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Abstract

Stream and river ecosystems play a crucial role in the human existence even though
they contribute only 0.00008% to the Global water budget. Rivers and streams are
important sources for drinking water, industrial and agricultural water, and recreation.
Hence, there is a lasting interest in the control of river health. The second half of
Twentieth Century has been a period of intensive study of rivers. Many efforts had been
spent for better understanding basic limnological processes including physical, chemical
and biological processes. Researches realised that all these limnological processes could
not be studied separately but they are in very intimate interrelationship with each other.
Any change in any limnological process can upset the balance and lead to disturbance in
the freshwater ecosystem. Assessment and prediction of river and stream health gain the
great interest in management in order to maintain a sustainable balance in stream and
river ecosystem for human activities now and for future generations.

River health had traditionally been assessed solely on the chemical analysis of water
samples. In recent years there has been realisation that the structure of plant and animal
communities of the river can give us more accurate and integrated information about
conditions of river and stream health. Among these biological communities,
macroinvertebrates are most widely used because they are abundant and diverse, and are
sensitive to changes in water quality, flow regime and habitat conditions they inhabit.
Impacts on these animals are relatively long lasting and can be detected for some time
after the impact occurs.

The computational approach had been applied to analyse the relationship between
habitat conditions and stream macroinvertebrate assemblages. Statistical models had
gained some significant successes. However, they still have some constrains in dealing
with complexity and highly non-linearity of the stream system. A new generation of
computer program called Artificial Neural Network proves to be very efficient for the
study complex and nonlinear processes. In the context of the given Master research
project, Artificial Neural Networks were applied for modelling Queensland river and
stream system.
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Two approaches are developed by means of Artificial Neural Networks to study the
Queensland river and stream network, which spreads over the territory of the federal
state of Queensland (Australia) and covers the catchments of most major and many
minor Queensland rivers.

The clean water approach was adopted to determine relationship between presence and
absence of macroinvertebrate taxa and physical predictor variables, which are
considered relatively stable under human activities. The model therefore studied data
from reference sites in near pristine conditions. Validation results provided correct
prediction of the presence/absence of these taxa with an average accuracy of 80 %.
Trained models were applied to assess habitat conditions of impacted and test sites. The
assessment of the health of specific sites was than based on the comparison between
observed and predicted site data. Criteria O/E (Observed/Expected) was used to give
rapid assessment of habitat at sites ranging from reference to badly degraded conditions.

The dirty water approach did not distinguish site into reference and degraded. Networks
had been trained with data from both clean and degraded sites. This approach studied
interrelationship among physical, chemical and biological processes. The input layer
contained not only physical predictor variables but also chemical variables, which are
altered under human impacts. Validation also was made by mean of correct prediction
of macroinvertebrate taxa for both reference and impacted sites and provides average
accuracy of 76%. Dirty water approach can be applied for quantitative prediction of
habitat condition by mean of water quality.

Sensitivity analyses were carried out by manipulating the values of input parameters
and assessing the resulting changes in outputs. This method identified the
environmental predictor variables best able to predict the presence/absence of each
family. The primary intention of this sensitivity analysis was to improve network
performance by limiting input variables to those that were sensitive for each model.
However, this process also provided new insights into relationships between
environmental variation and the occurrence of Queensland stream fauna and enabled the
identification of ecological traits of each taxon.

The two modelling approaches provided good results and can be applied for
management purposes. Artificial Neural Networks proved to be an effective
computational approach to support bioassessment. However, all models developed
during this project studied only spatial variations of processes in stream and river
ecosystem. Future research should focus on temporal variations of relationships
between environmental variables and the distribution of macroinvertebrates as well.
Model training and validation using databases from other Australian stream systems
would further contribute to a generalisation of the ANN stream models.
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1 Introduction

1.1. Habitat Condition Assessment of Freshwater Ecology

Running water is the most important freshwater resource for man, being used for a
variety of purposes. The maintenance of high quality running water has become an
increasingly important issue in recent years, as greater demand has been placed on
water resource. The quality of rivers and streams depends on their physical, chemical
and biological properties. The latter are reflected by the types and density of living

organisms present in the water.

Historically, water quality has been measured by physical, chemical and
microbiological parameters such as biological oxygen demand, suspended sediments
and bacterial counts. Chemical analyses determine concentrations of certain
substances from sample taken at a specific point at a specific time. They therefore are
often criticised because they only reveal the quality of the water at the time of
sampling, and their further relevance has to be inferred by extrapolation from limited
data (Hellawell, 1997). Biological monitoring, on the other hand, generally is
considered to provide a more integrated appraisal of water and overall environmental
quality (Hynes, 1960). Therefore, there is now widespread recognition that not only
chemical analyses but biological techniques are required for an appropriate
assessment of river quality (Wright, 1995). Moreover, biological surveillance of
communities with special emphasis on characterising taxonomic richness and
composition was claimed to be the most sensitive tool for quickly and adequately

detecting alterations in aquatic ecosystem (Cairns & Pratt, 1993).



In aquatic ecosystems, such as streams and rivers, biological indicators have been
proposed that use algae, fish, and macroinvertebrates (Hellawell, 1986). Amongst
aquatic animals that can be used in bioassessment, macroinvertebrates proved to be
an excellent indicator for the quality of freshwater streams (Rosenberg and Resh,
1993). Because of the crucial ecological functions of macroinvertebrates within
stream ecosystems, great efforts are undertaken to preserve and restore their stream
habitats. In terms of their use for biomonitoring, macroinvertebrates in streams have
relatively long life cycle that allow exposing them to pollutants over a long period of

time and integrating the effect of short-term pollution episodes.

Macroinvertebrate assemblages were an objective of many projects of bioassessment
of habitat conditions, and river and stream quality. The British RIVPACS (River
Invertebrate Prediction and Classification System) (Wright, 1995) was developed
using macroinvertebrates for biological assessment of river quality in Great Britain.
The RIVPACS approach was preferred to similar North American schemes, which
had already been used successfully to assess river condition on national scale and
also in regional framework. AusRivAS, the Australian River Assessment Scheme, is
a national bioassessment program that uses aquatic macroinvertebrates to meet the
first objective of the National River Health Program: assessment of ‘health’ or

ecological condition of Australian rivers (Schofield & Davies, 1996).

1.2. Computational Approach to Support Bioassessment

While experienced biologist can make meaningful assessment of habitat condition
from suitable biomonitoring data, it becomes difficult to comprehend extensive
datasets when collections are made for long period of time and/or when large data
sets need to be analysed and causal factors be identified. In ecological research,
therefore, the processing and interpretation of data play an important role. The
ecologist uses many methods, ranging from numerical, mathematical, and statistical
methods to techniques originating from artificial intelligence such as expert systems
(Recknagel, 1989), genetic algorithms (d’Angelo et al., 1995), and Artificial Neural
networks (ANN) (Walley & Fontama, 1998) in order to study interrelations between

biological communities and environmental parameters.



Stream modelling based on ecological knowledge and adequate stream monitoring
data can substantially facilitate and improve assessment of stream habitats. Different
modelling techniques have been developed and applied to freshwater streams. Moss
et al. (1987) developed a statistical model for predicting macroinvertebrates
occurring at some stream sites in Great Britain. The model worked with probability
of the occurrence of macroinvertebrates and provided reasonable prediction results
using environmental variables. Simpson et al. (1997) used a similar model for
freshwater streams in Australia and New Zealand. Even though these models
achieved some success to a variety of stream systems, they lack of ability to cope

with non-linearity and high complexity of stream system.

Modelling freshwater quality is extremely difficult, as the interrelations between
various influences are not well known. Hydrodynamic models are difficult to couple
with chemical and biological models. The action of hydrological process on
ecological processes has hardly been elucidated, as the requirements are different for
both systems (Straskraba and Gnauk, 1985). The use of ANN may overcome many

of these difficulties.

Walley and Fontama (1998) developed artificial neural network (ANN) to predict
macroinvertebrate taxa in unpolluted river sites in the UK. Their results
demonstrated the potential of ANN to model non-linear relationship between
environmental variables and biotic indices. Schleiter et al. (1999) and Chon et al.
(1996, 2000a, 2000b) went one step further to model the community dynamics of

macroinvertebrates in German and Korean streams using ANN.

Artificial neural networks belong to a new generation of computer models based on
machine learning techniques. ANNs were developed as models of biological
neurons. They learn from experience in the database and can be able to solve real
ecological problems in various areas (Lek et al., 2000). ANNs are universal function
approximators, they are able to learn a complex non-linear mapping between
independent and dependent variables from data. They do not require assumptions
about mathematical relationship between state variables and the nature of the
distribution of data. Machine learning models have the ability to extract temporal or
spatial patterns and knowledge from highly nonlinear and complex data. Based on

such patterns and knowledge they can predict future conditions. Machine learning



models have successfully been applied to freshwater lakes (e.g. Recknagel 1997,

Recknagel et al. 1998) and promise a new quality in stream modelling.

1.3 The Contribution of This Work

Even though much work has already been done in the field of applying Artificial
Neural Networks in order to study interrelations between abiotic factors of
freshwater stream ecology and different biotic community member around the world,
no such research had been carried out yet in Australia. The aim of this work is to
assess the suitability of the ANN models to determine the biological and
environmental conditions of freshwater stream in Australia. The present case study
was conducted by means of a comprehensive database of the Queensland stream

system.

The work adopted the referential approach from the Australian River Assessment
System (AusRivAS) and applied the Artificial Neural Networks as new
computational tools to analyse and generalise the patterns within the database of the
Queensland river and stream system. So-called “clean water approach” was applied
to study the distribution patterns of macroinvertebrates in clean water. These patterns
were then applied for predicting macroinvertebrate assemblage in clean water. The
assessment criteria O/E from AusRivAS was also adopted in order to evaluate the
performance of the newly developed models. Evaluation was made by comparing
performances of ANNs and statistical models used in the AusRivAS protocol to

demonstrate the potential of ANNs as alternative analytical tools.

In the second step, another approach was developed in an attempt to extend the
capability of ANN models in dealing with abiotic factors. The so-called “dirty water
approach” extended the capability of ANN models not only to work with physical
predictor variables but also to work with water chemistry. More complex iteractions
among physical predictors, water chemistry and macroinvertebrates themselves that
determine the distribution of macroinvertebrates were studied and direction for

applying this approach for management purposes were investigated.



The elucidation capability of ANN models was explored by sensitivity analyses.
Sensitivity analyses drew the effects of single abiotic factor on presence of individual
macroinvertebrate taxon. This process also provided new insights into relationships
between environmental variation and the occurrence of Queensland stream fauna,
and enabled the identification of ecological traits of each taxon. This work
demonstrated that the ANN technique applied for sensitivity analyses has the
potential to enhance our understanding of how natural and anthropogenic impacts

affect components of aquatic ecosystems.

A black-fly Simuliidae larva in the typical filter-feeding posture (Gullan& Cranston,2000)



2 Background

Stream and river ecosystems experience dramatic changes in response to human
activities such as population growth and economic development. Predicting stream
habitat condition is increasing of interest to water resources planners, policy makers,
ecological researchers and especially limnologists. Traditional physical and chemical
methods to examine freshwater habitat conditions have limited ability to deal with
spatial and temporal variations. So-called bioassessment of stream habitat condition
may be a suitable alternative (Hynes, 1970; Hellawell, 1986; Rosenberg & Resh,
1993; Loeb & Spacie, 1994). Fundamental to assessment of river health and biotic
integrity is an understanding of the links between the habitat in which organisms live
and factors shaping it (Norris & Thoms, 1999). Amongst aquatic organisms that can
be used in bioassessment, macroinvertebrates have proved to be an excellent
indicator for the quality of freshwater stream habitats (Rosenberg and Resh, 1993,
Davis and Simon, 1995; Hawkers, 1997).

Stream modelling based on ecological knowledge and adequate stream monitoring
data can substantially facilitate and improve assessment of stream habitats. Different
modelling techniques have been developed and successfully applied to freshwater
streams. Among the approaches to support bioassessment, Artificial Neural
Networks (ANN) have been recognized as a potential tool in ecological modelling
(Recknagel et al., 1997, 1998, Schleiter et al., 1999; Lek & Guegan, 2000). ANN
models have flexibility to cope with temporal and spatial dynamics and are able to

deal with the distinct non-linearity and high complexity of freshwater streams.

The main areas of discussion in this chapter are bioassessment of river habitat
condition and the potential of machine learning in supporting bioassessment. Habitat

condition monitoring and bioassessment of streams 1is discussed before



bioassessment of streams by means of Artificial Neural Network techniques is
introduced. Specific examples demonstrate the potential of ANN models in the areas
of freshwater bioassessment. Among from recent research, a direction for the current
studies is set which applied ANN techniques to the bioassessment of freshwater

stream habitat conditions.

2.1  Habitat Condition Assessment
2.1.1 Stream Ecology

Streams and rivers are fundamental to human existence as well as to global diversity.
Streams and rivers do not only affect the landscape over very long time periods, but
are also in turn directly affected by the catchments where they originated and through
which they flow. The understanding of stream ecosystem structure and function has
progressed rapidly and continues to be one of the most active areas of research in

aquatic ecology (Hauer & Lamberti, 1996).

Rivers are complex systems of flowing water draining specific land surfaces and are
very important freshwater resources. Rivers are characterised by uni-directional
current with a relatively high average flow velocity (0.1 to 1 m/s) in comparison with
lakes and other water bodies. The river flow is highly variable over time. Prevailing
current and turbulence cause thorough and continuous vertical mixing in rivers
(Meybeck et al. 1996). Streams and rivers have a complex nature, which can be
explained as a consequence of the three-dimensional geometry of channels with a
long profile, a cross-section and mutual adjustment over a time scale (Allan, 1995).
In river ecosystems, the physics, chemistry and biology of the water body are
interrelated. Any substances introduced to a river are transported and transformed by
physical, biological and biochemical processes. Consequently, the habitat condition
of river water is changed spatially and temporally (Allan, 1995; Meybeck et al.,
1996¢; Townsend et al., 1997; Mason, 1996). Spatial and temporal variations in river
ecosystem are crucial to the abundance and activities of freshwater organisms and to
ecological processes in aquatic ecosystems, because they are main features of
different types of water bodies and habitat conditions within them. Variation in the
distribution and activities of aquatic organisms is evident at all spatial and temporal

scales but especially in streams, where biotic differences are often obvious within
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and across a watershed. The distribution, abundance and activities of aquatic biota
vary clearly with time, over temporal scales ranging from seconds or minutes to

years (Stewart and Loar, 1994),

Hydrological processes, food resources, nutrient dynamics, riparian vegetation and
many other factors intimately affect the structure and function of stream ecosystems
(Hynes, 1970; Cummins, 1984; Allan, 1995). The following section discusses
fundamental processes occurring in streams in their spatial and temporal variation as

well as in their interrelations with each other.
Physical Processes
Hydrological processes

Hydrological processes strongly affect all processes occurring in streams. The most
fundamental hydrological measurement that characterise all river and stream
ecosystems is discharge, the volume of water flowing through a cross section of a
stream channel per unit time (Gore, 1996). The amount of water flowing past a given
point combined with the slope of the stream channel produces an indication of stream
power. The potential energy of the stream is dissipated as friction heat loss on the
streambed and when the stream picks up and moves material. The work performed
by the stream influences the distribution of suspended sediment, bed material,
particulate organic matter and other nutrients. The distribution of these materials has

substantial influence on the distribution of riverine biota (Vannote et al. 1980)

Rivers and streams are integrated flowing systems that create and maintain aquatic
habitat within the turbulent structure of the flow, as well as on and below the channel
bed. At the catchment scale, the hydraulic condition of the flow may be generalised
as uniform or gradually varying above and below interruptions in the longitudinal
profile of the stream. At the stream reach scale, non-uniform flow conditions that
occur in pools, riffles, and meanders can be distinguished. To distinguish the pattern
of non-uniform flows, the mean depth, velocity and direction of the flow may be
mapped on sketches or survey plans of a reach. The channel configuration and flow
conditions are major components used to characterize the preferred habitats for
different aquatic biota. At the habitat scale, individual stream flowlines and different
states of flow can be outlined and analysed as rapidly varying, non-uniform flow

(Newbury, 1996).



Stream morphometry and longitudinal patterns

Running water systems consist of tributary streams that erode the landscape
following the weaker strata of bedrock, which then gradually coalesce to form the
main river as it flows downhill. Streams do not flow far in straight lines, but tend to
meander with gentle or sharper bends. Channels may also divide into a series of
branches in response to variation in discharge, the nature of sediment, and the
presence of erodable banks. In segments, water velocity varies longitudinally, and
sediment on the stream bottom is eroded continuously from some areas and
deposited in others (Giller & Malmqvist, 1998). This leads to alternating sequences
of shallower, fast flowing, rifle areas with coarse substrates, and deeper pools with
slow flow and fine substrate. Each of these areas represents a type of habitat with

specific habitat conditions and stream biota.

Stream characteristics change longitudinally when upland streams turn into
downland from the headwater streams. On the one hand, the stream sizes increase
with the distance from source. On the other hand, the direct influence of the
surrounding landscape on the functioning of the running water ecosystem decreases.
The slope of the channel decreases, discharge increases, variability and nature of
flow change and so does water chemistry. These longitudinal changes in physical and
chemical characteristics impose significant consequential changes on ecosystem
processes (such as decomposition, community respiration, primary production) and
patterns (such as standing stock of organic biomass, species richness of invertebrates

and fish, and community structure) (Statzner & Borchardt, 1994).
Temperature

Temperature is one of the most important variables in the stream ecosystem.
Temperature affects movement of molecules, fluid dynamics, saturation constants of
dissolved gases in water, metabolic rates of organisms, and a vast array of other
factors that directly and indirectly affect life in the stream ecosystem (Hauer & Hill,
1996). Typically, the greatest source of heat in freshwater is solar radiation.
However, in very heavily shaded streams, transfer of heat from air and flow from

ground water are more important than direct solar radiation (Stanford et al., 1988).

Annual fluctuations in stream temperature are very important to stream organisms.

Critical life history variables (e.g. reproduction, growth) of lotic plant and animals



are regulated by temperature (Ward & Stanford, 1982). Many stream animals use
temperature or temperature change as an environmental cue for emergence or
spawning (Hauer & Hill, 1996). Temperature sets limits to the environment that
species can live in, and species are generally adapted to certain temperature regime.
The effect of temperature on the biota may be indirect through its influence on

metabolic rates and oxygen concentration (Giller & Malmgqvist, 1998).

A common misconception is that stream temperature is uniform among habitats
within a stream reach. In reality, stream temperature may be highly variable between
habitats only a few meters apart. Streams frequently experience significant changes
in température from small shaded headwaters to broad, open canopied river reaches

(Stanford et al., 1988).
Light

Light is a critical variable in most ecosystems. In streams, solar radiation is necessary
for photosynthesis by attached algae. It is also the medium through which all-visual
behaviors (e.g. predation by fish, macroinvertebrates) is expressed (Hauer & Hill,
1996). There is evidence to suggest that light can influence benthic invertebrate
distribution. Some animal taxa show highest abundance in unshaded areas while
other taxa prefer shaded areas (Giller & Malmgqvist, 1998). The longitudinal
downstream change in light regime and its consequences for stream bio-energetics is

an integral part of stream ecosystems (Vannote et al., 1980).

Seasonal variation in lotic light regime is caused by changes in sun angle and day
length and by phenological changes in streamside vegetation. Spatial variability in
lotic light regimes also is high. Variation in the amount of shade cast by streamside
vegetation is responsible for much of the spatial variability of light in streams.
Streamside vegetation also plays a crucial role in the longitudinal gradient of light
regimes in stream systems. As stream size enlarges progressively downstream,
riparian trees and bushes shade proportionally less of the stream, allowing more

diffuse sunlight to reach the streambed (Hauer & Hill, 1996).
Suspended sediment and bedload

Sediment concentration and bedload provide important information about stream

systems that has direct significance for aquatic biota. Sediments are important for
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maintaining spawning gravels and the channe] morphology of stream and river that
form habitat for benthic organisms. Large amount of bedload transport may scour
benthic plants and organisms, bury spawning gravels, or cause relatively rapid
channel adjustments. The movement of sediment into stream systems generally
occurs by two major processes: surface erosion and mass wasting or landslides.
Furthermore, where soil, rock or previously deposited alluvium are being eroded by a
stream or river system, these materials can represent an important source of sediment
to aquatic systems. Numerous factors are involved in erosional processes. These
factors include climate (precipitation, temperature), topography, vegetation (type and
density of vegetation), soil (particle sizes, erodibility), and geology (characteristics of
parent materials and bedrock). In addition, human perturbation and management
practices that affect watersheds and stream systems can greatly increase natural rates
of erosion and sediment yield. Inorganic sediments are typically characterised by two
primary modes of transport: suspended sediment or bedload sediment. Each of these
categories delineate relatively different groups of particle sizes with different

implication for the morphology and ecology of a stream system (Beschata, 1996).

Sediment particles transported in suspension by a stream are typically < 0.1mm in
diameter and consist mostly of silt and clay sized particles. Suspended sediment
particles are transported downstream at essentially the same velocity as the flowing
water. Bedload sediment consists of relatively large inorganic particles that are
transported by water along the bed of the stream. They are relatively large (>!mm in
diameter) and consist mostly of coarse sands, gravels, cobbles or larger stones. These
sediments have important implications for aquatic plants and organisms because of
their influence on the character of the stream substrate and channel morphology
(Beschta, 1996). Moreover, light attenuation by suspended sediment also can reduce
light penetration in streams, which is a significant factor within freshwater ecosystem

as discussed in the previous section (Hauer & Hill, 1996)
Substrate

The substrate itself comprises a wide variety of inorganic and organic materials. The
inorganic material (ranging in size from silt to sand, gravel, pebbles, cobbles,
boulders and bedrock) is usually eroded from the river basin slopes, river channel
and banks, and modified by the current. The organic materials vary from organic

fragments and leaves, to fallen trees, derived ultimately from the surrounding
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catchment and upstream habitats, as well as aquatic plants such as filamentous algae,

moss and macrophytes (Giller & Malmgqvist, 1998).

The stronger the current velocity the larger the particle size that can be moved thus
current velocity and substrate type are related, and mean substrate particle size
generally declines downstream. However larger particles can protect smaller ones
from being entrained in the current and carried away, and so in coarser substrates,
finer sands and gravels will accumulate in between or behind the larger particles and
increase the heterogeneity of the substrate. Temporal variability in substrate will
occur naturally. The “stability” of the substrate refers to its resistance to movement
and is proportional to particle size. Redistribution of the substrate and movement of
particles will occur during periods of increased discharge following rainstorm (Giller

& Malmgqvist, 1998).

The nature of substrate is of prime importance for lotic invertebrates. It provides
habitat space for a variety of activities such as resting and movement, reproduction,
rooting or fixing to, and for refuge from predators and flow. It also provides food
directly (organic particles) or surface on which food aggregates (e.g. algae, coarse
and fine detrital particles) (Giller & Malmqvist, 1998). Diversity and abundance tend
to increase with substrate stability and with the presence of organic detritus. Sandy
substrates are thought to be poorest, due to instability. Stony riffles normally have a
greater range of invertebrates than pools rich in silt (Allan, 1995). Heterogeneity is
also important in controlling abundance and diversity, as mixed substrates provide a
greater range of surfaces to colonize and microflow patterns (Giller & Malmgvist,
1998). Because of the above finding, the relationships among substrates and fauna

diversity, biomass and abundance are not linear.
Water Chemistry and Chemical processes
Water Chemistry

Oxygen 1is required by all aerobic respiration. Oxygen enters water largely via
diffusion from the air at the water surface. Oxygen solubility in water is negatively
correlated with water temperature. Oxygen levels also vary with current speed and
turbulence and are affected by the presence of macrophyte vegetation, as oxygen is a
by-product of photosynthesis (Giller & Malmqvist, 1998). Species do differ in their

respiratory ability and oxygen requirement, as evidenced by different responses to
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organic pollution that reduces oxygen, and these differences in turn contribute to

differences in species distribution (Hynes, 1970).

A typical river is essentially a dilute calcium bicarbonate solution dominated by a
few cations and anions (Wetzel, 1983). Other important variables to consider are pH
(which measures the acidity of water), hardness (which measures concentration of
Ca®" and Mg™), conductivity (which measures the total ionic content) and alkalinity
(which measures concentration of carbonates). These variables have direct and
indirect effects on habitat conditions within streams and stream biota (Wetzel, 1983;

Giller & Malmqvist, 1998).

Regular monitoring of water chemistry at a sampling location will show patterns of
variation over time. Normally, short-term reversible changes in chemistry follow the
rise and fall of water levels associated with rainfall events, or with long-term
seasonal changes. If heavy rains follow a period of drought, accumulated solutes in
soil water, which have increased in concentration through evaporation, undergo
flushes of mineralisation or nitrification. The post-drought runoff water will contain
large amounts of nitrates and other solutes (Hornung and Reynolds, 1995).
Monitoring over long period of time can indicate directed changes in water chemistry
that may fundamentally change the nature of the system, as in the case of
acidification. Directed, long-term changes in nutrients, salinity, suspended solid load,
and oxygen accompany gradual eutrophication of rivers caused by pollution. Long-
term changes in water chemistry also follow changes to land use in the surrounding

catchment such as afforestation or clearcutting (Giller & Malmqvist, 1993).

Within-river variation in water chemistry in space is a relatively well-known
phenomenon. The concentration of most dissolved salts, nutrient levels and pH tend
to increase from the river’s source to its mouth. Changes in geology, soils, climate,
vegetation, and in anthropogenic influence as one move from uplands to lowlands,
also play a part. At a regional scale between rivers, geology and soils are the major
factors influencing water chemistry, but local climate (especially rainfall patterns)
and surrounding vegetation are also important (Allan, 1995; Giller & Malmgqvist,

1998).
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Solute Dynamics

The term “solute” refers to materials that are chemically dissolved in water. This
includes materials such as calcium, chloride, sodium, potassium, magnesium, silica
carbonate and more biological important solutes such as phosphate and nitrate. These
solutes enter streams from three natural sources: the atmosphere (chloride, sodium,
and sulfate from rainwater); soil and rock weathering (calcium, phosphate, silica and
magnesium); and biological processes (nitrate from biological fixation by blue green

algae) (Webster & Ehrman, 1996).

‘Solute dynamics’ refers to spatial and temporal patterns of solute transport and
transfer. These processes are tightly coupled to the physical movement of water in
streams. As materials cycle between the biotic and abiotic components of stream
ecosystems, they are continuously or periodically transported downstream (Stream
Solute Workshop, 1990). Primarily biochemical and hydrologic interactions
occurring in whole watersheds as well as in-stream dynamics determine the
dynamics of many solutes. The dynamics of a conservative solute are primarily
driven by two processes: advection (down stream transport at the water velocity) and
dispersion (molecular diffusion or turbulence). Dynamics of non-conservative solutes
are more complicated because of the exchanges between solutes in the water column
and on the stream substrate. These exchanges include abiotic processes (adsorption,
desorption, precipitation and dissolution) and biotic exchanges (microbial uptake,

plant uptake, leaching and mineralisation) (Webster & Ehrman, 1996).

Studies of solute dynamics in streams provide information on the rates of transport
and transformation of the solutes themselves and quantification of various

hydrological properties in streams.

Transport and storage of FPOM and CPOM

Fine particulate organic matter (FPOM) includes particles in the size range of
>0.45um to <1000um that are suspended in the water column or deposited within
lotic habitats. Suspended fine particulate materials include all living (e.g. bacteria,
algae, protozoan, invertebrates) and non-living materials (amorphous organic matter,
detritus, suspended organic sediment). FPOM can originate from many sources,
including breakdown of larger particles by physical forces, animal consumption,

microbial processes, flocculation of dissolved substances and terrestrial inputs
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(Wallace & Grubaugh, 1996). FPOM functions as an important food resource for
many filter-feeding invertebrates as well as for some vertebrates in river and streams
(Wallace et al, 1991). The downstream transport of FPOM is also important to the
theme of conceptualising streams as longitudinally linked systems (Vannote et al,
1980; Minshall, et al., 1985). Therefore, FPOM is important to many ecosystem

processes as it represent a major pathway of organic matter transport and export.

Coarse particulate organic matter (CPOM) in streams is defined as any organic
particle larger than Imm in size. CPOM include components ranging from branches
to entire trees that fall into stream channels and non-woody components donated by
riparian vegetation (leaves, needles, fruits, flowers, seeds, frass) and materials
produced within streams (fragmented aquatic plants, dead aquatic animals) (Lamberti
& Gregory, 1996). CPOM is a major energetic resource for stream ecosystems.
CPOM provides a large proportion of the fixed carbon in small streams and is
important in larger streams (Cummins et al., 1983). CPOM that enters streams is
transported downstream by the unidirectional flow of the lotic ecosystem. Trapping
of this material is essential for the subsequent microbial colonisation that precedes
consumption by shredding macroinvertebrates. These processes (retention) provide a
critical link between input and the long-term storage and processing of CPOM
(Vannote et al., 1980). The retentive capacity of streams for CPOM is a function of

hydrologic, substrate related and riparian features (Lamberti & Gregory, 1996).

Stream Biota

Heterotrophic microorganisms (bacteria, protists, fungi) are important components of
microbial communities, which function primarily as decomposers of dissolved
(DOM) and particulate organic matter (POM) and are also consumed by higher
trophic levels. An importance role of benthic bacterial communities is the
assimilation of dissolved materials from overlying water. The ecological importance
of these processes is that they result in the transfer of organic carbon associated with

DOM, which is an important source of organic matter (Ward & Johnson, 1996).

Benthic stream algae are a ubiquitous group of photosynthetic organisms responsible
for the majority of photosynthesis. Benthic algae are of fundamental importance to
stream ecosystems. As organisms at the base of the food web, they are at the

interface of the habitat conditions and biological communities. Photosynthesis by
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benthic algae provides oxygen for aerobic organisms in the ecosystem, and the fixed
carbon provides food for algivores. Benthic algae enters to the food web through
direct consumption from the substrata by macroinvertebrates such as snails or insects
or through capture of drifting of benthic algae by filter feeders (Lowe & Laliberte,
1996). Many environmental factors interact to regulate spatial and seasonal growth
and succession of phytoplankton populations, such as light, temperature, availability
of phosphorous, nitrogen and silica, and dissolved organic compounds, which can
influence phytoplankton metabolism by interacting with macro and micro-nutrients

and influencing their availability (Wetzel, 1983).

Freshwater macroinvertebrates are ubiquitous; even the most polluted or
environmentally extreme lotic environments usually contain some representatives of
this diverse and ecologically important group of organisms. Most stream
macroinvertebrate species are associated with surfaces of the channel bottom and
other stable surfaces (fallen trees, roots, aquatic vegetation) rather than being
routinely free swimming (Hauer & Resh, 1996). Macroinvertebrates play important
roles within the stream community as a fundamental link in the food web between
organic matter resources (leaf litter, algae, detritus) and fish (Hynes, 1970; Allan,
1995). Macroinvertebrate species composition changes between headwaters, middle
reaches, and broader rivers, in response to changes in stream environment (Ward &

Stanford, 1983).

The fish community is an assemblage of species inhabiting a prescribed area, that has
the following properties: (1) richness, (2) diversity, (3) morphological and
physiological attributes and (4) trophic structure (Li & Li, 1996). The number and
kinds of species found can be ascribed to several ecological mechanisms. Physical
tolerance to habitat quality (temperature, pH, dissolved oxygen, current, availability
of substrata or cover) in the particular stream strongly affect membership in an

assemblage of fishes (Matthews, 1987).

Biotic Interactions

One of the many advances in stream ecology in recent years is the increasing

awareness of the importance of biotic interactions in the ecology of lotic organisms.
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Stream Food Web

Stream food webs are essential for integrating studies of organic matter processing
and community interactions. Food webs differ in structure and function among
stream types, although they will all have some common elements. Most streams have
approximately three or four trophic levels, but occasionally fewer or more may be
present. Primary producers (including algae, bryophytes, macrophytes) and also
detritus, occupy the lowest trophic level. There are groups of macroinvertebrates and
some vertebrates (grazers and detritivores) apparently forming a primary consumer
trophic level. However, macro consumers that feed on aquatic plants or plant detritus
also ingest stream microbes and function as both primary and secondary consumers.
Primary predators belong between level 3 and 4. Finally, predators that feed on other
predators nearly always have mixed diets to include algivores and detrivores as well

as other predators (Hersley & Peterson, 1996).

