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Abstract

Stream and river ecosystems play a crucial role in the human existence even though

they contribute only 0.000087o to the Global water budget. Rivers and streams are

important sources for drinking water, industrial and agricultural water, and recreation.

Hence, there is a lasting interest in the control of river health. The second half of

Twentieth Century has been a period of intensive study of rivers. Many efforts had been

spent for better understanding basic limnological processes including physical, chemical

and biological processes. Researches realised that all these limnological processes could

not be studied separately but they are in very intimate interrelationship with each other.

Any change in any limnological process can upset the balance and lead to disturbance in

the freshwater ecosystem. Assessment and prediction of river and stream health gain the

great interest in management in order to maintain a sustainable balance in stream and

river ecosystem for human activities now and for future generations.

River health had traditionally been assessed solely on the chemical analysis of water

samples. In recent years there has been realisation that the structure of plant and animal

communities of the river can give us more accurate and integrated information about

conditions of river and stream health. Among these biological communities,

macroinvertebrates are most widely used because they are abundant and diverse, and are

sensitive to changes in water quality, flow regime and habitat conditions they inhabit.

Impacts on these animals are relatively long lasting and can be detected for some time

after the impact occurs.

The computational approach had been applied to analyse the relationship between

habitat conditions and stream macroinvertebrate assemblages. Statistical models had

gained some significant successes. However, they still have some constrains in dealing

with complexity and highly non-linearity of the stream system. A new generation of

computer program called Artificial Neural Network proves to be very efficient for the

study complex and nonlinear processes. In the context of the given Master research

project, Artificial Neural Networks were applied for modelling Queensland river and

stream system.
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Two approaches are developed by means of Artificial Neural Networks to study the

Queensland river and stream network, which spreads over the territory of the federal

state of Queensland (Australia) and covers the catchments of most major and many

minor Queensland ri vers.

The clean water approach was adopted to determine relationship between presence and

absence of macroinvertebrate taxa and physical predictor variables, which are

considered relatively stable under human activities. The model therefore studied data

from reference sites in near pristine conditions. Validation results provided correct

prediction of the presence/absence of these taxa with an average accuracy of 80 Vo.

Trained models were applied to assess habitat conditions of impacted and test sites. The

assessment of the health of specific sites was than based on the comparison between

observed and predicted site data. Criteria OÆ (Observed./Expected) was used to give

rapid assessment of habitat at sites ranging from reference to badly degraded conditions.

The dirty water approach did not distinguish site into reference and degraded. Networks
had been trained with data from both clean and degraded sites. This approach studied
interrelationship among physical, chemical and biological processes. The input layer

contained not only physical predictor variables but also chemical variables, which are

altered under human impacts. Validation also was made by mean of correct prediction
of macroinveftebrate taxa for both reference and impacted sites and provides average

accuracy of 76%. Dirty water approach can be applied for quantitative prediction of
habitat condition by mean of water quality.

Sensitivity analyses were carried out by manipulating the values of input parameters

and assessing the resulting changes in outputs. This method identified the

environmental predictor variables best able to predict the presence/absence of each

family. The primary intention of this sensitivity analysis was to improve network
performance by limiting input variables to those that were sensitive for each model.

However, this process also provided new insights into relationships between

environmental variation and the occurrence of Queensland stream fauna and enabled the

identification of ecological traits of each taxon.

The two modelling approaches provided good results and can be applied for
management purposes, Artificial Neural Networks proved to be an effective
computational approach to support bioassessment. However, all models developed

during this project studied only spatial variations of processes in stream and river
ecosystem. Future research should focus on temporal variations of relationships

between environmental variables and the distribution of macroinvertebrates as well.
Model training and validation using databases from other Australian stream systems

would further contribute to a generalisation of the ANN stream models.
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I Introduction

1.1. Habitat Condition Assessment of Freshwater Ecology

Running water is the most important freshwater resource for man, being used for a

variety of purposes. The maintenance of high quality running water has become an

increasingly important issue in recent years, as greater demand has been placed on

water resource. The quality of rivers and streams depends on their physical, chemical

and biological properties. The latter are reflected by the types and density of living

organisms present in the water.

Historically, water quality has been measured by physical, chemical and

microbiological parameters such as biological oxygen demand, suspended sediments

and bacterial counts. Chemical analyses determine concentrations of certain

substances from sample taken at a specific point at a specific time. They therefore are

often criticised because they only reveal the quality of the water at the time of

sampling, and their further relevance has to be inferred by extrapolation from limited

data (Hellawell, 1991). Biological monitoring, on the other hand, generally is

considered to provide a more integrated appraisal of water and overall environmental

quality (Hynes, 1960). Therefore, there is now widespread recognition that not only

chemical analyses but biological techniques are required for an appropriate

assessment of river quality (Wright, 1995). Moreover, biological surveillance of

communities with special emphasis on characterising taxonomic richness and

composition was claimed to be the most sensitive tool for quickly and adequately

detecting alterations in aquatic ecosystem (Cairns & Pratt, 1993)'
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In aquatic ecosystems, such as streams and rivers, biological indicators have been

proposed that use algae, fish, and macroinvertebrates (Hellawell, 1936). Amongst

aquatic animals that can be used in bioassessment, macroinvertebrates proved to be

an excellent indicator for the quality of freshwater streams (Rosenberg and Resh,

1993). Because of the crucial ecological functions of macroinvertebrates within

stream ecosystems, great efforts are undertaken to preserve and restore their stream

habitats. Iu tertns of their use for biomonitoring, macroinvertebrates ìn streams have

relatively long life cycle that allow exposing them to pollutants over a long period of

time and integrating the effect of short-term pollution episodes,

Macroinvertebrate assemblages were an objective of many projects of bioassessment

of habitat conditions, and river and stream quality. The British RTVPACS (River

Tnvertebrate Prediction and Classification System) (V/right, 199-5) was developed

using macroinvertebrates for biological assessment of river quality in Great Britain.

The RIVPACS approach was preferred to similar North American schemes, which

had already been used successfully to assess river condition on national scale and

also in regional framework. AusRivAS, the Australian River Assessment Scheme, is

a national bioassessment program that uses aquatic macroinvertebrates to meet the

first objective of the National River Health Program: assessment of 'health' or

ecological condition of Australian rivers (Schofield & Davies, 1996).

1.2. Computational Approøch to Support Bioassessment

While experienced biologist can make meaningful assessment of habitat condition

from suitable biomonitoring data, it becomes difficult to comprehend extensive

datasets when collections are made for long period of time and/or when large data

sets need to be analysed and causal factors be identified. In ecological research,

therefore, the processing and interpretation of data play an important role. The

ecologist uses many methods, ranging from numerical, mathematical, and statistical

methods to techniques originating from artificial intelligence such as expert systems

(Recknagel, 1989), genetic algorithms (d'Angelo et al., 1995), and Artificial Neural

networks (ANN) (V/alley & Fontama, 1998) in order to study interrelations between

biological communities and environmental parameters.
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Stream modelling based on ecological knowledge and adequate stream monitoring

data can substantially facilitate and improve assessment of stream habitats. Different

modelling techniques have been developed and applied to freshwater streams. Moss

et al. (1981) developed a statistical model for predicting macroinvertebrates

occurring at some stream sites in Great Britain. The model worked with probability

of the occurrence of macroinvertebrates and provided reasonable prediction results

using environmental variables. Simpson et al. (1991) used a similar model for

freshwater streams in Australia and New Zealand. Even though these models

achieved some success to a variety of stream systems, they lack of ability to cope

with non-linearity and high complexity of stream system.

Modelling freshwater quality is extremely difficult, as the interrelations between

various influences are not well known. Hydrodynamic models are difficult to couple

with chemical and biological models. The action of hydrological process on

ecological processes has hardly been elucidated, as the requirements are different for

both systems (Straskraba and Gnauk, 1985). The use of ANN may overcome many

of these difficulties.

Walley and Fontama (1998) developed artificial neural network (ANN) to predict

macroinvertebrate taxa in unpolluted river sites in the UK. Their results

demonstrated the potential of ANN to model non-linear relationship between

environmental variables and biotic indices. Schleiter et al. (1999) and Chon et al.

(1996,2000a, 2000b) went one step further to model the community dynamics of

macroinvertebrates in German and Korean streams using ANN.

