, the pole positions have a w
defined relation toS matrix theory and are generally mor
useful. Our aim here is to present the pole results for vari
recent fits tor data in one place to fully highlight both th
model independence and process independence.

In Ref. @25# generalized form factors were used to obta
very good fits to the pion form-factor data@36# for four
choices of model~A, B, C and D!. In this manner the func-
tion f (s) is fixed, in terms of fitting parameters, along th
reals axis. The resulting real axis determinations of the m
and width showed a significant model dependence. Howe
in Ref. @41# the model independence of the pole prescript
can clearly be seen in the quoted values ofm̄r and Ḡr as
defined in Eq.~66! by solving f (pV)50 for each of the four
models. To give an example this procedure, model A of R
@25# usesf (s)5as21bs1c1 f 1(s), wheref 1(s) is a speci-
fied complexfunction. The parametersa,b,c, are fixed by
the fit to data, allowing one to find the zero off (s) through
a step iteration on the complex plane. The correlations a
ciated with the parametersa, b andc allow one to determine
the statistical errors associated withm̄r andḠr ~for a discus-
sion of error analysis see, for example, Ref.@42#!. The results
are given in Table I along with the masses and widths
tained from the traditional real-axis prescription~which show
a large model dependence!.

We have also repeated this procedure for other dete
nations of ther mass and width; although without knowin
correlations of the fitting parameters, we have simply solv
f (pV)50 usingMATHEMATICA @43# and do not quote statis
tical errors form̄r and Ḡr . This is done for the fits of Ref
@14# as well as the original fit of Barkovet al. @36# and the
recent fit for thechargedr seen in hadronict decay@44#.
The latter results should allow one to look for any statis
cally significant isospin violation in the pole position. A
mr(770)02mr(770)6 is quoted by the PDG@39#, a more de-
tailed study would be of considerable interest for a deter
nation of this mass splitting based on model-independ
quantities.

Not only are the results of the pole determination virtua
model independent, they agree completely with previo
pole determinations from bothe1e2→p1p2 @45# and p-p
@46,47# scattering data~further demonstrating process ind
pendence!. We see in Table I that the central values for ther
mass and width, defined by the standard real-axis presc
tion, cover ranges of 763–780 and 141–157 respectiv
while those from the pole prescription lie in the ranges 75
759 and 140–145 respectively~all figures quoted in MeV!.
This illustrates the model independence of ther pole loca-
tion. Indeed, if one takes into account the errors on the p
0-9
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TABLE I. Extraction of r masses and widths for both the real part of the complex pole@m̄r and Ḡr

defined in Eq.~66!# and the standard real axis@mr andGr as given in Eq.~68!# prescriptions. Fits I~Ref.
@36#!, II ~Refs. @25,41#!, III ~Ref. @45#! and IV ~the results of the unitarized fits of Ref.@14#; see Table 2
therein! use thee1e2→p1p2 data obtained in I. Fit V~Ref. @47#, adjusted tom̄ from m̃) usespp scattering
data and fit VI~Ref. @44# using two different fitting functions; see Table 3 therein! gives results for the
chargedr obtained fromt decay.

Fit x2/NDF mr ~MeV! Gr ~MeV! m̄r ~MeV! Ḡr ~MeV!

I 129/133 775.961.1 150.563.0 758.3 145.0
IIA 68/75 763.163.9 153.861.2 756.361.2 141.963.1
IIB 66/76 771.361.3 156.260.4 757.061.0 141.763.0
IIC 67/76 773.961.2 157.060.4 757.061.0 141.763.0
IID 68/76 773.961.2 146.963.4 757.061.0 141.763.0
III 757.561.5 142.563.5
IV @VMD1 a# 65/77 774.760.7 147.161.6 758.5 142.8
IV @VMD2# 81/77 780.460.7 155.462.0 760.0 146.8
IV @HLS~VMD2a)] 65/77 775.260.7 147.761.5 759.0 143.4
IV @WCCWZ# 61/76 770.921.5

11.8 140.622.9
13.2 759.2 139.6

V 771 147 756 142
VI @KS# 81/65 774.960.9 144.261.5 759.1 139.9
VI @GS# 54/65 776.460.9 150.561.6 758.8 145.0
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parameters, when they are available, the difference betw
the various determinations of the pole position is ne
greater than 2s, i.e., not statistically significant.