Species comprising stream food webs are constrained by many factors which then
determine the structure and function of the food web of a particular stream, such as
biogeography, geomorphology, substratum characteristics, gradient, riparian
characteristics, temperature and inter-specific interactions (Cummins, et al., 1989;
Ward & Stanford, 1982). The food web in any particular stream reflects all these

factors, and among streams, a wide variation in food webs can be found.
Plant — Herbivore Interaction

Plants and animals interact in streams as they do in all ecosystems. Primary
producers in streams consist of autotrophic bacteria, algae, bryophytes and vascular
plants. The organic matter synthesised by primary producers in streams is a major
energy source for benthic food webs. Herbivory (or grazing) is the consumption of
living plants or their parts by animals. Herbivores have a major impact on plant
assemblages in many streams, thus many structural and functional attributes of
benthic algae are altered by grazers (Lamberti & Feminella, 1996). However, the
strength and outcome of the algal-grazer interaction is also dependent on many
abiotic factors such as light, nutrient, substratum, flow, season and disturbance

(many works cited by Lamberti & Feminella, 1996).
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Predator-Prey Interactions

Predator-prey interactions can have many types of effects on both predators and prey
communities. In streams, the predominant predators are fish and some carnivorous
macroinvertebrate species. Prey items include representatives of many orders of
benthic macroinvertebrates. The effects of predators on prey populations depend on
their predation rate compared to prey exchange rate (the rate at which prey moves in
and out of areas where predation occurs) (Cooper et al., 1990). The impacts of
predation on prey populations can be studied from two general perspectives: effects
of predators-induced mortality in prey population and community, and consequences

of anti-predatory behavior on prey fitness (Peckarsky, 1996).
Habitat Use and Competition

Species with similar morphology, life histories, and ecological requirements may
coexist in many river and stream systems. The result is that there is potential for
competition among these taxa. One of the important ways that such species coexist is
through habitat partitioning. By exploiting different habitat or microhabitat patches at
different times, potentially competing species can find opportunity to avoid
competitive exclusion and thereby coexist (Connell, 1980). The differential use of
habitats by closely related or similar species is also an important component of
riverine biodiversity in that it promotes spatial complexity of biotic assemblages.
Stream ecosystems are spatially heterogeneous, such as in the habitat diversity
offered by polls, riffles and morphological features, or the convergence of flow
velocity, depth, substratum, and temperature conditions that define different
microhabitat patches within a single pool (Frissell & Lonzarich, 1996). Temporal
heterogeneity, such as variations in flow or temperature over time, can also afford
time-variant niches among which species are differentiated, therefore reducing or
avoiding biotic interactions. Temporal variability in the environment can reduce
competitive interactions between species and promote their continued coexistence

regardless of overlap in their ecological niches (Connell, 1980).

Summary

Processes discussed in this section prove the high complexity and non-linearity of
stream ecology. Streams and rivers are dynamic physical, chemical and biological

entities, which interrelate with each other. Effects on biota are usually the final points
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of environmental degradation and pollution of streams (Noris & Thoms, 1999).
Consequently, change in the health of a stream ecosystem will be reflected in the
aquatic biological community. The biological communities that are exposed to
pollutants act as integrators of the multiple past and present environmental effects
(Cranston et al., 1996). Therefore using measurements of aquatic biota, to identify
structural or functional integrity of ecosystems has recently gained acceptance for
river assessment (Noris & Thoms, 1999). The concept of biological assessment of

stream habitat is discussed in the next section.

2.1.2 Biological Assessment of Stream Habitat

As the community structure of an aquatic system is determined by conditions within
a habitat (e.g. temperature, flow and salinity) and resources available (all things
consumed by an organism), it is very sensitive to changes in these factors (Loeb &
Spacie, 1994). The organisms that live in aquatic ecosystems are fundamental
sensors that respond to any stress on that system, and only biological material could
be used for adequate indication of spatial and temporal effects of chemical stressors
in a river ecosystem (Cairns et al., 1993). Therefore, biological assessment is

essential to assess the environmental health of aquatic ecosystems.
Advantages of Using Biological Assessment

Biological assessments are less time consuming than traditional chemical assessment
as a single series of samples represents the sum effects of the prevailing conditions.
In addition, animal and plant communities are not affected by temporary
amelioration or usually by a transient deterioration of the effluent (Mason, 1996).
Hynes (1960) also emphasized the advantages noted above of using biological
assessment in polluted sites. Bioassessment can reveal long-term effects on
ecosystems after the cause of the impact has passed and is itself undetectable (Ghetti
& Ravera, 1994). Systematic biological monitoring and assessment is considered the
most practical and cost effective approach to determine if human actions are
degrading biological integrity (Davis and Simon, 1995). Such assessment provides
both numeric and narrative descriptions of resource condition (Karr, 1998). Cairns et

al. (1993) considered the role of the bioassay as a diagnostic tool for the restoration
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of desirable ecosystem conditions and as a predictive tool for preventing

environmental impact.

For effective biological assessment, it is important to select organisms that will
accumulate continuously over time. In addition, the group of organisms selected as a
biological indicator should be widely distributed so that it is possible to compare the

findings from one body of water to another (Patrick, 1994).
Biological Indicators

Indicators are environmental parameters selected and used in judging the degree to
which specific environmental conditions have been changed or maintained (Cairns et
al., 1993). Cairns et al. (1993) defined “indicator” after Hunsaker and Carpenter
(1990) as “a characteristic of the environment that, when measured, quantifies the
magnitude of stress to habitats, degree of exposure to stressor or degree of ecological

response to the exposure”.

Indicators are a shorthand description of aspects of an environment. Indicators are
selected from a wide range of possible attributes and can be used singly or in
combination to assess the conditions of the environment. They are key attributes,

which give an impression of major trends and conditions (Walker et al., 1996).

Indicators may be used to understand the responses, adaptation and recovery of
ecosystems and their inhabitants to both natural and anthropogenic disturbances
(Johnson, 1995). Cairns et al. (1993) summarised the criteria for indicator selection.

Ideal indicators should be:
- biologically and socially relevant;
- sensitive and broadly applicable to stressors;
- diagnostic of the particular stressors causing the problem;
- measurable, interpretable and integrative; and
- timely and cost effective.

To avoid confusion and errors in monitoring, biological indicators must also meet

several requirements. Reliable biological indicators are taxa with narrow and specific
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tolerances. These indicators should be chosen considering the magnitude of the
effects to be measured. They should not be applied in geographic locations for which

they have not been designed (Cranston et al., 1996).

The biological indicator concept is well founded, shown by the commonplace
observation that organisms reflect their environment. The concept of indicator
species is of central importance in biological assessment. Richard et al. (1993) have
defined “indicator species” as organisms which accumulate substances in their
tissues in such a way so to reflect environmental levels of those substances or the
extent to which the organism has been exposed to them. Good indicator species for
freshwater quality management should have specific characteristics such as: be
readily identified and easily sampled, have cosmopolitan distribution, readily
accumulate pollutants, be easily cultured in the laboratory and have low variability

(Hellawell, 1986).
Stream biota used as biological indicator

Benthic algae have a position at the interface of abiotic and biotic stream components
and have many attributes that make them good organisms to employ in habitat
condition assessment (Carbiener et al., 1990). Benthic algae are sessile and cannot
swim away from potential disturbances. They must either tolerate their surrounding
abiotic environment or die. Algal communities are usually species rich, and each
species has its own set of environmental tolerances and preferences. Therefore the
entire assemblage represents an information-rich system for environmental
assessment. Algal identification is not difficult. Excellent taxonomic keys exist for
the identification of benthic algae in most parts of the world (Lowe & Laliberte,
1996). The short life cycles of most stream algal species result in a rapid response to
shifts in environmental conditions. Extant benthic algal communities are typically
very representative of current environmental conditions, and indeed there is no better
alternative group for studies of nutrient enrichment in open water (Hellawell, 1986).
However, this advantage of algae for use as bio-indicators is a disadvantage in long-
term assessment, when integration of present and past disturbances are required to
assess habitat condition. Moreover, assessment methods based on aquatic plant
communities are usually limited by the constraints on aquatic plant growth. The

deepest parts of the water bodies, the areas shaded by trees, or those where flow
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velocity is too high, cannot be considered for ecological diagnosis, as vegetation

growth is impeded (Amoros et al., 2000).

Fish comrmunities are a highly visible and sensitive component of freshwater
ecosystems. Fish provide several attributes that make them useful indicators of

biological integrity and ecosystem health such as:

- Communities are persistent and recover rapidly from natural disturbance. Fish
continually inhabit the receiving water and integrate the chemical, physical and

biological histories of the water.

- They have large ranges and are less affected by natural microhabitat differences
than smaller organisms. This makes fish useful for assessing regional and macro-

habitat differences.

- Most fishes have long life span (from 2 - 10 years) and can reflect both long-term
and current water resource qualities. The sampling frequency for trend

assessment is less than for short-lived organisms.
- The taxonomy of fish is well-established (Simon & Lyons, 1995).

Fish communities respond predictably to changes in both biotic and abiotic factors
(Karr 1981; Yoder & Rankin, 1995). Their characteristics have been used to measure
relative aquatic habitat conditions (Simon & Lyons, 1995). However there are
several difficulties in using fish to assess water habitat condition, especially in

Australia:

- They are highly mobile and may often be migratory and therefore may be able to

avoid exposure to adverse environmental conditions
- Water quality tolerances are poorly known for most Australian species

- The low diversity of fish in Australian waters means that few species are

expected in any given river, reach or habitat (Cranston et al., 1996).

In addition, the use of the fish community in routine environmental surveillance is
hampered by the necessity for extensive manpower and the difficulty in obtaining

samples in deep, fast flowing rivers (Hellawell, 1986).

22



Cranston et al. (1996) discussed the possibility of using biotic communities as
biological indicators of water quality. They assessed all possible biological indicators
by 11 criteria and compared then with an ideal rating (Table 2.1). The results showed
that macroinvertebrates offer the rating closest to the ideal, and they have been
widely accepted to be included in the set of key indicators to assess stream habitat

condition.

Table 2.1 Assessment of biological indicators of water quality (Cranston et al. 1996
[p.144])

Indicator Criterion

1 213 1| 4 5 6 g 8 9 10 | 11
Ideal rating H|L|H|H|H|H|H|H|H - H
Mammals MIM|H|L|H|IM|H|L|M| G M
Reptiles MIM|L|IL|IMM|H|M|M G M
Amphibians H|L|H|LIMIM|H|{M|[M| G M
Waterbirds MIM|H|M|L|L|L]|L|L G M
Fish M I MM M| M| M| M| M|M|GD | L
Plants H| LI MM M| H|M|H|H G M
Macroinvertebrates | M| M| H|H|H| H| H|{M|H|GD | M
Biomarkers deformity | H{ M| H| M|H| M| H|H| M| G L
Biomarkers HIM|H|IM|H| M|{H | H|M| G | &
asymmetry
Bioassays H I HIH MM H| I M|M|M| D L
Selection criteria:
1. Ease to capture (High, Medium, Low) 7. Response to disturbance (HM,L)
2. Total cost/ha (H,M,L) 8.Stable over period of measurement (H,M,L)
3. Standard methods available (HM,L) 9. Mappable (H,M,L)
4. Interpretation criteria available (H,M,L) 10. Generic (G) / Diagnostic (D) application
5. Significant at catchment scale (H,M,L) 11. Context data available (H,M,L)
6. Low error associated with measurement (H,M,L)

Although there are some difficulties in selecting reliable indicators, the use of the
biological indicator approach in aquatic ecosystems, in particular the use of
macroinvertebrates, has received endorsement in biomonitoring programs
(Rosenberg and Resh, 1993). The next section discusses the potential of
macroinvertebrates as biological indicators for freshwater habitat condition and
current biological assessment based on the distribution of macroinvertebrate

assemblages.
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2.1.3 Biological Assessment Based on Macroinvertebrate Assemblages

Macroinvertebrates and their significant role in stream ecosystem

Macroinvertebrates used in bioassessment are defined as those invertebrates that are
retained by a 500-um mesh sieve. Amongst the macroinvertebrates that fall below
this size range many organisms are known or suggested to be valuable in aquatic
biomonitoring. However, these invertebrates are not used in bioassessment because it

is too difficult to identify them without a microscope (Cranston et al., 1996).

Macroinvertebrates are found in all streams and play crucial roles in organic matter
dynamics and trophic energy transfer in stream ecosystems. As a group, they are the
primary food source for most stream fishes. They also conduct important work of
decomposing leaf litter and small particles of organic debris, and of grazing stream
algae, fungi, and bacteria Functional importance of macroinvertebrates in aquatic
ecosystems ranges from secondary producers to top predators. Therefore, their high
diversity in streams reflects a variety of ecological and evolutionary processes

(Hershey and Lamberti, 1998).

The study of macroinvertebrates is a central part of stream ecology. Earlier sections
have focused on the multitude of interactive physical, chemical and biological
variables that constitute the stream ecology. Geology, climate and other landscape
features directly affect hydrologic patterns, and the movement and storage of
inorganic and organic materials. Nutrients and the downstream transport of solutes
are affected by channels and substratum complexity, the interactions of ground and
surface waters, and by stream biota itself. Interactions between the stream channel,
hyporheic zone, and riparian floodplains are important features in structure and
function of the entire stream corridors (Stanford & Ward, 1993). These and many
other factor affect the microhabitat structure of the stream and the distribution and

abundance of stream macroinvertebrates.

Macroinvertebrates offer many advantages in bioassessment. They are ubiquitous
and thus can be affected by environmental perturbation in different types of aquatic
systems. The large numbers of species involved offer a spectrum of responses to
environmental stresses. Their sedentary nature allows effective spatial analyses of
pollutants or disturbance effects. Macroinvertebrates have variation in life cycles

ranging from multivoltine (several generations per year) to merovoltine (two or
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three-year life cycle), which allow explanation of temporal changes caused by
perturbation (Rosenberg and Resh, 1993; Hellawell, 1986). Because of that,

macroinvertebrates act as continuous monitors of water they inhabit.
Relationship between Diversity and Environmental Disturbance

Variation in distribution and abundance of benthic macroinvertebrates may be caused
by differences in flow rate among sites (Newbury, 1984), stream size and distance to
the source (Minshall et al., 1985 cited by Linke et al., 1999), riffles and microhabitats
(Robson & Chester, 1999), temperature and stream discharge (Boulton & Lake,
1992: Dinsmore et al., 1999), food resources and physicochemistry of the habitat
(Townsend et al., 1997; Paradise & Kuhn, 1999). Altitude and slope have been found
to be in correlation with invertebrate communities (Faith & Norris, 1989). Seasonal
variability of such factors at a site is one of the prominent causes of temporal
variation in the benthic macroinvertebrate community (Wade et al., 1989). Therefore,
season should be explicitly taken into account in bioassessment (Linke et al., 1999).
Many other aspects of the stream habitat condition affect the composition and
abundance of stream macroinvertebrates. These factors include substratum, current
velocity, dissolved oxygen and water chemistry (Hershey & Lamberti, 1998;
Paradise & Kuhn, 1999; Dinsmore et al., 1999).

A disturbance is defined as a discrete event that disrupts the population, community,
or ecosystem structure, often by changing resource abundance or physical
environment (Resh et al., 1988). Effects of various types of disturbance on stream
macroinvertebrates communities have been studied from many perspectives,
including toxicants entering the stream, anthropogenic modifications of the channel,
scour due to high discharge, drought, overexploitation of native fish species and

introduction of exotic species (Hershey & Lamberti, 1998).

The responses of aquatic macroinvertebrate communities to environmental
disturbances have therefore been incorporated into methods of bioassessment and
biotic indices for the bioassessment of aquatic ecosystems. Typical observed
responses to disturbance include increase abundance of certain species but general
loss of diversity, especially with pesticide load or elevated nutrient level (organic
enrichment) (Cranton et al. 1996). However, the intermediate disturbance hypothesis,

as modified for streams, predicts the biotic diversity will be greatest in communities

25



subjected to intermediate levels of disturbance. At low levels of disturbance,
competitive interactions will result in lower diversity because of exclusion of
species. High disturbance also will result in lower diversity because of exclusion of

poor colonists or long —lived species. (Ward & Stanford, 1983)
Bioassessment of stream habitat using macroinvertebrates assemblage

Resh and McEltravy (1993) examined quantitative approaches used to study the
effects of actual or potential disturbances on populations and communities of benthic
macroinvertebrates and provided some suggestions to improve the role of
biomonitoring in environmental assessment processes. Rapid Assessment is a very
important application of macroinvertebrates in bioassessment. Rapid Assessment
Biomonitoring is applied to identify water quality problems associated with both
point and non-point source pollution and to document long term regional changes in
water quality (Resh and Jackson, 1993). Using benthic macroinvertebrate
community structures is a very fast and cost effective method in water quality
monitoring by Rapid Assessment (Lenat & Barbour, 1994; Resh & Jackson, 1993;
Resh, 1995).

Chessman (1999) presented a method that predicts macroinvertebrate community
composition in flowing water from environmental data that has allowed pollution
assessment from natural variability. The method uses a reference condition
approach and predicts abundance of macroinvertebrates. The central idea of the
referential approach is study biological relationship of sites in near pristine condition
(reference condition) and then apply this relationship to predict the fauna at impacted
sites if they were unimpacted (sensu Reynoldson et al., 1997). It is based on the
hypothesis that in the absence of pollution, river sites with similar natural
environmental features will have similar macroinvertebrate faunas. The method
showed a great distinction between human disturbed and undisturbed sites and high
degree of correlation with physical and chemical indicators of human disturbance.
However, the method worked with abundance, which can cause many difficulties in
data collection, as abundance sampling is very subjective and thus data may have
low reliability (Choy & Marshall, pers comm). Marchant et al (1995) found that
patterns in macroinvertebrate communities were still evident when the taxonomic
resolution was reduced from species to family level. Family level studies have been

used successfully to describe biogeographical patterns across large areas (Corkum,
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1989) and also to detect anthropogenic impacts on aquatic systems (Furse et al.,
1984). Because of its simple conceptual basic and effective application, the taxon
richness (the number of macroinvertebrates families) is concluded to be the most
effective descriptor to use as the basis of a biocriterion for bioassessment (Bailey et

al., 1998).

Assessment of river health involves comparisons. Indicators thought to represent
river health are generally compared between sites that are thought to be similar in the
absence of degradation (Norris & Thoms, 1999). A recent development in stream
assessment has been use of the reference conditions. These reference conditions
serve as the control against which test site conditions are compared. The notion of a
reference condition is really one of best available condition that could be expected at
similar sites, and it is represented by several sites (Reynoldson et al., 1997). The
reference condition is central to currently accepted ideas of “biocriteria” being
developed by the US EPA (Davis & Simon, 1995). This approach is being used in
Canada (Reynoldson et al., 1997; Bailey et al., 1998), in the UK (Wright, 1995) and
Australia (Parsons & Norris, 1996) for stream assessment using macroinvertebrates
assemblages. It involves testing an ecosystem exposed to a potential stress against a
reference condition that is unexposed to such a stress. Several reference sites are
sampled, and the variation among their communities represents the range of
acceptable conditions. A test community falling outside of this range “fails”, while a
community that is within this range passes. The degree to which a test community
falls outside the reference range is a measure of the magnitude of degradation at the
site (Bailey et al., 1998). This reference condition approach is useful for estimating
attainable conditions for evaluating temporal and spatial changes in ecological

integrity, and for setting biological and environmental criteria (Hughes et al, 1986)

Predictive modelling based on habitat characteristics is central to many applications
of the reference condition approach. Bioassessment uses predictive modelling to
explain variation in reference communities considering the environmental conditions
at these sites as predictors. The next sections discuss a computational approach to
support bioassessment based on information about environmental and biological

condition of sites.
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2.1.4. Statistical Model to Support Bioassessment

Stream modelling based on stream monitoring data is a next step in studying and
predicting the characteristics of stream habitats. Successful modelling based on
biological factors of streams can improve bioassessment results. The suitability of
predictive models for assessment programs is dependent upon their ease of
application and practicality in providing management information at minimal cost

and effort (Parsons & Norris, 1996).

Many studies require statistical analysis or even more complex numerical analysis to
draw generalities and to detect and highlight patterns or trends in complex data set
comprised of many variables in order to apply the data in further studies. Norris and
George (1993) evaluated statistical analytical approaches used in data processing.
Major methods of statistical modelling described in their study include Analysis of
Variances (ANOVA), multiple regression (MR), Discriminant Function Analysis
(DFA) and time series analysis. They are all very powerful tools for developing
predictive models and associating physical, chemical and biological data together.
ANOVA is applied to compare and partition total variability into components of the
study. It depends on replicated sampling. Multiple regression is a continuous
statistical approach used to examine relationships between biological measure and
various environmental factors. DFA is an appropriate method that can be used to
investigate the relationship between groups established from macroinvertebrate fauna
and environmental variables. Time series analysis may be used to develop a

predictive model based on variation in past time series.

However, these methods of statistical analysis often have stringent requirements of
data, such as replicated collection of data, normally data distribution or high
frequency of data collection. Some requirements are difficult to meet so simplified
assumptions must be used in working with these methods. These assumptions and
data requirements restrict the capability of statistical methods to cope with the non-
linearity and complexity of water ecosystems. Statistical methods tend to minimize
non-linearity in the processes. They are simple to implement if the relationships with
variables are linear. If they are non-linear, transformation into linear becomes a
major limitation of statistical methods in working with non-linear relationship of
variables in the aquatic system (Lek et al., 1996 and Paruelo et al, 1997). In

addition, each of the statistical methods mentioned above could be applied to certain
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problems in data processing, but integrated application of all the methods to work
with a complex database may cause problems in implementation. Therefore,
statistical methods appear to have restricted capacity for modelling complex and non-

linear river quality data.

In order to overcome the limitation of statistical models, efforts have been
undertaken resulting in some significant successes in this field. Welsh et al. (1996)
used a statistical model but provided a method for identifying important
environmental variables and constructing appropriate intervals to predict mean value
of animal abundance. Reckhow (1993) applied a random coefficient to the same
cross sectional data set to produce water body specific parameters rather than a single
set of global parameters. It improved the results of the statistical models for
chlorophyll a- nutrient relations in working with spatial variation. Yang et al. (2000)
applied two-dimensional spatially distributed water quality data derived from the
SPOT satellite to support one-dimensional water quality models (QAL2E) in
estimating algal growth rate and respiration rate in a water ecosystem. However these
supporting methods often make statistical models become too complicated and

difficult to be applied in operational water quality assessment and management.

Recknagel (1989) and Recknagel et al.(1994) applied an expert system to water
quality management. An expert system consists of two parts: a software product or
expert system shell which contains the code handling the knowledge base and the
knowledge base covering a set of rules for a specific problem (Straskraba, 1994). The
Lake Ecosystem Model SALMO (Recknagel, 1989) is an example of a non-
autonomous deterministic model. Although SALMO had achieved significant results
applying some simplifying assumptions, it is unlikely that it would be effective with

river systems, which are different in nature compared to lake ecosystems.

A widely used model in supporting bioassessment is simulation modelling, which
can be done using STELLA software. Fischer (1994) successfully applied this model
to study prey-predator relationships in order to control overcrowding in water bodies.
His model consisted of prey submodels representing the population dynamics and
growth of prey and predator submodels representing the predation process,
population dynamics and growth of predators. Nevertheless, this was a mechanistic
simulation model based on theoretical ecological and biological knowledge, which

does not respond to all processes occurring in the studied systems. The main problem
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in working with structural dynamic models is that it is very difficult to obtain
sufficient data to develop the models. Another problem is that the models do not
reflect the real properties of ecosystems, particularly their adaptability and ability to
meet changes in forcing functions with changes in species composition (Jorgensen,

1999).

Wright et al. (1984) first presented the results of a the project on British rivers that
had two major objectives: to develop a biological classification of unpolluted running
water sites and to assess if the type of macroinvertebrate community at a site may be
predicted using physical variables. In this project the sites were classified by two-
way indicator species analysis (TWINSPAN), and a multiple discriminant analysis
(MDA) was employed to predict the group membership at sites using 28
environmental variables. The approach was found to be useful to the classification of
running water sites by their macro-invertebrate fauna and the prediction of

community type using environmental variables.

Based on this approach, Moss et al. (1987) developed a statistical model for
predicting macroinvertebrates occurring at some stream sites in Great Britain. The
model worked with probabilities of the occurrence of macroinvertebrates and
provided reasonable results in prediction using environmental variables. The
procedure is of practical value in the detection and assessment of pollution.
However, they also acknowledged that the proposed applications did not provide an
explanation for the macroinvertebrates response to environmental conditions. This is
caused by the limitation of the applied discriminant analyses. If these techniques are
used for explanatory purposes, a number of assumptions needs to be met including a
jointly normal distribution of explanatory variables, equal covariance matrices
amongst the groups being discriminated between, and accurate estimates of the prior

probabilities of group membership.

Based on works of Wright et al., 1984; Moss et al. 1987; Wright, 1995; Wright et al.,
1998, a software package have been developed in the British Institute of Freshwater
Ecology’s called RIVPACS (River Invertebrate Prediction and Classification
System). RIVPACS has been applied on a nation wide scale to assess the biological

quality of rivers and streams in the United Kingdom.
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The system predicts the site specific macroinvertebrate fauna to be expected in the
absence of major environmental stress (Wright, 1995; Wright et al., 1998; Moss et
al., 1999). The statistical techniques used for RIVPACS are TWINSPAN
classification of the reference sites based on their macroinvertebrate assemblages,
followed by multiple discriminant analysis (MDA) of the resulting groups of sites
using a limited number of environmental variables. Prediction of the fauna at a test
site was achieved through MDA, leading to calculation of probabilities of capture of
individual taxa based on the prediction of group membership for the test site (Moss

et al., 1987).

In Australia, a similar predictive model called Australian River Assessment Scheme -
AusRivAS was developed to use aquatic macroinvertebrates to assess the habitat
condition of Australian rivers and streams (Schofield & Davies, 1996). AusRivAS
models are based on RIVPACS, which also assess habitat condition in a river by
predicting the macroinvertebrates families expected in the absence of environmental
stress, such as pollution or habitat degradation (Coysh et al., 2000). Predictions are
derived from a set of environmental measurements used to characterise the site. A
predicted macroinvertebrates assemblage is compared with the actual assemblages
and the ratio of observed/expected (O/E) families is used as a measure of ecological
condition (Wright et al., 1984; Parsons & Norris, 1996; Marchant et al., 1997; Smith
et al., 1999). There are two major differences between AusRivAS and RIVPACS.
Firstly, macroinvertebrates are only identified to family level in AusRivAS. Second,
major aquatic habitats (channel, riffle etc) are sampled and processed separately in
AusRivAS (Smith, et al., 1999). The rationale behind habitat — specific sampling is
that each habitat has a distinct macroinvertebrate community and within a given
region, differences among habitats are greater than differences between sites. Unless
comparisons between sites are based on the same habitats, they may be confounded

by the occurrence of different habitats at each site (Parson & Norris, 1996).

The modelling approach for AusRivAS was similar to that of RIVPACS. Model
building occurred in five steps. First, reference sites were classified into groups with
similar macroinvertebrate communities using an agglomerative hierarchical fusion
technique, Unweighted Pair-Group arithMetic Averaging (UPGMA). Second, once
the optimal classification was chosen, stepwise discriminant function analysis (DFA)

was used to identify which environmental variables best discriminated between
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groups in the classification. Third, the DISCRIM procedure in SAS statistical
package was used to incorporate predictor variables into a discriminant function and
assign sites to groups identified in the classification. Fourth, the probability of each
family occurring at each site was calculated by multiplying the probability the
probability of site belonging to a classification group by the probability of family
occurring in that group and then summing the products to give the number of
families expected (E). Fifth, using a preliminary model, O/E ratios of reference sites
were calculated. The O/E score itself was used as a measure of impact at disturbed
sites, with lower scores indicating greater disturbance. (Simpson et al., 1997; Smith

et al., 1999; Coysh et al., 2000).

The AusRivAS model had been applied to study the effect of habitat- specific
sampling on biological stream assessment for Australian Capital Territory (Parson &
Norris, 1996), to classify macroinvertebrate communities across drainage basins in
Victoria (Marchant et al., 1999), and to assess ecological condition of rivers in
Western Australia (Smith et al., 1999). Even though the applications achieved some
valuable success, some constraints appeared to have caused confounded assessment
of biological impairment. Although statistics can be used to validate metric choices
and predictions while building multimetric index, excessive dependence on the
outcome of statistical tests can obscure meaningful biological patterns. A narrow
focus on probability values (P-value) rather than on biological consequences limits
the value of biological assessment. Dependence on narrow statistical approaches
overlooks the fact that a statistically significant result (small P-value) may not equate
with a large important effect, as researchers often assume; similarly, a statistically

insignificant effect (large P- value) may well be biologically important (Karr, 1999).

Investigation of the RIVPACS classification based on statistical methods revealed
that the composition of a few of the classification groups was less than optimal and
could adversely affect the performance of parts of the prediction system (Wright et
al, 1991). Moreover, the RIVPACS and AusRivAS statistical approach may be more
difficult to apply to sites where environmental conditions are extreme or highly
unpredictable and in consequence the biota are more difficult to document or show

substantial year by year variation (Wright, 1995).

These constraints are caused by the assumptions and limited implementation of

statistical methods in dealing with high non-linearity of stream data. As new
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computational techniques are becoming widely available, a number of alternative
ordination and classification procedures are now being examined to determine

whether a new procedure can deliver more reliable predictions (Wright, 1995).

2.1.5. Summary and Research Needs

Freshwater streams have a highly complex nature including distinct nonlinear
processes over time and space. This nature makes habitat conditions in streams
extremely difficult to assess and predict. Traditional methods often fail to cope with
all these variations. Bioassessment with its conceptual advantages, reliable
elucidation and practical implementation have proved to be a suitable alternative.
Among indicator species living in streams macroinvertebrates provide many valuable
characteristics and they are widely accepted to be a key indicator to assess stream

habitat conditions.

Success in applying bioassessment in habitat condition management can be enhanced
with the support of predictive modelling. Statistical and other mathematical and
numerical models have to some extent been used successfully to support
bioassessment in water quality. However, these models are still constrained by not
being able to deal with the non-linearity and high complexity of stream ecology.
New computational techniques are needed to find the way to overcome these
difficulties. A new generation of models for bioassessment of freshwater streams
may arise from application of machine learning techniques to be a potential

alternative tool.
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2.2 Artificial Neural Networks to support bioassessment
2.2.1 Artificial Neural Networks - An Introduction

Artificial Neural Networks are one of the most important applications of Machine
Learning techniques. Machine learning is a subset of Artificial Intelligence, a branch
of computer science that is concerned with the automation of intelligent behaviour.
Machine learning focuses on knowledge acquisition by various automated induction
techniques. Machine learning has proved to be a fruitful area of research, spawning a
number of different problems and algorithms for their solution. These algorithms
vary in their goals; in the available training data and in the learning strategies and
knowledge representation languages they employ. However, all of these algorithms
learn by searching through a space of possible concepts to find an acceptable

generalisation (Luger and Stubblefield, 1992).

Kompare et al. (1994) showed by that using advanced machine learning techniques
and general basic knowledge on ecosystems, it is possible to automatically generate
better models and in less time than is the case by traditional model construction.
Machine learning models have the ability to extract temporal or spatial patterns and
knowledge from highly nonlinear and complex data. Based on such patterns and
knowledge they can predict future conditions. Machine learning reduces to a great
extent the need to query the expert in the way that computer extracts knowledge from
the given data. It is able to identify and model a real world system that we do not

fully understand yet.

As the significant application in this field, Artificial Neural Networks offer inductive
approaches to model building. They are highly connective and simulate principles of

natural evolution and knowledge discovery in large databases.

ANNSs are non-linear mapping structures based on the function of the human brain.
They are considered universal and highly flexible approximators for any data and are
powerful tools for ecological modelling, especially with high non-linearity occasions
when the data relationship are unknown (Lek & Guegan, 2000). They do not require
assumptions about mathematical relationship between state variables and the nature
of the distribution of data. All neural networks have in common the ability to learn

from data. ANNs can identify and learn correlation between input data and
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corresponding target values. After training, ANNs are able to predict the output of
new independent input data. ANNs may be broadly classified according to whether
they learn in a supervised or unsupervised way (Waley and Fontama, 1998; Bishop,

1995).

A neural network learning model consists of two primary components: the
topological structure of neural networks and an associated learning rule (Adeli and
Hung, 1995). The backpropagation learning is one of the supervised learning

methods.

Backpropagation (BP) networks based on the supervised procedure are preferred in
ecological modelling, especially in water quality modelling. The architecture of the
BP network is a layered feed forward neural network, in which the non-linear
elements (neurons) are located in the hidden layer. The neurons feed a non-linear
function by the sum of their inputs coming either from input nodes by feed forward
or from output nodes by feedback. Neural networks determine the weighted
connectance between the input and output nodes by these neurons (Recknagel et al.,

1997; Recknagel et al. 1998, Lek et al., 1999).

Backpropagation is an algorithm for apportioning the error responsibility through a
multilayered network. The neurons in a backpropagation network are connected in
layers, with units in layer k passing their activations only to neurons in the layer k+1.
In solving a problem, activation passes from the input units, through one or more
internal layers of neurons (hidden layer) and ultimately passes to the output layer and

the environment (Luger and Stubblefield, 1992).

Given the correct results, the network may calculate the error in the output units just
as it did for a single-layer network. The error for a neuron in the layer directly below
the output layer is a function of the errors on all the units that use its output. In
general, the error for a neuron at layer n is a function of the errors of all neurons at
layer n+1 that use its outputs. In a BP network, activation moves backward in a
similar fashion (Luger and Stubblefield, 1992). Once BP has computed the error for
each neuron in the network, the individual units may learn by applying the delta rule,
the amount of learning is represented as the difference (delta) between the desired

and computed outputs (Adeli and Hung, 1995).
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These multi-layer artificial neural networks can learn in more complicated learning
domains than those lacking hidden units. The feedforward net with BP of error has
been found to be an effective learning procedure for classification problems

(Rumelhart et al., 1986)

Maier and Dandy (1996) compared ANNs to statistical ARMA (Auto Regressive
Moving Average) class of models widely used for modelling water resources time
series in terms of advantages and disadvantages. They found that ANNs are more
flexible in working with complex non-linear system and in providing long term
forecasting. Similar comparisons between ANNs and other classes of statistical
modelling provided by Lek et al. (1996) and Paruelo and Tomasel (1997) also
emphasized the flexibility of ANNs.

