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We discuss the properties of vector mesons, in particulapthen the context of the hidden local symmetry
(HLS) model. This provides a unified framework to study several aspects of the low energy QCD sector. First,
we show that in the HLS model the physical photon is massless, without requiring off field diagonalization. We
then demonstrate the equivalence of HLS and the two existing representations of vector meson dominance,
VMD1 and VMD2, at both the tree level and one loop order. Finally $hmatrix pole position is shown to
provide a model and process independent means of specifyingrtiéss and width, in contrast with the real
axis prescription currently used in the Particle Data Group tap&&556-282(99)02807-9

PACS numbeps): 12.40.Vv, 11.30.Qc, 11.30.Rd, 12.39.Fe

[. INTRODUCTION dressed photon is seen to be massless as required, without

There is no reliable analytic means for calculating low'"c."¢€d for & change of basis.
ere 1S no refiable analylic means for caiculating o Section 1V is devoted to a comparison of the two com-

and medium energy strongly interacting processes with thf“nonly used representations of vector meson dominance

underlying theory, QCD. Despite progress in numerical studyy\p) (referred to hereafter as VMD1 and VMD2 follow-
ies of QCD both via the _Iattlcﬂ] and _QCDjmotlv_ated mod- ing the convention of Ref(6]), both of which can be ob-
els [2], pre-QCD effective Lagrangians involving the ob- tained as special cases from the HLS Lagrangian of [R&f.
served hadronic spectrum continue to play an important rol§jote that VMD2 is the most commonly used version and is
in studies of this sector. We shall be concerned in this worloften in the literature, simply referred to as VMD or “the
with the interactions of the pseudoscalar and vector mesongctor dominance model[7]. Using the pion and kaon form
as described by the hidden local symmetidf.S) model[3].  factors we explicitly demonstrate their equivalence at the tree
The focus of our paper will be thg resonance. As the level (which is trivial) and at one-loop order, where care is
lightest and broadest of the vector octets it plays an imporrequired. This treatment is performed in the general ease
tant role in phenomenology and is presently the subject oft 2, wherea is the HLS parametd:3], for which we intro-
interest as a possible indicator of chiral symmetry restoratiomluce VMDJ, and VMDZ, in an obvious manner.
in heavy ion collisiong4]. It also serves as a guide for phys-  Finally, as the vector mesons are resonant particles, we
ics in other sectors. As we shall see the interaction of vectostudy the effect of the large width on the determination of
mesons and photons in the HLS construction is closelynodel independent parameters. Th&-matrix pole position
analogous to the S@®U(1) symmetry breaking of the IS shown to provide a truly model-independent and, further-
electroweak interaction. The traditional determination of theMore, process-independent parametrization ofptheeson.
p mass and width has been plagued by model dependence,
which as we show can be avoided by use of Smatrix Il. HIDDEN LOCAL SYMMETRY AND VMD

pole, closely following developments in the study of #fe The HLS model allows us to produce a theory with vector

Our paper is structured as follows: we begin with a briefm .
: . . esons as the gauge bosons of a hidden local symmetry.
outline of the HLS model and discuss the generation of vec-. gaug y y

. These then become massive because of the spontaneous
tor boson masses by the spontaneous breaking of th_e glo eaking of a chiralU(3), ® U(3)g global symmetry. Let us
chiral symmetry through the Higgs-Kibb(&lK) mechanism consider the chiral Lagrangids]

[5]. In Sec. Il we consider the relationship between these
HK masses and thehysical vector masses, using a two- 1 +
channel propagator matrix for the photprsystem. This al- Lenirar= 7 Tr[,F*F], (1)
lows one to consider the effect of mixing in the dressing of
the bare propagators and when this is properly considered thvehereF (x) = f ;U (x) in the usual notation. This exhibits the
chiral U(3), ® U(3)g symmetry undet) —g, Ug/;. We can
write this in exponential form and expand
*Email address: benayoun@in2p3.fr
"Email address: hoc@pa.uky.edu F(x)=f,e?PWia=f +2iP(x)—2P(X)/f +-"+:
*Email address: awilliam@physics.adelaide.edu.au (2)
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therefore, substituting into Eql) we see that the vacuum correspondsPte 0, U=1. That is,F has a non-zero vacuum
expectation value which spontaneously breaksW{8), ® U(3)gr symmetry as this symmetry of the Lagrangian is not a
symmetry of the vacuum. The massless Goldstone bosons contaiRe@gsociated with the spontaneous symmetry breaking,
then correspond to the perturbations about the QCD vacuum and we can think of expansions in this field as given by the
Hermitian matrixP = P2T2 where the Gell-Mann matrices are normalized such thaf ] = §2%/2. So for the pseudoscalars

one has

1 1
— O+ — gt — " K™
v \/6 8 f37]0
1 _ 1 1
PZ% w —57704'%7784"/—3770 KO (3)
K™ KO _\EWS"_inO
3 V3

However, in addition to the global chiral symmeti®,
the HLS scheme includes a local symmetiy,in Eq.(1) in
the following way[3]. Let

U(X)=£l (X)&r(X) (4)

where

ErL(X)=exdiS(x)/fs]lexd *iP(x)/f ] (5)

(6)

Note that this introduces the scalar fie®{x), analogous to
the pseudoscalaR(x), of Eg. (3), though S(x) does not
appear in the chiral fielth (x) of Eq. (4). The general forms
of the transformations are given lg{_’RzeXpﬁef_l’RTa) and

h(x) = exgiey(X)T4].

fR,L(X)_)h(X)gR,L(X)g;,L .