Artificial neural networks belong to a new generation of computer models based on

machine learning techniques. ANNs were developed as models of biological

neurons. They learn from experience in the database and can be able to solve real

ecological problems in various areas (Lek et al., 2000). ANNs are universal function

approximators, they are able to learn a complex non-linear mapping between

independent and dependent variables from data. They do not require assumptions

about mathematical relationship between state variabies and the nature of the

distribution of data. Machine learning models have the ability to extract temporal or

spatial patterns and knowledge from highly nonlinear and complex data. Based on

such patterns and knowledge they can predict future conditions. Machine learning
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models have successfully been applied to freshwater lakes (e.g, Recknagel 1997,

Recknagel et al. 1998) and promise a new quality in stream modelling.

1.3 The Contríbution of This Work

Even though much work has already been done in the field of applying Artificial

Neural Networks in order to study interrelations between abiotic factors of

freshwater stream ecology and different biotic community member around the world,

no such research had been carried out yet in Australia. The aim of this work is to

assess the suitability of the ANN models to determine the biological and

environmental conditions of freshwater stream in Australia. The present case study

was conducted by means of a comprehensive database of the Queensland stream

system.

The work adopted the referential approach from the Australian River Assessment

System (AusRivAS) and applied the Artificial Neural Networks as new

computational tools to analyse and generalise the patterns within the database of the

Queensland river and stream system. So-called "clean water approach" was applied

to study the distribution patterns of macroinvertebrates in clean water. These patterns

were then applied for predicting macroinvertebrate assemblage in clean water. The

assessment criteria OÆ from AusRivAS was also adopted in order to evaluate the

performance of the newly developed models. Evaluation was made by comparing

performances of ANNs and statistical models used in the AusRivAS protocol to

demonstrate the potential of ANNs as alternative analytical tools.

In the second step, another approach was developed in an attempt to extend the

capability of ANN models in dealing with abiotic factors. The so-called "dirty water

approach" extended the capability of ANN models not only to work with physical

predictor variables but also to work with water chemistry. More complex iteractions

among physical predictors, water chemistry and macroinvertebrates themselves that

determine the distribution of macroinvertebrates were studied and direction for

applying this approach for management purposes were investigated.
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The elucidation capability of ANN models was explored by sensitivity analyses.

Sensitivity analyses drew the effects of single abiotic factor on presence of individual

macroinvertebrate taxon. This process also provided new insights into relationships

between environmental variation and the occurrence of Queensland stream fauna,

and enabled the identification of ecological traits of each taxon. This work

demonstrated that the ANN technique applied for sensitivity analyses has the

potential to enhance our understanding of how natural and anthropogenic impacts

affect components of aquatic ecosystems.

+

A black-fty Simuliidae larva in the typicalrtlter-feeding posture (Gullan& Cranston,2))))
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2 Background

Stream and river ecosystems experience dramatic changes in response to hnman

activities such as population growth and economic development. Predicting stream

habitat condition is increasing of interest to water resources planners, policy makers,

ecological researchers and especially limnologists. Traditional physical and chemical

methods to examine freshwater habitat conditions have limited ability to deal with

spatial and temporal variations. So-called bioassessment of stream habitat condition

may be a suitable alternative (Hynes, 1970; Hellawell, 1986; Rosenberg & Resh,

1993: Loeb & Spacie, 1994). Fundamental to assessment of river health and biotic

integrity is an understanding of the links between the habitat in which organisms live

and factors shaping it (Norris & Thoms, 1999). Amongst aquatic organisms that can

be used in bioassessment, macroinvertebrates have proved to be an excellent

indicator for the quality of freshwater stream habitats (Rosenberg and Resh, 1993,

Davis and Simon, 7995; Hawkers, 1991).

Stream modelling based on ecological knowledge and adequate stream monitoring

data can substantially facilitate and improve assessment of stream habitats. Different

modelling techniques have been developed and successfully applied to freshwater

streams. Among the approaches to support bioassessment, Artificial Neural

Networks (ANN) have been recognized as a potential tool in ecological modelling

(Recknagel et al., 1991, 1998; Schleiter et al., 1999; Lek & Guegan, 2000). ANN

models have flexibility to cope with temporal and spatial dynamics and are able to

deal with the distinct non-linearity and high complexity of freshwater streams.

The main areas of discussion in this chapter are bioassessment of river habitat

condition and the potential of machine learning in supporting bioassessment. Habitat

condition monitoring and bioassessment of streams is discussed before
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bioassessment of streams by means of Artificial Neural Network techniques is

introduced. Specific examples demonstrate the potential of ANN models in the areas

of freshwater bioassessment. Among from recent research, a direction for the current

studies is set which applied ANN techniques to the bioassessment of freshwater

stream habitat conditions.

2.1 Høbitat Condition Assessment

2.1.1 Stream Ecology

Streams and rivers are fundamental to human existence as well as to global diversity.

Streams and rivers do not only affect the landscape over very long time periods, but

are also in turn directly affected by the catchments where they originated and through

which they flow. The understanding of stream ecosystem structure and function has

progressed rapidly añd continues to be one of the most active areas of research in

aquatic ecology (Hauer & Lamberti, 1996)

Rivers are complex systems of flowing water draining specific land surfaces and are

very important freshwater resources. Rivers are characterised by uni-directional

current with a relatively high average flow velocity (0.1 to I m/s) in comparison with

lakes and other water bodies. The river flow is highly variable over time. Prevailing

current and turbulence cause thorough and continuous vertical mixing in rivers

(Meybeck et al. 1996). Streams and rivers have a complex nature, which can be

explained as a consequence of the three-dimensional geometry of channels with a

long profile, a cross-section and mutual adjustment over a time scale (Allan, 1995).

In river ecosystems, the physics, chemistry and biology of the water body are

interrelated. Any substances introduced to a river are transported and transformed by

physical, biological and biochemical processes. Consequently, the habitat condition

of river water is changed spatially and temporally (Allan, 1995; Meybeck et al.,

1996c; Townsend et aI., 1997; Mason, L996). Spatial and temporal variations in river

ecosystem are crucial to the abundance and activities of freshwater organisms and to

ecological processes in aquatic ecosystems, because they are main features of

different types of water bodies and habitat conditions within them. Variation in the

distribution and activities of aquatic organisms is evident at all spatial and temporal

scales but especially in streams, where biotic differences are often obvious within
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and across a watershed. The distribution, abundance and activities of aquatic biota

vary clearly with time, over temporal scales ranging from seconds or minutes to

years (Stewart and Loar,1994).

Hydrological processes, food resources, nutrient dynamics, riparian vegetation and

many other factors intimately affect the structure and function of stream ecosystems

(Hynes, 1970; Cummins, 1984; Allan, 1995). The following section discusses

fundamental processes occurring in streams in their spatial and temporal variation as

well as in their interrelations with each other.

Physical Processes

Hy drolo gic al pro c e s s es

Hydrological processes strongly affect all processes occurring in streams, The most

fundamental hydrological measurement that characterise all river and stream

ecosystems is discharge, the volume of water flowing through a cross section of a

stream channel per unit time (Gore, 1996). The amount of water flowing past a given

point combined with the slope of the stream channel produces an indication of stream

power. The potential energy of the stream is dissipated as friction heat loss on the

streambed and when the stream picks up and moves material. The work performed

by the stream influences the distribution of suspended sediment, bed material,

particulate organic matter and other nutrients. The distribution of these materials has

substantial influence on the distribution of riverine biota (Vannote et al. 1980)

Rivers and streams are integrated flowing systems that create and maintain aquatic

habitat within the turbulent structure of the flow, as well as on and below the channel

bed. At the catchment scale, the hydraulic condition of the flow may be generalised

as uniform or gradually varying above and below interruptions in the longitudinal

profile of the stream. At the stream reach scale, non-uniform flow conditions that

occur in pools, riffles, and meanders can be distinguished. To distinguish the pattern

of non-uniform flows, the mean depth, velocity and direction of the flow may be

mapped on sketches or survey plans of a reach. The channel configuration and flow

conditions are major components used to characteize the preferred habitats for

different aquatic biota. At the habitat scale, individual stream flowlines and different

states of flow can be outlined and analysed as rapidly varying, non-uniform flow

(Newbury, 1996).
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Stream morphometry and longitudinal pøtterns

Running water systems consist of tributary streams that erode the landscape

following the weaker strata of bedrock, which then gradually coalesce to form the

main river as it flows downhill. Streams do not flow far in straight lines, but tend to

meander with gentle or sharper bends. Channels may also divide into a series of

branches in response to variation in discharge, the nature of sediment, and the

presence of erodable banks. In segments, water velocity varies longitudinally, and

sediment on the stream bottom is eroded continuously from some areas and

deposited in others (Giller & Malmqvist, 1998). This leads to alternating sequences

of shallower, fast flowing, rifle areas with coarse substrates, and deeper pools with

slow flow and fine substrate. Each of these areas represents a type of habitat with

specific habitat conditions and stream biota.