Artificial neural networks thus bring an excellent alternative tool for analysing
ecological data and for modelling thanks to their specific features of non-linearity,
adaptivity through learning from samples, generalization and model independence

(Schleiter et al., 1995).

2.2.2 Application of ANN to modelling ecosystem

ANNs have been applied to various fields of aquatic sciences and engineering,
especially in modelling habitat condition. Modelling freshwater habitat condition is
extremely difficult, as the interrelations between various influences are not known.
Hydrodynamic models are difficult to couple with chemical and biological models.
The action of hydrological process on ecological processes has hardly been
elucidated, as the requirements are different for both systems (Straskraba and Gnauk,
1985). The use of ANN may overcome many of these difficulties. Unlike
deterministic modelling, which is based on known theories and equations, ANN uses
the measured data to determine relationships. Therefore, the problem of producing
models that can address unidentified interactions and combine hydrodynamics with

ecological processes is clearly possible using ANN.

Maier and Dandy (1996) used ANN as a viable means of forecasting salinity in the
River Murray (South Australia) 14 days in advance. The results obtained had less
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than 7% average absolute percentage error. It was concluded that, ANN models

appear to be useful tool for forecasting salinity in rivers.

Recknagel et al. (1997) applied ANNs to the task of modelling and prediction of
algal blooms and to identification of the variables that play a major role in algal
growth. In their study, major ecological factors of all chemical physical and
biological categories, which could clearly define the environmental conditions of the
aquatic system, were included as input variables and five dominating phytoplankton
species were used as output variables. The resulting predictions on succession
indicate the ability of ANNs to fit the complexity and non-linearity of complicated
ecological phenomena. If an expanded database is available, not only a specific aim
can be investigated but also cost-benefit strategies for management can be addressed
applying ANN to scenario and sensitivity analysis (Recknagel, 1997; Recknagel et
al., 1998).

ANN had been applied very successfully to eutrophication processes. Research has
been done in Italy (Scardi, 1996), Japan (Yabunaka et al., 1997), and Turkey (Karul
et al., 2000). Models used physical and chemical parameters and also biological
variables as inputs to predict the behaviour of chlorophyll — a and other typical
eutrophication indicator. The studies showed that nonlinear relationships in the
eutrophication phenomenon could be modeled reasonably well. The ANN model can
also estimate an extreme value that lies outside the boundaries of the training set.
Conclusions were made that ANN models can be used to estimate the densities of

certain species as functions of environmental parameters.

Wen and Lee (1998) applied ANN to the problem of optimising water quality
management in a river basin. Their study focused on the objectives of environmental
quality, treatment cost of wastewater and the assimilative capacity of a river to
provide a solution to water quality management problems. The results of their work
show that using the backpropagation algorithm and feed forward neural network, a
multi objective programming model can simulate the decision makers’ preferences
and successfully overcome the disadvantages of unknown preferences of decision

makers.

Recknagel and Wilson (2000) discussed the potential of ANN models in working

with aquatic ecosystems. They compared presentations of 6 prototypes of inductive
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and deductive models for phytoplankton including a regression model; time series
model; deterministic models for functional algal group succession and algal
population; heuristic model; and ANN. The result of comparisons showed that only
ANN provides an ability to predict both timing and magnitudes of species dynamics
and species succession in the lake. ANN models can support both prediction and
elucidation of ecosystem behavior with the potential to provide new insight into

mechanisms of systems from the results.

Maier et al.(1998) used ANNs for modelling the incidence of cyanobacteria in rivers
by forecasting the occurrence of a species group of Anabaena in the River Murray,
Australia. ANNs provided a good forecast of both the incidence and magnitude of a
growth peak of cyanobacteria within the limit required for water quality monitoring.
The models also defined predominant variables in determining the onset and duration

of cyanobacteria growth.

Lek-Ang et al.(1999) developed predictive modelling of Collembolan diversity and
abundance on a riparian microhabitat scale. Biological variables that were retained to
describe its structure in this model included abundance of dominant species, species
richness and biological indices. In the input layer, the main environmental variables
were considered. 80% samples were chosen randomly for the training process and
the remaining 20% were used for model validation. The resulting habitat profiles
illustrated the complex influence of each variable on the biological parameters of the
assemblage and also the non-linear relationship between dependent and independent
variables. The study gave satisfactory results over practically the whole range of
values of dependent variables, which showed ANNs potential to predict biodiversity

and structural characteristics of species assemblages.

Gozlan et al (1999) applied ANN with the aim to predict the abundance of six fish
species in the river Garonne with back propagation as learning algorithm. The ANN
was successful in predicting the abundance of 0+ fishes on a microhabitat scale,
indicating that technique merits more frequent use in ecology and biodiversity
studies. The explanatory part of the analysis, coupled with the predictive power of
ANN, should facilitate the ecologically oriented management of aquatic ecosystems,

providing that the duration of the study is extended.
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In summary, ANNs based on machine learning techniques have proved to be
powerful tool in bioassessment of aquatic ecosystems and stream habitat

condition and have been applied worldwide in this field.

2.2.3 Current Achievement in Application of ANN to Assessment of Habitat

Conditions using Macroinvertebrate Assemblages

Walley and Fontama (1998) firstly reported a successful application of ANN in
prediction of macroinvertebrate taxa in unpolluted river sites and compared with the
performance of RIVPACS. The objectives of predictions were average score per
taxon (ASPT) and number of families presents (NFAM). Models were based on the
standard backpropagation networks. The results showed that the ASPT model
achieved a significantly higher level of performance in independent test data than the
NFAM model. Results of their study demonstrated the ability of ANN in training
with values of biological indices and understanding the relationship between
environmental variables and biotic indices that is often a very complicated and non-
linear problem. It was concluded from study that the neural networks performed
marginally better than RIVPACS. They also discussed further improvement to the
performance of neural network by extending the environmental data to include

relevant catchment characteristics.

Schieiter et al. (1999) went one step further to model the population dynamics of
macroinvertebrates in German streams using ANN. They tested the suitability of
ANN for system analysis and impact assessment: (1) in temporal dynamics of water
quality; (2) in bioindication of chemical and hydromorphological properties using
benthic macroinvertebrates; (3) and long-term population dynamics of aquatic
insects. The satisfactory results of the study showed that ANN can meaningfully be
used in the analysis of effect-relation of species, including the identification and
assessment of complex impact factors, and also for forecasting system behaviour
which have specific, very complex and non-linear features. However, they admitted
that as ANNs learn from examples, their quality depends heavily on the

representativeness and compatibility of the database.
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Chon et al (2000a) applied Artificial Neural network to classify and predict
multivariate stream data even in a short period using benthic communities. This
study demonstrated that temporal ANNs could be utilised to forecast and analyse
short-period changes in multivariate data sets. The recurrent neural network appeared
to be effective in pattemning development of benthic communities in streams
responding in a diverse manner to a wide range of pollution. The study also showed
the advantage of specific forecasting for an individual taxon is that it could assist to

characterise community changes.

Obach et al (in press) modelled the total amount of individuals of selected water
insects based on a 30 years data set of population dynamics and environmental
variables in stream in Central Germany using Kohonen self-organising maps in
combination with some other types of neural networks. Results were interpreted on
the basic of known species traits. The conclusion was made from the study that it is
possible to predict the abundance of aquatic insects based on relevant environmental

factors using Artificial Neural Networks.

Spatial analysis of stream invertebrate distribution in the drainage basin had been
studied (Cereghino et al., 2000). The study provided a stream classification based on
characteristic EPTC (Ephemeroptera, Plecoptera, Trichoptera, Coleoptera) insect
assemblages at species level. The main interest of their results is that the stability of
these theoretical assemblages may be used to refine representative and/or reference
sites for biological surveillance, as a change in species composition within a given

region can be considered as a biological indicator of environmental changes.

Pudmenzky et al.(1998) developed preliminary ANN models for predicting the
distribution of macroinvertebrates in the Queensland stream system based on
environmental variables. The network was trained with both categorical and
continuous attribute input data. The ANN proved promising in predicting the taxa,
which had the most even equal distribution of presence/absence (probability of
occurrence around 0.5). As work had been done with a shareware version of the
software package, only a subset of the data could be investigated. However, this is
the first work done in applying ANN to biological assessment of habitat condition in
Australia. Further research is highly recommended to investigate the possibility of
ANN as computational alternative to AusRivAS in supporting bioassessment of

habitat condition.
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2.2.3 Research Needs

ANN hasproved to be a very effective approach to support bioassessment of habitat
condition and had been applied all over the world with remarkable success. In
Australia, anthropogenic effects on streams and rivers have resulted in considerable
physical, hydrological and morphological changes in aquatic ecosystems (Smith et
al., 1999). In response to declining conditions in Australian rivers, National River
Health Program (NRHP) was established in 1992 with the aims to monitor and assess
the ecological condition of Australian river and stream; to assess the effectiveness of
current management practices; and to provide better ecological and hydrological data
on which to base management decisions (Schofield & Davis, 1996). AuRivAS is a
national bioassessment program that uses aquatic macroinvertebrates to assess the
health of river and stream systems. AusRivAS uses statistical models as a prediction
tools and exhibits some constraints in dealing with non-linearity and complexity of
freshwater ecosystem. Artificial Neural Networks, which had been studied and
applied in many areas all over the world with promising success, can be applied as

alternative computational tool to the AusRivAS model.

2.3 Summary and Thesis Aims

In conclusion, streams and rivers are very complex ecosystem with many processes
in close interrelations. River health assessment is a way of examining waterways
using tools such as water quality, habitat description, biological monitoring and flow

characteristics to create an overall picture of the ecological health of that waterway.

Bioassessment of freshwater stream habitat is an effective method to obtain an
accurate picture of condition or health of a waterway. Among indicator species used
for bioassessment, macroinvertebrates prove to be very appropriate for use in
studying stream and river habitat condition. Success in applying bioassessment in
freshwater management can be enhanced with the support of computer modelling,

especially using artificial neural network techniques.
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Artificial Neural Networks had been applied in the field of habitat condition
assessment using macroinvertebrate assemblages in many countries for a long time

but no such of project had been done for Australian stream systems.

The goal of my research is to follow the preliminary study of Pudmenzky et al (1998)
to apply Artificial Neural Networks for the bioassessment of stream ecosystem. The
aim of this study is the development of an ANN model to predict habitat conditions
in Queensland river systems based on environmental variables and colonisation
patterns of 40 most common macroinvertebrate taxa. The predictions are based on a
comprehensive database, which was previously subject to a preliminary case study
by Pudmenzky et al. (1998). Beside the prediction, I will also test the elucidation
capacity of ANN to explain the processes in freshwater ecosystems and to find out

dominant factors affecting distribution of macroinvertebrates within the system.

Molluscs of solid objects and weed beds of depositing substrata in running water (Hynes, 1960).
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3 General Material and Methodology

3.1 Introduction

This work investigated the application of an Artificial Neural Network model to
predict the habitat conditions in the Queensland stream system. The project was
aimed at determining if ANNs could be used as basic for a Queensland model. The
work had been done based on a comprehensive database from Queensland
Department of Natural Resources (QDNR) containing information taken from wet
and dry seasons on water quality, habitat characteristics and occurrence patterns of
macroinvertebrates for over 500 stream sites. This database was previously subjected
to a preliminary case study by Pudmenzky et al. (1998). Different combinations of
data had been studied and used for model development. This chapter discusses the

structure and characteristics of data used for network development.

Computational approach had been applied to analyse the relationship between
environmental variables and stream assemblages. The models had been developed by
mean of Artificial Neural networks. Fundamental concept and method of modelling

also are discussed in the chapter.

3.2.  Study Sites and Site Selection

The Queensland river and stream network spreads over the territory of the federal
state of Queensland (Australia). A diverse range of climatic conditions occur over the
state, ranging from high rainfall area (1600 mm /annual) in the tropical Northeast to
low rainfall area (200 mm/ annual) in the Southeast. Study sites are spread

throughout the catchments of most major and many minor Queensland rivers.
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The majority of sites in the stream database are situated in relatively high order

streams of coastal lowland areas (see Fig. 4.1).
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Figure 3.1 Map of Queensland indicating location of reference sites of the Queensland
stream database

In this work the concept of reference site and test site had been used. Reference and
test sites in Queensland were initially selected for the MRHI (Monitoring River
Health Initiative) program using protocols outlined in the River Bioassessment
Manual. Reference sites were those in near pristine condition. Test sites were those

experiencing an impact from water quality or habitat degradation. QDNR currently
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uses a list of the 10 selection criteria to determine whether or not sites are in

reference condition (Conrick & Cockayne, 2000).

Table 3.1 Selection criteria used to determine reference site condition (Conrick &
Cockayne, 2000)

No. Reference condition Selection Criteria Level of
Impact
1 No intensive agriculture within 20km upstream
2 No major extractive industry (current or historical) within 20km
upstream
3 No major urban area (>5000 population) within 20km upstream
4, No significant point source waste water discharge within 20km
upstream
5: No dam or major weir within 20km upstream
6. Seasonal flow regime not greatly altered
T Riparian Zone of natural appearance
8. Riparian Zone and banks not excessively eroded beyond natural
levels or significantly damaged by stock
9. Stream Channel not affected by major geomorphological change
10. | Instream conditions and habitat not altered
SITE ASSESSMENT /30

For all sites each criterion was assessed with the level of impact given from I
meaning highly impacted to 3 with no/little impact. These levels were then summed
to give a total site assessment out of a maximum of 30. If the site assessment score
was <26 the site was considered as a test site: assessments = 26 were considered as a
reference site. Criterion 5 is crucial. Site failing to have criterion 5 score of 3

automatically fails the overall assessment.

Database contains information about habitat characteristics of 896 samples taken
from reference sites and 1159 samples from test sites. Different combinations of data

are used for training, validating networks and for testing network in prediction step.
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3.3  Habitat Condition Database — A review

Habitat condition database contains information about habitat characteristics, water
quality and colonisation pattern of macroinvertebrate in each site. For each site data

set contains three sub-sets, which are discussed below.
3.3.1 Physical Riparian and Other Predictor Variables

Physical habitat data were collected from longitudinal profile. Potential predictor
variables that are environmental variables that are relatively stable under the
influences of human impacts. They are used for developing network based on
reference condition approaches (Parsons and Noris, 1996; Simpson et al, 1997).
Chemical variables such as dissolved oxygen, pH, nutrient concentration are often
affected by anthropogenic impacts and they would provide spurious prediction if

used to predict the membership of test sites to the reference site groups.

Data of habitat characteristics included 39 potential predictor variables consisting of
discrete categorical or continuous data. Only some discrete categorical variables
were formed by classification schemes such as stream order, most of them were
represented just as empirical criteria for habitat characteristics such as soil types and
vegetation type. These 39 potential predictor variables were used as input variables
of the ANN models. Predictor variables for network development mainly belong to 3

categories: geographical, topographical and meteorological.
(1) Geographical

Latitude (S), Longitude (E), Altitude (m): Geographical information about location if
site. Obtained by using GPS (Global Positioning System) and confirming readings on

a 1:100 000 topographic maps.

Stream Order: Hierarchical-ordering system based upon the degree of branching
(Strahler, 1957). Stream orders were determined using 1:100 000 scale maps. A
second order stream is formed by the joining of two first order stream; the junction of

two second- order stream form a 3™ order stream etc. (Figure 3.2.)
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Figure 3.2 Method used by QDNR to
determine stream order (Strahler,
1957)

Distance from Source (km): Distance from the site to longest thread of stream source.

0-2 Reach: An assessment of where in the catchment a site lies with relation to the

watershed. This is a categorical variable. O: lower, 1: middle and 2: upper.
(2) Topographical

Habitat 1-5: Categorical variable describes a predominant habitat type at the study
site. Habitat types are prescribed because each habitat has a potentially distinct
fauna. The performance of the predictive models will therefore not be confounded by
differences in habitat availability between sites and time. In Queensland, five habitats

most likely to be encountered are:

1. Riffle: This is a reach of relatively steep, shallow (<0.3m), fast flowing (>0.2m/s)

and broken water over stony beds.

2. Edge/back water: edges are along the bank where there is little or no current and

extend to approximately 0.5m from the bank. There may be some terrestrial
vegetation, tree roots or the area may be bare. A backwater is a zone where the bank
indents and a pool of water forms away from the main channel. The backwater may

have a circular or back flow, and a silty bed with accumulated plant litter.

3. Run: This is a reach of relatively deep and fast flowing, unbroken water over a
sandy, stony or rocky bed. The are features of stream during a flood events, below
dams, where riffles have been ‘drowned ° or in steep gradient streams flowing

through gorge.
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4. Pool bed: Pool bed habitats are zones of relatively deep, stationary or very slow
flowing water over silty, sandy, stony or rocky beds. This habitat occurs in the main
channel and should not be confused with backwaters. The velocity will indicate
whether it is a pool or run. The classification factor is the bed type. Two main types

are sandy/silty beds and rocky/gravel beds.

5. Macrophytes: Macrophyte habitats are areas where emergent, submergent and

floating macrophytes or aquatic plants are present and can occur in slow to fast

flowing areas.

Slope (m/m) calculated by dividing contour distance (m) to distance of stream

between contour lines (m).

Substrate description: Visually estimates the composition of river substratum (to a
depth of 10cm) into the following substrate categories. The sum of all substrate

categories must total 100%.

- Bedrock (%)

- Boulder (%): >256mm

- Cobble (%): 64 — 256 mm

- Pebble (%): 16 — 64 mm

- Gravel (%): 4 — 16 mm

- Sand (%): 1 —4 mm

- Silt/Clay (%): < 1mm
Substratel-8: Categorical variable describes number of substrate types at the study
site. Category 1 describes a site dominated by 100% of one substrate type while

category 8 indicates site covering all types of substrate in different layers.
Soil Class Number (1-11): categorical variable attained from GIS map over lay

H Width (m) and H Depth (m): Width and Depth of habitat of the study sites.

0-4. Habitats: Categorical variable gives the assessment of the site. Nine criteria are
numerically assessed from excellent to poor. These criteria are bottom
substrate/available cover, embeddedness, velocity/depth category, channel alteration,
bottom scouring and deposition, pool/riffle or run/bend ratio, bank stability, bank

vegetative stability, and streamside cover. Habitat assessment sheet with full detail of
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assessment can be found in Conrick & Cockayne (2000). Final habitat assessment is
the numerical score from 0 indicating poor condition to 4 indicating excellent habitat

condition.

Site-mean phi: Visual estimates of the percentage cover of seven particle classes at a
site were made: -9.5, -6.5, -4.5, -2, 2, 6.5, 9.5. These estimates were averaged to give

a mean phi value for a site as a whole.

Mean Wetted Width, Mean Channel Width are measured or visually estimated if

measurement can not be made (Figure 4.3)

Wetted Width @

Channel Width

e V.

Water level

Figure 3.3 Example of wetted width, channel width and stream depth (Nichols et al., 2000)
Measurement applied method of Resh et al. (1996) for mean stream width and depth.

Mean stream width: Measure the width of the stream in meters, from water’s edge to
water’s edge and perpendicular to the flow, for three different transects across the

stream.

Mean stream depth: Along the same transects as above, measure the depth (in cm) at
14 the distance from the water’s edge, again at %2 the distance (midstream), and at %
of the way across. Add the three values and divide by 4 to account for the shallow
water from the bank edge to the %4 distance mark. Average depth in meters was

recorded for each transects.

(3) Meteorological variables: Information can be extracted from the Bureau of

Meteorology. These variables include mean wet season monthly rainfall (a), mean
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dry season monthly rainfall (b), annual range in mean monthly rainfall, range in wet
season monthly means, range in dry season monthly means, percentage rainfall in
wet season, mean annual rainfall, mean daily max temp, mean daily min temp, mean
daily temp range. Season 1-2: categorical variable contains 2 value: 1 means sample

was taken in spring and 2 for sample taken in autumn.

(4) Some other physical variables used as predictors

Vegetation Type number (2-22): categorical variable describes number of both native

and exotic vegetation types present at study site.
Soil Type Number (2 — 38): categorical variables

Water Temp (°C) measured at the site before sampling macroinvertebrates and

disturbing the streambed.

Alkalinity: an expression of the buffering capacity of water, measured as the
milliequivalents of hydrogen ions neutralised by a litre of water (expressed as CaCOs

in mgl-1)

Table 3.2 summarised input variables used for network development. Totally, there
are 39 predictors used to study interrelationship between physical and biological

conditions of stream ecosystem

Table 3.2 Potential predictor variables

No |Predictor variables Data Type |No |Predictor variables Data Type
1 Season 1-2 categorical |21 0-8. substrate categories categorical
2 Habitat 1-5 categorical |22 Site-mean phi continuous
3 Latitude (S) Decimal continuous |23 0-2 Reach categorical
4 Longitude (E) Decimal continuous |24 Mean Wetted Width continuous
5 Altitude (m) continuous |25 Mean Channe! Width continuous
6 Stream Order categorical |26 Mean Depth continuous
7 Slope continuous |27 Mean wet season monthly rainfall continuous
8 Distance From Source (km) | continuous |28 Mean dry season monthly rainfall continuous
9 H Width (m) continuous |29 Annual range in mean monthly rainfall continuous
10 | H Depth (m) continuous |30 Range in wet season monthly means continuous
11 | Bedrock (%) continuous |31 Range in dry season monthly means continuous
12 | Boulder (%) continuous |32 Percentage rainfall in wet season continuous
13 | Cabble (%) continuous |33 Mean annual rainfall continuous
14 | Pebble (%) continuous |34 Mean daily max temp continuous
15 | Gravel (%) continuous |35 Mean daily min temp continuous
16 | Sand (%) continuous |36 Mean daily temp range continuous
17 | Sil/Clay (%) continuous |37 Soil Type Number categorical
18 | Water Temp (°C) continuous |38 Soil Class Number categorical
19 | Alkalinity (mgL-1 CaCO3) | continuous |39 Vegetation Type Number categorical
20 | 0-4. Habitats categorical
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3.3.2 Environmental Water Quality Variables

This sub- set contains environmental variables, which are altered by human impacts.
They are used as inputs in dirty water approach. All water quality measurements and
water samples are collected upstream of the biological sampling area. They are taken

from a representative section of the streams.

Electrical Conductivity (s/cm): is a measure of the total concentration of inorganic

ions (salts) in the water.

pH: is a measure of the acidity or alkalinity of water and has scale from O (extremely

acid) to 14 (extremely alkaline), with 7 being neural.

Turbidity (NTU): is a measure of the water “muddiness” and is caused by the
presence of suspended particulate and colloidal matter consisting of suspended clay,

silt, phytoplankton and detritus.

Chemical variables: Following chemical variables are analysed at laboratories.

- Total Hardness (mg/L CaCO3)
- Total N (mgL-1 as N)
- Total P (mgL-1 as P)
- Na* (mg/L)
- K" (mg/L)
- Ca™ (mg/L)
- Mg"™ (mg/L)
- HCO3™ (mg/L)
- CO3™ (mg/L)
- CI' (mg/L)
Following variables are also considered changeable under disturbance and belonged

to this group

- Habitat Velocity - max (m/s)
- Detrital cover (%)
- Site Max Velocity

- Instantaneous Discharge

51



3.3.3 Macroinvertebrate Distribution

Sampling is not conducted when streams are in flood. If, during the scheduled
sampling period, sites were consistently in flood, sampling resumed 4 — 6 weeks after
floods have subsided to ensure that sampling only cover macroinvertebrates normally
habit in the site. All macroinvertebrate samples were collected with a standard 250 -
um mesh dip net. Sample a total distance of 10m, covering a variety of velocities and

different samples of habitat.

Colonisation pattern (presence/absence of macroinvertebrates) is preferred to use in
this project. Abundance data was collected by many different people with different
skill and experience, therefor quality control has shown that abundance data is not
reliable enough to be used (Choy & Marshall, personal communication). All
macroinvertebrate are identified to family level except for Oligochaeta (class),
Copepoda, Osracoda (sub-class), Acarina (order), Cladocera (sub-order) and
Chironomidae (sub-family). Adults and larvae for each family are combined for the
purposes of data entry and analysis. 40 most common macroinvertebrates taxa are

used as output for network development (listed in table3.3).

Outputs in the database receive only two values 0 and 1. 1 represents presence while

0 represents absence of this taxon at the study site.

3.3.4 Summary

Material used for neural network model development is a comprehensive database of

the Queensland stream system having two parts.

- Part 1 containing 897 data set of reference sites is used for neural network model

training and internal validation.

- Part 2 containing 1159 data set of test sites is used for neural network model

external validation.

Each data set contains 3 subsets: 39 predictors describing physical condition of this
site; 17 potential impacted environmental variables; and colonisation pattern of 40
macroinvertebrates taxa at the site. Different combinations of data are used for

development of different neural network model approaches.
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Table 3.3 40 most common macroinvertebrates taxa in Queensland stream system

No |Taxa Upper classification Common Name
1 Dugesiidae Order Tricladida Flat worms

2 Oligochaeta (Class) Class Segmented worms
3 Planorbidae Class Gastropoda Snails

4 Thiaridae Class Gastropoda Snails

5 Corbiculidae Class Bivalvia Mussels

6 Acarina (order) Class Arachnida Water mite

7 Copepoda (Sub-class) Class Crustacea Crustaceans
8 Cladocera (Sub-order) Class Crustacea Water fleas

9 Ostracoda (Sub-class) Class Crustacea Seed Shrimps
10  |Atyidae Class Crustacea Freshwater Shrimps
11  [Palaemonidae Class Crustacea Freshwater Prawns
12 |Leptophlebiidae Order Ephemeroptera Mayflies

13 |Baetidae Order Ephemeroptera Mayflies

14  |Caenidae Order Ephemeroptera Mayflies

15  |Prosopistomatidae Order Ephemeroptera Mayflies

16  |Gomphidae Order Odonata Dragon flies
17  |Corduliidae Order Odonata Dragon flies
18  |Libellulidae Order Odonata Dragon flies
19  |Coenagrionidae Order Odonata Damsel flies
20  |Gripopterygidae Order Plecoptera Stone flies

21 Corixidae Order Hemiptera Bugs

22 |Notonectidae Order Hemiptera Bugs

23 |Pleidae Order Hemiptera Bugs

24  |Veliidae Order Hemiptera Bugs

25  |Dytiscidae Order Coleoptera Beetles

26  |Elmidae Order Coleoptera Beetles

27  |Psephenidae Order Coleoptera Beetles

28  |Hydrophilidae Order Coleoptera Beetles

29  |Tanypodinae (sub-family) Order Diptera True flies

30  |Orthocladiinae (sub-family) Order Diptera True flies

31 Simuliidae Order Diptera True flies

32  |Ceratopogonidae Order Diptera True flies

33  |Tabanidae Order Diptera True flies

34  |Leptoceridae Order Trichoptera Caddis flies
35 |Hydropsychidae Order Trichoptera Caddis flies
36 |Ecnomidae Order Trichoptera Caddis flies
37  |Hydroptilidae Order Trichoptera Caddis flies
38 |Calamoceratidae Order Trichoptera Caddis flies
39  |Philopotamidae Order Trichoptera Caddis flies
40  |Pyralidae Order Lepidoptera Moths

Identification key (Hawking & Smith, 1997; CSIRO, 1999)
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3.4  Artificial Neural Networks
3.4.1 Fundamental Concept

Machine learning is a broad discipline in computer science that focuses on
knowledge acquisition by various automated induction techniques. Using advanced
machine learning techniques, comprehensive database and general basic knowledge
on ecosystems, it is possible to automatically generate better models and in less time
than is the case by traditional model construction. Machine learning reduces to a
great extent the need to query the expert in the way that computer extracts
knowledge from the given data. It is able to identify and model a real world system

that we do not fully understand yet. (Kompare et al., 1994).

Two applications in this field, artificial neural networks and genetic algorithms, offer
inductive approaches to model building. They are highly connective and simulate
principles of natural evolution and knowledge discovery in large databases. In this
project, I applied Artificial Neural Networks (ANN) as a tool to study the problems.
This section discusses fundamental concept and mathematical background of the

ANN used in the project.
Biological Neural Networks

ANNs are non-linear mapping structures based on biological principles of the
functioning of theof human brain. Hence, to understand their operations, it is useful

to understand the basic characteristics and operational mechanism of brain structure.

Human brain consists of approximately 10° to10'? fundamental units called neurons
of many different types. A typical neuron has three major parts: the cell body or
soma, the dendrites, and the axon. The cell body or soma is a main body of the nerve
cell. The cell body is connected with filamentary input paths called dendrites.
Dendritic trees are bunched into highly complex “dendritic trees”, which have an
enormous total surface area. Axon is a filamentary output path. The axon ends in a
tree of filamentary paths called the axonic endings that are connected with dendrites
of other neurons. The connection or junction between a neuron’s axon and another
neuron’s dendrite is called a synapse. A schematic diagram of a typical biological

neuron is shown in Figure 3.4,
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Figure 3.4 Schematic diagram of a biological neuron (Kent, 1980)

The neuron is the basic “gate” of the nervous system. It is a complex biochemical
and electrical signal-processing factory. The neuron receives and combines signals
from many other neurons through the dendrites. “Computations” (decisions) are
performed in the cell body and the results are transmitted down the axon and its
branches in pulse-codes digital form. The synapses are the inputs to the gate, where
the pulse-coded information is reconverted to analog form. The inputs are subjected
to weighted summation, and when a threshold is reached, the neuron fires, a new
output pulse is placed on the axon. In this diagram, information flow is roughly from

left to right through the neuron. (Kent, 1980)

A single neuron may have as many as 10,000 synapses and may be connected with
some thousands neurons (Vemuri, 1992). However, not all synapses are excited at
the same time. Because a received sensory pattern via the synapse probably
stimulates a relatively small percentage of sites, an enormous number of patterns can
be presented at the neuron without saturating the neuron’s capacity. When the action
potential reaches the axon ending, chemical messengers, neurotransmitters, are
released. When a neurotransmitter is released, it drifts across the synaptic junction
and initiates the depolarization of the postsynaptic membrane. The stronger the
junction, the more neurotransmitters reach the postsynaptic membrane. Depending
on the type of neurotransmitter, the effect on the postsynaptic potential is either

excitatory (more positive) or inhibitory (more negative).

Decoding at the synapse is accomplished by temporal summation and spatial

summation. In temporal summation each potential of an impulse adds to the sum of
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the potentials of the previous impulses. The total sum is the result of impulses and
their amplitude. Spatial summation reflects the integration of excitations or
inhibitions by all neurons at the target neuron. The total potential charge from
temporal and spatial summations is encoded as a nerve impulse transmitted to other
cells. The impulses received by the synapses of a neuron are further integrated over a
short time as the charge is stored in the cell membrane. This membrane acts first as a
capacitor and later as an internal messenger when complex biochemical mechanism

take place (Kartalopoulos, 1996).

All integrated signals are combined at the soma, and if the amplitude of the
combined signal reaches the threshold of the neuron, a “firing” process is activated
and an output signal is produced. This signal, either a single pulse or a sequence of

pulses at a particular rate, is transmitted along the cell’s axonic endings.

In the real world of neural networks, the neurons do not all perform exactly the same
function or in exactly the same way. The functions of sensory neurons and neural
networks are quite diverse. This diversity adds to the complexity of the neural
network. Whereas all neurons contain the same set of genes, individual neurons
activate only a small subset of them. However, all neural networks exhibit certain

properties such as:

Many parallel connections exits between many neurons

- Many of the parallel connections provide feedback mechanism to other neurons

and to themselves

- Some neurons may excite other neurons while inhibiting the operation of still

others.
- Neural networks are asynchronous in operation

- Neural networks execute a program that is fully distributed and not sequentially

executed

- Neural networks do not have a central processor. Instead processing is distributed
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Biological neural networks are characterized by a hierarchical architecture. Lower-
level networks preprocess raw information and pass their outcome to higher levels

for higher-level processing.
Artificial Neural Networks

Artificial Neural Networks (ANNs) are systems that are purposely constructed to
make use of some organizational principles resembling those of the human brain.

They have following characteristics.

(1) ANNs have a large number of highly interconnected processing elements (also
called nodes or units). These nodes usually operated in parallel and are configured in

regular architectures. The processing elements in ANNs are called artificial neurons.
(2) The connections (weights) amongst neurons hold the knowledge.
(3) Artificial Neural Networks are neurally mathematical models.

Figure 3.5 below shows a simple mathematical model of biological neuron proposed

by McCulloch and Pit (1943, cited by Lin & Lee, 1995), called an M-P neuron.

-

Output path

Weights

Processing
element i

Figure 3.5. Schematic diagram of a Mc. Culloch and Pitts neuron

In this model, the i processing element computes a weighted sum of its inputs and
outputs y; according to whether this weighted input sum is above or below a certain

threshold 6
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(3.1)

m

y,(t+1) = a(f)(z wx, (1) -8, |,

where a(f) is a the activation function or transfer function

The weight w; represents the strength of the synapse connecting neuron j (source) to

neuron I (destination)

(4) A neuron can dynamically respond to its input stimulus, and the response
completely depends on its local information; that is, the input signals arrive at the

neuron via impinging connection and connection weights.