Here we have used ideal mixing in defining the barand ¢
mesons. Note that the vector meson fie K*,p,w,¢
are introduced in the role of gauge fields fbr=flavor
SU(3). However,La= Lira IS independent of/, and in the
HLS model a second piece of the Lagrangiéy, is intro-
duced:

2

ks

c T (D £ & — D, éréb) 12

Sy
f 2
Ly== 7 T(DEE+D,&ER1% (10
The full HLS Lagrangian is then finally defined (]
‘CHLS: £A+ aLV , (11)

One now seeks to incorporate HLS into the low energy

Lagrangian in a non-trivial way, thereby introducing the
lightest vector meson stat¢3,9]. The procedure is to first
re-write Lqpira €Xplicitly in terms of theé components:

.|:2

Lonia=— 7 T .60 6] — IuérR]%. (7)

The Lagrangian can be gauged for both electromagnetism

and the hidden local symmetry by changing to covariant de
rivatives

D,é r=3d,86 10V & rTi€EL RALQ (8

whereA , is the photon fieldQ=diag(2/3;-1/3,—1/3) and
V,=ViT? whereV, are the vector meson fields transform-
ing as V,—h(x)V,h'(x)+ih(x)d,h"(x)/g. Suppressing
for brevity the space-time index, we can write the vector
meson field matrix/,, as

(p°+ w)/V2 p* K**
:E p- (—p°+w)v2 K*O° (9)
K*~ K*O ¢

where we see that the HLS paramedenas now been intro-
duced.

In the absence of the gauge fielifs, andA , , we see that
Eq. (10) reduces to

1 f2
La=75T4,Pd"P], LV=2—f§Tr[o7MSa“S] (12)

to quadratic order in bosons. In this caBeand S, would
both be Goldstone bosons, whétéx) is associated with the
spontaneous breaking of the usual, global chiral symmetry,
G, of L, arising from the vacuum expectation value of the
U(x) fields and analogously fog(x). However, gauge in-
variance allows for their elimination. It is usual to take a
special gauge, the unitary gauge, fby for which the scalar
field no longer appear§(x) =0 [9] (for a discussion of the
unitary gauge and spontaneously broken symmetries, see for
example Sec. 12-5-3 of Rf10]). This is phenomenologi-
cally reasonable as no chiral partner for the pion has been
observed. With this choice we have

()= Er(X)=E(X) =exdiP (X)/f ,]. (13

074020-2
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By demandingS(x) =0 the local symmetryH, is lost, but transformatiorg. The physical meaning of this is that vector
the g transformations of the global chiral symmetry grd@p fields acquire longitudinal components by “eating” the sca-
will regenerate the scalar field through lar S field through a transformation of the forfio lowest
order in Goldstone fields
EX)—E () =&x)d"

=exdiS' (P(x),g9)/fslexdiP’'(x)/f,]. (14 1
V,—V,——34,S". (16)
However, the system can still maintain the unitarity gauge 9fs
conditionS(x) =0 and global chiral symmetry, under the
combined transformatiof®] Once the scalar field is effectively removed by the unitar-
(%) = h(P(X), t ity gauge choice the traditional VMD Lagrangian, that of
§00) =& 00 =h(P(x).0)§(x)g VMD?2, is obtained from an expansion @l 5 in the pion
h(P(x),9)=exfd —iS' (P(x),g)/fs] (15)  field, as per Eq(2). The HLS model actually generalizes

VMD2, through the additional parametex,of Eq. (11); so
where the particular choice of local transformation, we shall refer to the resulting Lagrangian as VMD2t has
h(P(x),g), “kills” the scalar field created by the global the form

1 1 ) 3
Evmoza:—ZFWF“ - -V, V*'—aefig p+§_?¢ A

4 " HY

2 af2g? _
+zael i A% —29 (p?+ w®+ ) +af2gi(pt - p~ +K*T-K* "+ K*0.K*0)

_ 1
+aw+-aw*+&K+~aK*+aK°-aK°+E[awo-aw°+ﬁw8-aw8+an°-an0]
i + .- -+
+§[agp+e(2—a)A]-[<97T T —dm 7|