Stream characteristics change longitudinally when upland streams turn into

downland from the headwater streams. On the one hand, the stream sizes increase

with the distance from source. On the other hand, the direct influence of the

surrounding landscape on the functioning of the running water ecosystem decreases.

The slope of the channel decreases, discharge increases, variability and nature of

flow change and so does water chemistry. These longitudinal changes in physical and

chemical characteristics impose significant consequential changes on ecosystem

processes (such as decomposition, community respiration, primary production) and

patterns (such as standing stock of organic biomass, species richness of invertebrates

and fish, and community structure) (Statzner & Borchatdt,1994).

Temperature

Temperature is one of the most important variables in the stream ecosystem.

Temperature affects movement of molecules, fluid dynamics, saturation constants of

dissolved gases in water, metabolic rates of organisms, and a vast array of other

factors that directly and indirectly affect life in the stream ecosystem (Hauer & Hill,

1996). Typically, the greatest source of heat in freshwater is solar radiation.

However, in very heavily shaded streams, transfer of heat from air and flow from

ground water are more important than direct solar radiation (Stanford et al., 1988).

Annual fluctuations in stream temperature are very tmportant to stream organlsms.

Critical life history variables (e.g. reproduction, growth) of lotic plant and animals
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are regulated by temperature (V/ard & Stanford,1982). Many stream animals use

temperature or temperature change as an environmental cue for emelgence or

spawning (Hauer & Hill, 1996). Temperature sets limits to the environment that

species can live in, and species are generally adapted to certain temperature regime.

The effect of temperature on the biota may be indirect through its influence on

metabolic rates and oxygen concentration (Giller & Malmqvist, 1998).

A common misconception is that stream temperature is uniform among habitats

within a stream reach. In reality, stream temperature may be highly variable between

habitats only a few meters apart. Streams frequently experience significant changes

in temperature from small shaded headwaters to broad, open canopied river reaches

(Stanford et al., 1988).

Light

Light is a critical variable in most ecosystems. In streams, solar radiation is necessary

for photosynthesis by attached algae.It is also the medium through which all-visual

behaviors (e.g. predation by fish, macroinvertebrates) is expressed (Hauer & Hill,

1996). There is evidence to suggest that light can influence benthic invertebrate

distribution. Some animal taxa show highest abundance in unshaded areas while

other taxa prefer shaded areas (Giller & Malmqvist, 1998). The longitudinal

downstream change in light regime and its consequences for stream bio-energetics is

an integral part of stream ecosystems (Vannote et al., 1980).

Seasonal variation in lotic light regime is caused by changes in sun angle and day

length and by phenological changes in streamside vegetation. Spatial variability in

lotic light regimes also is high. Variation in the amount of shade cast by streamside

vegetation is responsible for much of the spatial variability of light in streams.

Streamside vegetation also plays a crucial role in the longitudinal gradient of light

regimes in stream systems. As stream size enlarges progressively downstream,

riparian trees and bushes shade proportionally less of the stream, allowing more

diffuse sunlight to reach the streambed (Hauer & Hill, 1996).

Suspended sediment and bedload

Sediment concentration and bedload provide important information about stream

systems that has direct significance for aquatic biota. Sediments are important for
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maintaining spawning gravels and the channel morphology of stream and river that

form habitat for benthic organisms. Large amount of bedload transport may scour

benthic plants and organisms, bury spawning gravels, or cause relatively rapid

channel adjustments. The movement of sediment into stream systems generally

occurs by two major processes: surface erosion and mass wasting or landslides.

Furthermore, where soil, rock or previously deposited alluvium are being eroded by a

stream or river system, these materials can represent an important source of sediment

to aquatic systems. Numerous factors are involved in erosional processes. These

factors include climate (precipitation, temperature), topography, vegetation (type and

density of vegetation), soil (particle sizes, erodibility), and geology (characteristics of

parent materials and bedrock). In addition, human perturbation and management

practices that affect watersheds and stream systems can greatly increase natural rates

of erosion and sediment yield. Inorganic sediments are typically characterised by two

primary modes of transport: suspended sediment or bedload sediment. Each of these

categories delineate relatively different groups of particle sizes with different

implication for the morphology and ecology of a stream system (Beschata, 1996)-

Sediment particles transported in suspension by a stream are typically < 0.lmm tn

diameter and consist mostly of silt and clay sized particles. Suspended sediment

particles are transported downstream at essentially the same velocity as the flowing

water. Bedload sediment consists of relatively large inorganic particles that are

transported by water along the bed of the stream. They are relatively large (>1mm in

diameter) and consist mostly of coarse sands, gravels, cobbles or larger stones. These

sediments have important implications for aquatic plants and organisms because of

their influence on the character of the stream substrate and channel morphology

(Beschta, 1996). Moreover, light attenuation by suspended sediment also can reduce

light penetration in streams, which is a significant factor within freshwater ecosystem

as discussed in the previous section (Hauer & Hill, 1996)

Substrate

The substrate itself comprises a wide variety of inorganic and organic materiais' The

inorganic material (ranging in size from silt to sand, gravel, pebbles, cobbles,

boulders and bedrock) is usually eroded from the river basin slopes, river channel

and banks, and modified by the current. The organic materials vary from organic

fragments and leaves, to fallen trees, derived ultimately from the surrounding
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catchment and upstream habitats, as well as aquatic plants such as filamentous algae,

moss and macrophytes (Giller & Malmqvist, 1998).

The stronger the current velocity the larger the particle size that can be moved thus

current velocity and substrate type are related, and mean substrate particle size

generally declines downstream, However larger particles can protect smaller ones

from being entrained in the current and carried away, and so in coarser substrates.

finer sands and gravels will accumulate in between or behind the larger particles and

increase the heterogeneity of the substrate. Temporal variability in substrate will

occur naturally. The "stability" of the substrate refers to its resistance to movement

and is proportional to particle size. Redistribution of the substrate and movement of

particles will occur during periods of increased discharge following rainstorm (Giller

& Malmqvist, 1998).

The nature of substrate is of prime importance for lotic invertebrates. It provides

habitat space for a variety of activities such as resting and movement, reproduction,

rooting or fixing to, and for refuge from predators and flow. It also provides food

directly (organic particles) or surface on which food aggregates (e.g. algae, coarse

and fine detrital particles) (Giller & Malmqvist, 1998). Diversity and abundance tend

to increase with substrate stability and with the presence of organic detritus. Sandy

substrates are thought to be poorest, due to instability. Stony riffles normally have a

greater range of invertebrates than pools rich in silt (Allan, 1995). Heterogeneity is

also important in controlling abundance and diversity, as mixed substrates provide a

greater range of surfaces to colonize and microflow patterns (Giller & Malmqvist,

1998). Because of the above finding, the relationships among substrates and fauna

diversity, biomass ancl abundance are not linear.

Water Chemistry and Chemical processes

Water Chemistry

Oxygen is required by all aerobic respiration. Oxygen enters water largely via

diffusion from the air at the water surface. Oxygen solubility in water is negatively

correlated with water temperature. Oxygen levels also vary with current speed and

turbulence and are affected by the presence of macrophyte vegetation, as oxygen is a

by-product of photosynthesis (Giller & Malmqvist, 1998). Species do differ in their

respiratory ability and oxygen requirement, as evidenced by different responses to
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organic pollution that reduces oxygen, and these differences in turn contribute to

differences in species distribution (Hynes, 1970).

A typical river is essentially a dilute calcium bicarbonate solution dominated by a

few cations and anions (Wetzel, 1983). Other important variables to consider are pH

(which measures the acidity of water), hardness (which measures concentration of

Ca2* and Mgt*), conductivity (which measures the total ionic content) and alkalinity

(which measures concentration of carbonates). These variables have direct and

indirect effects on habitat conditions within streams and stream biota (Wetzel, 1983;

Giller & Malmqvist, 1998).

Regular monitoring of water chemistry at a sampling location will show patterns of

variation over time. Normally, short-term reversible changes in chemistry follow the

rise and fall of water levels associated with rainfall events, or with long-term

seasonal changes. If heavy rains follow a period of drought, accumulated solutes in

soil water, which have increased in concentration through evaporation, undergo

flushes of mineralisation or nitrification. The post-drought runoff water will contain

large amounts of nitrates and other solutes (Hornung and Reynolds, 1995).