(5) Like a human brain, Artificial Neural Networks have collective behavior that
demonstrates ability to learn, recall, and generalize information from training pattern.
This collective behavior illustrates the computational power, and no single neuron

carries specific information (Lin & Lee, 1996).
3.4.2 Basic Models and Learning Rules

There are three basic attributes that characterize the models of Artificial Neural
Networks: models of the processing elements (neurons), models of synaptic
interconnections, and the training or learning rules for updating the connecting

weights. This section studies the basics of these three attributes.
Processing Elements

The function of an M-P neuron can be extended to a general model of a processing
element (PE). The information processing of a PE consists of two parts: input and
output. Associated with the input of a PE is an integration function f. The function
combines information, activation, or evidence from an external source or other PEs
into a net input to the PE. In the case of an M-P neuron, this is usually a linear

function of the input x; to the PE:

f: = net, =2wijxj—l9'., (3.2)
j=1

More-complex integration functions can also be considered as follows.
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- Quadratic function:

f, =2Wij‘x;—'—0i’ (3.3)
j=1
- Spherical function:
fi=p7 Y- w)' -0, (3.4)
j=1

where p and w;; are the radius and the centre of the sphere, respectively.

- Polynomial function:
B m m o .
fi_zzwijkxjxk"'xjj-l-xj‘_ei’ (3.3)
j=l k=1
where wij is the weight on the conjunctive link connecting PE j and PE & to PE 7, and
o and oy are real constants. This equation can be extended to include higher-order

terms. A PE with a polynomial integration function is called a sigma-pi (X]]) unit.

A second action of each PE is to output an activation value as a function of its net
input through an activation function or transfer function a (f). Some commonly used

activation functions are as follows:

Step function:
(3.6)
if f=z0
a =
® {0 otherwise
- Hard limiter (threshold
function):
i if f=0 3.7)
a = =
(D) =sgn(f) {HI ¢ re0
Where sgn(.) is the signum function
- Ramp function:
1 if f>0 (3.8)

alf) = | f if 0< f<1
0 if f <0,
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- Unipolar sigmoid function:
- 1 (3.9)
«(f) =13 e M7

- Bipolar sigmoid function:

2
_ 3.10

where A> 0 determines the steepness of the continuous function a(f) near f=0.

A PE with a linear integration function and a hard limited activation function is
called linear threshold unit (LTU), and a PE with linear integration function and a
graded activation function (Eq.(3.9) or (3.10) is called linear graded unit (LGU). The
LTU and LGU are most frequently used models in ANNs (Lin & Lee, 1996). In my
research, the LGU, unipolar sigmoid function had been used as transfer function for

network performance.
Connections

Architecture defines the network structure, that is not only the number of processing
elements but also their interconnectivity. Each PE is connected to other PEs or to
itself; both delay and lag-free connections are allowed (Lin and Lee, 1996). There are

five basic types of connection geometries.

Feedback
loop m (R

<l
vl
)

g ,m__ﬁ)_ﬁ-‘lo_’_ Y
Input Hidden Oulpuit

layer layers Tayer

b) ®
Figure 3.6 Basic network connection geometries (Lin and Lee, 1996)

(a) Single-layer feedforward network (b) Multilayer feedforward network (c) Single
node with feedback to itself (d) Single-layer recurrent network (e) Multilayer recurrent

network
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In the single-layer feedforward nerwork (Fig. 3.6a), a PE is combined with other PEs
to make a layer of these nodes. Inputs can be connected to these nodes with various

weights, resulting in a series of outputs, one per node.

Several layers can be interconnected to form multilayer feedforward network (Fig.
3.6b). Input layer receives inputs and typically performs no function other than
buffering of the input signals. The outputs of the network are generated from the
output layer. Any layer between the input and output layers is called a hidden layer
because it is internal to the network and has no direct contact with the external
environment. There may be no or several hidden layers in an ANN. The two
mentioned types are feedforward networks because no PE output is an input to a

node in the same layer or in a preceding layer.

The outputs can be directed back as inputs to same- or preceding-layer nodes, in this
case, the network is a feedback network. If PE output is directed back as input to PEs
in the same layer, the network is lateral feedback. Feedback networks that have
closed loops are called recurrent network. A single node with feedback to itself is the

simplest recurrent neural network (Fig. 3.6¢)

In a single-layer network with a feedback connection (Fig. 3.6d) PE output can be
directed back to the PE itself, to other PEs, or to both. In a multilayer recurrent
network, a PE output can be directed back to the nodes in the preceding layer (Fig.
3.6e). A PE output can be also directed back to the PE itself and to the other PEs in

the same layer.

More than one of the basic connection geometries can be used together in an ANN,
Choice of neural network architecture define a priori probability distributions over
non-linear functions. Feedforward neural networks such as multilayer perceptrons
prove to be useful tools for nonlinear regression and classification problems
(MacKay, 1997). This type of ANNs models have been applied to various fields of
aquatic sciences such as modelling water quality and relating community

characteristics with environmental variables (Schleiter et al., 1999).
Learning Rules

The neurodynamics of neural networks defines their properties, that is, how the

neural network learns, recalls, associates, and continuously compares new
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information with existing knowledge, how it classifies new information, and how it
develops new classifications if necessary. Learning is the process by which the
neural network adapts itself to a stimulus, and produces a desired response. Learning
is also a continuous classification process of input stimuli; when a stimulus appears
at the network, the network either recognizes it or it develops a new classification.
During the learning process, the network adjusts the synaptic weights in response to
an input stimulus so that its actual output response meets the desired output response.
When the actual output response is the same as the desired one, the network has
completed the learning phase that means it has “acquired knowledge”

(Kartalopoulos, 1996)

Assuming that there are n PEs in an ANN and each PE has an exactly m adaptive

weight, then the weight matrix (or the connection matrix) W is defined by:

- r
wo Wi Wi Wim
T
w2 W W Wom
W o= : = : : ; A (3.11)
T
| W” _ w nl W2 nm

where w; = (wy, w,-g,...,w,-,,l)T, i=1,2,...,n, is the weight vector of PE i and wj; is the

weight on the link from PE j (source node) to PE i (destination node).

Suppose that the weight matrix W contains all the adaptive elements of an ANN,
then the set of all possible W matrices determines the set of all possible information
processing configurations for this ANN. In other words, if the information processing
performance is realised by this ANN, the ANN can be realized by finding an
appropriate matrix W. Therefore, learning rules for ANNs need to be developed to
efficiently guide the weight matrix W in order to approach a desired matrix that

yields the desired network performance.

Learning rules are very important attributes to specify an ANN. In general, learning
rules are classified into three categories: supervised learning, reinforcement learning

and unsupervised learning. (Lin & Lee, 1996).
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(a) Supervised learning

In the learning session of a neural network, an applied input stimulus results in an
output response. This response is compared with a priori desired output signal, the
target response. If the actual response differs from the target response, the neural
network generates an error signal. This error signal is then used to calculate the
adjustment that should be made to the network’s synaptic weights so that the error is
minimized closely to zero (the actual output matches the target output). The error

minimization process requires a special circuit known as a supervisor.

The amount of calculation required to minimize the error depends on the algorithm
used, this is purely a mathematical tool derived from optimization techniques. Some
important parameters are time required per iteration, the number of iterations per
input pattern for the error to reach a minimum during the training session, whether
the network has reached the global or local minimum, and, if a local one, whether the

network can escape from it or it remains trapped.
(b) Reinforcement learning

Reinforced leaning is an extreme case of supervised learning. In this case, a
supervisor does not indicate how close the actual output is to the desired output but
whether the actual output is the same with the target output or not. There is only a

single bit of feedback information indication whether output is right or wrong.

If the supervisor’s indication is “wrong”, the network readjust its parameters and
tries again and again until it get its output response “right”. During this process there
is no indication if the output response is moving in the right direction or how close to
the correct response it is. Consequently, the process of correcting synaptic weights

follows a different strategy than the supervised learning process.

Important parameters for the reinforcement learning are the same as of supervised
learning. When reinforced learning rules are applied, certain boundaries should be
established so that the trainee should not keep trying to get the correct response ad

infinitum.

63



(c) Unsupervised learning

In unsupervised learning, there is no supervisor to provide any feedback information.
There is no feedback from the environment to say what the output should be or
whether they are correct. The network must discover for itself patterns, features,
regularities, correlations or categories in the input data and code them in the output.
While discovering these features, the network undergoes changes in its parameters;

this process is called self-organizing.

A typical example is making an unsupervised classification of objects without
providing information about the actual classes. The proper clusters are formed by
discovering the similarities and dissimilarities among the objects. During the training
session, the neural net receives at its inputs many excitations and it arbitrarily
organizes the patterns into categories. When a stimulus is applied later, the neural net
provides an output response indicating the class to which the stimulus belongs. If a
class cannot be found for the input stimulus, a new class is generated. Even though
unsupervised learning does not require a supervisor, it requires guideline to

determine how it will form responses.

Supervised learning of rules is a very popular application of Artificial Neural
Networks in pattern recognition work. The goal of process is to adapt the parameters
of the network so that it performs well for patterns from outside the training set
(Werbos, 1992). This goal meets the purpose of developing the ANNs to study bio-
community of freshwater ecosystem. Feedforward Networks and Supervised

Learning is discussed in the next session.
3.4.3 Feedforward Networks and Supervised Learning
Single - Layer Perceptron Networks

Single-layer feedforward networks, known as simple perceptron is shown in Figure

3.7.
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Figure 3.7 A simple perceptron
In which:

(k) (k)]T

- Input pattern: x””:[x/“, X2 0, X ; m: number of inputs

(k)___[d](k) d')(k)... dn(k)]T

- Particular output pattern: d ; n: number of outputs

(k)
2

- Actual output pattern: y(k)=[y1(k), Y2 e y.*" ; k=1,2,..,p, p: number of input-

output pair in the training sct

Desired performance of networks after training process is that the actual output

pattern to be equal to the target pattern.

v, = a(w! x("))—a(iw X; J=d[“‘), (3.12)
i=1,2,....,n; k=1,2,...p,
where w; T=[w,-1, W,'z,...,W,'m]T is weight vector associated with PE i.

A simple learning rule determines the set of weights w;; needed to achieve the desired
performance for simple perceptron. A Perceptron Learning Rule is applied for
simple perceptrons with linear threshold units (LTU) and Widrow-Hoff learning rule
is applied for simple perceptrons with linear graded units (LGU) (Lin & Lee, 1995).
In this section learning rule for PEs with continuous and differentiable activation

functions - Widrow-Hoff learning rule - is discussed.
Widrow-Hoff Learning Rule

The learning problem that is of interest belongs to the class of supervised learning as
indicated in Eq. (3.12). For a given set of p training patterns,{(x(l), ah, x@, d™,...,

(x®, @)}, the goal is to find a correct set of weights w; such that
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Mw,x® =a®, k=12,.., p. (3.13)
j=1

To find the weights from above equation, a cost function E (w), which measures the

system’s performance error, is defined by

k=1 k=1

p , ) P , 5 z : - k P19
E(w) = '5'2 @~ y®y? = %Z (d® —wTx®y? = %Z dw _Z wjxj( )
k=1 /=1

The smaller E (w) is, the better w; will be. E (w) is normally positive but approaches
zero when y(k) approaches d™ for k=1,2,. ..,p. The goal of the learning rule is to find

the weights that will minimize the mean squared error E (w).

In general, learning rules start with a general initial guess at the weight values and
than make successive adjustments based on the evaluation of an objective function.
They eventually reach a near optimal or optimal solution in a finite number of steps.
Given the cost function E (w) in Eq. (3.14), we can improve on a set of weights w; by
sliding downhill on the surface it defines in the weight space. The usual gradient-
descent algorithm suggests adjusting each weight w; by an amount Aw; proportional

to the negative of the gradient of E (w) at the current location

Aw =1V, E(w) (3.15)
That is,
e OF N Ty . 3
Aw; =17 =7y (d® - wTx®)x®, j=12,., m. (3.16)
ow, k=1

If these changes are made individually for each input pattern x(k) in turn, then the

change in response to pattern x(k) is simply:
Aw; = n(d® -w'x® )xﬁ-k) 3.17)

The learning rule in Eq. (3.17) is called Widrow-hoff learning rule. It is also refer to
as the least mean square (LMS) rule. In this method, weights are initialized at any

value. (Lin &Lee, 1995).
Multilayer Feedforward Networks

Single layer Perceptron Network is able to solve a problem with the condition that
the input patterns of the problem be linearly separable or linearly independent. This
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limitation does not apply to feedforward networks with hidden layers between input
and output layers. This section discusses the most popular learning algorithm applied

for multi layered Artificial Neural Networks — the Back- Propagation.
Back - Propagation Learning Algorithm

The backpropagation (BP) was developed first by Rumelhart (1986) and since then,
the back-propagation algorithm has been widely used as leaming algorithm in
feedforward multilayer neural networks. The BP is applied to feedforward ANNs
with one or more hidden layers. Those networks associated with the back-
propagation learning algorithm are called backpropagation networks. Based on this
algorithm, the network learns a distributed associative map between the input and
output layers. Given a training set of input-output pairs {(x™®, d*}, the algorithm
provides a procedure for changing the weights in a backpropagation network to
classify the given input patterns correctly. The basic for this weight update algorithm
is simply the gradient-descent method as used for simple perceptrons with
differentiable units. The back-propagation algorithm performs two phases of data

flow:

- The input pattern x™ is propagated from the input layer to the output layer and

produces an actual output y(k) .

- The error signals resulting from the difference between d™ and y(k) are back-
propagated from the output layer to previous layer for them to update their

weights.

Figure 3.8 shows three-layer networks with m PEs in the input layers, ! PEs in the
~hidden layer and n PEs in the output layer. The solid lines show the forward

propagation of signals and the dashed lines show the backward propagation of errors.
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Figure 3.8 Three layer feedforward backpropagation network (Lin & Lee, 1995)

Given an input pattern X, a PE g in the hidden layer receive a net input of

n

net | = Z vV ox. (3.18)

and produce an output of

z, = a(net )= a( VX, } (3.19)

j=1

The net input for a PE i in the output layer is then

[ { '"
net,=zw,-qzq =ZW,-qa£2quxf]’ (3.20)
g=1 g=I

i=1

And it produces an output of

| i m
y; = a(net,) = a(z wiqqu = a[z wiqa{z VX, n, (3.21)
g=1 g=1 j=1

The above equations indicate the forward propagation of input signals through the
layers of neurons and their back propagation. The error signals and their back

propagation will be considered next. Firstly, a cost function is defined:

n n n I ’ (322)
i=1 i=l g=!

i=l

Then according to the gradient-descent method, the weights in the hidden-to-output

connections are upgraded by
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In which, n is learning ratio.

Using described equation and chain rule of dE/dwg; ,we have

J0E || Ody, || 9ner; ,
where 8 is the error signal of the ith node in the output layer, that defined by:

5oié— nl:gg}l:_ay'_:l = n[dl - yi][a’<neti)]’ (325)
y; || onet,

where net; is the net input to PE i of the output layer and a’=0da(net; )/0 net;.

For the weight update on the input-to-hidden connections, we use the chain rule with
the gradient-descent method and obtain the weight update on the link weight

connecting PE j in the input layer to PE q in the hidden layer,

R 3E | [ oF dnet, | OE dz, | Onet, (3.26)
vVv.=—NnN—_1_=-— =N — R
(P J ”[anezq o, "Laz,, anet, | ow,

Each error term [d;-yi], i=1,2,...,n, is a function of z,. Evaluating chain rule, we have

) , , 3.
Av, =—172 [(dl.—y,.)a (neti)w,.qlz(netq)xj, (3-27)
i=1
n , 3.28
Avy = -1 [(do;Wfq]“(”efq)xj=775haxf’ 29
i=1
where 8pq is the error signal of PE g in the hidden layer and is defined as
(3.29)

OE JE || 92 :
8, = =—|:az :Hi 1 }:a’(netq)z1 S,V
¢ i=

donet . Onet i

The error signal of a PE in a hidden layer is different from the error signal of a PE in
the output layer. Because of this differences, the above weight update procedure is
called generalized delta learning rule. One important feature of the back-propagation
algorithm is that the update rule is local. To compute the weight change for a given

connection, we need only quantities available at both ends of that connection.
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The learning procedure requires only that the change in weight be proportional to
dE/ow. True gradient descent requires that infinitesimal steps s be taken. The
constant of proportionality is the learning ratio 1. The larger this constant, the larger
the change in weights, the more rapid learning but it might results in oscillations.
One way to increase the learning rate without leading to oscillation is to include a
momentum term to the generalized delta rule (Rumelhart & McClelland, 1988). This
scheme is implemented by giving a contribution from the previous time step to each

weight change:

Av(t+1)=nd,,x; + aAv(1) (3.30)

hg

In which, ae€[0,1] is a momentum parameter.

Constant o determines the effect of past weight changes on the current direction of
movement in weight space. This provides a kind of momentum in weight space that
effectively filters out high-frequency variations of the error-surface in the weight
space. A value of =0.9 is often used (Rumelhart & McClelland, 1988; Lin & Lee,
1996).

3.4.4 Summary

In summary, the artificial neural network is an adaptive communication network that
communicates a “cost function” for a desired output. Mathematically speaking, a
neural network represents a dynamic system that can be modelled as a set of coupled

differential equation.

The performance of the Artificial Neural Networks is described by the figure of
merit, which expresses the number of recalled patterns when input patterns are
applied that are complete, partially complete or noisy. In designing an artificial

neural network, following parameters were considered to be very important

- Network topology: number of layers in the networks, number of neurons or nodes

per layers, interconnections among neurons
- Learning algorithm
- Number of iterations per pattern during training
- Number of calculations per iteration
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- Choice of transfer function and the range of operation of the neuron

The wide choice of architectural configurations, in conjunction with variety of
learning rules, led to the development of over thirty types of neural network models.
The choice of a type of network models depends on a number of factors. However,
once a particular architecture and learning rule has been proposed, its properties can

be analyzed and studied in detail.

Feedforward Back-propagation is now the most widely used tool in the field of
supervised Neural Networks. It is a very powerful for application with pattern
recognition. It is generally used with a very simple network design but the same
approach can be used with any network of differentiable functions (Werbos, 1992).
Recently, Multilayer Feedforward Back-propagation had been implemented for
studies of stream hydrological and ecological responses to climate change (Poff et
al., 1996), modelling water quality (Schleiter et al., 1999), and also for studying
biological condition by mean of macroinvertebrates (Walley & Fontama, 1998). It

proves to be a useful tool to study freshwater ecosystem.

In this research, I develop Artificial Neural Networks with multilayer
feedforward connection characteristic with backpropagation algorithm in an
attempt to study high non-linearity and high complexity of nature of

freshwater ecosystem.

3.5  Procedure for Network Development
3.5.1 Software

The project had been performed with software package NeuroSolution ver. 3.0 —the
Neural Network Simulation Environment, which is a product of NeuroDimension

Incorporated company.

NeuroSolutions provides an object-oriented simulation -environment for neural
network design and application. It has quickly evolved into the software tool of

choice for both the neural network beginner and expert alike. This software combines
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a modular, icon-based network design interface with an implementation of advanced

learning procedures including backpropagation and backpropagation through time.

NeuroSolutions can be used to design neural networks to solve many different types
of problems in a variety of fields. The result is a virtually unconstrained environment
for designing neural networks to solve real-world problems such as forecasting,

pattern recognition, process control, targeting marketing, and many more.

NeuroSolutions is based on the concept that neural networks can be broken down
into a fundamental set of neural components. By allowing the user to arbitrarily
interconnect these components, a virtually infinite number of neural models can be
constructed. Neural components, such as axons, synapses, and gradient search
engines, are laid out on a graphical breadboard and connected together to form a
neural network. Input components are used to inject signals, and probe components

are used to visualize the network’s response.

Neural networks are often criticized as being a “black box” technology. With
NeuroSolutions’ extensive and versatile set of probing tools, this is no longer the
case. Probes provide you with real-time access to all internal network variables, such

as: inputs/outputs, weights, errors, hidden states, gradients, sensitivity analysis,

Networks are developed using NeuroSolutions for Excel, which is one powerful tool
in the NeuroSolutions package. NeuroSolutions for Excel was designed to allow user
to develop a complete solution to a problem in one easy to use package while also
giving the flexibility to customize its operation using Visual Basic for Applications

as a scripting language.

NeuroSolutions for Excel is a revolutionary product which benefits both the beginner
and advanced neural network developer. For the beginner, NeuroSolutions for Excel
offers visual data selection, one step training and testing, and automated report
generation. For the advanced user, NeuroSolutions for Excel offers the ability to
perform parameter optimization, run batch experiments, and create custom batch
experiments programmatically. The best part is that all of these tasks can be

performed without ever leaving Microsoft Excel.
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3.5.2 Data Preprocessing and Modelling

Flow chat below shows the procedure of network development (Figure 3.9).

Stream Database
Preprocessing

_ A4
Data Consistency Test ]

h 4
[ ANN design I

[7 ANN training |

Y

l ANN Validation ]

External Validation for
Prediction of Water Quality

[ Sensitivity Analysis ] Y
Implication for Stream
¢ Management and Research
[ ANN Design J

|

Figure 3.9 Approach for data-preprocessing and ANN modelling ( Hoang et al., 2001)

Processes in each box are explained below
Data preprocessing and consistency test

Data used for training processes are designed dependent on method of modelling.
Data set of sites containing incomplete or unreasonable data will be removed. The
remaining data sets will be randomly divided into training and validation data sets.
From the total number of samples in the data set, 80% is randomly taken for ANN
the training processes and the remaining 20% are used for network internal

validation.
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ANN Design

Design step decides structure of network and training algorithm. Feedforward

backpropagation is used as training algorithm.

Multilayer perceptrons (MLPs) are layered feedforward networks typically trained
with static backpropagation. These networks have found their way into countless
applications requiring static pattern classification. Their main advantage is that they
are easy to use, and that they can approximate any input/output map. The key
disadvantages are that they train slowly, and require lots of training data (typically

three times more training samples than network weights).

Generalized feedforward networks are a generalization of the MLP such that
connections can jump over one or more layers. In theory, a MLP can solve any
problem that a generalized feedfoward network can solve. In practice, however,
generalized feedforward networks often solve the problem much more efficiently. A
classic example of this is the two-spiral problem. Without describing the problem, it
suffices to say that a standard MLP requires hundreds of times more training epochs
than the generalized feedforward network containing the same number of processing
elements (NeuroDimension, 1999). Therefor this paradigm is chosen for network

development in this research.

Design step also decides the architecture of networks including
- number of inputs in the input layer

- number of outputs in the output layer

- number of hidden layers as well as number of neurons (Processing Elements)

contained in each hidden layer

NeuroSolutions simulations are vector based for efficiency. This implies that each
layer contains a vector of PEs and that the parameters selected apply to the entire
vector. The parameters are dependent on the neural model, but all require a non-
linearity function to specify the behavior of the PEs. In addition, each layer has an
associated learning rule and learning parameters. The number of PEs and learning
parameters are entered in the corresponding fields. Parameters such as step site,

momentum coefficient, number of iterations characterise the performance of the
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designed networks. Architecture and performance parameters will be changed
experimentally during the training and internal validation time in order to optimise

results for designed input layer.
ANN “‘training” performance

Neural network determines the weighted connectance between input and output
nodes by the neurons (processing element). The neurons are located in the hidden
layer and feed a non-linear sigmoid function. A learning process (training) forms the

interconnection between the neurons and the nodes.

The aim of the training of a neural network is to minimize the output error with the
respect to the known desired output. This error is defined to be the sum of the
differences between the network outputs and the measured outputs they are supposed
to predict. Once formed by training, the interconnections remain fixed in the hidden

layer and the neural network can be used for predictions.

the training set. Cross validation is executed in concurrence with the training of the
network. Every so often, the network weights are frozen, the cross validation data is
fed through the network, and the results are reported. The stop criteria of the
controller can be based on the error of the cross validation set instead of the training
set to insure this generalization. This is an indication that the network has begun to
overtrain. Overtraining is when the network simply memorizes the training set and is

unable to generalize the problem.

Cross validation was estimated by means of mean square error (MSE) between
calculated and targeted outputs. Chapter 4 will discussed more detal on how cross
validation can be use to identify overtrained situation. Overtraining results in
increasing values of MSE with increasing number of iteration. MSE of training set
continues to decrease but in this case, network only memories the database from

training set but does not generalise the patterns.

Training process will be carried out by data from training set.
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ANN validation process

ANNs will be validated with independent data set to test the performance of
networks. A comparison between the actual values collected from sites with the
value predicted by the model will be made to evaluate performance of networks. The
validation results are represented by percentage of correct predictions of colonisation

pattern of each macroinvertebrate taxa.
Sensitivity Analysis

A sensitivity analysis will be conducted for all ANN models for specific
macroinvertebrate taxa in order to improve models’ validity. Method of sensitivity
analysis as follows: The first input is varied between its mean +/- a defined number
of standard deviations so that it covers whole range of this input in the database
while all other inputs are fixed at their respective means. The output is calculated for
a certain number of steps above and below the mean. The processes will be repeated

for all inputs and for each of 40 outputs.

The sensitivity will be qualified in term of percentage output change over the range
of input data. Input makes the output change below 40% will be considered
redundant for this specific macroinvertebrate taxon. Refer to results of sensitivity
analysis we can decide which variables are sensitive to distribution of specific

macroinvertebrates and which variables are redundant.
Refining networks

Redundant inputs for each network will be taken out and new ANNs will be designed
with taxa specific input layers. Training and internal validation processes will be
repeated for refined networks in order to receive designed rate of correct prediction.
The condition is designed in accordance with the purpose and requirement of
network user. Processes are repeated until validation results satisfy the required
condition of the rate of correct prediction. In this project, the condition of 70%
correct prediction for all macroinvertebrate taxa is applied for fulfillment of network

performance.
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External validation and Stream Site Prediction

Trained networks are applied in prediction step. External validation and site
prediction are made to test ability of trained networks to be applied in predicting
habitat conditions at sites for management purposes. Details of these methods are

addressed in chapters 4 and 5, where each model approaches are discussed.

Lateral view of the larva of a species of water penny Psephenidae (Gulland & Cranston, 2000))
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4 Adopting Clean Water Approach

4.1 Introduction

4.1.2 Clean Water Approach

This model had been developed based on the referential approach (Reynolson et al.,

1997) to predict the fauna at impacted sites as if they were unimpacted.

The concept of a reference condition is now being widely applied for biomonitoring
and bioassessment of aquatic resources. The reference condition is central to the idea
of “biocriteria” developed by the US Environmental Protection Agency (Davis &
Simon, 1995). The same approach has been used in the UK for river classification
and water quality assessment (Wright, 1995) and is fundamental for the National

River Health Program in Australia (Parson and Norris, 1996).

Reference condition is defined as the condition that is representative of a group of
minimally disturbed sites organised by selected physical, chemical and biological
characteristics. Reference conditions are described based on pre-established criteria
that exist at a wide range of sites. The reference conditions then serve as the control
against which test conditions are compared. Reference condition represents the best
available conditions and is made upby information from numerous sites. (Reynolson
et al., 1997). Selection criteria used to determine reference site conditions in the

Queensland stream system are described in chapter 3

In the current application, the reference condition is employed to compare the
biological attributes of individual test sites with a group of reference sites. Reference
condition uses an array of reference sites that characterise the potential biological

conditions in a region for which assessments are to be made. A test site is
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subsequently compared to what is either the most appropriate subset of reference

sites or to the entire reference site.

The main feature of this approach is that comparisons need to be made where site
attributes are expected to yield similar invertebrate communities in the absence of
disturbance. This analytical approach for comparisons with reference condition was
adopted from RiVPACS, used for predicting the macroinvertebrate fauna in flowing
water in UK (Wright, 1995) and AusRivAS in Australia (Parson & Noris, 1996). In
both RiVPACS and AusRivAS, the number of taxa expected is calculated as the sum
of the probabilities of those predicted (Moss et al., 1987). The number of those taxa

actually collected is then compared with the number expected.

The severity of any environmental impact is assessed based on how much the
number of taxa observed (O) deviates from the number expected (E), calculated as
the O/E ratio. When the O/E ratio indicates impairment, the types of organism
predicted to occur but not collected, or not predicted but collected, are used for

interpretation.

4.1.2 Aims and Hypothesis

The aim of the stream modelling was to determine biological conditions of sites with
respect to reference conditions based on the presence and absence of invertebrate
taxa. The model was trained by means of reference data. Therefore the model outputs
strictly reflect “reference condition”. The assessment of the health of specific sites is

than based on the comparison between observed and predicted site data.

A typically observed response of aquatic macroinvertebrate communities to
environmental disturbance is general loss of diversity, especially with pesticide load
or elevated nutrient enrichment (Cranton et al., 1996). The hypothesis of neural
network model development by the clean water approach is that the number of taxa
observed at the degraded sites should be less than the expected number, which
reflects reference conditions. The value of the criterion O/E should range from a
minimum of O (indicating that none of the families expected at a site were actually
found at that site) to a theoretical maximum of 1, indicating a perfect match between

the families expected and those that were found. In practice, this maximum can
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exceed 1, indicating an unusual diverse site, which should be a subject of further

research to explain the cause and nature of such overpopulation (Coysh et al, 2000).

In order to simplify interpretation and aid tmanagement decisions, the O/E ratio can
be divided into bands representing different levels of biological condition ranging

from reference to severely degraded (Table 4.1).

Table 4.1 Division of O/E taxa into categories for reporting (Coysh et al, 2000)

Value of O/E taxa Environmental condition
O/E
O/E> 1.2 More families found than Richer invertebrate community
expected than pristine — potential nutrient
enrichment

1.2>0/E=0.8 | Expected number of families | Near pristine condition
within the range found at

80% reference site

0.8>0/E>0.4 | Fewer families than expected | Mildly to moderately impaired site

O/E<0.4 Very few of expected Moderately to severely degraded

families remain sites

Series of ANN models were developed with database from the Queensland stream
system to study interrelations between macroinvertebrates assemblages and abiotic
factors at reference habitat conditions. Developed neural network models then could
be applied for predicting the conditions of freshwater environment. Habitat
characteristics will be expressed by the criteria O/E range sites from reference to

severely degraded condition.
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4.2  Materials and Methods
4.2.1 Data Analysis

In the context of the modelling framework, site specific habitat features are used to
predict the occurrence of invertebrate taxa at a site not affected by environmental
stress. Habitat characteristics such as altitude, stream order and annual rainfall are
suitable as such predictor variables. By contrast, chemical variables such as dissolved
oxygen, pH and nutrient concentrations could easily be affected by anthropogenic
impacts and would not be suitable as predictor variables. They would cause
misleading predictions on the membership of test sites to the reference site groups
(Smith et al., 1999). As a result, 39 physical riparian from the first subset of the
database were used as predictor variables for neural network modelling, as listed in
the Table 3.2 (Chapter 3). These predictor variables include both discrete categorical
and continuous data. Only some discrete categorical variables are formed by
classification schemes such as stream order; most are represented just as empirical

criteria for habitat characteristics, such as soil types and vegetation type.

After removing incomplete or unreasonable data, 896 data sets from reference sites
were used for neural network modelling, in which 716 data sets were taken randomly
for training and the remaining 180 sets were used for internal validation. 1159 data

sets from test sites were used for external validation or prediction steps.
4.2.2 Network Architecture

The design of the ANNs resulted in the selection of 39 environmental predictor
variables considered as input nodes in the input layer and each of 40 the
macroinvertebrate taxa considered as output nodes. Accordingly, 40 models were

developed in this study.

The backpropagation algorithm was used for the training of the ANNs. One of the
disadvantages of backpropagation algorithm is that it is difficult to determine in
advance the number of hidden layers and number of nodes in each hidden layer.
Many optimisation studies were carried out to select the best model configuration.
For the initial ANNS, the best neural network was set up with a single hidden layer
with 15 neurons. Figure 4.1 represents the general ANN architecture of the stream

habitat model for each macroinvertebrate taxon.
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Figure 4.1 ANN architecture of the stream habitat model for each macroinvertebrate
taxon

4.2.3 Method of Training

ANN training by the specific data is an important step of the modelling process. The
feedforward backpropagation is applied as a learning algorithm to adjust the
connectivity weights through convergence (Rumelhart et al., 1986), and the
sigmoidal is used as the transfer function. The error term is the sum of the
differences between the output and the targeted data, and the chosen criterion for the

error term allowing convergence was 0.01.

Cross validation was applied to control overtraining. Cross validation was estimated
by means of the mean square error (MSE) between calculated and targeted outputs.
Figure 4.2 illustrates plot to show how cross validation was used to identify an
overtrained situation. Overtraining results in increasing values of MSE with an
increasing number of training iterations. The MSE of training sets continues to
decline but, in this case, the neural network only memorises the database from the
training set but does not generalise the patterns. The optimum for training is reached

when a minimal MSE of both cross validation and training are observed.
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Figure 4.2. Cross validation results of some training examples

After a number of training trials, the network obtained the optimal technical training

parameters as follows:
Number of iterations: 5000
Learning rate for hidden layer and for output layer: 0.1 and 1 respectively

Momentum coefficient: 0.9

4.2.4 Method of Validation

Validation is conducted in order to test the ability of networks to generalise
relationships between habitat condition and macroinvertebrate assemblages in the
reference condition. Neural networks may provide up to 100% correct answers when
applied to training sets simply because they memorise the whole database but do not
generalise the relationships between the inputs and targeted output. Trained networks
were validated with data from an other 180 sites. Data of these sites had never been
introduced to these neural networks before. They are therefore called “independent

sites” and they also belong to reference conditions.