+ l—l[ag(p+w—x/§<;/>)+2e(2—a)A]-(ﬁK*K’—ﬁK’K*)

ia — _ ia
+ Tg[p—w+l/id>]'[&KoKo—c9KoKo]+ %p+~[aKOK_—¢9K_KO+1/§(&7T_ w0—am0m )]

ia —_
+ —gpf~[&K*KO—&KOKJr+\/§((977077+—o777+770)]
2v2

ia . _ _
+ TQK*O'[&WOKO—&KOWO+\/§(&K_7T+—87T+K_)+\/§(19K0 8_o9m®KO)]

iag—
+ TgK*O-[aKowo—aw°K°+\/2(a7r‘K+—aK+w‘)+\f3(aw8K°—aK°w8)]

ia
+ TQK**~[awow—aK+w°+ﬁ(aw+K°—aK°w+)+x/§(aW8K+—aKHTS)]

iag

+ TK*+~[<9K7770—(9770K7+\/2(0K0777—8W7K0)+\f3((9K7778—o7778K7)], (17)
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where for brevity we used the notatipr=p°. HereF ,, and I1(0)=0. (23

V,, are the standard Abelian and non-Abelian field strength

tensors for the photon and vector meson octet respectivelifi.he functionll(s) has a branch cut along the real axis be-
The photon and vector mesons therefore acquire Lagrangiaginning at the production thresholtfor the p this is s
masses through the HK mechani$fj with the vector me- =4mf,) and extending to infinity. The second dressing term
sons also obtaining longitudinal components through Egcomes from the Lagrangian mixing terms between the vector
[16]. The HK mass generated for the vector mesons is givemesons and photon. For simplicity let us consider the case

by with only the photon and thp=p" [3]; we then have
mi=M?=ag?f2. (18 q.9,| [ 11y, T, emM?(0 1
i i G,uV: g,uv_ N2 I I +g/1,1/_ 1 0/
The choicea= 2 [3] reduces VMDZ [Eq. (17)] to the tradi- q py Hpp g
tional VMD2, eliminating the photon-pion contact term and (24)

reproducing the Kawarabayashi-Suzuki—Riazuddin-WhereM is the HK mass of the ai .
- : @ given in Eq.(18).
Fayyazqddlr_(KSRF) relation[11] thr_ough Eq.(18).. As we shall here only consider amplitudes such as

For simplicity we shall not consider $B) breaking due

+ o= + -
. . e"e — o w  where the vectors couple to external con-
to strangeness in the vector meson seft@;13, which re- P

sults in changes in the vector meson coupling constants ansdarved purrent(;lepton or .plor) theq,q, pieces of Eq(21)

* can be ignored. So defining the scalar part of the propagator
HK masses for th&* and ¢. One should also note that the = 2 o

) . through D ,,(9)=9,,D(g%) the surviving part of the

VMD2, Lagrangian does not generate couplings of the VeCH ecced r/:) a atorﬂis iven b
tors to thesingletcomponent of the pseudoscalar mesons. To propag 9 y
be perfectly clear, VMDR is nothing but the standard HLS D. D 2k e 2p.2 1
Lagrangian used to deduce the HLS pion form factor in Ref. [ _*7 | _[&MTg°+1l,,—s eM/g+11,,
[14]. It is a non-trivial extension of the traditional vector pv Dop eM?g+11,, M2+11,,—s/
meson dominance model VMD?2, sinee*2 generates not (25)
only a violation of the KSRF relatiomﬁ:Zngi), but also

introduces a direct coupling of the photon to the pseudoscavhere s=q2. A similar formalism has been discussed by

lars. Hung and Sakurai for the—Z° system in the electroweak
interaction[16]. The poles,p;, i=1,2, of the two channel
IIl. DRESSED VECTOR PROPAGATORS AND THE propagator are obtained from

PHOTON POLE
De{D (p;)]=0. (26)
The physical photon is massless, but the VMDO2-
grangian in Eq(17) possesses a photon mass term. To findThe VMD2, Lagrangian given in Eq(17) is O(€?), where
the physical results one obtains from VMD2we need to e=e/g; so we work to this order in the calculation of the
dress the vector propagators by means of a matrix equatigoole positions in the complex plane. Equatior{26) gives
which accounts for the possible mixings between vector par-

ticles [15]. The matrix Dyson-Schwinger equation is given
[15] y ger eq VN Dp=M2(1+€2)+ 11, +11, = | M2(1+€2)+ 11,11

by Y= vy
iD,,=iD},+iD},iG*iDyg, (19 2((I1,,~ 11, )M2+ 2eM?I,,~T12,)
* MZ(1+e)+10,,— 11 TOE]-
whereD ,, is the dressed propagator matrix dbﬁv is the € pp vy
bare propagator obtained from the Lagrangian, (27)
0 q.9, 1 In power counting with respect td ,,, we see thatl,,, and
Duv=| =9u* MZ | gZ— M2’ (20 I1,,, are intrinsically ofO(e) and O(€?) respectively: so we

can further simplify:
Inverting Eq.(19) we obtain
D;V=D% V4G, . (21) 2p=M?(1+€*)+11,,+1I +[M2(1+62)+pr_ﬂ

( =+
e Yy Yy

The self-energy matris,, is composed of two entities. 2(e?M2I1,,— 2eM?I1.,,+112 )
. . . . Pp P Yp
The first is the polarization functiohl ,, generated from - M2 10
loop effects. As can be shown from E(L7), the vector P
mesons couple to loops only through conserved curren
[13], and hence the polarization tensor is transverse