Monitoring over long period of time can indicate directed changes in water chemistry

that may fundamentally change the nature of the system, as in the case of

acidification. Directed, long-term changes in nutrients, salinity, suspended solid load,

and oxygen accompany gradual eutrophication of rivers caused by pollution. Long-

term changes in water chemistry also follow changes to land use in the surrounding

catchment such as afforestation or clearcutting (Giller & Malmqvist, 1998).

Within-river variation in water chemistry in space is a relatively well-known

phenomenon. The concentration of most dissolved salts, nutrient levels and pH tend

to increase from the river's source to its mouth. Changes in geology, soils, climate,

vegetation, and in anthropogenic influence as one move from uplands to lowlands,

also play a part. At a regional scale between rivers, geology and soils are the major

factors influencing water chemistry, but local climate (especially rainfall patterns)

and surrounding vegetation are also important (Alian, 1995; Giller & Malmqvist,

1e98).
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Solute Dynamícs

The term "solute" refers to rnaterials that are chemically dissolved in water, This

includes materials such as calcium, chloride, sodium, potassium, magnesium, silica

carbonate and more biological important solutes such as phosphate and nitrate. These

solutes enter streams from three natural sources: the atmosphere (chloride, sodium,

and sulfate from rainwater); soil and rock weathering (calcium, phosphate, silica and

magnesium); and biological processes (nitrate from biological fixation by blue green

algae) (Webster & Ehrman, 1996).

'Solute dynamics' refers to spatial and temporal patterns of solute transport and

transfer. These processes are tightly coupled to the physical movement of water in

streams. As materials cycle between the biotic and abiotic components of stream

ecosystems, they are continuously or periodically transported downstream (Stream

Solute Workshop, 1990). Primarily biochemical and hydrologic interactions

occurring in whole watersheds as well as in-stream dynamics determine the

dynamics of many solutes. The dynamics of a conservative solute are primarily

driven by two processes: advection (down stream transport at the water velocity) and

dispersion (molecular diffusion or turbulence). Dynamics of non-conservative solutes

are more complicated because of the exchanges between solutes in the water column

and on the stream substrate. These exchanges include abiotic processes (adsorption,

desorption, precipitation and dissolution) and biotic exchanges (microbial uptake,

plant uptake, leaching and rnineralisation) (Webster & Ehrman, 1996).

Studies of solute dynamics in streams provide information on the rates of transport

and transformation of the solutes themselves and quantification of various

hydrological properties in streams.

Transport and storage of FPOM and CPOM

Fine particulate organic matter (FPOM) includes particles in the size range of

>0.45¡rm to <1000¡rm that are suspended in the water column or deposited within

lotic habitats. Suspended fine particulate materials include all living (e.g. bacreria,

algae, protozoan, invertebrates) and non-living materials (amorphous organic matter,

detritus, suspended organic sediment). FPOM can originate from many sources,

including breakdown of larger particles by physical forces, animal consumption,

microbial processes, flocculation of dissolved substances and terrestrial inputs
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(Wallace & Grubaugh, 1996). FPOM functions as an important food resource for

many filter-feeding invertebrates as well as for some vertebrates in river and streams

('Wallace et al, 1991). The downstream transport of FPOM is also important to the

theme of conceptualising streams as longitudinally linked systems (Vannote et al,

1980; Minshall, et al., 1985). Therefore, FPOM is important to many ecosystem

processes as it represent a major pathway of organic matter transport and export.

Coarse particulate organic matter (CPOM) in streams is defined as any organic

particle larger than lmm in size. CPOM include components ranging from branches

to entire trees that fall into stream channels and non-woody components donated by

riparian vegetation (leaves, needles, fruits, flowers, seeds, frass) and materials

produced within streams (fragmented aquatic plants, dead aquatic animals) (Lamberti

& Gregory, 1996). CPOM is a major energetic resource for stream ecosystems.

CPOM provides a large proportion of the fixed carbon in small streams and is

important in larger streams (Cummins et al., 1983). CPOM that enters streams is

transported downstream by the unidirectional flow of the lotic ecosystem. Trapping

of this material is essential for the subsequent microbial colonisation that precedes

consumption by shredding macroinvertebrates. These processes (retention) provide a

critical link between input and the long-term storage and processing of CPOM

(Vannote et al., 1980). The retentive capacity of streams for CPOM is a function of

hydrologic, substrate related and riparian features (Lamberti & Gregory, 1996).

Stream Biota

Heterotrophic microorganisms (bacteria, protists, fungi) are important components of

microbial communities, which function primarily as decomposers of dissolved

(DOM) and particulate organic matter (POM) and are also consumed by higher

trophic levels. An importance role of benthic bacterial communities is the

assimilation of dissolved materials from overlying water. The ecological importance

of these processes is that they result in the transfer of organic carbon associated with

DOM, which is an important source of organic matter (Ward & Johnson, 1996).

Benthic stream algae are a ubiquitous group of photosynthetic organisms responsible

for the majority of photosynthesis. Benthic algae arc of fundamental importance to

stream ecosystems. As organisms at the base of the food web, they are at the

interface of the habitat conditions and biological communities. Photosynthesis by
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benthic algae provides oxygen for aerobic organisms in the ecosystem, and the fixed

carbon provides food for algivores. Benthic algae enters to the food web through

direct consumption from the substrata by macroinvertebrates such as snails or insects

or through capture of drifting of benthic algae by filter feeders (Lowe & Laliberte,

1996). Many environmental factors interact to regulate spatial and seasonal growth

and succession of phytoplankton populations, such as light, temperature, availability

of phosphorous, nitrogen and silica, and dissolved organic compounds, which can

influence phytoplankton metabolism by interacting with macro and micro-nutrients

and influencing their availability ('Wetzel, 1983).

Freshwater macroinvertebrates are ubiquitous; even the most polluted or

environmentally extreme lotic environments usually contain sorne representatives of

this eliverse ancl eeologically important group of organisms. Most stream

macroinvertebrate species are associated with surfaces of the channel bottom and

other stable surfaces (fallen trees. roots, aquatic vegetation) rather than being

routinely free swimming (Hauer & Resh, 1996). Macroinvertebrates play important

roles within the stream community as a fundamental link in the food web between

organic matter resources (leaf litter, algae, detritus) and fish (Hynes, 1970; Allan,

1995). Macroinvertebrate species cornposition changes between headwaters, middle

reaches, and broader rivers, in response to changes in stream environment (Ward &

Stanford,1983).

The fish community is an assemblage of species inhabiting a prescribed area, that has

the foilowing properties: (i) richness, (2) diversity, (3) morphological and

physiological attributes and (4) trophic structure (Li & Li, 1996). The number and

kinds of species found can be ascribed to several ecological mechanisms. Physical

tolerance to habitat quality (temperature, pH, dissolved oxygen, current, availability

of substrata or cover) in the particular stream strongly affect membership in an

assemblage of fishes (Matthews , 1987).

Biotíc Interactions

One of the many advances in stream ecology in recent years is the increasing

awareness of the importance of biotic interactions in the ecoiogy of lotic organisms.
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Streatn Food Web

Stream food webs are essential for integrating studies of organic matter processing

and community interactions. Food webs differ in structure and function among

stream types, although they will all have some common elements. Most streams have

approximately three or four trophic levels, but occasionally fewer or more may be

present. Primary producers (including algae, bryophytes, macrophytes) and also

detritus, occupy the lowest trophic level. There are groups of macroinvertebrates and

some vertebrates (grazers and detritivores) apparently forming a primary consumer

trophic level. However, macro consumers that feed on aquatic plants or plant detritus

also ingest stream microbes and function as both primary and secondary consumers,

Primary predators belong between level 3 and 4. Finally, predators that feed on other

predators nearly always have mixed diets to include algivores and detrivores as well

as other predators (Hersley & Peterson, 1996).

Species comprising stream food webs are constrained by many factors which then

determine the structure and function of the food web of a particular stream, such as

biogeography, geomorphology, substratum characteristics, gradient, riparian

characteristics, temperature and inter-specific interactions (Cummins, et al., 1989;

Ward & Stanford,1982). The food web in any particular stream reflects all these

factors, and among Streams, a wide variation in food webs can be found.