The validation is tested by means of correct predictions of the presence/absence of

each macroinvertebrate taxa in 180 sites. If the validation gave appropriate results,
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and the conclusion could thus be drawn that the neural networks have already
generalised relationships within the system, networks can be used in a prediction

stage.

Output nodes in the database contained only the values O and 1 representing presence
and absence of macroinvertebrate taxon respectively. Neural networks provided
output values in the range from O to 1, describing the probability of this taxon
occurring at the site. It was decided that, if the probability of occurrence > 0.5, then
the taxon was considered as present at the site; if the probability of occurrence was <

0.5 then the taxon was considered as absent at the site.

4.2.5 Method of Prediction

Validated neural network models can be applied for predictions. In the prediction,
studied sites are tested by the models for biological impairment. The networks
predict the presence and absence of each taxon at these sites given that they are
unimpacted. Consequently, the sum of taxa present at the site gives an expected
number of macroinvertebrate taxa that should occur at the sites. This expected
number would be compared with the observed number of macroinvertebrate taxa at

the sites to determine a value of the criterion O/E.

The criterion O/E can be used as a biotic index to evaluate the habitat characteristics
of stream sites ranging from reference conditions to severely degraded sites. The

values of the O/E figures identify levels of degradation in the test sites.

4.3  Sensitivity Analysis

A comprehensive sensitivity analysis was conducted for the 40 ANN models for
specific macroinvertebrate taxa. The method of sensitivity analysis is described in
Chapter 3. For neural networks developed in this chapter, the inputs were varied
between their mean +/- five levels of standard deviations, in order to cover the whole
range of inputs in the database and the outputs were calculated for 150 steps above

and below the mean.

84



Sensitivity analyses were only conducted for continuous inputs and those categorical
inputs that were formed by classification schemes such as stream order, 0-4 habitat.
Categorical variables represented just as empirical criteria for habitat characteristics,

such as soil types and vegetation type, were not investigated by sensitivity analysis.

4.3.1 Results of Sensitivity Analysis

Plots were generated for each input variable for each taxon specific ANN model,
illustrating the network output over the range of the varied input in the database. As

an example, Figure 4.3 shows the sensitivity of Cladocera to 10 input variables.
The results of the sensitivity analysis are summarised in Table 4.2

The primary intention of this sensitivity analysis was to identify sensitive inputs for
each model in order to improve network performance by removing insensitive inputs.
However, this process also provided new insights into relationships between
environmental  variation and the occurrence of Queensland stream
macroinvertebrates. Chapter 6 discusses detailed examples of such relationships and
the potential of the technique to enhance our understanding of anthropogenic impacts

on components of aquatic ecosystems.
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Figure 4.3 Sensitivity of the taxa Cladocera to changes of inputs within their data range
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Table 4.2 Summary of the input sensitivity of 40 MI taxa by mean of percentages of output
change for Clean Water Approach

<\ TIZ (8|2 |5 |55 (B |8 (8|22 ls = |8
2" 2|28 |> (84 |8 |3 |2 |8 |3 |& |3 |2
= 18 |[< |& T |z |a |a |©@ [ |O .
1 |Oligochaeta 98| 0 [0.1]/0.1]/07]00[/00|26|0.0]|96|14]| 63 |100|0.0| 69
2 |Acarina 86|92 |90 | 89|43 |48 |94 | 85| 74 | 77 | 84 [36.0| 91 [ 77 | 91
3 |Copepoda 97 | 31|86 | 87| 98 110.0/ 2.8 2.9 |27 | 99 |43.0{ 97 | 96 | 98 |31.0
4 |Cladocera 120 21(99| 0| 0 |1.7| O |100| 77 |59.0| 86 [100| 53 [18.7|100
5 |Ostracoda 100| 82 | 82| 98 |40.5| 77 | 95| 98 [ 4.8 | 95 | 72 |135.8/9.2|4.3|18.0
6 |Atyidae 25| 45| 25| 23| 47| 28 | 4.5 |40.6| 6.4 | 1.1 |36.0{31.6/13.0| 6.9 |38.7
7 |Palaemonidae 59190 (39 |1.1/04|04]07|19|100| 99 | 1.2|12.3[0.2|32.0/31.5
8 |Leptophlebiidae 24 | 41|49 | 97 | 47 |12.2]11.2| 89 | 97 |15.3| 6.8 |38.6/20.9/20.0| 80
9 [Baetidae 96 | 96 | 90 | 87 | 64 | 87 | 65| 93 | 93 | 81 | 95 | 97 [ 35 [ 96 [17.7
10 |Caenidae 27 | 83|98 | 76 |11.4| 66 | 95| 90 | 95|97 | 99 | 59 | 52|38 |99
11 |Gomphidae 81 /93|99 |85(92|96 (30|88 |17.2] 92|86 | 93| 36| 91| 87
12 [Libellulidae 38 (34(20/19[/09|02|100/100| 83| 90 | 04| 95|97 | 96 | 2.7
13 |Coenagrionidae 01(52|25/07/01( 0| 0 |99| 0 |07|35|98| 0 |10]13
14 [Corixidae 61|77 (22|99 34|28|51|63|32|71|83|97|97|99]85
15 |Dytiscidae 100/100| 90 | 95| 92 | 92 | 44 | 96 | 82 | 86 | 82 | 57 | 92 | 80 | 79
16 |Elmidae 83 /26|91 |96 |77 |48 | 91 [82|11.1] 14 | 50 | 32 | 30 | 88 | 98
17 |Hydrophilidae 76|84|75(209/09(32(14|75|83[27(92|23|12]|21]|99
18 [Tanypodinae 64 | 96 | 82| 74 | 97 | 52| 98 | 22 | 84 [12.0| 46 | 82 |140/ 8% | 6
19 |Orthocladiinae 96 | 45| 75|73 |70 | 63|77 | 72|81 |52)|8 |71 |50|75] 83
20 |Ceratopogonidae 40.5| 63|98 | 35|77 96 |3.8| 94| 47 |12.1{11.7| 90 | 22 | 20 |10.4
21 |Leptoceridae 1.8/ 95 | 1.2|11.3| 61|77 |2.7|43| 97| 41 [133| 41 |50]|08] 85
22 |Hydropsychidae 02|13/ 0| 0| 0|[97]07|24|54] 0 |98]07|45| 0 |05
23 |Hydroptilidae 1619|6079 25(94|90 |94 [13.8/95|92|98| 50| 93| 85
24 |Dugesiidae 51|21|38[22|26|24|55|27|17[23[50] 13 [69] 34 [10.0
25 |Planorbidae 88197184 |73/95|97|22|26|93| 82|96 |98 |96 | 80| 98
26 |Thiaridae 941939999 71|48 05|47 |96 | 86|97 |86 |95|96 |0.
27 |Corbiculidae 2.1/16.5( 45|32 (29| 99 [14.0| 59 [48|3.0| 62|68 145/ 7.6 8.6 |
28 |Corduliidae 52|66 65|17]25|24|85|96|55[38|26|72]|51|3.1]32
29 |Notonectidae 0.2(120/01/02/02| 0 |20| 68| 98| 0 | 0 |0.1| 0 |52]10.6
30 |Pleidae 63| 0] 0|05/ 0| 0 |158/148/ 0 |04| O | 0 | O |1.1| 80
31 |Veliidae 81 /100 87 | 36| 71|67 | 28| 62| 36| 62| 26| 33|70 66| 58
32 |Psephenidae 0/01/03/0(0/0| 001/ 0|0|9]0|0]0]01
33 [Simuliidae 14 | 95 | 98 |12.0/13.0/11.7| 71 | 43 | 99 | 45[100| 49 | 951 20 [10.0
34 |Tabanidae 4243/ 0|0 | 0|27/ 0| 01|52/ 0|9 0]|0]0]O0
35 |Ecnomidae 65 |13.7] 62 (25|97 |99 07| 69 | 0.7|18.8|105| 1.4]20]|49]|37
36 |Calamoceratidae 22 |1 59|72 |10.0/16.7) 96 | 36 | 92 |159| 39 | 91 | 33 | 56 | 37 | 88
37 |Philopotamidae 02| 0| 0 0| 0 0161/02| 0| 0
38 |Prosopistomatidae 0 0 0 0 0 0 02| 0 |21|04]| O
39 |Gripoterygidae 018 (7202 0| 0|53 1 0 05(60| 0| 0| O
40 |Pyralidae 76 | 6 1100/ 290807 |11 2 |20]40| 4 |07 15]05] 1
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Table 4.2 (continued)

EQ oy _E* E 'Eg g § Enﬁs:q_-:.:: '§__>n = d 24
AE SdE |5 |89588 (242459353595 3553545¢
<135 S =N ) 3_:0‘;0 Bsaxgqmﬁwﬁ.‘fgﬂ"&: -
e | 92 |5 [54>48 |55 (2459545959848 48 4

2 1< |2 (s > |2 |s |8 < |S§s 85 d
1 |Oligochaeta 5.2]100[64|00|0.1({00[00[{08|00| 0| 0| 0 |3.7]96]/0.1]95
2 |Acarina 66 175194 |94 |48 | 75|94 | 74|92 |45[37|97|85|66|97] 91
3 |Copepoda 97 140(91|61(205/1.3|189|99 (53|24 (27|99]23|28]37] 84
4 |Cladocera 65 100[70[00[99|0.0]| 78 |40.0[27.0] 0 | 0 | O | 63|58 52| 10
5 |Ostracoda 21.2| 98 [22.8| 8.1 85 | 75 |11.3]| 97 |37.5| 94 [ 8.4 |14.3|7.5]| 96 | 95 | 7.1
6 |Atyidae 27.0/42.0(28.2| 9.1 | 8.2 [16.7| 7.1 |17.0| 6.0 | 38 | 7.6 | O | 36 [15.6]/ 6.7 | 41
7 |Palaemonidae 20.4/52.0(4.810.9]0.5]|22]26.01 93 | 0.3 | 23 |16.0[ 1.9 [17.9] 99 | 97 | 100
8 |Leptophlebiidae 98 | 96 (47.5| 94 |100| 81 | 71 |57.4]|52.6| 99 | 77 | 87 | 5.5|4.6| 60 | 98
9 |Baetidae 100| 97 | 92 [ 47 | 45| 77 | 58 | 38 | 21 [ 98 [ 83 | 20 | 48 | 96 | 97 | 95
10 |Caenidae 94 [ 8545|7088 |99 |66 | 84| 94 |100| 46 (5.7 | 22 | 93 |100] 90
11 |Gomphidae 71 [19.0(16.0| 57 | 99 | 8.2 [14.5/11.7| 78 | 97 | 82 [ 63| 84 | 90 | 57 | 97
12 [Libellulidae 100105189 13(12.0[{02|100|57)| 93| 76 | 0.6 | 67 | 0.7 (100 2.3 | 45
13 |Coenagrionidae 02 0 ]03[ 0] 0| 0 ([93([08|87|8|40|33) 0 (30(32]|70
14 |Corixidae 18.1]1 71 [ 35 | 73 | 58 | 84 |14.4| 24 | 29 | 46 | 54 |100| 13 | 22 |16.7| 90
15 |Dytiscidae 100 92 [ 98 | 97 | 34 [ 26 |95 |86 |88 |99 |49 |91 |(36|77 |79 95
16 |Elmidae 81199 (37|89 [77[92]|99|99|96|45(9.0| 94 (90|94 |99 | 94
17 |Hydrophilidae 28194 169(15]109(02|36(96|63|88|19(1.7]|87|6.7]97]6.0
18 |Tanypodinae 100)17.0) 39 | 31 | 99 [9.7| 35| 83376383 |13|27|7.1|5.6] 83
19 |Orthocladiinae 99 |72 (96 | 73 |70 | 78 | 87 | 48 | 95| 72 | 90 | 71 | 77 | 38 | 46 | 64
20 |Ceratopogonidae 77163 (2.7)128(62]|93)|67 |29 23(100|95|3.8(3.7|70]| 94|65
21 |Leptoceridae 23 | 8.0 (10.0| 80 [18.6{9.7]12.9 |34 |70 |96 90 | 98 |09(9.7|1.0| 99
22 |Hydropsychidae 03[(14]03| 0 |72] 0 [27] 0 |1.0[48]01] 0| 0 |45|83]| 0
23 |Hydroptilidae 50|21 (53]|67[63|3.1(49|95)|84|93(44|93|81|92|95]|92
24 |Dugesiidae 100 2.3 114.7| 2.5 | 22 [19.5[14.2| 63 |3.5|2.7|2.6 |85 |11.7[ 99 | 61 | 20
25 |Planorbidae 100| 4.9 |15.6{12.7| 66 | 31 | 93 | 77 [17.3| 65 |15.0{ 82 | 71 [ 95 | 97 | 98
26 |Thiaridae 99 147[90]27]146(02]|28|92[45[97|86|99([07|73]|77]| 90
27 |Corbiculidae 100 98 |2.3| 88 [ 3.2 [19.8] 72 | 99 | 2.0 | 83 | 92 |12.3(15.8| 58 | 9.3 | 5.7
28 |Corduliidae 5.7([65(45]116(23]1.0(32]1.0]|93|28(46|70[1.2|41]|94]3.7
29 |Notonectidae 0 |20] 0 |[03]05| 0 27| O 0 |05| 0]|60[1.7]|69 08| 0 |
30 |Pleidae 02/02]03[ 0 (49| 0[O0 f02(0| 0] 0 [34)|01|83]|27]| 0
31 |Veliidae 97 13957 | 83|64|159| 81| 91|60 |78 |24]|76| 73| 71|34/ 94
32 |Psephenidae 06| 0 |21[10|08|04| 0| O|O|O]O[O]|O|03|]0]|O
33 |Simuliidae 31| 4 | 82 |10.8[10.6| 2.5 |10.6{19.5/ 6.2 | 59 |4.1|0.8| 38 [8.5|6.2| 97
34 |Tabanidae 0(0jJofjoOo|lO|J]O]J]O|O|O|O1]0O|O5{0]| 0] O]110
35 |Ecnomidae 100{16.711.8 |79 [06[26|9.7|1.6|1.6(10.7[ 1.7 63 | 74 |44 | 3 | 47
36 |Calamoceratidae 81 | 81 |13.0({18.0( 24 [4.6]| 76 | 73 | 80 | 94 |17.5| 99 |20.6/20.1|12.6| 15
37 |Philopotamidae 0 0| 0 ofo0ojo]JO|[O|O]O|[O]O]O]|O
38 |Prosopistomatidae 0 0| O ojojoloO|lO]J]O]O]O|]O|O]|O
39 |Gripoterygidae 0] 0 4 [100| O 0| 0 ([40] 6 |103] O
40 |Pyralidae 70 | 1515|1190 (47| 4 |11 | O |100| 15| 1 | 5 |06 6 [0.8
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4.3.2 Network Revision

An input showing a range of output changes less than 40% over its range was
considered redundant and was excluded from the network architecture (Chapter 3).
After excluding defined redundant inputs, the neural networks were revised for each
taxon. Inputs for percentages of substrate compositions are closely linked to each
other. Therefore, network refinements did not take into account those inputs,
although sensitivity analyses had been conducted for them. These inputs together
with empirical categorical variables, which had not considered as part of the

sensitivity analysis, remained in the revised neural network models.

Some taxa appeared to be very sensitive against changes of most of the inputs,
including Acarina, Leptophlebiidae, Dytiscidae, Baetidae and Orthocladiinae.
Therefore, criteria to consider inputs as sensitive were extended for these cases to
50% of output change over the range of input change, in order to consider only the
most sensitive inputs for improving these ANNs. The numbers of input nodes were
different for different taxa. Table 4.3 summarises the number of input nodes for each

taxa specific network after revision

Table 4.3 Number of inputs in the taxon-specific revised networks

N Taxa Number of| Number of | N Taxa Number of| Number of
inputs |nodesin HD inputs |nodes in HD
1 |Dugesiidae 19 10 21 |Corixidae 25 15
2 |Oligochaeta 17 10 22 - |Notonectidae 17 10
3 |Planorbidae 29 15 23 |Pleidae 15 10
4 |Thiaridae 27 15 24 |Veliidae 3l 15
5 |Corbiculidae 24 10 25 |Dytiscidae 35 15
6 |Acarina 35 15 26 |Elmidae 33 15
7 |Copepoda 22 10 27 |Psephenidae 13 10
8 |Cladocera 20 10 28 |Hydrophilidae 20 10
9 |Ostracoda 27 15 29 |Tanypodinae 21 10
10 |Atyidae 18 10 30 |Orthocladiinae 36 15
11 [Palaemonidae 19 10 31 [Simuliidae 20 10
12 [Leptophlebiidae 31 15 32 |Ceratopogonidae 27 15
13 |Baetidae 34 15 33 |Tabanidae 13 10
14 |Caenidae 34 15 34 |Leptoceridae 20 10
15 |Prosopistomatidae 13 10 35 |Hydropsychidae 15 10
16 |Gomphidae 32 15 36 |Ecnomidae 24 10
17 |Corduliidae 20 10 37 |Hydroptilidae 29 15
18 |Libellulidae 22 10 38 [Calamoceratidae 23 10
19 [Coenagrionidae 18 10 39 |Philopotamidae 13 10
20 |Gripopterygidae 17 10 40 |Pyralidae 19 10
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Taxon-specific models were developed for each macroinvertebrate taxon as a result
of revision. Each taxon required a specific set of input variables. The numbers of
nodes in the hidden layers were selected after a series of optimisation trials. It
appeared to be optimal that models having more than 25 variables as inputs were
developed with 15 nodes in the hidden layer, and models with less than 25 inputs

were developed with only 10 nodes in the hidden layer.

Other technical parameters including learning rates for hidden and input layers,
momentum remained the same as for initial models. Neural network models were

trained with 5000 iterations.

4.4  Validation Results and Comparison with AusRivAS model
4.4.1 Validation Results

The settled target, to achieve correct predictions for 70% of the cases in the
validation data set of 180 reference sites, was achieved. After refining each taxon -
pecific ANN model based on sensitivity analysis and validation, the chosen condition
for the network performance was achieved. The overall rate of correct predictions of
taxa presence at stream sites in the validation data set by all models was better than
70 %. Table 4.4 and Figure 4.4 illustrate the development of correct predictions from

the initial models prior to sensitivity analysis to the final refined models.
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Table 4.4 The correct predictions for presence/absence of 40 macroinvertebrate taxa of
initial models with 39 inputs and revised models after sensitivity analysis with taxa-specific
number of inputs

No Taxa Initial [Revised |No Taxa Initial |Revised
(39 (39
inputs) inputs)
1 |Prosopistomatidae 98.37 100 |21 |Cladocera 76.04 82.04
2 |Gripoterygidae 92.39 96.20 |22 |Leptoceridae 75.45 81.44
3 |Pleidae 91.01 02.81 |23 |Dugesiidae 74.25 80.24
4  |Philopotamidae 90.41 92.81 |24 |Libellulidae 73.65 79.64
5 |Planorbidae 89.82 91.62 |25 |Veliidae 71.86 75.45
6 |Notonectidae 89.82 89.82 |26 |Oligochaeta 70.06 77.84
7 |Tabanidae 87.43 89.22 |27 |Ostracoda 70.06 77.25
8 |Hydropsychidae §6.83 91.62 |28 |Tanypodinae 68.86 76.65
9 |Psephenidae 85.63 88.02 [29 |Atyidae 68.26 77.84
10 |Coenagrionidae 83.23 83.83 |30 |Baetidae 68.26 72.65
11 |Pyralidae 83.11 86.69 |31 |Caenidae 67.66 73.05
12 [Simuliidae 82.63 86.23 |32 |Hydroptilidae 67.66 79.64
13 |Calamoceratidae 82.04 85.03 (33 |Orthocladiinae 66.47 70.65
14 |Corbiculidae 80.84 86.23 (34 |Dytiscidae 65.87 72.05
15 |Ceratopogonidae 80.24 83.83 (35 |Elmidae 65.87 73.65
16 |Thiaridae 80.24 86.23 |36 |Copepoda 65.27 79.64
17 |Leptophlebiidae 79.04 83.23 |37 |Corixidae 65.26 76.05
18 |Ecnomidae 79.04 84.43 |38 |Palaemonidae 64.07 73.65
19 |Acarina 77.84 79.04 |39 |Hydrophilidae 64.07 74.85
20 |Corduliidae 76.65 83.23 |40 |Gomphidae 63.69 73.05

Results demonstrate that all macroinvertebrate models had been improved, even
though specific improvement rates differed greatly. The Copepoda model achieved
the highest improvement with correct prediction increasing by 14.37%, followed by
the Gomphidae model with 10% improvement in correct prediction. Performances of
the model developed for Notonectidae remained unchanged. The mean value of
correct predictions for the validation set was 76.74% for the initial models and

82.16% for taxa specific models after exclusion of redundant inputs.
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Figure 4.4 Correct predictions of presence/absence of macroinvertebrate taxa before and

after exclusions of redundant input

To promote further validation of the ANN models, predictions of stream sites using
the training and validation data sets were conducted and evaluated by the ratio of
observed to predicted (O/E) data. An O/E value in the range from 0.8 to 1.2 was
selected as corresponding with the central 80% of reference sites to indicate whether
a specific site was biologically degraded or not. This criteria was previously
suggested for applications of AusRivAS models (Coysh et al., 2000). Under optimal
conditions, the O/E values of both models should meet this range for reference

samples, as reference samples were used for developing and validating both models.

The results in Fig. 4.5 clearly indicate that there is a 95.6% correspondence with the
reference sites for the training data. The 4.4% of sites outside the range were the sites
with extreme conditions. Even though they belong to reference conditions, only 4 or
fewer from a total of 40 taxa were observed at 2.71% sites having O/E< 0.8
(MRHI1/250, MRHI2/456 MRHI3/200, MRHI4/067, MRHI2/299, MRHI4/172,
MRHI4/294).
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A. Training Data (Reference sites)
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Figure 4.5 O/E criteria for training set

Figure 4.6 shows the validation results for 180 sites in the validation set. 85.03%
correspondence with the reference sites for the validation data. Again, sites with
given O/E criteria outside the range 0.8-1.2 appeared to have extreme number of taxa
observed. The following 13 sites (MRHII/311, MRHI3/161, MRHII1/300,
MRHI2/484, MRHI1/012, MRHI2/488, MRHI4/319, MRHI1/051, MRHI1/388,
MRHI2/345, MRHI3/160, MRHI4/141, MRHI4/259) having 7 or less taxa had been
predicted with O/E <0.8. Other 11 sites (MRHI1/529, MRHI3/072, MRHI3/113,
MRHI4/349, MRHI3/019, MRHI3/111, MRHI4/112, MRHI4/128, MRHI4/129,
MRHI3/137) having 22 or more taxa had been predicted with O/E >1.2. However the
value of O/E predicted for these sites were only slightly outside the range indicating

the reference conditions.
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B. Validation data (Reference sites)
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Figure 4.6 O/E criteria calculated for validation set

Even though some models had failed to predict O/E criteria for extreme sites, the
good validation results for majority of the ANN models finally justified their

application to the prediction and assessment of stream test sites.

4.4.2 Comparision with AusRivAS model

In order to evaluate the relative performance of the ANN models, a comparison with
the model AusRivAS (Coysh et al., 2000) was carried out. It was applied to the
Queensland stream system based on the same training and validation data of

reference sites as used for ANN modelling.

Data restriction

There were no sites of macrophyte habitat considered in this comparison as no
AusRivAS models have been developed for macrophyte habitats. To obtain a site
assessment by AusRivAS, the appropriate biological and habitat data from the test
site under investigation were entered and preliminary analyses are performed to

determine whether the test site fell within the experience of that model. Any sites
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with no appropriate reference group for comparison were identified “outside the
experience of the models” (Coysh et al., 2000). These sites were also excluded from
the data set. Therefore, the data sets were reduced. The O/E ratios were calculated for
the training data (data from 600 reference sites used to generate the model), and the

validation data (data from 160 randomly withheld reference sites).

In both cases these calculations are restricted to the 40 taxa. Rare taxa had to be
removed according to AusRivAS protocols prior to classification. Taxa occurring at
less 10% of sites if there are less than 100 sites or taxa occurring at less than 10 sites
if there are more than 100 sites considered rare taxa. Prosopistomatidae occurred at
less than 10 sites from total 760 studied sites and they were removed from models.

Two models were therefore comparable.
Comparison results

The O/E ratios number of taxa for samples were calculated from AusRivAS output.
In accordance with the AusRivAS methodology (Simpson et al., 1997), the expected
number of taxa for each sample was calculated as the sum of probabilities of
occurrence of taxa with a 50% or greater probability of occurrence. Ratios O/E
number of taxa was also calculated from ANN output. The expected number of taxa
as sum of taxa was predicted by models after data preprocessing (Hoang et al., in

press).

The comparison of O/E data calculated from outputs of the ANN and AusRivAS
models are plotted in Figure 4.7 and 4.8.

The results of the model comparison in Fig. 4.7 clearly show that the ANN models
identifying much better the reference sites as unimpaired than AusRivAS. While the
ANN models identified the correspondence of training data to reference sites by

94.2%, AusRivAS did only by 60.10%.
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A. Training Data (Reference sites)
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Figure 4.7 Distribution of Observed/Expected ratios for predicted stream sites using the
AusRivAS and the ANN models.

The ANN models performed similarly well for the validation data (81.07%)
compared to 54.71% by AusRivAS models (Figure 4.8).

B. Validation data (Reference sites)
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Figure 4.8 Distribution of Observed/Expected ratios for predicted stream sites using the
AusRivAS and the ANN models.
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AusRivAS failed to predict extreme sites as discussed earlier. Moreover, the values
of O/E predicted by AusRivAS for extreme poor sites was <0.4. AusRivAS even
failed to cope with some normal sites, which are defined to have number of taxa in

the range of mean £ SD (calculated as 14.64 £ 4.36 for whole data set).

The results of this study clearly illustrate the excellence of the ANN models

compared to the AusRivAS models in terms of validity.

4.5  Apply for Prediction Step — Prediction Results

Test sites refer to the site being tested by model regarding biological impairment.
The test sites may be sites with unknown or suspected impacts, sites selected for
regional assessment or reference sites resampled for periodic testing of the model. It
is important that all stream and river types, which may be represented by the test
sites, have been sampled at sites considered to be equivalent to reference conditions.
That is to ensure that test sites will be compared against reference conditions that can

be expected for in the absence of impact (Coysh et al., 2000).

The application of the validated ANN models to an independent test data set of
stream sites resulted in a slightly positively skewed distribution of the O/E data (Fig.

4.9) that might be representative for a field data set.

Whilst the majority of data (36.15 %) were in the range of 0.8<O/E<1.2 and
indicated no degradation effects of corresponding stream sites, 16.82 % of the data
indicated mildly to moderately impaired sites. In 47.02 % of the data richer
invertebrate communities were indicated than observed at reference sites that might

be subject to research for causal clarification.
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Table 4.5 shows the average number of taxa present in each range of O/E. As

hypothesised, the reference sites showed significantly higher taxon richness than

possibly degraded sites

Table 4.5 Average numbers of taxa observed at sites in according environmental
conditions assessed by the value of O/E criteria

Value of O/E | Average number of taxa at sites | Environmental condition classified
by AusRivAS
(average number of taxa at
reference sites — 14.64 taxa)

O/E> 1.2 17.7+£3.63 Richer invertebrate community
than pristine — potential nutrient
enrichment

1.2>0/E=0.8 13.73 £3.23 Near pristine condition

0.8>0/E=0.4 90.19£2.65 Mildly to moderately impaired
site

O/E<0.4 3.18+1.51 Moderately to severely degraded

sites

This implies that the reference sites were well chosen and showed minimal

impairment relative to the test sites.
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4.6 Discussion

4.6.1 Performance of Artificial Neural Networks

Results of the comparison of the ANN models with AusRivAS models showed that
the performance of the ANN models is in general better than statistical predictions.
Walley & Fontama (1998), Schleiter et al. (1999) and Gabriels et al. (2000) also
came to similar conclusions for predicting macroinvertebrates in freshwater streams

and rivers based on different sets of environmental characteristics.

ANNSs provide similar good results for validations with both the complete and the
restricted database used to compare with AusRivAS models, in which macrophyte
habitat could not be assessed. The results showed that ANNs are able to work with
all habitat types provided that samples from these habitats have been included in the

learning procedure.

Reliability is not only obtained by the correct prediction of presence/absence of
I_nacroinvertebrate taxa at sites. For all taxa, numbers of sites where taxa presented

were similar for predicted and observed data in the validation set.

Table 4.6 Numer of sites where taxa were present in total 180 validation sites (results from
revised models)

No Taxa Observed |[Predicted | No Taxa Observed |Predicted
1  |Prosopistomatidae 2 2 21 |Cladocera 45 47
2 |Gripoterygidae 17 19 (22 |Leptoceridae 119 122
3 |Pleidae 20 21 |23 |Dugesiidae 37 38
4  |Philopotamidae 26 24 |24 |Libellulidae 64 70
5 |Planorbidae 22 19 |25 |Veliidae 39 42
6 |Notonectidae 29 26 |26 |Oligochaeta 72 70
7  |Tabanidae 23 24 |27 |Ostracoda 58 62
8 |Hydropsychidae 54 58 28 |Tanypodinae 130 124
9 |Psephenidae 33 35 |29 |Atyidae 93 94
10 |Coenagrionidae 62 57 |30 [Baetidae 123 128
11 |Pyralidae 38 37 |31 |Caenidae 119 123
12 [Simuliidae 41 40 |32 |Hydroptilidae 59 61
13 |Calamoceratidae 24 26 |33 |Orthocladiinae 85 91
14 |Corbiculidae 26 26 |34 |Dytiscidae 67 72
15 |Ceratopogonidae 62 57 |35 [Elmidae 75 82
16 |Thiaridae 45 44 |36 |Copepoda 98 98
17 |Leptophlebiidae 93 96 |37 |Corixidae 80 76
18 |Ecnomidae 32 37 |38 |Palaemonidae 88 90
19 |Acarina 118 117 |39 [Hydrophilidae 48 50
20 |Corduliidae 30 29 |40 |Gomphidae 82 82
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This fact demonstrates that correct prediction provides the meaningful information
for the reliability of network performance. Predictions of rare taxa like
Prosopistomatidae, Gripoterygidae and Philopotamidae are examples. If networks
could not generalise presence patterns for these taxa from database but only
statistically predicted that these taxa never occur in any site, this information had
already achieved more than 90% correct prediction, because these taxa occured at
less than 10% of sites observed. The high percentages of correct prediction of taxa
present at around 50% of sites such as Leptophlebiidae, Ceratopogonidae,

Leptoceridae, Oligochaeta, Atyidae, Copepoda are really a significant achievement.

The validation results proved that the ANN models had worked successfully not only
with very common but also with very rare species such as Prosopistomatidae,
Gripoterygidae, Pleidae, and Planorbidae. These results showed that ANN models

could work with all taxa with nonzero probabilities of presence at sites.

4.6.2 Relationship between Predictor Variables and Macroinvertebrate

Assemblages

The results of the neural network models developed indicated that physical predictor
variables have close relationships with presence/absence of macroinvertebrates.
Geographical predictors easily measurable from maps, such as latitude, longitude,
altitude and distance from sources explain significant variation in the benthic
macroinvertebrate community. These variables appeared to be highly sensitive for 32
out of the 40 taxa in this study (see examples in Figure 4.10). Corkum (1989) and
Bailey et al. (1998) also found geographical predictors to be useful in studing benthic
invertebrate communities in various streams in North America. This information
makes the test of a community’s deviation from reference conditions much more
sensitive. Therefore, taking advantages of the predictable component of variation in
benthic invertebrate communities with these easily measured geographical variables

can improve biological assessments of the community expected at test sites.
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Figure 4.10 Relation between geographical inputs and distribution of macroinvertebrates

Sensitivity analysis showed relatively consistent changes between seasons for 16
taxa. Figure 4.11 illustrates some of these changes. Other taxa showed no clear

change according to seasons.
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Figure 4.11 Relation between seasons and macroinvertebrate distribution

This seasonal variability is also reflected in water temperature, which is highly
sensitive for 21 taxa. Dodelec (1989) found that many macroinvertebrate taxa, which
are typical for high quality water, favoured cold water. Cool habitats are also favorite
by aquatic insects as cool water contains more oxygen at saturation than does warm

water (Ward, 1992). These earlier findings are supported by results of current project
(Figure 4.12).
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Figure 4.12 Relation between water temperature and distribution of aquatic insects

Substrate compositions were found to be very sensitive for most of the taxa even for
rare taxa such as Philopotamidae and Gripoterygidae. For the taxa Psephenidae,
Philopotamidae and Tabanidae, substrate compositions are the only driving variables
for their distributions in the streams. The presence of only a few taxa (Atyidae,
Dugesiidae, Corbiculidae, Ecnomidae and Prosopistomatidae) does not rely on

substrate compositions.

Climatic and meteorological variables also provided significant impacts on
macroinvertebrate distribution. The presence of all taxa, except for four rare species,
relies on weather conditions. Among these variables, range in wet season monthly
means, mean daily max temperature and mean daily temperature range are the most
important variables. Sensitivity analyses showed that they are highly sensitive for
most taxa. The high sensitivity of these easily obtained hydrological and

meteorological variables demonstrated the applicability of the proposed methods.
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Topographical characteristics also play an important role in the presence of
macroinvertebrates. Habitat Width and Depth were highly sensitive for 28 taxa.
Slope was less sensitive, although it still was greatly sensitive for 10 taxa and
moderately sensitive for 4 others. Stream order was very sensitive for 13 taxa, while

Site-mean phi was significant for 12 taxa.