+O( 63)] . (28

%hus the poles are, ©(€?),

2M2I1 —2eM?I1 +112
11,,,=(9,.,- 0,0, /) T1(0?) @2 p -, (py)+ S teelPr) 2T P (Py)
¥ yy\Py MZ+T1L,,(p,)

and from the node theoref5] (29

074020-4



VECTOR MESON DOMINANCE AND THEp MESON PHYSICAL REVIEW D59 074020

p,=M3(1+€*)+11,,(p,) but are not exactly what is seen in experiment. The vector
- ) ) meson propagator is modified l?y the vacuum polarization
€ M7,,(p,) —2eM 7L, (p,) +115,(Py) functionII(g?) away fromg?=0, i.e.,
MZ+11,,(p,) ’ 1 1
(30 Dy(s)= s=q°. (32

S— M s Mik—yy(s)’
Since they couple only through conserved currents, the po-
larization functions]1(0)=0 [15], and we see that the pho-  As the physical pseudoscalar fields appear as vacuum
ton pole resides afj>=0 as required. The explicit photon fluctuations we may assume a weak field expansion and
mass term in Eq(17) is canceled by the photon self-energy. work to first order in pseudoscalar loof8]. The polariza-
Similarly the p pole is shifted only by corrections @(e?) tion functions, Il(s), are composed of loopd(PP’),
by mixing with the photon. This result is as we might expect,from the VPP’ couplings
since the vacuum staté,=f . in invariant under the (1)

EM transformatior{17 _ - -
17l 1,,=g%a? (w* )la+g%a? (KK ~)/16
F—>F+i€(X)[Q,F], (31) +g2a2|(KOEO)/16 (33)
and massive vectors correspond to spontaneously broken
symmetries. However, it is slightly more subtle than the nl =gza2I(K+K‘)/16+gza2|(KOKO)/16
usual case where invariance under a transformation of the @ (34)

form Fy—Fy+i€e*(x)T?F, requires that there be no La-
grangian mass terrfas T*F,=0). The generation of vector
meson masses in the presence of a massless photon is treate
in the general case by Gottligh8].

HLS can therefore be used to demonstrate “from first [y, ., ..=g2%a?(K°=")/2+g%a2l(K* =%)/4 (36)
principles” that the VMD2 Lagrangian is perfectly consis-
tent with physical expectations concerning the photon and _
vector meson masses. However, this is only realized after the I1,4=9%%(K"K™)/8+g%a?l (K°K°)/8 37
above cancellation of the photon mass. For this reason, an
alternative representation of vector meson dominanceyhere we have factored out the couplings leaving only the

VMD1, was introduced. In the next section we examine thegeneric loop integrals involving the appropriate pseudosca-
relationship between VMD1 and VMD2 at both tree level |ars. Note that we have not included the anomalgsP P

d Hyxocx0=g2a2l(K~ 7 ")/2+g2a2l(K°#°)/4 (39

and one-loop order. andV VP couplings[22] in the polarization functions, since
these effects are expected to be rather small. Numerical stud-
IV. VMD1 vs VMD2 ies show that the — 77— p contribution to the real part of

I1,, is a few percent o, =M, but the contribution to the
physical mass fronm— 37— w is negligible[23]. Similar
ehavior is observed in the imaginary part, as phevidth
?generated by IniL,)) is muchlarger than that of the or ¢.
We may conclude that the two pion loop is the dominant
influencé on the mass shift and that only the@hysical mass
is significantly different from its HK value. This is supported

The VMD2, Lagrangian, Eq(17), contains a mass term
for the photon. As the physical photon is massless, one mig
consider an alternative version with no Lagrangian mas
term for the photon[19], which has been referred to as
VMD1 [6,20]. We shall introduce the term VMDRfor the
general version of VMD1 derived from HLS. As in the pre-

vious representation of VMD, VMDlreduces to standard by the observation that the Bando-Kugo-Yamawaki relation

VMD1 for the special casa=2. * ;
In VMD1, the photon can couple directly to the pseudo_gitzg)ei?etgznl-gflrzr}asses of tagK™ and¢ in models of the

scalars and the photon—vector-meson mixing term is linear

in g% and hence vanishes gt=0. As will be shown the two )

representations of VMD, VMDJand VMD2,, are related M, My = M. (38)
by a field transformation, and as such should be physically

equivalent. At the tree level, this equivalence is complete anfiolds to 0.1%- 0.4% (for charged or neutrak*), whereas
easy to prove; however, at the one loop level care needs to hRe observeg and w masses differ by a few percent despite
taken to ensure all terms are includeti]. We begin with @ having identical HK masses.
discussion of one-loop effects in VMD, starting from the  |n a similar manner, we can obtain the hadronic contribu-
HLS Lagrangian. tions loop corrections to vector meson mixing, and can de-
rive relations between them and the polarization functions.
A. VMD2, form factors The pure pseudoscalar loop mixings are given by

So far we have discussed the generation of masses and
longitudinal components for the vector mesons through the
HK mechanism. These masses are necessarily real valuediSee, however, Ref21] for a discussion of the meson.