The power of this method is useful not only to finding
model independent means of parametrizing a broad r
nance such as ther mesons, but also in the standard mod
for the Z0 where the data has very high precision a
PVV(s) can actually be theoretically calculated@48,49# ~see
also theZ0 review in Ref.@39#!. The use ofS-matrix poles is
also potentially important for the Higgs boson@50# andCP
violation in the kaon system@51#.

VI. CONCLUSION

We have applied a field theoretic treatment to the vec
meson sector and, in particular, ther. Starting with the HLS
model allows one to produce a Lagrangian for the low
ergy hadronic sector, which, when carefully treated, is s
to be consistent with physical expectations. Working w
this model, we have demonstrated the automatic preserva
. B

T.
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of the massless photon and the equivalence of VMD1a and
VMD2a ~the HLS generalizations of VMD1 and VMD2!.
Previous fits of the pion form factor, preferred VMD1a rela-
tive to the standard VMD1, which may have further pheno
enological consequences. Finally, as predicted fromS-matrix
theory, we have shown that the determination of the comp
pole position of ther meson from a large number of existin
fits to data is model and process independent. This will be
particular use for the comparison ofr parameter determina
tions from different experiments and for exploring the us
fulness and possible limitations of different realizations
vector meson dominance.

ACKNOWLEDGMENTS

We would like to thank S. Gardner, K. F. Liu, J. A. Olle
J. R. Palaez, M. J. Peardon and J. Sloan for helpful co
spondence and discussions. This work is supported by
U.S. Department of Energy under grant DE-FG0
96ER40989~H.O.C.! and the Australian Research Counc
~A.G.W.!.
,
.

.

@1# T. Yoshie, Nucl. Phys. B~Proc. Suppl.! 63, 3 ~1998!.
@2# C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys.33,

477 ~1994!; M. R. Frank and C. D. Roberts, Phys. Rev. C53,
390 ~1996!; P. C. Tandy, Prog. Part. Nucl. Phys.39, 117
~1997!; P. Maris, C. D. Roberts and P. C. Tandy, Phys. Lett
420, 267 ~1998!.

@3# M. Bando, T. Kugo, S. Uehara, K. Yamawaki and
Yanagida, Phys. Rev. Lett.54, 1215~1985!.

@4# G. E. Brown and M. Rho, Phys. Rev. Lett.66, 2720~1991!; G.
E. Brown, M. Buballa and M. Rho, Nucl. Phys.A609, 519
~1996!; F. Klingl, N. Kaiser and W. Weise,ibid. A624, 527
~1997!; M. A. Halasz, J. V. Steele, G. Q. Li and G. E. Brown
Phys. Rev. C58, 365 ~1998!; P. Maris, C. D. Roberts and S
Schmidt, ibid. 57, 2821 ~1998!; J. Alam et al., Phys. Rev. C
~to be published!, nucl-th/9805036; G. Q. Li and C. Gale,ibid.
58, 2914~1988!; V. L. Eletskii, B. L. Ioffe and J. I. Kapusta,
Eur. Phys. J. A3, 381 ~1998!.

@5# P. W. Higgs, Phys. Rev. Lett.13, 508~1964!; T. W. B. Kibble,
Phys. Rev.155, 1554~1967!.

@6# H. B. O’Connell, B. C. Pearce, A. W. Thomas and A. G
0-10



.

.

ki

r,

t.
.