More details of the sensitivity analysis and relationships between predictor variables

and distribution of macroinvertebrates are discussed in Chapter 6.

4.6.3 Reference Condition Approach for Rapid Assessment

The reference condition approach is considered one of the most effective ways of
using the information available from biological communities to established
“biocriteria” such as O/E (Bailey et al., 1998). This approach is widely used for the
rapid assessment of river health (Resh & Jackson, 1993).

The first objective of using rapid assessment is to reduce efforts and costs in
assessing environmental conditions at a site. This can be achieved by: (1) reducing
the number of habitats sampled and replicate sample units taken per habitat, (2)
considering only a fraction of the animals collected, which means fewer have to be

identified.

Another objective of rapid assessment approaches is to summarise the results of site
surveys in a way that can be understood by non-specialists such as managers,
decision-makers and the concerned public. This is done by using analysis measures
that express results as single scores, as well as by placing the scores obtained in

categories of environmental quality based on regional data (Resh & Jackson, 1993).

The success of the rapid assessment approach ultimately depends on the ability to
detect impacted and unimpacted conditions. A test community falling outside of the
range “fails”, while a community that is within this range “passes”. Communities
either above or below criteria values may fail because they are unusual relative to

reference communities (Bailey et al., 1998).
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At the assemblage level, presence—absence data appear sufficiently strong to allow
detection of reasonably subtle differences among sites. Previous works had shown
that O/E could distinguish four bands of degradation with acceptable errors (Wright,
1995; Norris, 1996, Clarke et al., 1996). These bands represent classes of biological
impairment ranging from ‘equivalent to reference’ to ‘poor’. The robustness of
presence-absence data in allowing an assessment of biological condition has

important implications for bioassessment.

However, the clean water approach applied in this work appeared to have some
limitations. Reference conditions are classified as near pristine condition. In practice,
a reference condition of nearly pristine can hardly be found at the present time; they
only represent the least impaired sites within the area of interest (Hawkins et al.,
2000). Even site, which meets all requirements for reference conditions, may
experience many types of disturbance. The empirical foundation of the method itself
therefore contains some information relating to pollution. Test sites can only be
judged by the relative conditions to the reference. Moreover, the approach cannot be
applied for areas, where near pristine or even least impaired sites no longer exist, and
where data of study sites in pristine conditions has never been collected. Therefore, it

is extremely difficult to obtain appropriate databases for training the networks.

Moreover, the O/E criteria showed some problems in application for management
purposes. O/E takes into account only the richness, the number of taxa present at a
site, as a single descriptor to use as a basic biocriterion for bioassessment work. It
assumes that the importance of all taxa is the same, while in fact the responses of
some taxa are different to different environmental stressors (Hellawell, 1986). The
presence of some indicator families actually indicates conditions with some degree of
pollution. Therefore, the predicted taxon list is also required to provide a “target”
invertebrate community to rectify identified impacts. The type of predicted taxa may
also provide clues as to the type of impact that a test site is experiencing. For
example, the absence of predicted Leptophlebiidae might indicate an impact on a
stream from trace metal input (Hellawell, 1986). Families in Ephemerotera,
Plecoptera and Tricoptera orders are taxa identified in some Rapid Assessment
Protocol (Plafkin et al, 1989; Resh & Jackson, 1993) because they provide more
“indicator value” than others taxa, and distribution of these taxa can give elucidation

for environmental stressors (Ward, 1992).
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Interpretation of the O/E criterion is not very clearly understood. The hypothesis was
that low O/E ratio (O/E<<1) implies that test sites are adversely affected by some
environmental stressors. Practical examples showed that the assessment score of test
sites did not vary in understandable ways. Interpretation for sites having O/E >>1 is

poorly understood.

AusRivAS suggested that higher levels of the criterion O/E exceeding 1 are probably
caused by nutrient enrichment (Coysh, 2000). However, it is argued that although
intermediate levels of organic enrichment may favour certain suspension- or deposit-
feeding macroinvertebrate groups, changes in substratum and low dissolved oxygen
concentrations that often occur at high levels of organic enrichment usually result in

the disappearance of intolerant taxa (Hynes, 1960; Hellawell, 1986).

Organic enrichment in the aquatic ecosystem is one of the oldest and most fully
documented forms of pollution. Several taxa either increase or decrease in response
to organic effluents in rivers. At intermediate levels of organic enrichment, numerical
changes occurred mostly within the established, ambient taxa complex within each
system. However, as the severity of organic pollution increased, system similarities
increased as well. Ultimately this can be result in a predominance of some species

such as Chironomus riparius pupae at high pollution levels (Johnson et al., 1993).

4.7  Chapter Summary and Conclusion

The Artificial Neural Network models developed for Queensland stream systems are
producing promising results. The ‘“clean water approach” models adopted the
referential condition approach from the AusRivAS models to provide first-pass
assessment of rivers over large areas and to help identify what additional information
is required. Better results of the ANNs models compared to AusRivAS showed that
ANNs can be suitable alternative tools to study distinct non-linear relationships
within freshwater ecosystem. The clean water approach provides qualitative
assessments and should be satisfactory for state-of-the-environment reporting (Smith

et al., 1999),
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The usefulness of the reference condition approach can be increased not only by
modelling but also by explaining variation in the community descriptors among the
reference sites. This elucidation possibility of predictive models can be achieved by

means of sensitivity analyses with ANNs. Further details are discussed in Chapter 6.

The clean water approach can successfully be used in bioassessment if the
community descriptor adequately summarise the nature of community present at a
reference site, and ideally respond when degradation by the stressors is present. The
predictor variables must describe, either directly or indirectly, the habitat of stream
pertinent to the invertebrate community, be relatively easy to measure, and be

unaffected by potential stressors.

The most important element of this approach is the explanation of community
variation with variation in habitat conditions at the sites. Clear and fully reliable

elucidation of these variations is unfortunately not available.

The alternative to this are “dirty water” models, which utilise a wider range of input
variables including those that describe chemistry of water quality. The aim of a dirty
water model is to identify input variables that exert some influence on outputs, and
then run simulations of various scenarios through the model to predict the ecological
consequences of altering input variables. Full details of these models are discussed in

Chapter 5.

Adult Gripoterygidae, presence of which is a good indicator for clean water
condition (Gullan & Cranston, 2000)
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S5 Developing Dirty Water Approach

5.1 Introduction

5.1.2. Dirty Water Approach

It has been widely demonstrated that interactions among chemical and physical
processes create environmental conditions at a range of scales that strongly influence
the distribution and abundance of lotic taxa, and thus the composition of lotic
assemblages (e.g. Hynes, 1970). Many studies have identified substrate composition,
complexity and heterogeneity as major determinants of in-stream biota (e.g. Ward,
1992). Turbidity, an optical property of water and a measure of light attenuation by
suspended particular matter, plays an important role in the life of benthic
macroinvertebrates. Suspended solid loads < 40 mg/l above normal levels resulted in
a 25% reduction of aquatic insects of riffles. Densities were reduced 60% when
suspended solid were 120 mg/l or more above normal (Gammon, 1970). Dissolved
oxygen plays a major role in spatial temporal distribution patterns of aquatic insects
(Ward, 1992). Responses include microspatial positioning, depth distribution,
migratory behaviour, and predator-prey interaction. pH influences food availability
and leads to differences in species richness, the distribution of species among order
of insects in different conditions of acidity in watershed (Otto & Svensson, 1983). A
survey of streams in the southeastern United States revealed that mollusks, mayflies,
beetles and dipterans were better developed in the hard highly alkaline streams, while
stoneflies and caddisflies were better developed in the soft water of low alkalinity
(Neel, 1973). Other abiotic factors such as flow velocity (e.g. Statzner et al., 1988)
and water chemistry (e.g. Bunn et al., 1986) have been found to also influence biotic

composition.
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The physical and chemical properties of running waters and their effects on the
community are driven by numerous environmental variables such as climatic
conditions, production-respiration ratio, urban storm water run-off and waste water
effluents. The interactions and dependencies among these properties are only partly
understood. Since knowledge of species-habitat interrelation remains insufficient,
consequently, prognostic assessment of ecosystem properties is not presently

available (Vannote et al., 1980; Townsend, 1989).

Some research has been done to present applicability of ANNs in bioindication of
chemical and hydro-morphological habitat characteristics with  benthic
macroinvertebrates (Schleiter et al., 1999; Chon et al., 1996; Chon et al., 2000) and
demonstrated potential of ANNs in this field.

Main feature of this approach is that neural nets study the relations between
distribution of macroinvertebrates and habitat characteristics from both reference and
potentially impacted sites. Data on water polluted sites were used for modelling, the

approach therefore is called “Dirty Water Approach™.

5.1.2 Aims and Hypothesis

The aim of the model was to study functional interrelation between water quality,
habitat characteristics and colonisation patterns of benthic macroinvertebrates within

stream and river ecosystems.

‘Dirty water’ models utilised a wider range of input variables, including those that
were altered by anthropogenic impacts. The aim of a dirty water model was to
identify input variables that exerted some influence on outputs, and then run
simulations of various scenarios through the model to predict the ecological

consequences of altering input variables.

Investigation of sensitivity curves derived from dirty water ANN models using the
methods outlined in chapter 3 should greatly enhance our understanding of the
effects of impacts of various types on individual macroinvertebrate taxa. This would

enable impact specific indicator taxa to be readily identified and should enhance our
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capacity to determine and mitigate the effects of human activities on stream

ecosystems.

The hypothesis was that the distributions of macroinvertebrates at family level were
determined not only by physical variables but also by the chemical water quality and
by the distributions of other macroinvertebrate taxa. Using both chemical and
physical predictor variables, Artificial Neural networks were able to predict

combinations of macroinvertebrate taxa present at study sites.

Furthermore, a hierarchy of factors determining the community structure of
invertebrates could be identified from number of impact variables (Schleiter et al.,

1999).

5.2  Materials and Methods

5.2.1 Data Analysis

Physical characteristics are always the driving variables to define the typical taxa,
which should occur at each specific habitat site and condition. All 39 predictor

variables used in clean water approach were also used as inputs in this approach.

Chemical variables such as ions, pH and nutrient concentrations could easily be
affected by anthropogenic impacts and would not be suitable as predictor variables
for clean water approach. In the dirty water approach, models intended to study
effects of water chemistry in impacted sites, these chemical variables therefore were
also considered as driving variables to predict presence/absence of macroinvertebrate
taxa. There were 17 variables belonging to this group (chapter 3). They were all

continuous data.

Dirty water approach also considered interrelations among macroinvertebrate taxa.
To serve this purpose, neural network models determined a combination of taxa
presence instead of a distribution of each individual taxon as developed in clean
water approach. Therefore, 40 macroinvertebrate taxa were used as outputs in only

one model.
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The database contained information of 716 reference sites and 1159 sites potentially
having impacted conditions. From this database, 80% of sites were considered as

training set. The remaining 20% were used to validate models’ performance.

The training set contained data from 1193 sites of both reference and potentially
impacted conditions, from which 100 sites had been taken randomly for cross

validation

The validation set contained data from 300 sites, 115 of which were potentially

impacted, 185 others belonged to reference condition.

5.2.2 Network Architecture

One ANN model was developed to study functional interrelation. The structure of the
network was as follows:

- Input layer contained 56 nodes

- Single hidden layer with 33 nodes

- Outputs layer with 40 nodes

5.2.3 Method of Training

The ANN model had been trained with data from the training set where cross
validation was applied to control overtraining. The training parameters that appeared

to be optimal read as follows:

- Number of iterations: 10000.

- Step sizes: 1 and 0.1 for hidden layer and output layer respectively.
- Learning rule: Momentum

- Momentum: 0.7
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5.2.4 Method of Validation

The validation was conducted with data from validation set. Validation results were
estimated by means of correct prediction of presence/absence of all
macroinvertebrate taxa in the validation set. A target of 70% correct predictions for
all taxa in the validation set was settled to manage reliability of network

performance.

5.3  Sensitivity Analysis
5.3.1 Results of Sensitivity Analysis
Method of sensitivity analysis was the same as applied for clean water approach.

Inputs were varied between their mean +/- only three standard deviations that proved

to be sufficient to cover whole set of inputs in the database.

The ANN sensitivity was also estimated by means of output change over the range of
inputs in the database as discussed in the chapter 3. There were 56 plots calculated

for each taxon. The results are summarised in table 5.1
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Table 5.1 Summary of input sensitivity of 40 MI taxa by mean of percentages of outputs
change for Dirty WaterAapproach
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Dugesiidae 15/ 5|9 8|51 ]12{10]1 ]2 |23]9|12]6 |1 ]28
Oligochaeta 10| 8 |62|57 11158 |11|2|5]21]9|17|5 | 0]|8S
Planorbidae 16149 | 3 (21| 3|4 |7 |13]2]29| 4|2 |4]10]0]12
Thiaridae 4 |52 ]|3|2|8|42|6]0[5]9|1]|3]9[1]2
Corbiculidae 1516 4 |72 |24|18|28| 18| 2 | 11|31 8 |27]|20| 4 | 28
Acarina 28 | 26 | 26|49 |23 |17 (33(34| 2 |34|26/40|67| 8 | 3 |20
Copepoda 99 | 15 | 88| 7 |21|20(13|38| 0 |51 | 4 |12|62|18| 1 |55
Cladocera 66 | 18 (35|20 9 (28 |83|12|2|10|2 |7 |8 4| 1][36
Ostracoda 4 | 7 1|{3|1/0|0]|2f0]2]1|0]1]|2|O0]35
Atyidae 97 | 10| 11|12 |10 2 |25| 3|2 |23|26|12 |42 |11| 1 |13
Palaemonidae 1618 13|30 |15[10|28(25| 9 [28]24| 6 |13]29| 0 |23
Leptophlebiidae 14116 6 |93 | 1 [14|81|27| 1 |(45|45|1 |8 |2 | 1|15
Baetidae 67| 42|43 |14 |22(20|12(30|17|16|35|41|30|17| 6 | 84
Caenidae 41 | 55|20 | 5 |26|11| 6 |44 | 8 | 17|37|34|33|4 |5 |30
Prosopistomatidae olo|lo|]oflo|O|O|O|O|]O|O]|]O|O]O[O] O
Gomphidae 111521 |55|8 |16|44| 15| 3 | 3|15 1 |38|15]| 1 [20
Corduliidae 52| 1 1/ 4|1|0|1|1|1|6]1]0|2]0)|0]/|S53
Libellulidae 2|5 1|7 |2l0|l2|1]0f6]2|1]6[0]0]2
Coenagrionidae 31 46| 34|94 (6|1 (356|531 ]2]1]25
Gripopterygidae olo|lo|ol|lo|lo|lo|]O|]O|]O|[O|]O[O|O[O] O
Corixidae 100| 15 | 34| 10 |26|11 (33|34 8 |16|15| 1 [17[13| 2 | 14
Notonectidae 38| 9 | 28|27 |3 (12|69 11| 7 |15] 8 |1 |19]7 [ 1|26
Pleidae 9| 1| 2|4]1|5]6|1|0|1|4[0|S5|[2]0]3
Veliidae 100/ 9 | 8 |13 |4 |10|23]|12| 2|3 | 4|6 |10]5|3]|40
Dytiscidae 97 | 15|60 |58 15|21 (88 |16| 3 [11|23| 3 [18]9 | O |18
Elmidae 92 [ 28] 9 | 21[23]23|53| 8|5 |43|55[16|56]29| 3 | 38
Psephenidae 93 (25| 18|67 |19|25(29|13| 0| 5|33 1 |35[5 (2|24
Hydrophilidae 25197 4 | 19|15/ 9(56|31|6 |18| 3|6 |68[19] 7 |31
Tanypodinae 4410|9650 |16 5|4 |13|1 12|42 ]14]/0]0]29
Orthocladiinae 70 | 52| 20| 45 |28 | 3 |31 24| 2 [ 11[33|26|37]|6 | 1 |44
Simuliidae 9| 4 | 3/79(3|0|76|14| 1| 4|3]0]1[2]1]3
Ceratopogonidae 9 [ 2 21 3|33 |2|4]0f[6]2]3]7]15]1
Tabanidae 6lolo|lof|lojlofjoj1lO|1]1[O0O|1l]1]0O
Leptoceridae 99 | 1 4 |11 |2 |21]24]5|1|5]|25[3[28]/0]0]15
Hydropsychidae 99 [ 93 | 32|42 |15 9 |25|28| 2 |13|34|15/33| 6|0 |50
Ecnomidae 8136 | 25|42 | 3 |21|18|22| 5 |47|33|3|25]|7 |5 |24
Hydroptilidae 2|1 3| 2]|15|4|0|7]6|2|1|6]|35]|8|4]|1]4
Calamoceratidae 8395|4223 |3 [33/32|8 |8 |13[{39|8|29|13]6]|15
Philopotamidae olo|lo|lo|o]oOo|]O|[O|O]|]O|O[O[O]OjO]O
Pyralidae 90| 2|0 |15|5|2|6[3|0[|3|7|2]2|1]1]24
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Table 5.1 (continued)
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Dugesiidae 22 (76 |35|17| 8 |53(9.6(14[38[20|15]|28 16| 2 | 13|11
Oligochaeta 11 [41|50|57|48|53|45(8.5|32 45|49 4 |14 68|15/ 21
Planorbidae 05[35/65|47|15|54|52(34|3.6(26(94| 3 | 2 |08|74|1.3
Thiaridae 4 |7.8[78|96 |19 (85|58 |0.1|24|46|29|12|32|7.1|15] 13
Corbiculidae 25| 78179 |84 |87 |36|68[23(10[64|47|16(1.9|24 (21|60
Acarina 30161757048 |61 |28 | 18|51 |23 |55|43|17|33|56]61
Copepoda 31 1519827875768 |15(65| 9 |4129|33|23|21|59
Cladocera 24|57 (48|62 |18 (25|82 16| 6 (10| 8 | 10| 8 | 16|14 | 7
Ostracoda 1311 (3|6 |2(7|0]3 |1 |4]|2]|1[1]1]2
Atyidae 31 125(93|74|10|15|10| 1 |28|48|25|32 /46| 1 60|29
Palaemonidae 23140126 |72 (44|20 |21 | 4 |49 | 14| 8 | 2 |22 |24 |23 |25
Leptophlebiidae 8224169 |72(19]| 9 |40| 9 | 16|84 21| 15|11 |26|69 |15
Baetidae 14|56 |61 30|42 |25|45| 8 (24|18 38|27 |27| 5 (28| 5
Caenidae 835719719343 |61 |54|21|39|27 (43|59 |33|48|173/|60
Prosopistomatidae 6jojofof1j0|l]0j0|OjO|O|O|O]|]O0]|O0]O
Gomphidae 20 (8519|3054 |29 (14|16 4 [32|130|27 1225|4236
Corduliidae 3 127|21(136|06(1.7(42|03|11(1.8|24| 2 [1.8/19]|5.6]|1.8
Libellulidae 4.7130(82(87|15(19(1.3(0.1(2.7|12.6|43(36(24|22|54|5.8
Coenagrionidae 6 |52|15| 9 {42)|94|66|57|45|53|36 (41| 4 |2.8(16| 40
Gripopterygidae 0.1/0.1/0.8/0.1/0.1{06(0.1| 0 |0.1| 0 [0.1/06(0.1/0.1{0.1|0.1
Corixidae 46 [ 84 |60 | 50|28 |18 |52 | 1 [31(19|18 (22| 10| 12|24 |22
Notonectidae 17 (49 (23 |55|55|12(88|20| 4 [36|15(32]|15|19| 8 | 5
Pleidae 119|166 2|34 (2|2 |22 |5|1|1|4]S5
Veliidae 2 |10[15[ 9| 6 [37[|36| 1|6 |11|9 |4 |11| 3 |13]|45
Dytiscidae 31/26(13|59(32|15|46| 5 38| 7 |3 |50 3 |15|26] 14
Elmidae 11 [35]151|53/30|16|47 |11 (42(62| 5 (25|17| 5 (26110
Psephenidae 60|24 |26|22[26(29(39|19|14|25|25(24|13|25|45] 18
Hydrophilidae 20131(20|55/20(63|39( 7 [32|26|12|49(25|20|37| 7
Tanypodinae 4523144 | 7 |10 11| 8 | 13| 3 |27 |17|15|13|25|36] 15
Orthocladiinae 40160 |71 |26 |85|21| 7 |15]| 9 [29|16|37|16| 4 |49 | 18
Simuliidae 20039102 (12|23 | 1|3 |2|6|18|,2|4|1]|6
Ceratopogonidae 11251513253 |5 |2 17|33 |4|8|9]|7]/|26
Tabanidae 1647/7.7(14/07(2.1| 2 |0.6|1.7|1.3(/04|0.1/0.6/0.8/0.2|0.3
Leptoceridae 6 12684 (45| 5|8 |4 | 1|27 |2|10/3|2|41]35
Hydropsychidae 48 |54 123 |47 |32 |24 |26 3 |21(24(19|21| 6 |24|27 |41
Ecnomidae 61 [55(63 |44 |50|22 (43| 16|28 48|28 (32|43 |21 47|31
Hydroptilidae 9 45|11 6 |18 3 |5 | 1|23 1|3 (3|3 |1|7]2
Calamoceratidae 56 | 51|47 |67 (52|54 |47 | 9 [27]49| 5 |27 30| 12|57 13
Philopotamidae 0| 0|0|O0!O ojo0ojo0|l0O0|0O|1]0|0|0]0O
Pyralidae 916|495 |5 |37 |3 [2|6|6|[32|]2]|]6]7]|7
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Table 5.1 (continued)
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Dugesiidae 551325 1 (20| 3 |12 3 |16|49| 3 |70| 9 [30]28]|11
Oligochaeta 28131 8 | 2 |36|15(25| 5 |16|24 43|44 2629|2621
Planorbidae 17|1616| 4 | 8 |2 | 6|1 |26| 6 |15]|13|5 |3 |46
Thiaridae 23|11 3|2 (S |59 |59|11|18| 8 |72|26|78|25]| 4
Corbiculidae 76 (2128 8 17| 1 |24|82|58|25|15(82/26|63|72]| 2
Acarina 75116169 | 2 | 40|28 |43 41|54 56|43 |72 |47 51|56 30
Copepoda 361246 |11 |65|20| 8 |21 85|66 |37 |31|39|28|22]| 37
Cladocera 74 |13 (15| 15|26 |13 |10|18 33|92 (14|28 2419|2233
Ostracoda 164|105 1 1 1 (2|3 145 |5]9]6¢6
Atyidae 271311261 2|9 |3 |12|15|39|94|25|58|21|50| 8 |26
Palaemonidae 3332 5|6 (19|24(72|32(37| 8 |25|77|87 68|49 |32
Leptophlebiidae 1712618 3 (9|2 [15|53]22|20|32|95|33|18|86|50
Baetidae 49|56 | 9 | 6 |35 7 [72|35|50|51|59|58|54|48|40 |54
Caenidae 48 |70 |50 (26 (42 (36|57 | 151968 |53 |51 |46 |57 (34|33
Prosopistomatidae | 0 [0 | 0| 0| 0[O0 |0]|O0O|O0|1]O|O0[0]|O0]O0|O
Gomphidae 3| 15(13 (14| 5|3 [25|20(50|61|69|19|19 22| 9 |27
Corduliidae 4 (o111 |1}2(|12]/8 4|1 |8]1]|]6]|1]2
Libellulidae I5({1f{2|o0|7 | 1|22 |8 |12|11|42| 2|2 |1]|S5
Coenagrionidae 103 (25| 2|6 |3 | 6|13(88|24[26(46|11|19|30]37
Gripopterygidae 5/o0j]0|0|0O0|0O|]O|O|]O|O|O0O|O]O]O|O0]CO
Corixidae 77 48| 16| 6 |13 |25|19(33(28 |37 |13|79|23|63|78|52
Notonectidae 381916 15|37 |10(45(23| 8 |36| 9 | 83|79 |10|58|39
Pleidae 2 (101|214 |12]4|1]|0|4]|2|6]|2]|5
Veliidae 21119(22| 3 |16 4 |45|10| 4 |34| 5 |68|71|14|20| 16
Dytiscidae 28 |12 11| 3 | 8 | 1511|3021 |43|19|63|54|35|55|51
Elmidae 633834 8 |41 (3145|1336 |143|/30|34|45|34|80|83
Psephenidae 15| 7 |20 5 |43 |22|18|15| 7 (62| 4 |23|22(48 38|10
Hydrophilidae 72168121517 (36(22(39|51|37|15(86| 9 [65| 16/ 18
Tanypodinae 519|168 |4 |10|16|12|21 (49| 7 |61 | 16|15 14(20
Orthocladiinae 56 127 (26| 3 | 18|28 |83 (74|27 |61|15|37|43|51|47(79
Simuliidae 312|512 |44 ]18]10] 4| 136|103 ]2]2
Ceratopogonidae | 11| 2 | 2 | 1 | 5|1 |14| 5|10 6| 1 |20|28|21| 9 |18
Tabanidae 1212 11 1 I 1 1 {2113 115 13|10
Leptoceridae 16461 12| 1]12]4]16|43|10]92| 8 | 1|5 4
Hydropsychidae 3011644 0 | 9 |20 64|58 |54 | 14|13 |34(59|41|79 |60
Ecnomidae 51(17 (49| 4 | 19| 11|39 |41 |55(46|53|53[44|19|53]|54
Hydroptilidae 1I5(83[ 53| 1|9 |22|37|1|12|36|15([13]29]|17]19
Calamoceratidae | 15|12 | 14| 3 [ 34| 4 [23|35|66 |46 |20(37 30|77 |63| 54
Philopotamidae ofojlojojo|lO|]O|lOflO|lO|O|O|O]O|0]|O
Pyralidae 15/2 (200|371 |33 (32|7|5|4|4]|4]13]41
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5.3.2 Networks Revision

Redundant inputs needed to be removed in order to improve transparency and
validity of the ANN model. ANNs with simpler architectures required less time to

learn and generalise pattern from database.

Each input had a certain effect on output nodes and as the number of inputs used in
this approach was much higher than in clean water approach, the individual
sensitivity level of each input was lower compared to its sensitivity in the clean water
approach. For this reason, the criteria for declaring input as redundant needed to be
revised as less strict. Those inputs affecting the range of output changes by less than

30% over their range were considered as redundant

Some inputs appeared to be highly sensitive for certain taxa but less sensitive for
others. However this approach considered combinations of macroinvertebrate
families as ANN outputs, therefore, effects of single input need to be assessed for the
whole set of outputs. Inputs, which caused small change in presence/absence of most
macroinvertebrate taxa, were considered redundant in overall. Turbidity, CO32', Cr
concentrations, H Width were redundant for all outputs. 0-4 Habitat were also
redundant for all outputs except for Copepoda. However, many other inputs provided
sensitivities at higher level than 0-4 Habitat for this taxon, thus, 0-4 Habitat was
removed from the data set. Similar situations occurred for the inputs Mean depth and

Hardness.

As the results of sensitivity analyses, 10 inputs were considered as redundant and
were removed from the revised ANN. They were from both physical and chemical

variable:
- Physical variables: H Width, Mean Wetted Width, 0-4 Habitat and Mean Depth
- Chemical variables: Turbidity, Hardness, Na", Mg+2, COg'z, CI concentrations.

The final ANN model was developed with 46 nodes in the input layer, same 40

nodes as outputs and 30 nodes in the single hidden layer.

It had been run with the same technical parameters as mentioned before for training

with 5000 iterations.
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54 Validation results

Validation results are summarised in table 5.2 and plots are shown in figure 5.1

Even though the settled condition for verification of network performance was not
achieved for Oligochaeta (61% of overall correct prediction), and just nearly
achieved for Palaemonidae (69.67%) and Hydrophilidae (69.33%), clear
improvements were observed for all taxa at quite different rates by means of the
revised ANN structure. Clear improvements were obtained for both reference sites
and impacted sites Average value of correct predictions for all taxa improved from
75.75% to 79.01% for reference sites, from 74.7% to 79.07% for potential impacted
sites, and from 75.23% t079.03% in overall.

Predictions for test sites achieved slightly better improvement. The biggest
improvement was observed for the prediction of presence of Oligochaeta at test sites
where correct predictions increased by nearly 14%. Prediction for Tabanidae at the
test sites was the only case when correct predictions declined after revision (from
96.55% by initial network to 93.97% by revised network). Prediction remained the

same for few cases (Simulidae at test sites, Hydrophilidae at reference sites)

Even though the average correct prediction rates at reference and test sites were
similar, the rates of correct predictions were quite different at reference and test sites

for different taxa.
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Table 5.2 Correct prediction of presence/absence of macroinvertebrate taxa in dirty water
approach before and after sensitivity analyses

Initial Models After Exclusion of Redundant
Inputs
Taxa 56 Input | 56 Input | 56 Input | 46 Input | 46 Input | 46 Input
Ref. Sites |Test Sites| Overall | Ref. Sites| Test Sites| Overall

1 |Prosopistomatidae 98.37 08.28 98.33 98.91 99.14 99
2 |Gripoterygidae 92.39 95.69 93.67 96.20 96.55 96.33
3 |Philopotamidae 88.59 93.10 90.33 90.76 93.97 92
4 |Tabanidae 85.87 96.55 90 88.59 93.97 90.67
5 |Psephenidae 85.87 90.51 87.67 86.41 92.24 88.67
6 |Hydropsychidae 86.96 85.34 86.33 89.67 88.79 89.33
7 |Pleidae 85.87 82.76 84.67 88.59 87.07 88
8 |Corbiculidae 87.50 80.17 84.67 89.13 85.34 87.67
9 |Notonectidae 85.33 82.76 84.33 85.87 87.07 86.33
10 |Calamoceratidae 79.89 91.37 84.33 82.61 92.24 86.33
11 |Planorbidae 80.98 80.17 80.67 86.41 87.93 87
12 |Pyralidae 78.26 81.9 79.67 85.33 81.03 | 83.67 |
13 [Veliidae 76.09 80.17 77.67 77.72 81.03 79
14 [Corduliidae 76.63 78.45 77.33 79.35 82.76 80.67
15 |Simuliidae 78.26 75 77 82.07 75 79.33
16 |Dugesiidae 77.17 75.86 76.67 75.54 75.86 75.67
17 |Elmidae 71.2 81.9 75.33 73.91 83.62 77.67
18 |Acarina 76.63 72.41 75 78.8 74.14 77
19 [Dytiscidae 78.26 68.10 74.33 78.8 72.41 76.33
20 |Ecnomidae 73.91 74.14 74 76.63 81.03 78.33
21 |[Thiaridae 77.17 68.97 74 83.7 77.59 81.33
22 |[Ceratopogonidae 69.56 79.31 73.33 70.11 813 74.33
23 |Cladocera 75.54 67.24 72.33 81.52 73.28 78.33
24 [Coenagrionidae 74.46 66.38 71.33 79.35 73.28 77
25 |Copepoda 74.46 65.51 71 79.89 72.41 77
26 |Caenidae 70.1 71.55 70.67 77.72 75.86 77
27 |[Baetidae 73.91 64.66 70.33 76.09 70.69 74
28 |Libellulidae 71.2 68.1 70 75.54 75.86 75.67
29 |Atyidae 70.11 67.24 69 70.65 74.14 72
30 |Tanypodinae 70.11 65.52 68.33 72.28 75 73.33
31 |Leptoceridae 66.85 70.69 68.33 71.2 75 72.67
32 |Hydrophilidae 69.02 67.24 68.33 69.02 69.83 69.33
33 |Leptophlebiidae 67.94 67.24 67.67 75 73.28 74.33
34 |Corixidae 69.57 63.79 67.33 70.11 71.55 70.67
35 |Orthocladiinae 66.31 66.37 66.33 71.74 72.41 72
36 |Palaemonidae 66.85 63.79 65.67 69.57 69.83 69.67
37 |Ostracoda 65.76 63.79 65 71.74 68.97 70.67
38 |Hydroptilidae 62.5 65.52 63.67 70.11 71.55 70.67
39 [Gomphidae 60.87 63.79 62 73.37 68.1 71.33
40 |Oligochaeta 56.52 46.55 52.67 60.33 62.07 61

Average 75.57 74.7 7523 | 79.01 79.07 79.03
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Validation Results
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Figure 5.1 Correct prediction of presence/absence of macroinvertebrates before and after
exclusion redundant inputs explored by models of dirty water approach.