074020-5
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252 _ FUieS(s)=1—a/2—aM?{D°+D%/3+2D%3]/4
,,= 91—6[|(K+K—)—|(K°K°)] (39) k(9 [Dy+ P ¥
=1-(as/4)[DO+D2/3+2D5/3] (45
v2g2a? _
=~ (1K K = 1(KK)] (40) Fyo(s)=—(aM?/4)[D9-D%/3—2D%/3].
(46)
v2g?a? s 050 We note here that in this S8) flavor symmetric tree result
My, =~ g (KK +I(KKO)]. (41) FIe%s)=0.

We now consider the effects of loops. As the resonant
Note that if isospin invariance is assumed, as it has been s@ructure of the vector mesons, generated by loops, is an

far, only w-¢ mixing survives and we notice that important part of the phenomenology we might expect loops
to play an important role. The contact term between the pho-
,4=211,,=—2v2I1,,. (42)  ton and the pseudoscalars whar 2 induces a one loop

contribution to the photon—vector-meson vertex, which we
Hencep-w mixing is only allowed in the present analysis if can introduce through the effective interaction Lagrangian
isospin violation is admitted through allowinf K*K ™)

— , AR eM? eM? e(2—a)
#1(K°K®). However, once isospin violation is allowed, we L= 411, = —+ II

. . . . S - . yYp g P g ag Pp
should in principle consider the possibility of additional isos-
pin violating effects arising fronu-d splitting in our HLS ) )
Lagrangian. For example, to first order in isospin violation eff _ _ eM n __ eM® e(2-a)
the possibility of anwm coupling must be considered in Yo 39 ye 39 ag o
p-w mixing [24,25. Such a term arises naturally via loop
effects when high_er order pseudosc_:alar _terms, for example . VieM? VieM? e(2—a)
VPPPP, are consideref26]. Alternatively it could be gen- So= 3 v6="3q b
erated through S(2) breaking inZy, itself, analogous to the 9 9 v2ag
existing studies of S(B) breaking[12,13. So far, in studies (47)

of the HLS model such explicit isospin breaking effects have -

been considered only for the anomalous sef2at2g. For N @ similar way the tree-level propagators are replaced by

an investigation of isospin violation in a chiral meson theoryth€ir one-loop forms to giveDy=11s—My—Ily\(s)].

see Ref[29]. Similarly the vector mesons can now mix through pseudo-
The possibility of a direct coupling of the photon to the Scalar loops. For example, the effectet> mixing, which is

pseudoscalar field allows for a loop-induced photon—vectorimportant for the pion form factor, is easily incorporated by

meson mixing, which in the isospin limitwhere meo  ePlacing thep propagators by

=mMg+) gives 1 1 1

DD 1+ (f,/f,)AuDLl. (48)
_e(2—a) _e(2—a)

" ag oo Moy="g Moo, As it is not realistic, in the sense of data fittif@y], to draw

a distinction between isospin violation occurring throygh
mixing and intrinsic isospin violation in theywr vertex
e(2—a) (which could could either be present in the original Lagrang-
~ A Iy (43 ian or be generated by loop effeckg6]), Eq. (48) uses
2ag A,.-, the “effective mixing function” that absorbs both

o S ) effects to couple the to the 2 pion final state, through tipe
Note that these mixings vanishaf=2 or g?=0. Since these [24,25,

vanish atq?=0, we see that the previous proof of the mass-
lessness of the photon remains unaffected. A,,..= — 3500+ 300 Me\~. (49
From the Lagrangian we can now write expressions for

the pion and kaon form factors, defined from the Feynmansing Eqs.(42) and (47) the leading resonant terms in the

amplitude viaM,pp=—e€Fp. In the following we shall  one-joop expressions for the VMR2nodel form factors are
write the HK mass simply ad [see Eq.(18)]. We can go given by

from the tree level result to the one-loop result by replacing
the ordinary Lagrangian interaction pieces by an effective Flloopg) =[(1—a/2)s— M2]D[1+(f,./f,)A, D]
Lagrangian for the photon pseudoscalar couplings. At the 7 P CyiopyTenmTe

by

tree level, where the propagators are simm)?,z 1/(s (50)
M2 i
M<), the form factors are given by Fi'f"p(s):(l/Z)[(l—a/Z)s—MZ][D$+(1/3)Di
FreYs)=1-a/2-aM?D)2=1—-asD)/2 (44 +(2/3)Dy—(2v2/3)D 11, 4D}] (51)

074020-6



VECTOR MESON DOMINANCE AND THEp MESON PHYSICAL REVIEW D59 074020

Figoop(s) =(1/2[(1-a/2)s— M?][Di-(1/3D} a field redefinition in which it does not appd&i. The trans-
formation most resembling that used to eliminate the photon
—(2/3)Dy+(2v2/3)D 11, 4D} (52 mass term in the electro-weak theory actually removes the