Plant - Herbivore Interaction

Plants and animals interact in streams as they do in all ecosystems. Primary

producers in streams consist of autotrophic bacteria, algae, bryophytes and vascular

plants. The organic matter synthesised by primary producers in streams is a major

energy source for benthic food webs. Herbivory (or grazing) is the consumption of

living plants or their parts by animals. Herbivores have a major impact on plant

assemblages in many streams, thus many structural and functional attributes of

benthic algae arc altered by grazers (Lamberti & Feminella, 1996). However, the

strength and outcome of the algal-grazer interaction is also dependent on many

abiotic factors such as light, nutrient, substratum, flow, season and disturbance

(many works cited by Lamberti & Feminella,1996).
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P r e dat o r - P r ey I nt erac tio ns

Predator-prey interactions can have many types of effects on both predators and prey

communities. In streams, the predominant predators are fish and some carnivorous

macroinvertebrate species. Prey items include representatives of many orders of

benthic macroinvertebrates. The effects of predators on prey populations depend on

their predation rate compared to prey exchange rate (the rate at which prey moves in

and out of areas where predation occurs) (Cooper et al,, 1990). The impacts of

predatìon on prey populations can be studied from two general perspectives: effects

of predators-induced mortality in prey population and community, and consequences

of anti-predatory behavior on prey fitness (Peckarsky,1996).

Habitat Use and Competition

Species with sirnilar rnorphology, life histories, and ecological requirements may

coexist in many river and stream systems. The result is that there is potential for

competition among these taxa. One of the important ways that such species coexist is

through habitat partitioning. By exploiting different habitat or microhabitat patches at

different times, potentially competing species can find opportunity to avoid

competitive exclusion and thereby coexist (Connell, 1980). The differential use of

habitats by closely related or similar species is also an important component of

riverine biodiversity in that it promotes spatial complexity of biotic assemblages.

Stream ecosystems are spatially heterogeneous, such as in the habitat diversity

offered by polls, riffles and morphological features, or the convergence of flow

velocity, depth, substratum, and temperature conditions that define different

microhabitat patches within a single pool (Frissell & Lonzarich, 1996). Temporal

heterogeneity, such as variations in flow or temperature over time, can also afford

time-variant niches among which species are differentiated, therefore reducing or

avoiding biotic interactions, Temporal variability in the environment can reduce

competitive interactions between species and promote their continued coexistence

regardless of overlap in their ecological niches (Connell, 1980).

Summary

Processes discussed in this section prove the high complexity and non-linearity of

stream ecology. Streams and rivers are dynamic physical, chemical and biological

entities, which interuelate with each other. Effects on biota are usually the final points
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of environmental degradation and pollution of streams (Noris & Thoms, 1999).

Consequently, change in the health of a stream ecosystem will be reflected in the

aquatic biological community. The biological communities that are exposed to

pollutants act as integrators of the multiple past and present environmental effects

(Cranston et al., 1996). Therefore using measurements of aquatic biota, to identify

structural or functional integrity of ecosystems has recently gained acceptance for

river assessment (Noris & Thoms, 1999). The concept of biological assessment of

stream habitat is discussed in the next section.

2.1.2 Biological Assessment of Stream Habitat

As the community structure of an aquatic system is determined by conditions within

a habitat (e.g. temperature, flow and salinity) and resources available (all things

consumed by an organism), it is very sensitive to changes in these factors (Loeb &

Spacie, 1994). The organisms that live in aquatic ecosystems are fundamental

sensors that respond to any stress on that system, and only biological material could

be used for adequate indication of spatial and temporal effects of chemical stressors

in a river ecosystem (Cairns et al., 1993). Therefore, biological assessment is

essential to assess the environmental health of aquatic ecosystems.

Advantages of Using Biological Assessment

Biological assessments are less time consuming than traditional chemical assessment

as a single series of samples represents the sum effects of the prevailing conditions.

In addition, animal and plant communities are not affected by temporary

amelioration or usually by a transient deterioration of the effluent (Mason, 1996).

Hynes (1960) also emphasized the advantages noted above of using biological

assessment in polluted sites. Bioassessment can reveal long-term effects on

ecosystems after the cause of the impact has passed and is itself undetectable (Ghetti

& Ravera, 1994). Systematic biological monitoring and assessment is considered the

most practical and cost effective approach to determine if human actions are

degrading biological integrity (Davis and Simon, 1995). Such assessment provides

both numeric and narrative descriptions of resource condition (Karr, 1998). Cairns et

al. (1993) considered the role of the bioassay as a diagnostic tool for the restoration
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of desilable ecosystem conditions and as a

environmental impact.

predictive tool for preventing

For effective biological assessment, it is important to select organisms that will

accumulate continuously over time. In addition, the group of organisms selected as a

biological indicator should be widely distributed so that it is possible to compare the

findings from one body of water to another (Patrick, 1994).

Biological Indicators

Indicators are environmental parameters selected and used in judging the degree to

which specific environmental conditions have been changed or maintained (Cairns et

al., 1993). Cairns et al. (1993) defined "indicator" after Hunsaker and Carpenter

(1990) as '1a characteristic of the environment that, when measured, quantifies the

magnitude of stress to habitats, degree of exposure to stressor or degree of ecological

response to the exposure".

Indicators are a shorthand description of aspects of an environment. Indicators are

selected from a wide range of possible attributes and can be used singly or in

combination to assess the conditions of the environment. They are key attributes,

which give an impression of major trends and conditions (Walker et al., 1996).

Indicators may be used to understand the responses, adaptation and recovery of

ecosystems and their inhabitants to both natural and anthropogenic disturbances

(Johnson, 1995). Cairns et al. (1993) summarised the criteria for indicator selection.

Ideal indicators should be:

- biologically and socially relevant;

- sensitive and broadly applicable to stressors;

- diagnostic of the particular stressors causing the problem;

- measurable, interpretable and integrative; and

- timely and cost effective.

To avoid confusion and errors in monitoring, biological indicators must also meet

several requirements. Reliable biological indicators are taxa with narrow and specific
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tolerances. These indicators should be chosen considering the magnitude of the

effects to be measured. They should not be applied in geographic locations for which

they have not been designed (Cranston et al., 1996).

The biological indicator concept is well founded, shown by the commonplace

observation that organisms reflect their environmsnt. The concept of indicator

species is of central importance in biological assessment. Richard et al. (1993) have

defined "indicator species" as organisms which accumulate substances in their

tissues in such a way so to reflect environmental levels of those substances or the

extent to which the organism has been exposed to them. Good indicator species for

freshwater quality management should have specific characteristics such as: be

readily identified and easily sampled, have cosmopolitan distribution, readily

accumulate pollutants, be easily cultured in the laboratory and have low variability

(Hellawell, 1986).

Stream biota used as biological indicator

Benthic algae have a position at the interface of abiotic and biotic stream components

and have many attributes that make them good organisms to employ in habitat

condition assessment (Carbiener et al., 1990). Benthic algae are sessile and cannot

swim away from potential disturbances. They must either tolerate their surrounding

abiotic environment or die. Algal communities are usually species rich, and each

species has its own set of environmental tolerances and preferences. Therefore the

entire assemblage represents an information-rich system for environmental

assessment. Algal identification is not difficult. Excellent taxonomic keys exist for

the identification of benthic algae in most parts of the world (Lowe & Laliberte,

1996). The short life cycles of most stream algal species result in a rapid response to

shifts in environmental conditions. Extant benthic algal communities are typically

very representative of current environmental conditions, and indeed there is no better

alternative group for studies of nutrient enrichment in open water (Hellawell, 1986).

However, this advantage of algae for use as bio-indicators is a disadvantage in long-

term assessment, when integration of present and past disturbances are required to

assess habitat condition. Moreover, assessment methods based on aquatic plant

communities are usually limited by the constraints on aquatic plant growth. The

deepest parts of the water bodies, the areas shaded by trees, or those where flow

2I



velocity is too high, cannot be considered for ecological diagnosis, as vegetation

growth is impeded (Amoros et al., 2000).

Fish comrnunities are a highly visible and sensitive component of freshwater

ecosystems. Fish provide several attributes that make them useful indicators of

biological integrity and ecosystem health such as:

Communities are persistent and recover rapidly from natural disturbance. Fish

continually inhabit the receiving water and integrate the chemical, physical and

biological histories of the water.

They have large ranges and are less affected by natural microhabitat differences

than smaller organisms. This makes fish useful for assessing regional and macro-

habitat differences.

Most fishes have long life span (from 2 - l0 years) and can reflect both long-term

and current water resource qualities. The sampling frequency for trend

assessment is less than for short-lived organisms.