Numbers of sites where taxa observed and predicted by models as present are
comparing in table 5.3. Comparisons show that models can predict approximately the
same number of sites where taxa are present. The results verify the reliability of

correct predictions obtained by models shown in table 5.2.
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Table 5.3 Number of sites where presence of taxa was observed or predicted by revised

models
Taxa 185 reference sites 115 test sites 300 overall
validation sites
Observed |Predicted |Observed| Predicted |Observed|Predicted
1 [Dugesiidae 35 31 25 23 60 54
2 |Oligochaeta 80 76 70 64 150 140
3 |Planorbidae 23 20 16 15 39 35
4  |Thiaridae 52 48 57 53 109 101
5 |Corbiculidae 25 22 28 25 53 47
6 |Acarina 140 143 74 76 214 219
7  |Copepoda 100 105 65 67 165 172
8 |Cladocera 56 53 37 39 93 92
9 |Ostracoda 71 70 58 55 129 125
10 |Atyidae 94 97 56 60 150 157
11 |Palaemonidae 103 100 50 48 153 148
12 |Leptophlebiidae 116 113 48 50 164 163
13 [Baetidae 139 149 82 89 221 238
14 [Caenidae 127 128 80 87 207 215
15 |Prosopistomatidae 4 4 3 3 7 7
16 |Gomphidae 88 84 43 41 131 125
17 |Corduliidae 36 35 19 15 55 50
18 |Libellulidae 78 75 50 43 128 118
19 |Coenagrionidae 57 56 47 50 104 106
20 |Gripopterygidae 17 15 4 3 21 18
21 |Corixidae 86 86 59 63 145 149
22 |Notonectidae 24 21 12 15 36 36
23 |Pleidae 28 25 17 15 45 40
24 |Veliidae 53 49 22 23 75 72
25 |Dytiscidae 74 68 40 41 114 109
26 |Elmidae 81 79 37 36 118 115
27 |Psephenidae 28 28 11 8 39 36
28 |Hydrophilidae 58 53 41 36 99 89
29 |Tanypodinae 139 146 84 88 223 234
30 [Orthocladiinae 105 105 70 67 175 172
31 |Simuliidae 45 47 31 30 76 77
32 |Ceratopogonidae 55 52 26 25 81 77
33 |Tabanidae 29 26 6 4 35 30
34 |Leptoceridae 124 130 82 86 206 216
35 [Hydropsychidae 62 62 39 32 101 94
36 |Ecnomidae 45 40 29 25 74 65
37 [Hydroptilidae 57 53 33 31 90 86
38 |Calamoceratidae 37 34 13 12 50 46
39 [Philopotamidae 30 25 10 10 40 35
40 |Pyralidae 43 41 27 24 70 65
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5.5 Discussion

5.5.1. Performance of Artificial Neural Networks

The ANN models provided similarly good validation results for both reference sites
and probably impacted sites. A series of chemical and hydro-morphological
properties could be modelled with reasonable low error. The results clearly indicated
functional relationships between colonisation patterns of benthic macroinvertebrates
and chemical and hydro-morphological habitat characteristics within river and stream
ecosystems. Moreover, a hierarchy of factor determining the community structure of
invertebrates may be identified from numerous impact variables. The rule induction
algorithm of the ANN model correctly chooses the families that are indicative of
habitat conditions, in conjunction with other families that refer to co-occurrence of

specific taxa.

The ANN architecture used in this approach was extremely complex. The complexity
of model could induce noise that may have negative impacts on the ANN
performance. Evidence was given by the fact that sensitivity levels were significantly
reduced for most of inputs compared to their sensitivity obtained by clean water
models, where fewer input variables were applied to develop models. That means
that the performance of ANNs can be improved by simplifying their structure.
Specific procedures applied for selection of the most relevant variables can reduce

input dimension and therefore simplify the complexity of network in a rational way.

In ANN models the best pre-selection method was a sensitivity analysis (Schieiter et
al., 1999). Sensitivity analyses can be conducted several times until an optimal
structure is obtained. Within the framework of this research, sensitivity was
conducted only once and improvement was clearly observed. The procedure can be

repeated to further remove redundant inputs and make models more transparent.

Good results were obtained for common taxa as well as rare and moderately frequent
taxa. Results again revealed that ANN models are able to cope with taxa represented

by probability of presence at sites greater than 0.
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5.5.2 Relationship between Macroinvertebrates and Habitat Conditions

Sensitivity analyses showed that the effects of physical predictor variables to
macroinvertebrates distribution were similar to relationship studied by the clean
water approach. The trends of output changes over the ranges of inputs appeared to
be the same for most taxa, even though the magnitudes of changes were largely

different

Relationship between physical predictors and the distribution of macroinvertebrates
was discussed for the clean water approach in chapter 4 and will be discussed further
in next chapter. In this chapter, the discussion focuses on relationships between the
distribution of macroinvertebrates and input variables, which are potentially affected

by anthropogenic activities.

Current and discharge

So-called H Velocity, site max velocity and instantaneous discharge were identified
as sensitive inputs for the ANN performance. Habitat velocity was highly sensitive
for distribution of 16 taxa and also affected 5 others. Discharge also appeared to be
significantly sensitive for 12 taxa and moderately for 5 others. Site max velocity also

influenced to the presence of 19 taxa.

Much of the ecological information on water current-insect interactions deals with
the relationship between distribution patterns and the corresponding spatial variations
in water velocity (Ward, 1993). In addition to their direct effects, current and
discharge play major roles in structuring habitat conditions for stream
macroinvertebrates by influencing mineral and organic substrate, suspended and
aquatic flora. Changes in discharge increase the number of aquatic insects drifting

downstream

Simulidae, filter-feeding black flies have feeding mechanisms that depend on current
(Chutter, 1969). Many species belonging to the Simulidae family loses their feeding
capability at still water. The cephalic fans of Simulium ornatum var. nitidifrons, for
example, close and lose their feeding function at velocity < 19cm/sec (Harrod, 1965).
Figure 5. 2 illustrate result of sensitivity analysis shows that Simulidae prefers fast

flowing habitat with H velocity exceeding 0.5 m/s.
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Figure 5.2 Relationship between max H velocity and presence of black flies Simulidae

Predacious diving beetles Dytiscidae favour habitat amongst weed in still water

(Hawking & Smith, 1997). The relation was revealed by sensitivity analyses as
shown in figure 5.3
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Figure 5.3 Relation between Max H Velocity and presence of Dytiscidae

Edington (1968) found that the nets of various species were concentrated in certain
velocity ranges. Hydropsycchidae is a rapid family that constructs net in the fast

water (15 — 100 cm/sec). Figure 5.4 shows that fast flowing streams are favourite
habitats of Hydropsycchidae.
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Figure 5.4 Relations between H velocity and Site velocity, and presence of
Hydropsychidae

pH

pH has many influences on the aquatic life. Aquatic organisms have ranges of
tolerance and optima of pH themselves as the enzyme functions are controlled by
specific pH values. Acidity levels influence the solubility and formation of metals
ions in the stream water. Those ion concentrations have direct impacts on the life of
macroinvertebrates (Lamberti & Sommer, 1997). Cleanwater rivers vary in acidity
(Giller & Malmqvist, 1998). Conditions within the Queensland stream system
confirm this fact. While reference sites have pH values in the range from 4.4 to 9.43,
test sites have pH value in the range of 5.1 - 10. Low pH is observed at catchments
with hard, igneous rock being low in dissolved salts and buffering capacity. On the
other hand, catchments with sedimentary rock are rich in carbonates and the

originating streams are usually well buffered, hard water systems with high pH.

pH was observed to be at medium sensitive level for colonisation patterns of
macroinvertebrates. However results showed that it was really sensitive for 12 taxa.
Several invertebrate families appeared to be absent from low pH sites (e.g. molluscs,

mayflies) while others were usually well presented (e.g. stoneflies, blackflies).
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Mayflies posses a well-known sensitivity to acid conditions, only few mayflies can
tolerate low pH (Giller & Malmqvist, 1998). However, exceptions are some
Leptophlebiids, which can be found in water of very low pH. Sensitivity analyses

showed that mayflies Leptophlebidae and blackflies Simulidae were mostly present

at low pH condition (figure 5.5).
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Figure 5.5 Blackflies Simulidae and mayflies Leptophlebidae favour low pH conditions

Physiological effects of low pH have also been demonstrated on chironomids,
mayflies and crustaceans (Giller & Malmqvist, 1998). Sensitivity analyses (Figure
5.6) revealed such relationship. Examples are shown for Corbiculidae belonging to
the class mussel Bivalvia and for the sub family Tanypodinae of chironomids, which
can only be present at conditions of high pH. Caenidae favour high pH conditions

but also tolerate lower level of pH down to 5 (Otto & Svensson, 1933)
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Figure 5.6 Relations between pH and mussel Corbiculidae, chironomid sf-Tanypodinae
and mayfly Caenidae

Conductivity and ion concentrations

Conductivity takes into account the total concentration of inorganic ions in the water.
Inorganic ions can significantly impacts on biology of macroinvertebrates in
freshwater ecosystem. Low calcium levels, for example, can cause osmotic problems
and affect shell cuticle secretion in invertebrates as observed for crustaceans,
crayfish and snails (Giller & Malmgqgvist, 1998). The ANN models used several
concentrations of inorganic ions as inputs, from which only concentrations of K*,

Ca* are considered relatively sensitive variables to the distribution of
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macroinvertebrates in the Queensland stream system.  Conductivity caused

significant impacts on presence of 9 taxa. Figure 5.7 and 5.8 illuslrate some
examples.
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Figure 5.7 Copepoda, Oligochaeta, Tanypodinae favour conditions of low. conductivity
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Figure 5.8 Dyticsidae and Hydropsychidae favour conditions of high conductivity

Mineral nutrient concentration

Mineral nutrients are usually divided into the macro element (N, P, S, K, Mg, Ca,
Na, CI) which usually make up >0.1% of the organic matter, and the trace elements
(Fe, Mn, Zn, B, Si, Mo...) according to the amounts required. All these elements can
be considered as mineral nutrients dissolved in water. Theoretically, any of these
elements could become an essential, limiting resource. In most freshwater
ecosystems, however, many of them are almost always in excess, so that the
spectrum of limiting nutrients can be narrowed to N, P and some trace elements
(Lamberti & Sommer, 1997). The productivity of autotrophic stream producers is
influenced by nutrient concentrations, particular phosphorus and nitrogen (Giller &
Malmgqvist, 1998). Nutrient-rich rivers can be dominated by filterers, grazers and

some predators (Peterson et al., 1993).

Figure 5. 9 illustrate favorite habitat conditions for grazer Cladocera, blackflies
Simuliidae and carnivore water tiger Dytiscidae occur at high concentration of N and

P.
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Figure 5.9 Relations between concentration of N and P and grazer Cladocera, blackflies
Simuliidae and water tiger Dytiscidae

Figure 5.10 shows that shredders such as Leptophlebidae and predators such as

dragonflies Gomphidae favour low concentration of N and P.
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Figure 5.10 Relations between concentration of N and P and mayflies Leptophlebidae,
and dragon flies Gomphidae

Detrital cover

Detrital cover should significantly influence the presence of macroinvertebrates,
especially those feeding on detritus. Wetzel (1983) defined detritus as “ organic
carbon lost by non-predatory means from any trophic level (includes egestion,
excretion, secretion, and so forth) or inputs from sources external to the ecosystem
that enter and cycle in the system”. Detritus is all dead organic carbon,
distinguishable from living organic and inorganic carbon. Detritus originating as
ungrazed primary production support a “detritus food chain”, which is defined as any
route by which chemical energy contained within detrital organic carbon becomes
available to the biota (Weltzel, 1983). Therefore, detritus, as a component of
environment, can either directly or indirectly affect the distribution of

macroinvertebrates in freshwater ecosystems.

In this study, detrital cover appeared to be sensitive for 12 taxa. Examples include
models  for  Libelullidae, = Hydropsychidae, = Hydrophilidae,  Dugesiidae,
Calamoceratidae. Figure 5.11 illustrates relations between detrital cover and some

taxa, where taxa presence of which appeared to be sensitive to detrital cover.
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Relations between detrital cover and distribution of macroinvertebrates should be
highly complex. Even though non of direct correlations between detrital cover and
presence of certain macroinvertebrate taxa had been found in the literature so far, the
relation plots discovered by sensitivity analyses provided new insight and hypotheses

for further research in this field.
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Figure 5.11Relations between concentration of N and P and grazer Cladocera, blackflies
Simuliidae and water tiger Dytiscidae Caramoceratidae, and beetles Hydrophilidae
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5.5.3. Data Limitation

Several chemical variables such as oxygen concentration, which can probably partly
explain of the variation between different macroinvertebrate communities, are not
available in the database. Oxygen is considered crucial to the life of aquatic fauna
especially macroinvertebrates that depend on oxygen in solution to meet their
respiratory needs. In addition, the interactions of oxygen with other variables such as
current, substrate, or temperature are considered important in the context of aquatic
ecology (Hynes, 1960; Hellawell, 1986, Ward, 1992). Oxygen condition in water can
be expressed by dissolved oxygen (DO) or biological oxygen demand (BOD).

It has been known that quantities of certain trace elements exert a positive or
negative influence on aquatic plant and animal life including the distribution of
macroinvertebrates. Trace elements play important part on the enzyme functions.
Bivalves and crustaceans are extremely sensitive to heavy metals concentrations. On
the basis of their biology, they are excellently suited for use as heavy metals

indicator organisms (Forstner & Wittmann, 1983).

Impacts of toxicity, biotic and abiotic degradation of insecticide and pesticide
residues on aquatic organisms are very important issues that need to be considered.
Aquatic organisms including macroinvertebrates may be contaminated by chemicals
through several pathways: directly via uptake through gills or skin as well as
indirectly via ingestion of food or contaminated sediment given. Insects are known to
be highly sensitive to insecticide toxicity, crustaceans are at lower level as well.
Macroinvertebrates represent the most sensitive to biological response range to DDT,

malathion and endrin (Mason, 1996).

Unfortunately, data of the parameters discussed above is not available for all
samples. Some data of oxygen level are still in preparation. We hope to be able with
an extended database to develop more reliable models in order to improve prediction

capability of ANN models based on dirty water approach.
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5.6  Chapter Summary and Conclusion

The dirty water approach proved to be useful to assess stream habitat conditions.
Good prediction results for both clean and potentially impacted sites prove the
possibility of the approach to be applied for management purposes. Once functional
interrelations between water chemistry and distribution of macroinvertebrates have
been determined, the approach can be applied in the reverse way, using colonisation
patterns of macroinvertebrates and easily-measured physical predictor to predict
chemical variables, which are representative for the distributions of
macroinvertebrates. This application provides a quantitative assessment of stream

habitat conditions.

Investigation of sensitivity curves derived from dirty water ANN models using the
methods described in this study greatly enhanced the understanding of the effects of
impacts of various types on individual macroinvertebrate taxa. Results will enable to
identify impact specific indicator taxa. The shape of the sensitivity curves of taxa
would indicate how important it is to manage disturbances within certain bounds in
order to maintain healthy aquatic ecosystems. More details about sensitivity analysis
and how to apply results of sensitivity analyses as management tools are discussed in

the next chapter.

However, a better database is required especially with data about water quality to get
more meaningful interrelation such as oxygen and nutrient level, concentrations of

trace metal and poisonous elements in stream habitats.
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True flies Chironomid, are among the most pollution-tolerant macroinvertebrates (Hynes, 1960)
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6 Elucidation of Freshwater Habitat
Condition Discovered by a Sensitivity

Analysis

6.1 Introduction

After training a neural network, sensitivity analysis is carried out in order to find out
the effect that each of the network inputs is having on the network output. Sensitivity
analysis is a method for extracting the causal relationships between the inputs and
outputs of the network. The input variables that produce low sensitivity values can be
considered insignificant and can usualy be removed from the network. This will
reduce the size of the network, which in turn reduces the complexity and the training

time. Furthermore, this may also improve the network performance.

Sensitivity analysis was conducted for each of ANN models. Each input
variable was varied between its mean +/- a certain number of standard
deviation while all other inputs were fixed at their respective means. The
number of standard deviation is defined so that the computed range covers
whole value of this input in the database. By theory, mean +/- 3 standard
deviations can cover 99% of database, except for some extreme values (Bury,
1975). The network output was computed for a defined number steps above
and below the mean. This process was repeated for each input variable. Plots
were generated for each input variable and for each taxon specific ANN model

illustrating the change of network output over the range of the varied inputs.
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The primary intention of this sensitivity analysis was to improve the neural network
model performance by limiting input variables to those that were sensitive for each
model. Analysis of sensitivities allows to estimate the percentage change of the each
output within the range of specific input. However, this process also identified

important relationships between environmental variation and the occurrence of taxa.

6.2  Design and Interpretation of Sensitivity Plots

Various shapes of sensitivity plots can be distinguished which illustrate relationships
between ANN input variables and outputs.  Names indicate family-level
identification of taxa. Outputs on the Y-axes are the predicted occurrence of a taxon
ranging between O and 1, and inputs on the X-axes are environmental input variables

over the ranges they were varied.

Some input variables had little influence on outputs. In these cases there was either
no output response to input variation (Figure 6.1a) or the change in output response
occurred over a very small range (Figure 6.1b). This type of response indicated that
inputs had little or no influence on the occurrence of the macroinvertebrate family of

concern.
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Figure 6.1 “Flat” responses

Of greater interest were the input parameters that resulted in a large range of output
response as they vary (Figures 6.2, 6.3, 6.4). These were the variables that had a
large impact on whether the ANN models predicted taxa to be present or absent in a
sample. ~The nature of the relationships between input variables and the
presence/absence of macroinvertebrate taxa was classified based on the shape of the

sensitivity plots as follow.
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As they varied, some input parameters produced a ‘ramp’ response in the predicted
probability of a taxon being present, in which probability changed gradually from
high to low. The ramp were either positive, meaning that the probability of taxon
presence increased with increasing values of the input variable (Figure 6.2a) or

negative, meaning the probability of taxon presence decreased with increasing values

of the input variable (Figure 6.2b).
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The second type of response was a ‘threshold’ whereby the probability of occurrence
changed from high to low over a narrow range of input variability. Once again the
relationships were positive (Figure 6.3a) or negative (Figure 6.3b). The slope of the

threshold can vary from almost a vertical drop (a ‘cliff’) to a much gentler ‘incline’.
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Figure 6.3 “Threshold” responses

The two remaining types of relationship between inputs and outputs identified from
the sensitivity plots were a ‘plateau’ or a ‘valley’. The plateau response had a
continuous range of input values in which there was a high probability a taxon was
present, with a drop off to low probability at either end of the range (Figure 6.4a).
The valley response was the converse with low probability over a range of input
values and high probability at either end (Figure 6.4b). In both cases there was
variation between examples in the extent of the range of variable values at the top of
the plateau or the bottom of the valley, producing either a broad or narrow plateau or

valley. There was also variation in how steeply the output responses rose or fell
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outside the input ranges at the bottom of the valley or top of the plateau, and in some

examples there was asymmetry between the slopes at the two ends of the range.
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Figure 6.4 “Plateau” and “Valley” responses
Interpretation of these sensitivity curves provides new insights into relationships
between the occurrence of macroinvertebrate families in Queensland streams, and

variation in some physical properties as well as water chemistry of aquatic habitats.

6.3  Elucidation of Causal Relationship by Sensitivity Plots

The shapes of the sensitivity curves indicated the ecological response of taxa to an
environmental variable. Ramp curves indicated a gradual change in preference over
a range of an environmental parameter, whereas a threshold appeared more
indicative of a more abrupt cut off in the tolerable range of a variable. A plateau
response was really a modification of either the ramp or threshold curves with drop
offs at either end rather than just one. The valley curve was more perplexing and
may represent different preference and tolerance profiles of two or more species in a
family. In principle, where more than two species with differing requirements are

included in a family, sensitivity curves could contain multiple valleys or plateaus.

There is not the scope to present and discuss all sensitivity plots in this study,
because each taxon may need comprehensive study for response to habitat
conditions. I hereby only select some example to illustrate the types of relationships
that were evident between input environmental variables and the predicted
presence/absence of macroinvertebrate taxa. The objective of this is to demonstrate

the usefulness of the technique, rather than to report specific relationships.
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Worms

Dugesiidae are large, free-living flatworms. This is the most well-known of the
freshwater flatworm families, and is widespread and common in streams in Australia.

Worms are sensitive species to pH and are dominant in high-pH conditions

(Hawking & Smith, 1997).
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Figure 6.5 Preference of Dugesiidae to H velocity and pH

Oligochaeta (earthworms, segmented worms) are predominantly an aquatic class.
Segmented worms inhabit on substrata of still and slow-flowing waters and also
sensitive to acidic conditions. Figure 6.5 and 6.6 clearly support theoretically

expected preference of Dugesiidae and Oligochaeta.
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Figure 6.6 Preference of Oligochate to pH and site velocity
Crustaceans

Atyidae (freshwater shrimp) live in many types of water body but prefer
comparatively still waters where they congregate under banks, large submerged
boulders and aquatic vegetation. Most of them prefer surface-waters (Choy &
Horwitz, 1995). Figure 6.7 illustrate the preference of Atyidae in flat habitat with

slow current velocity.
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Figure 6.7 Preference of Atyidae to H velocity and slope

Palaemonidae (freshwater prawns) live in running or still permanent waters, and
away from the coast (Horwitz, 1995). They are tropical species and therefore are

mostly observed in high temperature waters (Figure 6.8)
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Figure 6.8 Preference of Palaemonidae to longitude and mean daily temperature

Copepoda appeared to occur at warm and still water (Figure 6.9)
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Figure 6.9 Preference of Copepoda to H velocity and Water Temperature

Cladocera (water fleas) is known to be freely swimming (nektonic) and requires
slow flowing water at depth. While water depth is increasing flow velocity is slightly
decreasing towards high order downland streams at low altitudes with small channel

widths. The sensitivity curve in Figure 6.10 indicates optimum depths for Cladocera

species from 0.2 to 1.2 m.
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Figure 6.10 Preference of Cladocera to H Depth and water temperature

Figure 6.11 shows optimal temperature for several Daphnia species regarding

physiological effects such as ingestion and reproduction rates maximum (Lampert

and Sommer 1997). This relationship between temperature and biological activities is

described as unimodal curves. A decrease in activity above the maximum is usually

more rapid than the increase in the activity rate at sub-optimal temperature. A similar

shaped relationship was discovered for water temperature (see Figure 6.10) that

indicates optimum conditions for Cladocera in the range from 10 to 30°C.
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Figure 6.11 Physiological effects of water temp. to Daphnia (Lampert & Sommer, 1987)

Ostracoda (seed shrimps) are also good swimmers and often found to be abundant at

water surface of fresh or saline water (Hawking & Smith, 1997). The sensitivity

curve (Figure 6.12) shows preferred habitat depth for Ostracoda between 0.5 and 1m

in the lower reaches.
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Figure 6.12 Preference of Ostracoda to H Depth and reach

Snails and mussels

Planorbidae is a cosmopolitan family of mainly left-coiled freshwater snails, which
is confined to waters of low salinity, usually with algal growth or water weed on
which the animals feed. Some species occur among dead leaves or other debris of
slow-flowing rivers. They have been observed at habitat, which were highly
polluted, oxygen depleted or very deep. They utilise haemoglobin or carry other
respiratory modifications for coping with such conditions.  Some exhibit
considerable drought resistance. Planorbids often are the dominant molluscs at a site
(Smith, 1996). Figure 6.13 shows that Planobidae can survive in drought condition

with even extremely low dry-season-monthly-mean (DSMM) rainfall.
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Figure 6.13 Preference of Planobidae to slope and range in DSMM

Thiaridae (marsh snails, black snails) is a worldwide-distributed family of almost
exclusively freshwater snails. They are often found in great numbers, and in coastal
lowland Queensland streams, where they are regularly the dominant molluscs, often
in muddy habitats (Smith, 1996). The sensitivity plots in Figure 6.14 supports

literature finding on Thiaridae.
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Figure 6.14 Preference habitats of Thiaridae

Corbiculidae are strong-shelled bivalves with a preference for flowing dowland river
with sandy substrate (Smith, 1996). Corbiculidae are very sentivitive to low pH.
They also accumulate toxic chemicals in the tissues. Corbiculids therefore have been
used to monitor pH and various chemical contaminants. The sensitivity plots in

Figure 6.15 show distinct sensitivity of Corbiculidae to pH and stream order.
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Figure 6.15 Preference of Corbiculidae to stream order and pH
Water mites

Norton et al. (1988) suggested that water mites (Acarina) are demographically as
least as conservative as soil-dwelling relatives. They live in cold, oligotrophic waters

and have multi-year generation time.

Models in both clean and dirty water approaches revealed that Acarina occurred in
condition of low water temperature and low level of N and P, which characterise

oligotrophic water (Figure 6.16).
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Figure 6.16 Preference of Acarina to Water temperature and N level

Mayflies

Baetidae are most common in clear, cold streams (Suter, 1996). They are amongst
the earliest of mayflies to emerge where some appear on warm days at the end of
winter. In Queensland, Baetidae was observed in southern part and never found in
tropical areas. As fast swimmer (Hawking & Smith, 1997), Baetidae nymphs prefer

deep habitat. This information was confirmed by the sensitivity analyses curves

(Figure 6.17).
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Figure 6.17 Preference Baetidae to water temperature and H depth

Prosopistomatidae is unusual mayfly from tropical rivers in north Queensland. They
are common in riffles and fast-flowing, warm water (Dean, 1996) and are regarded as

rare. Sensitivity curves show the trends of this taxon towards latitude and water

temperature (Figure 6.18).
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Figure 6.18 Preference of Prosopistomatidae to Water temp and Latitude (H velocity)

143



Caenidae prefers slow-moving stream. They are rare found in swift flowing waters.
Nymphs burrow into the mud and sediment on the bottom of ponds and standing
rock pools (Ward, 1992). Large channel also plays the role in current velocity.
Narrow channels likely have higher velocity than wide channels. Figure 6.19 shows

the preference of Caenidae in wide channels with slow-current streams.
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Figure 6.19 Preference of Caenidae fo Site max Velocity and Mean Channel Width

Leptophlebiidae are adapted to various habitats from warm standing waters of coastal
watersheds to melted snow of sub-alpine areas. In Queensland, nymphs were found
in southeastern parts. As discussed in Chapter 5, these mayflies prefer low pH

conditions. (Figure 6.20)
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Figure 6. 20 Preference of Leptophlebiidae to Longitude and H velocity

Dragonflies, damseflies and stoneflies

Many species of Odonata burrow in fine sediment. Dragon fly nymphs typically lie
buried in silt with only the eyes and respiratory aperture above the sediment.
Gomphidae are cosmopolitan, swift, lender forms. They are frequent in running
water. Corduliidae are found in eastern Australia. They are usually observed at clear
fast streams. Libellulidae are tropical origin, mostly of still or slowly running water.

The sensitivity plots in Figure 6.21 support these findings.
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Figure 6.21 Preference of Libellulidae to water temperature, Cordulidae fo site max
velocity, and Gomphidae to H Velocity and Silt-clay

Coenagrionidae are mainly tropical as resulted in Figure 6.22. Adults can be found

in low-ordered static water, while nymphs live among aquatic plant.
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Figure 6.22 Preference of Coenagrionidae to reach and mean daily temperature.

Stoneflies Gripopterygidae nymphs live in the water with stony or gravel bottom.
They require cool well-aerated water and can be found in shallow upper reaches of
streams. Larvae occur on swift or on slow-flowing streams. Their distributions are
observed in North Queensland. Because of the often highly specific environmental
requirements of nymphs, stoneflies are particularly good water-quality indicators,
especially where oxygen-demand pollutants are concerned (Ward, 1992). Dirty water
models predicted presence of stoneflies at 10% of clean-water sites and only at 2% of
dirty-water sites. Stoneflies tend not to occur where temperatures can exceed 250C
due to their oxygen requirement (Hynes, 1970). This is also demonstrated by the

sensitivity plots in Figure 6.23.
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Figure 6.23 Preference of Gripopterygidae to Water temperature and (DSMR)

Bugs

Corixidae are predacious bugs that swim actively in the still and slow-flowing water

and feed mainly on insect larvae in the bottom ooze in coastal areas (Carver et al.,

1991). Sensitivity plots in Figure 6.24 confirm these findings.
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Figure 6.24 Preference of Corixidae to longitude and H velocity

Notonectidae, predatory bugs, swim upside-down, usually just under the water
surface, and are common in still or slowly running waters as indicated by Figure

6.25. The family is cosmopolitan and occurs throughout Australia (Carver et al.,
1991).
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Figure 6.25 Preference of Notonectidae to H depth(clean) and H velocity (dirty)

Pleidae are frequently abundant in the tropical north (see Figure 6.26) in swamps and

lakes (Carver et al., 1991).
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Figure 6.26 Preference of Pleidae to latitude

Veliidae are found swimming in large groups in sheltered side pools or along the
edges of bodies water. They live amongst emergent vegetation and floating leaves at
the surface of quiet areas of still and flowing water (Carver et al., 1991). Figure 6.27

shows the preference of Veliidae in flat habitat with habitat current velocity less than
0.5 m/s.
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Figure 6.27 Preference of Veliidae to H velocity and slope (clean

Beetles

Dytiscidae (Figure 6.28) live in a variety of aquatic habitats but are most common in
the littoral zone at the edges of lakes and ponds, and are found in running and still

waters (Lawrence & Britton, 1991).

Figure 6.28 Preference of Dytiscidae to H depth and H velocity
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Elmidae (Figure 6.29) were found in all kinds of streams. They are more common in
shallow running water, rocky bottoms, clear water and high oxygen contain. They

frequently the only Coleopterans present in torrential streams (Ward, 1992).
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Figure 6.29 Preference of Elmidae to H velocity and alkalinity (clean)
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Larval psephenids (Figure 6.30) are streamlined animals. They feed on algae on

rocks in exposed positions with high-energy flows.
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Figure 6.30 Preference of Psephenidae to H velocity and % cobble
Most larval Hydrophilidae (Figure 6.31) are fully aquatic, occur in a wide range of
lotic habitats, though shallow well-vegetated margins of still waters, quiet areas of

flowing water and stream banks are most favoured (Lawrence & Britton, 1991)
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Figure 6.31 Preference of Hydrophilidae to H Depth (clean) and detrital cover

True flies

Midge larvae (chrinomids) are the most dominant in aquatic ecosystem. The neural
network models considered two subfamilies Tanypodinae and Orthocladiinae.
Orthocladiinae have cold-stenothermic nature and are dominant in subalpine and
mountain streams, where the maximum water temperature in summer may reach

100C. In middle and lowland stream, where temperature may exceed 200C,
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Orthocladiinae significantly decrease (Lindegaard & Brodersen, 1995). Sensitivity

analyses confirmed the presence of Orthocladiinae at upper reach and cold water
(Figure 6. 32)

08
08

= Orthocladinge
04

s 10 15 20 25 30 @ I
Varled Inpul Water Tomp {°C) Varled Inpul 0-2 Reach

Output(s)
Oulpul(s)

=== Qrlhocladinae

!
|

Figure 6.32 Preference of Orthocladiinae to reach and water temperature

Tanypodinae appear very few in montane and subalpine streams and increase

furthers downstream the river continuum with higher water temperature (Lindegaard

& Brodersen, 1995) (Figure 6. 33)
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Figure 6.33 Preference of Tanypodinae to stream order and water temperature

The Simuliidae (blackflies) are amongst the most characteristic running water macro-
invertebrates. The characteristic habitat of blackflies is attaching to substratum of

flowing water in highland stream as indicated in Figure 6.34.
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Figure 6.34 Preference of Simuliidae to H velocity and altitude

Ceratopogonidae and Tabanidae (horse flies, marsh flies) (figure 6.35) are amongst

the commoner of the "higher" Diptera in aquatic habitats. They vary in habit, but

prefer wet sand and mud at cool stream margins.
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Figure 6.35 Preference of Ceratopogonidae and Tabanidae to Water temperature and
Habitat depth

Caddis flies

Leptoceridae (Figure 6.36) are very common Trichoptera found in a wide range of
habitats: from mountain streams to lakes, including temporary pools and saline
waters. Leptoceridae was included in the list of aquatic insect families characteristic
of potamal zones, where the annual range of water temperature exceeds 200C; the

current is slow and dissolved oxygen deficits occur at time (Ward, 1992).
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Figure 6.36 Preference of Leptoceridae to H velovity and water temperature

Hydropsychidae (figure 6.37) build fixed retreats of plant material or rock fragments
in fast running water and constructs a filter net in the current to capture algae,
organic debris and small invertebrates as food. Distribution is observed in eastern

Australia (Neboiss, 1991, Hawking & Swmoth, 1997).
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Figure 6.37 Preference of Hydropsychidae to longditude and H velocity

The larvae Ecnomidae construct fixed tubes of silk incorporating plant and mineral

material, attached to logs and rocks (Neboiss, 1991). Their habitats include still and
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flowing water thus sensitivity analyses shows that they prefer fast flowing water, and

as most of caddish flies they prefer cool water temperature (Figure 6.38) (Hawking
& Smith, 1997; Hellawell, 1986).
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Figure 6.38 Preference of Ecnomidae to H velocity and Water temperature

Hydroptilidae are very small caddisflies (micro-caddis), which live in ponds,

backwaters and areas of deep silt. The larvae are free-living. The case is attached to

the substrate immediately prior to pupation. The sensitivity analyses shows the

shallow habitat with few boulder substrates was favourite for them (Figure 6.39)
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Figure 6.39 Preference of Hydroptilidae to H depth and boulder content

Calamoceratidae inhabit sluggish still or slow flowing rivers and feed on plant

debris (Neboiss, 1991). The illustrated response to water temperature (Figure 6.40)

may represent the different ecological requirements of Calamoceratid caddis fly

species from north and south Queensland (Marshall et al., 2000)
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Figure 6.40 Preference of Calamoceratidae to Water temperature H velocity
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Philopotamidae Small to medium sized Trichoptera found mostly amongst large
stone in clear, rapid streams where they build fixed silken tubes or sack-like nets
(Cartwright, 1997). Sensitivity analyses shows the trend of these caddis flies to
present in rapid habitat velocity and highland streams (Figure 6.41)
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Figure 6.41 Preference of Philopotamidae to H velocity

Moths

Most moth species with aquatic larvae belong to the family Pyralidae (Figure 6.42).
They are attached to bedrock in fast-flowing streams and rivers (Hawking & Smith,

1997).
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Figure 6.42 Preference of Pyralidae to H Velocity and %Cobble

Many other relations were detected and were in most cases confirmed with related
ecological results, when information was available. The results indicate that
developed neural network models in many cases work in ecological meaningful

manner.
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6.4  Contradiction to Literature Findings

Most of the relationships found by sensitivity analyses were confirmed by literature

finding. However, there were few cases where contradiction was observed.
Plots in Figures 6.43 is discussed some cases as examples.