) ) ointlike coupling of the photon to the and thus obscures
These expressions are one loop in the sense that each of \)f1p [3,31]. We shall consider an alternative transformation

components in the tree-level amplitudes has been replac%gg] that generates “current mixing[32] between the pho-
by its one-loop generalization. Without the vector MesON 1 and vector mesons

mixing loops, these expressions agree identically with the
tree level results foa=2 (as the photon decouples from the A=A, p—p+eA, w—w+(ed)A,
pseudoscalars and pseudoscalar loops cannot be generated
We see that the tree level results are protected from major
corrections at the one-loop level fae=2, since vector me-

son mixing effects are smdlB0]. $— b= (eV2IIA, (53)

B. VMD1, form factors to derive VMDY, from VMD2, [Eg. (17)]. Making the sub-
Although the photon mass term appearing in Etj7)  stitutions of Eq.(53) in Eq. (17) we find that the resulting
does not result in a massive photon, it is tempting to chooseagrangian for VMDY is given by

o V2 A
Pr3T Y

1 1
L:VMDla:_ZF F*Y— -V, VH*'—es

my 4 kY

1 _
+ Eaf2@;2(p2+w2+ dA)+afigi(pT-p  +K*FTKF T HK*OK*O) + o7t g

_ 1
+ oK™ 9K ™+ 9KC. 9K+ E[awo- gm0+ g8 g+ an°- 97°)
i
+ E[agp+2€A]'[(97T+7T_—(97T_’7T+]

+ l—l[ag(p-l- w—V2P)+4eAl- (IKTK™—9KK™)

ia — _ ia
+ Tg[p—w-*—\/id)]'[&KoKo—(?KoKo]-}— %pJ’-[&KOK_—(?K_KO-H/E(r?W_ w0— w07 )]

ia .
+ —gp*-[aK*KO—aKOW+\/§(aw°w+—0w+w°)]
V2

ia — — —
+ TgK*O-[&WOKO—&KOWO-H/?((?K*WJr—(77T+K7)+\/§((?K0778—<9778K0)]
iag—
+ TK*O-[aKowo—aw°K°+\/2(aw‘K+—aK+w‘)+\f3(ang°—aK°w8)]

iag

+TK*‘~[aw°K+—aK+w°+ﬁ(aw+K°—aK°w+)+\/§(aw8K+—aK+7r8)]
lag * + -, 0 Oy — K0, _— -0 -8 8K —
+TK JoK™ 7= 7K™ +v2(oK 7™ — 9 K®) +v3(dK ™ 7°—am°K ™) ]. (549

This removes the photon mass term as well as the congtaiterms from Eq(17) and introduces a new coupling of the
photon to the pseudoscalar fields

LY =ieA (9, m " m =, 7 )+ (9, KK =3,K K], (55)
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The field redefinition in Eq(53) also introduces thg?=0 vanishing mixing of the photon and vector mesons through the
vector meson kinetic termhis is discussed in detail in R¢B]). Together with Eq(55) we then have the effective interaction
Lagrangian

wmp1, © 2 s 2 V2s V2
L =—|| —Ss+ apr p’u+ —§+5wa a)#-l— T_EH([)J) (ﬁp'

YW

A~ (56)

We are now in a position to write the VMR ZXorm factors, as derived from the HLS model. The tree level result is

FreYs)=1-asD)/2 (57)
Fio(s)=1—(as/4)[D%+D%/3+2DY3] (58)
Fro(s)=—(asi4)[DS—D%/3—2DY/3]. (59)

We see that Eq$44)—(46) and Eqs(57)—(59) are identical[recalling that Eqs(52) and similarly(59) are zerg and that the
two representations of VMD are thus equivalent, while the leading resonant terms for the one-loop result are given by

FqlTloop(S) :[(1_a/2)s_ MZ]D;E[]_—F (fw'y/fpy)AwﬂT‘lTDi)] (60)
Fi2s)=(1/2)[ (1-a/2)s— M?|[D}+(1/3)D} +(2/3 Dy~ (2v2/3)D 114D} (61
Fro™(s)=(1/2[ (1~ a/2)s—M?][ D}~ (1/3)D},~ (2/3D§+(2v2/3)D1,,4D}], ©2

which are identical to Eq€50)—(52).
It is worthwhile now to briefly explain how the one loop results have been obtained. The simplest case is the pion form
factor of VMD1,. From the effective Lagrangian one h@gnoring, for simplicity, the isospin violating piece

FL%s)=1-[as/2—1I,,(s)]D5. (63)

The procedure we have followed is to eliminate ffig,(s) term appearing in the numerator of E&3). Doing this also
cancels the leading one associated with the pointlike coupling of the photon to the pion current,

F3 %) ={[s—M?~TI(s)]-[as/2-I1(s)]}D;=[s(1-a/2) ~M?]D;. 64

The other expressions are obtained similarly. Recalling It should also be noted that the initial investigation into
I1(0)=0 [15] all form-factor normalization conditions are generalizations of VMD1 and VMD2 performed in Rgt4]
clearly maintained 4, in our model is generated only by can be interpreted as evidence for preferring
loops. We can now clearly see the agreement between thgmMD1,/VMD2, to VMD1/VMD?2. Indeed, in order to get
one loop results for VMD] and VMDZ,. This highlights  an acceptable fit to the form factor data, it was necessary to
the importance of including loop effects in VMD studies.  jntroduce an additional term (iLe) = 1.167+ 0.008 affecting