The taxonomy of fish is well-established (Simon & Lyons, 1995)

Fish communities respond predictably to changes in both biotic and abiotic factors

(Karr 1981; Yoder & Rankin, 1995). Their characteristics have been used to measure

relative aquatic habitat conditions (Simon & Lyons, 1995). However there are

several difficulties in using fish to assess water habitat condition, especially in

Australia:

They are highly mobile and may often be migratory and therefore may be able to

avoid exposure to adverse environmental conditions

Water quality tolerances are poorly known for most Australian species

The low diversity of fish in Australian waters means that few species are

expected in any given river, reach or habitat (Cranston et a1.,1996).

In addition, the use of the fish community in routine environmental surveillance is

hampered by the necessity for extensive manpower and the difficulty in obtaining

samples in deep, fast flowing rivers (Hellawell, 1986).
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Cranston et al. (1996) discussed the possibility of using biotic communities as

biological indicators of water quality. They assessed all possible biological indicators

by 11 criteria and compared then with an ideal rating (Table 2.1). The results showed

that macroinvertebrates offer the rating closest to the ideal, and they have been

widely accepted to be included in the set of key indicators to assess stream habitat

condition.

Table 2.1 Assessment of biological indicators of water quality (Cranstott et aI. 1996

[p.ua])

Although there are some difficulties in selecting reliable indicators, the use of the

biological indicator approach in aquatic ecosystems, in particular the use of

macroinvertebrates, has received endorsement in biomonitoring programs

(Rosenberg and Resh, 1993). The next section discusses the potential of

macroinvertebrates as biological indicators for freshwater habitat condition and

current biological assessment based on the distribution of macroinvertebrate

assemblages.

Selection criteria:
1. Ease to capture (High, Medium, Low) 7. Response to disturbance (H,M,L)
2. Total cost/ha (H,M,L) S.Stable over period of measurement (H,M,L)

3. Standard methods available (H,M,L) 9. Mappable (H,M,L)
4. Inrerpretation criteria available (H,M,L) 10. Generic (G) / Diagnostic (D) application

5. Significant at catchment scale (H,M,L) 11. Context data available (H,M,L)

6. Low error associated with measurement ffi.M.L)

LDMMMHMMHHHBioassa

LGMHHMHMHMHBiomarkers
asymmetry

LGMHHMHMHMHBiomarkers deformity

t.ÍGÐEIvlHHHHHI,,IN,tN,T acloinveltebrates

MGHHMHMMMLHPlants

LGDMMMMMMMMMFish

MGLLLLLMHMMWaterbirds

MGMMHMMLHLHAmphibians

MGMMHMMLLMMReptiles

MGMLHMHLHMMMammals

HHHHHHHHLHIdeal rating
11L09I76543)1

CriterionIndicator
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2.1.3 Biological Assessment Based on Macroinvertebrate Assemblages

Macroinvertebrates ønd their significant role in stream ecosystem

Macroinveftebrates used in bioassessment are defined as those inveftebrates that are

retained by a 500-¡rm mesh sieve. Amongst the macroinvertebrates that fall below

this size range many organisms are known or suggested to be valuable in aquatic

biomonitoring. However, these inveftebrates are not used in bioassessment because it

is too difficult to identify them without a microscope (Cranston et a1.,1996).

Macroinvertebrates are found in alì streams and play crr-rcial roles in organic matter

dynamics and trophic energy transfer in stream ecosystems. As a group, they are the

primary food source for most stream fishes. They also conduct important work of

decomposing ieaf litter and small particles of organic debris, and of grazing stream

algae, fungi, and bacteria Functional importance of macroinvertebrates in aquatic

ecosystems ranges from secondary producers to top predators. Therefore, their high

diversity in streams reflects a variety of ecological and evolutionary processes

(Hershey and Lamberti, 1998).

The study of macroinveftebrates is a central part of stream ecology. Earlier sections

have focused on the multitude of interactive physical, chemical and biological

variables that constitute the stream ecology. Geology, climate and other landscape

features directly affect hydrologic patterns, and the movement and storage of

inorganic and organic materials. Nutrients and the downstream transport of solutes

are affected by channels and substratum complexity, the interactions of ground and

surface waters, and by stream biota itself. Interactions between the stream channel,

hyporheic zone, and riparian floodplains are important features in structure and

function of the entire stream corridors (Stanford & Ward, 1993). These and many

other factor affect the microhabitat structure of the stream and the distribution and

abundance of stream macroinvertebrates.

Macroìnverlebrates offer many advantages in bioassessment. They are ubiquitous

and thus can be affected by environmental perlurbation in different types of aquatic

systems. The large numbers of species involved offer a spectrum of responses to

environmental stresses. Their sedentary nature allows effective spatial analyses of

pollutants or disturbance effects. Macroinvertebrates have variation in life cycles

ranging from multivoltine (several generations per year) to merovoltine (two or
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three-year life cycle), which allow explanation of temporal changes caused by

perturbation (Rosenberg and Resh, 1993; Hellawell, 1986). Because of that,

macroinvertebrates act aS continuous monitors of water they inhabit.

Relatio ttship b etw e e n Div ers ity and E nvironm ental Dis turb anc e

Variation in distribution and abundance of benthic macroinvertebrates may be caused

by differences in flow rate among sites (Newbury, 1984), stream size and distance to

the source (Minshall et al., 1985 cited by Linke et al., 1999), riffles and microhabitats

(Robson & Chester, 1999), temperature and stream discharge (Boulton & Lake,

1992: Dinsmore et al., 1999), food resources and physicochemistry of the habitat

(Townsend et al., 1997; Paradise & Kuhn, 1999). Altitude and slope have been found

to be in correlation with invertebrate communities (Faith & Norris, 1989). Seasonal

variability of such factors at a site is one of the prominent causes of temporal

variation in the benthic macroinvertebrate community ('Wade et al., 1989). Therefore,

season should be explicitly taken into account in bioassessment (Linke et al., 1999)'

Many other aspects of the stream habitat condition affect the composition and

abundance of stream macroinvertebrates. These factors include substratum, current

velocity, dissolved oxygen and water chemistry (Hershey & Lamberti, 1998;

Paradise & Kuhn, 1999; Dinsmore et al., 1999)'

A, disturbance is defined as a discrete event that disrupts the population, community,

or ecosystem Structute, often by changing resource abundance or physical

environment (Resh et al., 19SS). Effects of various types of disturbance on stream

macroinvertebrates communities have been studied from many perspectives,

including toxicants entering the stream, anthropogenic modifications of the channel,

scour due to high discharge, drought, overexploitation of native fish species and

introduction of exotic species (Hershey & Lamberti, 1998).

The responses of aquatic macroinvertebrate communities to environmental

disturbances have therefore been incorporated into methods of bioassessment and

biotic indices for the bioassessment of aquatic ecosystems. Typical observed

responses to disturbance include increase abundance of ceftain species but general

loss of diversity, especially with pesticide load or elevated nutrient level (organic

enrichment) (Cranton et al. 1996). However, the intermediate disturbance hypothesis,

as modified for streams, predicts the biotic diversity will be greatest in communities
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subjected to intermediate levels of disturbance. At low levels of disturbance,

competitive interactions will result in lower diversity because of exclusion of

species. High disturbance also will result in lower diversity because of exclusion of

poor colonists or long -lived species. (IVard & Stanford, 1983)

Bio as s e s s tn ent of stre am høbitat using tnacroinv ert ebrate s as s emblag e

Resh and McEltravy (1993) examined quantitative approaches used to study the

effects of actual or potential disturbances on populations and communities of benthic

macroinvertebrates and provided some suggestions to improve the role of

biomonitoring in environmental assessment processes. Rapid Assessment is a very

important application of macroinvertebrates in bioassessment. Rapid Assessment

Biomonitoring is applied to identify water quality problems associated with both

point and non-point source pollution and to document long term regional changes in

water quality (Resh and Jackson, 1993). Using benthic macroinvertebrate

community structures is a very fast and cost effective method in water quality

monitoring by Rapid Assessment (Lenat & Barbour,7994; Resh & Jackson, 1993;

Resh, 1995).