Giller & Malmqvist (1998) discussed that a majority of stream living triclads (only
one family Dugesiidae) is cold-living species. The sensitivity curve (Figure 6.43a)
however shows that Dugesiidae could present only in conditions of water

temperature exceed 200C.

Libellulidae are tropical origin but sensitivity curve (Figure 6.43b) shows their
absence at latitude above —20(S), which is characterised for tropical zones of

Queensland.

Dytiscidae have the greatest diversity occurring in the southeast part of Australia and
are most common in the littoral areas (Lawrence & Britton, 1991). Information
obtained by sensitivity analysis (Figure 6.43c and d) shows that they were found only

in North Queensland at low-ordered streams.
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Figure 6.43 Examples of contradiction between sensitivity analyses and literature finding
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These contradictions are very interesting parts of results as well. They require further
research to find out whether the models generate wrong patterns or they provide new

insight into those relationships.

6.5 Limitation of the Method

The method only considered the impact of single input on output response. In fact,
effects of habitat conditions on distribution of macroinvertebrates are always

multivariate patterns. Many factors are not independent but closely interrelated.

The interrelation among current, temperature and oxygen demands of
macroinvertebrates is an example. The current continually replenishes water and
hence also oxygen in the immediate vicinity of the respiratory surface of the animal
and quite low levels can be tolerated in strong currents that renew oxygen at a high
rate. Generally, metabolic rates and oxygen demand are higher in stream
invertebrates than in still water forms at a given temperature. Respiration is
temperature-related and rates can increase byl0% or more per 1oC temperature rise.
Thus increased temperature does not only reduce oxygen availability but it also
increases oxygen demand that can add to the physiological stress of organisms

(Giller & Malmqvist, 1998).

The most important hydraulic characteristic for individual organism is the prevailing
current velocity striking the organism head-on (Statzner et al., 1988). Species do
react differently to current velocity, show differential preferences and consequently
different flow conditions lead to divergent assemblages of organisms. In a detailed
survey, boundary layer Re (Renolds number) was the most strongly correlated
individual variable with invertebrate distribution and taxon richness in two New
Zealand streams but a combination of mean velocity, substrate size, and depth gave
stronger correlation than any single variables (Quinn & Hickey, 1994). It appears
that the interaction between current velocity and stream substrate size is important in

determining invertebrate distributions.

Orth & Maughan (1983) determined optimum velocity, depth, and substrate for

major taxa on benthic macroinvertebrates of warm-water woodland stream. The
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combination of current velocity of 60cm/sec, a depth of 34 cm and rubble-boulder
substrate resulted in optimal diversity of benthic assemblages. Recognising that
habitat selection by benthos may be based on factor combinations, the investigators
derived ‘“‘joint preference factors” using the product of the individual preference

factors.

Ecological patterns that underlie these multivariate patterns are characterised, for
example, by the fact that mean species richness and total species pools increase with
pH (Hildrew & Townsend, 1987). Stream with a pH as high as 6.5 but low alkalinity
(low Ca®") often show similar features to more acidic waters (pH< 5.5, Willoughby
& Mappin, 1988). Effects of pH on aquatic fauna are different on different conditions
of water temperature (Hynes, 1970). Food supply also depends on current speed,
either to convey particles to filter feeding organisms or to deposit detritus (Hellawell,
1986). Toxicity of ammonia and hydrogen sulfide to aquatic organism is dependent

on both temperature and pH conditions (Smith & Maasdam, 1994).

These and other examples illustrate the multivariate effects of different habitat
condition variables on distributions of macroinvertebrates. To study the effect of
individual variable while keeping all other variables at their respective means ignores
the very important pattern—combination of factor preferring by macroinvertebrates.
Further research needs to consider this fact and improve the practicability of

sensitivity methods on elucidation of the freshwater habitat conditions.

6.6  Using Sensitivity Analysis for Management Purposes

The sensitivity curves obtained by sensitivity analyses can contribute information for
better management and maintenance of good condition of streams and rivers. The
shape of the sensitivity plots of taxa would indicate how important it is to manage
disturbances within certain bounds in order to maintain healthy aquatic ecosystems.
Taxa with a threshold response to a disturbance would be eliminated from a stream
beyond a certain disturbance level, whereas taxa with ramp responses would
gradually become rarer as disturbance intensified. The identification of such

thresholds would provide water resource managers with a powerful tool.
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Investigation of sensitivity curves derived from dirty water ANN models with more
comprehensive database using the methods outlined here should greatly enhance our
understanding of the effects of impacts of various types on individual
macroinvertebrate taxa. This will enable impact specific indicator taxa to be readily
identified and should enhance our capacity to monitor and mitigate the effects of

human activities on stream ecosystems.

Family level identifications were used in this study because data were collected to
develop rapid assessment techniques. Sensitivity curves could be more usefully
applied to generic and preferably species level data to better study the ecological

responses of macroinvertebrates to freshwater habitat conditions.

Mayflies Baetidae are usually one of the most frequently encountered families
in lotic habitats (Giller Malmgvist, 1998)
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7 General discussion

7.1  Performance of Artificial Neural Networks

The capabilities of Machine Learning technique in general, and Artificial Neural
Networks in particular, do not just only come from the specific induction method, but
from a proper and meaningful formulation of the problems, representative data, and
from crafting the model representation to make learning tractable. For example, there
is no point in developing an ANN to predict water quality variables in stream from
hydrological and meteorological information. Field applications of machine learning,
including ANN techniques and sources of power in applied machine learning, were
the main sources of discussion in the edited work by Michalski et al. (1999). In
supporting biological assessment of stream habitat conditions, machine learning has
not completely automated the knowledge engineering process, but it has replaced
knowledge engineering with two simpler tasks: characterising the problem and
designing a good data representation. This section discusses the most important steps

in successfully applying artificial neural networks to solve the given problems.

The first step in using any machine learning technique, including artificial neural
networks, to solve any real-world problem is to reformulate the problem in terms that
can be dealt with by some induction method (Langley & Simon, 1999). Studying the
relations between stream habitat conditions and biological responses such as
distributions of macroinvertebrates is a complex task, yet we need to identify
components that involve simple classification, a task for which robust induction
algorithms exist. In this research, presence/absence of a single taxon might not be an
optimally chosen target task. Discrete outputs contain only two values (0 and 1), that

might cause difficulties in induction algorithms of ANNs (Rumehart et al., 1986).
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Functional feeding groups or abundance of indicator taxa, which are represented by
continuous numerical values, may be better alternatives to improve the performance

of neural network models.

The second important step is to settle on an effective representation for both training
data and the targeted knowledge to be learned. Representation refers to features used
to describe examples and to characterise the results of learning. The representation of
the problem classified in the research is based on the expert knowledge about the
ecological requirement and attributes that are likely to have predictive value. For
example, data of oxygen conditions in the systems was crucial in the dirty water
approach (Chapter 5). Lack of this information might severely affect the performance

of neural network models.

After settling on a task and representation, training data needed to be collected for
the induction process. In some cases, this process is straightforward and can even be
automated, but in others it can pose a significant challenge. Training data can be very
representative for sites or not reliable as a result of technical problems. Most data fall
somewhere between these two extremes, and the expert is needed to classify training
data or to generate it. Therefore accessing the available data and generating data

where it is lacking is an important part of applied work in machine learning.

Rules induced from training data are not necessarily of high quality. A standard
approach to evaluation involves dividing the data into two sets, training on the first
set, and testing the induced knowledge on the second. This process can be repeated a
number of times with different splits, and the results of testing are then averaged to
estimate the rules’ performance on completely new problems (Wilson & Recknagel,
2001). An important part of the evaluation process is the experts’ examination of the
learned knowledge. If significant problems emerge at this stage, they may suggest

revisions to the problem formulation or representation (Langley & Simon, 1999).

The final stage in application is employing the learned knowledge base. Machine
learning can either confirm the expert knowledge or introduce an extension to the
knowledge base. Results of sensitivity analyses obtained by neural network models
in this study provided many confirmations to findings from the literature on
interrelations between habitat conditions and distribution of macroinvertebrates.

Apart from their elucidation potential, some problems have risen which need further

158



research, such as the cause of overpopulation of macroinvertebrate taxa in many
sites, or the effect of detrital cover on distribution of taxa. Explanation and
application capabilities of neural network models depend heavily on the
requirements and objectives of users. Therefore, it is extremely important to motivate
users and domain experts to participate in the design and application process in order

to improve the effectiveness of applied neural networks (Langley & Simons, 1999).

The good performance of ANN models in both clean and dirty water approaches
confirmed the potential of neural networks in predicting habitat conditions of
freshwater streams. Sensitivity analyses carried out by ANN models allow the
determination of major variables that affect ecosystem quality. Method should be
considered further investigation in order to be applied in river ecosystem
management. Further research is needed to determine the optimal neural network
configuration. Moreover, the impact of the applied training algorithms, as well as the
risk of overtraining the network, should be further investigated to obtain reliable and

meaningful predictions in the long run.

The predictions for moderately frequent taxa such as Gomphidae and Oligochaeta
were less accurate than for common and rare taxa. The results of sensitivity analysis
showed that the distributions of these taxa were controlled by a greater number of
variables. It is obvious that the more controlling factors, the greater the chance for
potential sources of errors — a classic case of the complexity/uncertainty trade-off
(Chapter 4). The enormous amount of information available on macroinvertebrate
taxa is often too superficial, specific and contradictory, as data collection depends
heavily on sampling methods, identification protocols and many other subjective
factors such as experiences of samplers. Potential sources of errors could be an
inappropriate identification of macroinvertebrate taxa and the spatial-temporal

variability of physical and chemical variables as well as natural noise in the data set.

In summary, the potential sources of error in the predictive capabilities of Artificial
Neural Networks can be caused by the potential mis-configuration of the ANNs (e.g.
overlifting). They can be explained by the fact that most river system database do not
contain enough information in order to extract the main relations existing between
the structural, physical, chemical and biological variables. However, representation
of data can be rectified in many ways in order to improve the performance of neural

networks in solving the given problem.
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7.2 Improvement of Input Data Representation

The most important basis for successful neural network modelling is a reliable and
representative database. The networks learn from examples, and the quality of the
ANN models depend heavily on the quality of the database. Therefore, representative

and compatible data are the main requirement for neural models.

To increase the effectiveness of ANN learning, it is necessary to perform some
preprocessing of the data before presentation to the network. Many categorical
variables are just empirical presentation, and the numbers are just notation of the
information. These input variables need to be split into several categories to avoid
misinterpretation of notations as arithmetic numbers (Masters, 1993). Rather than
supplying a single category with values such as 1, 2, 3, three input nodes should be
created instead, each representing a category and containing 1/0 values only
corresponding to whether the category was selected or not. The following variables

needed to be sub divided into several inputs:
- Habitat 1-5: 5 nodes

- Substrate categories: 8 nodes

- Reach 0-2: 3 nodes

- Soil Type number: 18 nodes

- Soil Class number: 8 nodes

- Vegetation Type number: 9 nodes

Ordered categorical criteria such as stream order should not be split, as their order

clearly affects weights of the connection links in neural networks.

Many water quality variables, such as oxygen concentration, nutrient levels,
concentrations of trace metals were found crucial for distribution of
macroinvertebrates (See Chapter 5) but were not available for inputs in the database.
There was also no information on macrophyte density at sites and some other
riparian variables that were considered important for macroinvertebrate assemblages
such as riparian cover, deciduous cover (Hawkins et al., 2000). These data need to be

supplemented for better representation of the database.
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In summary, data representation can be improved by re-expression of categorical
inputs into more conducive to ANN learning and collection data of more relevant

forcing functions in the input layer.

7.3  Temporal and Spatial Variations

Variation in the distribution and activity of aquatic organisms is evident at all spatial
and temporal scales, but especially in streams, where biotic differences are often
obvious from rock to rock within a reach, from reach to reach within a watershed,
and across watersheds. The distributions, abundance, and activities of aquatic biota
vary conspicuously with time, as well, over temporal scales raging from second or
minutes to years (Stewart and Loar, 1994). The distributions and activities of benthic
invertebrates vary greatly, both spatially and temporally, over all scales in polluted

and non-polluted flowing-water systems (Hynes 1960, 1970, Cummins, 1979).

7.3.1 Spatial Variance in Invertebrate Data

At small spatial scales, flow strongly affects the spacing patterns and foraging
activities of macroinvertebrates. The spacing difference between competitive success
or failure, metabolic activities and feeding status of taxa is in the order from
millimeters to centimeters or a few metres distance (Stewart & Loar, 1994; Newbury,
1996). At whole-pool and within-pool spatial scales, species-level and ontogenetic
shifts in behaviour attributed to predation risk can strongly influence invertebrate

communities (Gilliam et al., 1989).

Over larger spatial scales, changes in invertebrate activities and abundances within
streams and rivers can be large, even in the absence of human impacts. This
expectation emerges naturally in consideration of the river continuum concept
(Vannote et al., 1980). Major shifts in species and/or functional groups of aquatic
insects occur in response to changes in substrate, temperature, chemical constituents,

food supply and predators, with increase in stream order (Stewart & Loar, 1994).

In the clean water approach, the models showed the similar levels of impact at the

test sites, probably indicating a high level of redundancy among the habitat types.
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The inclusion of more than one habitat in a predictive model may cause confounded
assessment of biological impairment. When habitats are included as individual
objects, prediction of test sites into groups of equivalent reference sites is made
according to the characteristics of particular habitat types rather than general site
features. In Australia, edge and woody debris are the most common by occurring
habitat in large lowland rivers (Parson & Norris, 1999). The recommendation can be
made that separate models need to be developed for each of habitat types;
consequently five models in total should be made for riffle, edge, run, pool bed and

macrophyte habitats.

However, Parsons & Norris (1999) suggested that riffle and edge are adequate to
detect biological impairment. In addition, many of the macrophyte beds are located
in the marginal areas, and it is often difficult to distinguish an edge habitat from a
macrophyte habitat. These two habitats can be accounted for by only sampling the
edge, with no detrimental effect on the outcome of the predictive models and save
the cost of sampling and simplify the data processing and model developing.
Therefore, four separate models should be developed to improve the performance of

neural network models.

7.3.1 Temporal Variance in Macroinvertebrate Data

Macroinvertebrates have a strong seasonal cycle of abundance and/or activities. They
also tend to have a shorter life cycle than fish. The shorter life cycles suggest more
rapid responses at the community level, which is an important advantage of using
macroinvertebrates as bioindicators; however greater temporal variability needed to
be considered (Steward & Loar, 1993). The database of the Queensland stream
system does not contain any temporal information except seasonal category. It
therefore did not allow a deeper study of the long-term effects of any variables,

especially water chemistry variables, on macroinvertebrate assemblages.

Although tropical, Queensland has a seasonal climate and does not exhibit the
environmental constancy associated with wet equatorial tropics. The time scale of
sampling, particularly when it is carried out over more than one season, can
significantly affect results of bioassessment (Linke et al., 1999). Season should be
explicitly taken into account in bioassessment and monitoring studies, although

seasonal variation is currently most often addressed by constraining the time frame
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of sampling. The recommendation can be made that the neural network model for
this database should be developed for each season to study behaviours of

macroinvertebrates in wet and dry seasons separately.

7.3.3 Summary

It is very important for management to predict how communities respond to changes
in habitat condition after being exposed to disturbance. Communities can respond
either progressively with further disturbance or regressively in recovering from
pollution (Hellawell, 1986). Time-series predictions are significant for monitoring
water quality and deciding on-going management tactics for freshwater ecosystem
(Chon et al., in press). Analyses of temporal and spatial patterns in community
dynamics have been the objectives of many studies in applying ANN models in
freshwater bioassessment and have achieved significaht success such as: in
predictions long-term population of aquatic insects (Schleiter et al., 1999), in
patterning community change and short-term prediction of community dynamics
(Chon et al., 1996; Chon et al., 2000a; Chon et al., 2000b), and modelling population

dynamics (Obach et al., in press)

Ecosystem analysis and prediction with empirical statistical and analytical methods
are often limited by the spatial complexity and temporal dynamics of ecological
processes and typical non-linear interrelations of variables and species, with data not
being normally distributed (Schleiter et al., 1999). Artificial neural networks provide
specific features such as non-linearity, adaptivity, generalisation and model
independence, which allow them to better cope with spatial and temporal variations

within freshwater ecosystems.

The neural network models developed in this study were still steady-state models
and temporal variation was not considered. An additional effort would be more
beneficial to collect data for detecting differences through time and among sites. It is
important that methods are developed to characterise how a community varies in
space and over time simultaneously, caused either by natural or anthropogenic
disturbance. However, improvements in model performance can be achieved by
separating neural network models by seasonality and for different habitat types. This
can simplify the network performance and avoid potential errors caused by

misunderstanding categorical notations designed for habitat types and seasonality.
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7.4  Representation of Data on Macroinvertebrate Taxa

7.4.1 Functional Feeding Groups

Family-level identification of macroinvertebrates proved to be appropriate for use as
biological indicators for habitat assessment. However, sometimes the taxonomic
framework is inadequate to allow identification to this level, such as in the case of
Oligochaeta at class level, Acarina at order level, or time does not permit resolution.
Moreover, discrete presence/absence information given by family level of data can
make it difficult for neural networks to generate the patterns. Taxa identified at
family-level assume that a higher taxonomic category summarises a consistent
ecology or behaviour amongst all member species, and indeed this is evident from
responses noted in earlier chapters. However, many closely related taxa diverge in
their ecology, and higher-level aggregates therefore contain a diversity of responses.
By contrast, functional feeding grouping requires no taxonomic assumptions but use
mouthpart morphology to identify feeding modes (Gullan & Crantons, 2000). The
following categories are generally recognised based on feeding mechanisms of

macroinvertebrates:

Shredders feed on living or decomposing plant tissues, including wood,

which they chew, mine or gouge;

- Collectors feed on fine particulate organic matter by filtering particles

from suspension or fine detritus from sediment;

- Scraper or grazers feed on attached algae and diatoms by grazing solid

surfaces; and

- Predators feed on cells of living animal tissues by engulfing and eating the
whole or parts of animals or piercing prey and sucking body fluids (Gullan

& Crantons, 2000)

One important ecological observation associated with such functional summary data
is the often-observed sequential downstream changes in proportions of functional
feeding groups. This aspect of the river continuum concept relates the sources of
energy inputs into the following aquatic system to its inhabitants. In riparian tree-

shaded headwaters where light is low, photosynthesis is restricted and energy derives
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from high inputs of materials such as leaves, woods etc., shredders tend to
predominate, because they can break up large matter into finer particles. Further
downstream, collectors filter the fine particles generated upstream and themselves
add particles (facces for example) to the current. Where the waterway becomes
broader, with increased available light allowing photosynthesis in the middle
reaches, algae, diatoms and macrophytes develop and serve as food for grazers.
Predators tend only to track the localized abundance of food resources (Vannote et
al., 1980). Changes in functional feeding groups associated with human activities

include:

- Reduction in shredders with loss of riparian habitat, and consequent

reduction in autochthonous inputs;

- Increase in grazers with increased periphyton (algae and diatom)

development resulting from enhanced light and nutrient entry;

- Increase in filtering collectors below impoundment, such as dams and
reservoirs, associated with increased fine particles in upstream standing

waters (Gullan & Crantons, 2000).

Use of the functional feeding group approach may be advantageous in that it allows a
numerical assessment of the degree to which the invertebrate biota of a given aquatic
system is dependent upon particular nutritional resources. This numerical assessment
may better suit application to neural network models. As the relative dominance of
various food resource categories changes, there is often a corresponding shift in the
ratios of the different functional feeding groups. Invertebrate functional group
analysis is sensitive to both normal pattern of geomorphic and the biological changes
that occur along the river continuum (Vannote et al., 1980), as well as to alterations
in these patterns resulting from human impacts (Cummins, 1993). In addition, the
functional feeding group method is relatively independent of sample size, and its use
requires minimal equipment and is accomplished at a level of resolution that can be
chosen to be appropriate to the expertise of those performing the analysis (Cummins,
1993). Therefore, for the purpose of rapid assessment, functional feeding group may

be a suitable alternative to family-level identification.
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7.4.2 Abundance data

Populations of a species might have good potential for environmental monitoring.
Many factors associated with population dynamics could be used to assess
environmental quality. Environmental conditions which impair growth and mortality
or reproduction success would become evident when populations were examined

quantitatively (Hellawell, 1986).

Harswick et al (1995) used Chironomid to rapid biological assessment of streams in
the Blue Mountain, Australia. The study confirmed that Chironomids dominated
large proportion in polluted site because they are among the most pollution-tolerant
of all stream macroinvertebrates (Hynes, 1960). The abundance rather than presence
of Chironomids in such rapid assessments may therefore better indicate the

ecosystem states.

If the concentration of organic matter is high enough to produce deoxygenation, most
of macroinvertebrate families can not survive. Where only very little oxygen remains
in the water, or the river bed is completely covered over with organic solids or
sewage fungus, the main inhabitants are always the sludge worms of the family
Turbificidae. In such places, they are particular favoured, they have abundant food in
the rich organic mud and they are free from enemies and competitors which cannot
stand the low concentrations of oxygen. However, if the organic matter concentration
is not high enough, the various members of the macroinvertebrate communities are
encouraged such as chironomids, leeches and few others, and occur with Tubificids.
Species richness therefore does not detect the level of organic enrichment but
abundance of Turbificidae can be used as more effective indicator for organic

enrichment (Hynes, 1960; Norris & Georges, 1993).

Changes in the composition of a macroinvertebrate community are almost certainly
due to suspended solids and the resulting slight increase in the siltiness of the
environment. However, some mayflies and caddisflies need clean stones on which to
attach. Therefore, a slight increase in siltiness would reduce the amount of suitable
living space for these creatures. Tanytarsus, on the other hand, build their tubes of
silts, they therefore are favoured by an increase in the amount of silt in the riverbed

and show a marked increase in numbers in this condition (Hynes, 1960; Cranston et
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al., 1996). Abundance of these macroinvertebrates can better explain the habitat

condition than the presence of taxa.

Abundance information seems to be particularly useful for macroinvertebrate data
sets with a poor classification structure, and it should be useful to assess disturbances
that result in changes in abundance rather than species loss. Especially it seems to be
important in cases, when changes in abundance may signal a beginning impact that

has not yet reached the level of severity resulting in species loss.

In addition, abundance prediction does not rely on cluster analysis, continuous data
of output can help ANN models more effective in learning the patterns and
consequently improve the performance of ANN models. Abundance data can be
meaningfully used in time series predictions in order to detect the effect of potential
impacts. Schleiter et al. (1999) used environmental variables including maximum
monthly water temperature, discharge and monthly precipitation to predict long-term
population dynamics of aquatic insects in Germany. Chon et al. (2000a, 2000b and in
press) were very successful in temporal patterning of community changes and short-
term prediction of benthic macroinvertebrates in urbanized streams with biological
and environmental factors. Obach et al. (in press) used feed-forward ANN to predict
the abundance of aquatic insect based on the abundance of parental generations and
several environmental variables. The results showed that abundance patterns of
aquatic insects based on knowledge of their life history and biological traits were
related to the patterns of environmental variables. The studies demonstrated that the
prediction of aquatic macroinvertebrates with ANN models was promising even
though the restricted number of input variables might have limited the quality of the
results. Research on abundance of macroinvertebrates is therefore recommended

provided the data is available and reliable for developing ANN models.

Freshwater shrimp Atyidae, popular crustacean in the streams (Giller Malmgqvist, 1998))

167



8 Thesis Conclusions and
Recommendations for Further

Research

8.1 Conclusions

8.1.1 Usefulness of Macroinvertebrates as Biological Indicators

The results of this study demonstrate that the structure of a macroinvertebrate
community can reflect the state of freshwater streams they inhabit. Both Clean and
Dirty water approaches show that there are close relationships between freshwater
macroinvertebrate assemblages and their habitat conditions in the Queensland stream
system. The distribution of macroinvertebrates at family level is driven by a number
of environmental factors. Physical variables strongly determine the habitat where
certain macroinvertebrates live. However, macroinvertebrate assemblages are also
affected by chemical variables. Both input categories proved to be useful for the

prediction distribution of macroinvertebrate assemblages.

The routine use of freshwater macroinvertebrates as indicator organisms to assess
ongoing environmental condition requires considerable understanding of the factors
involved in determining these conditions. These factors include physical and
chemical characteristics of the habitat where the organisms originate: e.g. the
chemistry of potential contaminants involved, and the physiological behaviour of
taxa exposed to these contaminants need to be taken into consideration. By contrast,
research on response of macroinvertebrate assemblages to habitat conditions can

improve our understanding of that.
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Species-level identification is assumed to have the greatest information content as a
result of studies on individual population. However, identification to the species level
is sometimes difficult because of the small size of organisms, a lack of adequate
species-level keys and descriptions. On the other hand improved keys are now
available that allow identifications at the family level. The use of higher-level
category at family can be justified depending on the purpose of study, the level of
sensitivity required, and the type of index or analysis being used (Resh & McEltravy,
1993). In this study, macroinvertebrate assemblages at family level proved to be
appropriate to detect the gross pollution that may have dramatic effects on the fauna

and to provide “early warning” of potential problem or changes in communities.

Biotic indices have been extensively used to evaluate pollution stress. The
multivariate approach may enhance our understanding of the effect of pollution
stress. However, emphasis on improving the efficiency, accuracy, precision, and

predictive ability of biotic indices and scoring system is needed.

8.1.2 Usefulness of Artificial Neural Network as Prediction Tools

The results of the study have shown that Artificial Neural Networks (ANNs) can
successfully and meaningfully be applied to the analysis of causal relationships
including the identification and assessment of complex impact factors and for the
prediction of system behaviours. Particularly, they have advantages if the
relationships are unknown, very complex or nonlinear as typical for river and stream

ecosystems.

Generally, the ANNs performed very well to predict the macroinvertebrate taxa
based on physical as well as on chemical predictor variables. This method does not
only generate results with low prediction error, but also allows the user to identify
associations and general trends in the data. These capabilities make ANNs more

appealing than just black box modelling by statistical techniques.

The conclusion can be made that ANNs tend to be grey box prediction techniques,
allowing the user to combine a high accurate prediction with getting some

information on general trends in the data. Therefore, this methodology can be applied
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to determine ecological requirements of stream organisms that are not fully

understood.

The present study has justified that the data collected in the Queensland stream
system could be used for prediction with ANNs. Although many possible
improvements in the data representation can be suggested, the existing
database proved to be appropriate to develop the ANN models to assess river
habitat conditions. This fact demonstrates that ANN models are verified as a
powerful tool to investigate and model ecosystems from limited data available.
The method therefore can be applied for other stream systems in Australia to

assess river health.

Both applied approaches achieved reasonable good results in predicting
presence/absence patterns of macroinvertebrate families. The application of these
approaches for management purposes requires further researches in detail. A protocol
for applying the Clean Water approach has already been designed through the
multivariate criteria O/E; however, the interpretation of criteria value has not yet
been well understood. The Dirty Water approach can only be applied for quantitative
assessment after further studies on how to determine the best representative taxa can

be used for designate chemistry of water they inhabit.

8.1.3 Elucidation by Sensitivity Analyses

Sensitivity analyses allow studying the impact of the input variables on the presence
and absence of macroinvertebrate taxa. Many relations were detected by this method
that supported previously detected findings by means of related ecological research
methods. This indicates that the ANN models perform in meaningful ecological
manner. Based on of sensitivity analyses, ANN models allow to determine the major
driving variables that affect the stream and river ecosystem quality, and should be
taken under direct consideration in the river ecosystem management. The
determination of major driving variables improves the generalisation and
simplification of the model, and allows a better understanding of interrelationships

within systems.
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Sensitivity analyses allow a better interpretation of the prediction results by ANN
models, easing the cause-allocation of the actual river status and increasing the
insight needed to improve assessment system. Relation plots also allow stimulating
the effect of potential management options and thus support active decision-making.
The development of efficient monitoring networks based on the interpretation of

these interrelations is probably another important advantage.

With the aid of sensitivity analyses, data pre-processing methods, ecological

prediction and analysis of causal relations can be improved substantially.

The sensitivity analyses not only confirmed expert knowledge on relations between
habitat conditions and distribution of macroinvertebrates, but revealed new relations
as well. Further study on new and sometimes contradictory findings may enlarge
expert knowledge on river ecosystem if they would be confirmed by laboratory and
field experiments. Conversely, finding the cause of contradictions may improve the
performance of ANN models for better predictions and applications for management

purposes.

8.1.4 Limits of Using ANNs

As ANNs learn from examples, the quality of ANN models heavily depends on the
quality of the database, in particular whether it is representative for the given
problem, the given site or the given study period. Therefore, representative and
compatible data are the main prerequisite for ANN models. In reality, interrelation
between biological diversity and abiotic factors are highly nonlinear and complex

and no monitoring data contains enough information for reflecting these relations.

Time-series analysis, for example, can be a powerful tool to study community
dynamics of macroinvertebrates, which in turn provide much information for
assessing habitat condition and preparing on-going management tactics for aquatic
ecosystem. Time-series analyses can be conducted effectively by ANNs. However,
time-series analysis relies on data that are collected regularly at time intervals more
frequent than the period of variation among the variables of interest. These

requirements are quite stringent to be fulfilled by most monitoring programs.
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The training process of ANN models is always very much black box. It does not
explicitly provide understanding of the mechanisms it is based on. ANN models
extract and generate patterns from data inductively and it is very difficult for
modelers to get insight into this process in order to optimise model configuration and
performance parameters. Optimisation therefore can be done by experiments and in
some cases, the best configuration and performance of ANN models can only be

decided intuitively.

8.2  Recommendations for Further Research

Depending on the objectives of the present research project, recommendations can be
made as follow in order to improve the ANN performance as well as to have better

understanding of ecological processes and phenomena.

8.2.1 Further Research on ANN Performance

e Further research is necessary to determine the optimal neural network
configuration. E.g. Waley & Fontama (2000) applied an ANN with two
hidden layers for similar simulations. The impact of the algorithm applied for
ANN training as well as the risk of overtraining the ANNs should be further
analysed to obtain reliable and meaningful predictions in the long run. It is
recommended to test algorithm for neuro-genetic training in order to optimise

ANN s performance as suggested by Montana & Davis (1989).

¢ Improve results by using other more continuous value inputs. In the clean
water approach, flow regime should be considered. Oxygen concentration,
nutrient levels and concentration of some toxicants should be crucial for dirty

water approach.

e Procedure to pre-processing data needs to be improved in order to avoid
using non-reliable data in the modelling process. Empirical categorical
variables should be split into nodes, each node contains two values 1 or 0

depending on whether this category is chosen or not.
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The spatial-temporal variability of physical and chemical variables should be
considered. Separate models for different habitats and seasons. As discussed
in previous chapters, four models are developed for four different habitats
and two seasons for each habitat. As a result, eight models should be

developed.

Improve the performance by applying different input combinations to develop
models. Experiments with different sets of input variables do not only results
in an alteration of prediction errors but also the complexity of networks as

well as the relative importance of some trends can be affected.

Sensitivity analyses should be carried out several times to obtain further
simplification of ANN models by further exclusion of redundant inputs for

both approaches.

Time-series analysis may be used to develop predictive models based on
variation in past time series. It may overcome the problem of auto-correction
in data between sites or times. The method can determine the occurrence

trends, often a primary aim of monitoring studies.

The next step of pollution or environmental assessment studies should attract
not only qualitative but also quantitative analyses of benthic
macroinvertebrates. Hypothesis generation through classification, ordination,

model construction, and the accuracy of model prediction should be tested.

Better representation of macroinvertebrate data can be improved by
classifying families into functional feeding group or obtaining abundance
data. The better representation of macroinvertebrates may overcome
difficulties for ANN training caused by the distribution of presence/absence
(1/0) data in cases where species had too high or too low probability of

occurrence.

Training and validation of ANNs using databases from other Australian

stream systems will contribute to a generalisation of the ANN stream models.

Better visualisation of results by means of interactive user interface and GIS

will help non-specialist to understand interpretation of prediction as well as
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elucidation from sensitivity analysis. User-friendly software should be next

step to apply ANN models for management purposes

e Other machine learning technique can improve the prediction results.
Multivariate analysis of data by Kohonen networks should be very promising

alternative.

8.2.2 Further Research on Elucidation of Freshwater Habitat Conditions
e Cause and nature of overpopulation predicted for some test sites in clean
water approach needs to be clarified.

e Improve the method of sensitivity analyses by considering pattern-

combination of factors preferred by macroinvertebrates.

e Study cause and effect of relations discovered by sensitivity analyses that

appeared to be contradictory to expert knowledge.

A caddisfly larva (Hydropsychidae) in its retreat; the silk net is used to catch food
(Gullan & Cranston, 2000)
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