So we see the equivalence of VMPlnd VMDZ,,  the resonance contribution in the standard VMD1 form fac-
which we might suspect on principle as the physics must beyr ang interpret this as aad hocuniversality violatior? We
independent of the choice of fields. However, this is Onlymight, in light of the above discussion, make a connection
true if one works consistently to one loop order in the formp.veen (1 €) and the HLSa/2. Similarly, the “HLS" fit

factors, including loop-induced photon-vector-meson mix- ; o L 5
ings. In addition to this, care must be taken to distinguishOf Ref.[14], l.e., a VMDz, type fit, finds significant excur

between the HK and the physical mass of th&uch effects ?)'?12 Zﬁ:)nurgirf;d':'eor:Z?k:tﬁépfg e'ﬁé’sa(“zt: %flSR%fﬂ?.oi(\)/se.
were not included in Ref14], leading to somewhat different 9

results for data fits using VMDQland VMDZ2, (note that in additional ‘evidence for the under-lying gquivalenpe of
this paper the “HLS" fits refer to what we call VMDQ2 VMD1, and VMDZ, . It would be very interesting to refit the

herd. For the kaon form factors it would be interesting to dat@ with the full 1-loop expressions for the form factors
more systematically include and study the effects of U 9iven here.

symmetry breaking on this analydi2]. One should note,

however, that including S@3) symmetry breaking effects

will not spoil the effect of the transformation, given in Eqg.

(53), on the VMD Lagrangian. 2Here € is merely a fitting parameter, netg as defined earlier.
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V. MASSES, WIDTHS AND S MATRIX POLES physical data, as discussed by Gardner and O’Corn@é]l
for theete  — =" 7~ data of Barkowet al.[36].

This is a well-known problem for the parametrization of
broad resonances. The model dependence of the determina-
tion of the mass and width of th&(1236 was discussed in
py— Mé— ITyy(py) =0. (65  the 1971 Particle Data listin®8]. The solution, through the
. . . model independent pole prescription, was then provided in
In some sense the discussion of masses and widths for Uthe 1972 listing[40]. Hohler's recent review of thigsee p.

stable particles is an artifact of convention, because only thg24 of Ref.[39]) concludes that in contrast to the conven-
pole positionpy, defined in EQ(65) is process independent tional real axis parameters, the pole positions have a well-

and hence physically meaningfi3]. Model dependence is, %efined relation tdS matrix theory and are generally more

of course, unavoidable when comparing various resonanc ful. Our aim here is t tth | Its f .
models and their different associated vector meson mass&s®y'- Duraim nere 1S 1o present tn€ pole results for various

and widths. recent fits top data in one place to fully highlight both the
However, model-independent definitions of the masse§10de! independence and process independence.

and widths can be conveniently defined from the pole posi- " Ref.[25] generalized form factors were used to obtain
tion through the identification very good fits to the pion form-factor da{@6] for four

choices of mode(A, B, C and D. In this manner the func-
pVEmQ_irﬁF (66)  tion f(s) is fixed, in terms of fitting parameters, along the

reals axis. The resulting real axis determinations of the mass
(or through the slightly old-fashioned formypy=mM  and width showed a significant model dependence. However,
—iT'/2). For narrow resonances such as thend ¢, the in Ref.[41] the model independence of the pole prescription
pole is directly accessed by the choice of a momentum indecan clearly be seen in the quoted valuesmgf and Fp as
pendent Breit-Wigner form in the fit to data and the massesjefined in Eq(66) by solvingf(py)=0 for each of the four
and widths generally quoted correspond very closely to thosghodels. To give an example this procedure, model A of Ref.
in Eq. (66). However, as a result of the large width of the  [25] usesf(s)=as?+bs+c+f,(s), wheref,(s) is a speci-
one generally sees an attempt to model the possideEpen-  fied complexfunction. The parametera,b,c, are fixed by
dence ofllyy modifying the naive Breit Wignefsee, e.g., the fit to data, allowing one to find the zero fffs) through
Refs.[34,35). For the pion form factor, wherg parameters g step iteration on the complex plane. The correlations asso-
are extracted, this amounts to the isospin pure contributiogjated with the parametees b andc allow one to determine

(that not including thew [25]) being given by a function the statistical errors associated witfy andT", (for a discus-
f(0) sion of error analysis see, for example, Hd2]). The results
F.(s)= @h(s), h(0)=1 (67)  are given in Table | along with the masses and widths ob-
tained from the traditional real-axis prescriptigwhich show
wheref(s) has the appropriate cut beginningsat4m? and @ large model dependence _
the functionh(s) models any small deviations from elastic- ~We have also repeated this procedure for other determi-
ity. Though this in itself is perfectly acceptable, the quotednations of thep mass and width; although without knowing
values of mass and width are defined through their values oforrelations of the fitting parameters, we have simply solved
the real axi{35,36 f(pyv) =0 usingMATHEMATICA [43] and do not quote statis-
) ) ) tical errors form, andI",. This is done for the fits of Ref.
Ref(mge) =0, IMf(Mge)=—iMgel're, Mge,I'ree R [14] as well as the original fit of Barkoet al. [36] and the
recent fit for thechargedp seen in hadronic- decay[44].