Chessman (1999) presented a method that predicts macroinvertebrate community

composition in flowing water from environmental data that has allowed pollution

assessment from natural variability. The method uses a reference condition

approach and predicts abundance of macroinvertebrates. The central idea of the

referential approach is study biological relationship of sites in near pristine condition

(reference condition) and then apply this relationship to predict the fauna at impacted

sites if they were unimpacted (sensu Reynoldson et a1., 1997). It is based on the

hypothesis that in the absence of pollution, river sites with similar natural

environmental features will have similar macroinvertebrate faunas. The method

showed a great distinction between human disturbed and undisturbed sites and high

degree of correlation with physical and chemical indicators of human disturbance,

However, the method worked with abundance, which can cause many difficulties in

data collection, as abundance sampling is very subjective and thus data may have

low reliability (Choy & Marshall, pers comnt). Marchant et al (1995) found that

patterns in macroinvertebrate communities were still evident when the taxonomic

resolution was reduced from species to family level. Family level studies have been

used successfully to describe biogeographical patterns across large areas (Corkum,
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1989) and also to detect anthropogenic impacts on aquatic systems (Furse et a1.,

1984). Because of its simple conceptual basic and effective application, the taxon

richness (the number of macroinvertebrates families) is concluded to be the most

effective descriptor to use as the basis of a biocriterion for bioassessment (Bailey et

al., 1998).

Assessment of river health involves comparisons. Indicators thought to represent

river health are generally compared between sites that are thought to be similar in the

absence of degradation (Norris & Thoms, 1999). A recent development in stream

assessment has been use of the reference conditions. These reference conditions

serve as the control against which test site conditions are compared. The notion of a

reference condition is really one of best available condition that could be expected at

similar sites, and it is represented by several sites (Reynoldson et al., 1997). The

reference condition is central to currently accepted ideas of "biocriteria" being

developed by the US EPA (Davis & Simon, 1995). This approach is being used in

Canada (Reynoldson et al., 1997;Batley et a|.,1998), in the UK (Wright, 1995) and

Australia (Parsons & Norris, 1996) for stream assessment using macroinvertebrates

assemblages. It involves testing an ecosystem exposed to a potential stress against a

reference condition that is unexposed to such a stress. Several reference sites are

sampled, and the variation among their communities represents the range of

acceptable conditions. A test community falling outside of this range "fails", while a

community that is within this range passes. The degree to which a test community

falls outside the reference range is a measure of the magnitude of degradation at the

site (Bailey et al., 1998). This reference condition approach is useful for estimating

attainable conditions for evaluating temporal and spatial changes in ecological

integrity, and for setting biological and environmental criteria (Hughes et al, 1986)

predictive modelling based on habitat characteristics is central to many applications

of the reference condition approach. Bioassessment uses predictive modelling to

explain variation in reference communities considering the environmental conditions

at these sites as predictors. The next sections discuss a computational approach to

support bioassessment based on information about environmental and biological

condition of sites.
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2.1.4. Statistical Model to Sttpport Bioassessntent

Stream modelling based on stream monitoring data is a next step in studying and

predicting the characteristics of stream habitats. Successful modelling based on

biological factors of streams can improve bioassessment results. The suitability of

predictive models for assessment programs is dependent upon their ease of

application and practicality in providing management information at minimal cost

and effort (Parsons & Norris, 1996).

Many studies require statistical analysis or even more complex numerical analysis to

draw generalities and to detect and highlight patterns or trends in complex data set

comprised of many variables in order to apply the data in further studies. Norris and

George (1993) evaluated statistical analytical approaches used in data processing.

Major methods of statistical modelling described in their study include Analysis of

Variances (ANOVA), multiple regression (MR), Discriminant Function Analysis

(DFA) and time series analysis. They are all very powerful tools for developing

predictive models and associating physical, chemical and biological data together.

ANOVA is applied to compare and partition total variability into components of the

study. It depends on replicated sampling. Multiple regression is a continuous

statistical approach used to examine relationships between biological measure and

various environmental factors. DFA is an appropriate method that can be used to

investigate the relationship between groups established from macroinvertebrate fauna

and environmental variables. Time series analysis may be used to develop a

predictive model based on variation in past time series,

However, these methods of statistical analysis often have stringent requirements of

data, such as replicated collection of data, normally data distribution or high

frequency of data collection. Some requirements are difficult to meet so simplified

assumptions must be used in working with these methods. These assumptions and

data requirements restrict the capability of statistical methods to cope with the non-

linearity and complexity of water ecosystems. Statistical methods tend to minimize

non-linearity in the processes, They are simple to implement if the relationships with

variables are linear. If they are non-linear, transformation into linear becomes a

major limitation of statistical methods in working with non-linear relationship of

variables in the aquatic system (Lek et al., 1996 and Paruelo et al., 1,997). In

addition, each of the statistical methods mentioned above could be applied to certain
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problems in data processing, but integrated application of all the methods to work

with a complex database may cause problems in implementation. Therefore,

statistical methods appear to have restricted capacity for modelling complex and non-

linear river quality data.

In order to overcome the limitation of statistical models, efforts have been

undertaken resulting in some significant successes in this field. Welsh et al. (1996)

used a statistical model but provided a method for identifying important

environmental variables and constructing appropriate intervals to predict mean value

of animal abundance. Reckhow (1993) applied a random coefficient to the same

cross sectional data set to produce water body specific parameters rather than a single

set of global parameters. It improved the results of the statistical models for

chlorophyll ø- nutrient relations in working with spatial variation. Yang et al. (2000)

applied two-dimensional spatially distributed water quality data derived from the

SPOT satellite to support one-dimensional water quality models (QAL2E) in

estimating algal growth rate and respiration rate in a water ecosystem. However these

supporting methods often make statistical models become too complicated and

difficult to be applied in operational water quality assessment and management.

Recknagel (1989) and Recknagel et al.(99Q applied an expert system to water

quality management. An expert system consists of two parts: a software product or

expert system shell which contains the code handling the knowledge base and the

knowledge base covering a set of rules for a specific problem (Straskraba, 1994)' The

Lake Ecosystem Model SALMO (Recknagel, 1989) is an example of a non-

autonomous deterministic model. Although SALMO had achieved significant results

applying some simplifying assumptions, it is unlikely that it would be effective with

river systems, which are different in nature compared to lake ecosystems.

A widely used model in supporting bioassessment is simulation modelling, which

can be done using STELLA software. Fischer (1994) successfully applied this model

to study prey-predator relationships in order to control overcrowding in water bodies'

His model consisted of prey submodels representing the population dynamics and

growth of prey and predator submodels representing the predation process,

population dynamics and growth of predators. Nevertheless, this was a mechanistic

simulation model based on theoretical ecological and biological knowledge, which

does not respond to all processes occurring in the studied systems. The main problem
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in working with structural dynamic models is that it is very difficult to obtain

sufficient data to develop the models. Another problem is that the models do not

reflect the real ploperties of ecosystems, particularly their adaptability and ability to

meet changes in forcing functions with changes in species composition (Jorgensen,

1999).

V/right et al. (1984) first presented the results of a the project on British rivers that

had two major objectives: to develop a biological classification of unpolluted running

water sites and to assess if the type of macroinvertebrate community at a site may be

predicted using physical variables. In this project the sites were classified by two-

way indicator species analysis (TWINSPAN), and a rnultiple discriminant analysis

(MDA) was employed to predict the group membership ar sites using 28

environmental variables. The approach was founel to be useful to the. classification of

running water sites by their macro-invertebrate fauna and the prediction of

community type using environmental variables.

Based on this approach, Moss et al. (1987) developed a statistical model for

predicting macroinvertebrates occurring at some stream sites in Great Britain. The

model worked with probabilities of the occurrence of macroinvertebrates and

provicled reasonable results in prediction using environmental variables, The

procedure is of practical value in the detection and assessment of pollution.

However, they also acknowledged that the proposed applications did not provide an

explanation for the macroinvertebrates response to environmental conditions. This is

caused by the iimitation of the applieci discriminant analyses. if these techniques are

used for explanatory purposes, a number of assumptions needs to be met including a

jointly normal distribution of explanatory variables, equal covariance matrices

amongst the groups being discriminated between, and accurate estimates of the prior

probabilities of group membership.

Based on works of Wright et al., 1984; Moss et al. I98l; Wright, 1995; V/right er al.,

1998, a software package have been developed in the British Institute of Freshwater

Ecology's called RIVPACS (River Invertebrate Prediction and Classification

System). RIVPACS has been applied on a nation wide scale to assess the biological

quality of rivers and streams in the United Kingdom.
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The system predicts the site specific macroinvertebrate fauna to be expected in the

absence of major environmental stress (Wright, 1995; Wright et al., 1998; Moss et

al., lg99). The statistical techniques used for RIVPACS are TWINSPAN

classification of the reference sites based on their macroinvertebrate assemblages,

followed by multiple discriminant analysis (MDA) of the resulting groups of sites

using a limited number of environmental variables. Prediction of the fauna at a test

site was achieved through MDA, leading to calculation of probabilities of capture of

individual taxa based on the prediction of group membership for the test site (Moss

et a1., 1987).