-
-
d

ce

. D

in

hys.
s-
-

VECTOR MESON DOMINANCE AND THEr MESON PHYSICAL REVIEW D59 074020
Williams, Prog. Part. Nucl. Phys.39, 201 ~1997!.
@7# W. Weise, Phys. Rep.13, 53 ~1974!.
@8# S. Weinberg, Phys. Rev.166, 1568 ~1968!; S. Coleman, J.

Wess and B. Zumino,ibid. 177, 2239 ~1969!; C. Callan, S.
Coleman, J. Wess and B. Zumino,ibid. 177, 2247~1969!.

@9# M. Bando, T. Kugo and K. Yamawaki, Phys. Rep.164, 217
~1998!.

@10# C. Itzykson and J. B. Zuber,Quantum Field Theory~McGraw-
Hill, New York, 1980!.

@11# K. Kawarabayashi and M. Suzuki, Phys. Rev. Lett.16, 255
~1966!; Riazuddin and Fayyazuddin, Phys. Rev.147, 1071
~1966!.

@12# M. Bando, T. Kugo and K. Yamawaki, Nucl. Phys.B259, 493
~1985!.

@13# M. Benayoun and H. B. O’Connell, Phys. Rev. D58, 074006
~1998!.

@14# M. Benayounet al., Eur. Phys. J. C2, 269 ~1998!.
@15# H. B. O’Connell, B. C. Pearce, A. W. Thomas and A. G

Williams, Phys. Lett. B336, 1 ~1994!.
@16# P. Q. Hung and J. J. Sakurai, Nucl. Phys.B143, 81 ~1978!.
@17# E. Witten, Nucl. Phys.B223, 422 ~1983!.
@18# H. P. W. Gottlieb, Nucl. Phys.B54, 509 ~1973!; B73, 257

~1974!.
@19# N. Kroll, T. D. Lee and B. Zumino, Phys. Rev.157, 1376

~1967!.
@20# H. B. O’Connell, B. C. Pearce, A. W. Thomas and A. G

Williams, Phys. Lett. B354, 14 ~1995!.
@21# F. Klingl, N. Kaiser and W. Weise, Z. Phys. A356, 193

~1996!.
@22# T. Fujiwara, T. Kugo, H. Terao, S. Uehara and K. Yamawa

Prog. Theor. Phys.73, 926 ~1985!.
@23# L. C. L. Hollenberg, C. D. Roberts and B. H. J. McKella

Phys. Rev. C46, 2057~1992!; K. L. Mitchell and P. C. Tandy,
ibid. 55, 1477~1997!.

@24# K. Maltman, H. B. O’Connell and A. G. Williams, Phys. Let
B 376, 19 ~1996!; H. B. O’Connell, A. W. Thomas and A. G
Williams, Nucl. Phys.A623, 559 ~1997!.

@25# S. Gardner and H. B. O’Connell, Phys. Rev. D57, 2716
~1998!.

@26# K. Maltman, H. B. O’Connell, A. W. Thomas and A. G. Wil
liams, ‘‘Near Threshold Isospin Violation in the Pion Form
Factor from Chiral Perturbation Theory,’’ not yet publishe
hep-ph/9707404.

@27# M. Harada and J. Schechter, Phys. Rev. D54, 3394~1996!.
07402
,

@28# M. Hashimoto, Phys. Lett. B381, 465 ~1996!; Phys. Rev. D
54, 5611~1996!.

@29# D. N. Gao and M. L. Yan, Eur. Phys. J. A3, 293 ~1998!.
@30# M. Harada and K. Yamawaki, Phys. Lett. B297, 151 ~1992!.
@31# J. Schechter, Phys. Rev. D34, 868 ~1986!.
@32# S. Coleman and H. J. Schnitzer, Phys. Rev.134, B863~1964!.
@33# R. E. Peierls, inProceedings of the 1954 Glasgow Conferen

on Nuclear and Meson Physics~Pergamon, New York, 1955!,
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