to emulate the Breit-Wigner form factor along the real axisThe latter results should allow one to look for any statisti-

Becausam,k is above threshold, the vector meson pole,
py, “slips down” onto the second Riemann sheet to a loca-
tion on the complex plane satisfying

[37], cally significant isospin violation in the pole position. As
M, 7700~ M,(770)= IS quoted by the PDG39], a more de-
lim f(s)=s— mZReJrimReFRe. (69  tailed study would be of considerable interest for a determi-
s—mB, nation of this mass splitting based on model-independent
quantities.

These are not tied to the pole position and are hence very Not only are the results of the pole determination virtually
model dependent. Indeed, phenomenology suggests specifitodel independent, they agree completely with previous
forms for the functionf(s), which in turn influence the pa- pole determinations from bots"e™ — 7" 7~ [45] and 77
rameter values for the functioi{s). This has led to consid- [46,47] scattering datdfurther demonstrating process inde-
erable difficulties in comparing parameters obtained by pendencke We see in Table | that the central values for the
various authors as has been noted by the Particle Data Groumpass and width, defined by the standard real-axis prescrip-
(PDG as early as 1971(see p. S62 of Ref38]) and is also  tion, cover ranges of 763—-780 and 141-157 respectively,
discussed in the most recent Particle Data listigee Eidel-  while those from the pole prescription lie in the ranges 756—
man’s review on p. 364 of Ref39)). Indeed the differences 759 and 140-145 respectivelsll figures quoted in MeY
between many quoted values for thenass and width arise This illustrates the model independence of thpole loca-
merely from model dependence, rather than discrepancies tion. Indeed, if one takes into account the errors on the pole
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TABLE |. Extraction of p masses and widths for both the real part of the complex polgandT’,
defined in Eq(66)] and the standard real aXig, andI',, as given in Eq(68)] prescriptions. Fits (Ref.
[36]), Il (Refs.[25,41)), Il (Ref.[45]) and IV (the results of the unitarized fits of Réfl4]; see Table 2
therein use thee*e™ — 7" 7~ data obtained in I. Fit \(Ref.[47], adjusted tan from M) usesm# scattering
data and fit VI(Ref. [44] using two different fitting functions; see Table 3 thejegives results for the
chargedp obtained fromr decay.

Fit X2/ Npe m, (MeV) r', (MeV) m, (MeV) T, (MeV)
| 129/133 775.91.1 150.5-3.0 758.3 145.0
A 68/75 763.1+3.9 153.8-1.2 756.31.2 141.9-3.1
IIB 66/76 771.31.3 156.2-0.4 757.6-:1.0 141.7-3.0
Iic 67/76 773.9%1.2 157.0-:0.4 757.6-:1.0 141.7-3.0
IID 68/76 773.9-1.2 146.9-3.4 757.6-:1.0 141.7-3.0
1] 757.5+1.5 142.5-3.5
IV[VMD1,] 65/77 774.2:0.7 147.1-1.6 758.5 142.8
IV[VMD2] 81/77 780.4:0.7 155.4-2.0 760.0 146.8
IV[HLS(VMD2,)] 65/77 775.2-0.7 147715 759.0 143.4
IV[wCCWZ] 61/76 770.9 8 140.6 33 759.2 139.6
v 771 147 756 142
VI[KS] 81/65 774.90.9 144.2-1.5 759.1 139.9
VI[GS] 54/65 776.40.9 150.5-1.6 758.8 145.0

parameters, when they are available, the difference betweejt the massless photon and the equivalence of ViyiBrd
the various determinations of the pole position is nevelnvMD2, (the HLS generalizations of VMD1 and VMD2
Previous fits of the pion form factor, preferred VMPfela-

greater than &, i.e., not statistically significant.
The power of this method is useful not only to finding ative to the standard VMD1, which may have further phenom-

model independent means of parametrizing a broad res@nological consequences. Finally, as predicted fBsmatrix

nance such as the mesons, but also in the standard modeltheory, we have shown that the determination of the complex

for the Z° where the data has very high precision andpole position of thep meson from a large number of existing
I1y\(s) can actually be theoretically calculatpéB,49 (see
also thez® review in Ref[39]). The use ofS-matrix poles is
also potentially important for the Higgs bos@#0] and CP

violation in the kaon systerfb1].

VI. CONCLUSION

We have applied a field theoretic treatment to the vector
meson sector and, in particular, theStarting with the HLS  J. R. Palaez, M. J. Peardon and J. Sloan for helpful corre-
model allows one to produce a Lagrangian for the low enspondence and discussions. This work is supported by the
ergy hadronic sector, which, when carefully treated, is seet).S. Department

fits to data is model and process independent. This will be of

particular use for the comparison pfparameter determina-

tions from different experiments and for exploring the use-
fulness and possible limitations of different realizations of

vector meson dominance.
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