In Australia, a similar predictive model called Australian River Assessment Scheme -

AusRivAS was developed to use aquatic macroinvertebrates to assess the habitat

condition of Australian rivers and streams (Schofield & Davies, 1996). AusRivAS

models are based on RIVPACS, which also assess habitat condition in a river by

predicting the macroinvertebrates families expected in the absence of environmental

stress, such as pollution or habitat degradation (Coysh et al., 2000)' Predictions are

derived from a set of environmental measurements used to characterise the site. A

predicted macroinvertebrates assemblage is compared with the actual assemblages

and the ratio of observed/expected (O/E) families is used as a measure of ecological

condition (Wright et al., 1984; Parsons & Norris, 1996; Marchant et al., 1997; Smith

et al., lggg). There are two major differences between AusRivAS and RIVPACS.

Firstly, macroinvertebrates are only identified to family level in AusRivAS. Second,

major aquatic habitats (channel, riffle etc) are sampled and processed separately in

AusRivAS (Smith, et al., 1999). The rationale behind habitat- specific sampling is

that each habitat has a distinct macroinvertebrate community and within a given

region, differences among habitats are greater than differences between sites. Unless

comparisons between sites are based on the same habitats, they may be confounded

by the occurrence of different habitats at each site (Parson & Norris, 1996)'

The modelling approach for AusRivAS was similar to that of RIVPACS. Model

building occurred in five steps. First, reference sites were classified into groups with

similar macroinvertebrate communities using an agglomerative hierarchical fusion

technique, Unweighted Pair-Group arithMetic Averaging (UPGMA). Second, once

the optimal classification was chosen, stepwise discriminant function analysis (DFA)

was used to identify which environmental variables best discriminated between

r
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groups in the classification. Third, the DISCRIM procedure in SAS sratistical

package was used to incorporate predictor variables into a discriminant function and

assign sites to groups identified in the classification. Fourth, the probability of each

family occurring at each site was calculated by multiplying the probability the

probability of site belonging to a classification group by the probability of family

occurring in that group and then summing the products to give the number of

families expected (E). Fifth, using a preliminary model, OÆ ratios of reference sites

were calculated. The O/E score itself was used as a measure of impact at disturbed

sites, with lower scores indicating greater disturbance. (Simpson et al., 1997; Smith

et al., 1999; Coysh et aI.,2000).

The AusRivAS model had been applied to study the effect of habitat- specific

sampling on biological stream assessment for Australian Capital Territory (Parson &

Norris. 1996), to classify macroinvertebrate communities across drainage basins in

Victoria (Marchant et al., 1999), and to assess ecological condition of rivers in
'Western Australia (Smith et al., 1999). Even though the applications achieved some

valuable success, some constraints appeared to have caused confounded assessment

of biological impairment. Although statistics can be used to validate metric choices

and predictions while building multimetric index, excessive dependence on the

outcome of statistical tests can obscure meaningful biological patterns. A narrow

focus on probability values (P-value) rather than on biological consequences limits

the value of biological assessment. Dependence on narrow statistical approaches

overlooks the fact that a statistically significant result (small P-value) may not equate

with a large important effect, as researchers often assume; similarly, a statistically

insignificant effect (large P- value) may well be biologically important (Karr, 1999).

Investigation of the RIVPACS classification based on statistical methods revealed

that the composition of a few of the classification groups was less than optimal and

could adversely affect the performance of parts of the prediction system (V/right et

al, 1991). Moreover, the RIVPACS and AusRivAS statistical approach may be more

difficult to apply to sites where environmental conditions are extreme or highly

unpredictable and in consequence the biota are more difficult to document or show

substantial year by year variation (Wright, 1995),

These constraints are caused by the assumptions and limited implementation of

statistical methods in dealing with high non-linearity of stream data. As new



computational techniques are becoming widely available, a number of alternative

ordination and classification procedures are now being examined to determine

whether a new procedure can deliver more reliable predictions (Wright, 1995).

2.1.5. Summary and Research Needs

Freshwater streams have a highly complex nature including distinct nonlinear

processes over time and space. This nature makes habitat conditions in streams

extremely difficult to assess and predict. Traditional methods often fail to cope with

all these variations. Bioassessment with its conceptual advantages, reliable

elucidation and practical implementation have proved to be a suitable alternative.

Among indicator species living in streams macroinvertebrates provide many valuable

characteristics and they are widely accepted to be a key indicator to assess stream

habitat conditions.

Success in applying bioassessment in habitat condition management can be enhanced

with the support of predictive modelling. Statistical and other mathematical and

numerical models have to some extent been used successfully to support

bioassessment in water quality. However, these models are still constrained by not

being able to deal with the non-linearity and high complexity of stream ecology.

New computational techniques are needed to find the way to overcome these

difficulties. A new generation of models for bioassessment of freshwater streams

may arise from application of machine learning techniques to be a potential

alternative tool.
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2.2 Artificial Neural Networks to support bioassessment

2.2.1 Artíficial Neural Networks - Att Introduction

Artificial Neural Networks are one of the most important applications of Machine

Learning techniques. Machine leaming is a subset of Artificial Intelligence, a branch

of computer science that is concerned with the automation of intelligent behaviour.

Machine learning focuses on knowledge acquisition by various automated induction

techniques. Machine learning has proved to be a fruitful area of research, spawning a

number of different problems and algorithms for their solution. These algorithms

vary in their goals; in the available training data and in the learning strategies and

knowledge representation languages they employ. However, all of these algorithms

learn by searching through a space of possible concepts to find an acceptable

generalisation (Luger and Stubblefield, 1992).

Kompare et al. (1994) showed by that using advanced machine learning techniques

and general basic knowledge on ecosystems, it is possible to automatically generate

better models and in less time than is the case by traditional model construction.

Machine learning models have the ability to extract temporal or spatial patterns and

knowledge from highly nonlinear and complex data. Based on such patterns and

knowledge they can predict future conditions. Machine learning reduces to a great

extent the need to query the expert in the way that computer extracts knowledge from

the given data. It is able to identify and model a real world system that we do not

fully understand yet.

As the significant application in this field, Artificial Neural Networks offer inductive

approaches to model building. They are highly connective and simulate principles of

natural evolution and knowledge discovery in large databases.

ANNs are non-linear mapping structures based on the function of the human brain.

They are considered universal and highly flexible approximators for any data and are

powerful tools for ecological modelling, especially with high non-linearity occasions

when the data relationship are unknown (Lek & Guegan, 2000). They do not require

assumptions about mathematical relationship between state variables and the nature

of the distribution of data. All neural networks have in common the ability to learn

from data. ANNs can identify and learn correlation between input data and
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corresponding target values. After training, ANNs are able to predict the output of

new independent input data. ANNs may be broadly classified according to whether

they learn in a supervised or unsupervised way (V/aley and Fontama, 1998; Bishop,

1 99s),

A neural network learning model consists of two primary components: the

topological structure of neural networks and an associated learning rule (Adeli and

Hung, 1995). The backpropagation learning is one of the supervised learning

methods.

Backpropagation (BP) networks based on the supervised procedure are preferred in

ecological modelling, especially in water quality modelling. The architecture of the

BP network is a layered feed forward neural network, in which the non-linear

elements (neurons) are located in the hidden layer. The neurons feed a non-linear

function by the sum of their inputs coming either from input nodes by feed forward

or from output nodes by feedback. Neural networks determine the weighted

connectance between the input and output nodes by these neurons (Recknagel et al.,

1997: Recknagel et al. 1998, Lek et a1.,7999).

Backpropagation is an algorithm for apportioning the error responsibility through a

multilayered network. The neurons in a backpropagation network are connected in

layers, with units in layer k passing their activations only to neurons in the layer k+l.

In solving a problem, activation passes from the input units, through one or more

internal layers of neurons (hidden layer) and ultimately passes to the output layer and

the environment (Luger and Stubblefield, 7992).

Given the correct results, the network may calculate the error in the output units just

as it did for a single-layer network. The error for a neuron in the layer directly below

the output layer is a function of the errors on all the units that use its output. In

general, the error for a neuron at layer n is a function of the effors of all neurons at

layer n+l that use its outputs. In a BP network, activation moves backward in a

similar fashion (Luger and Stubblefield, 1992). Once BP has computed the error for

each neuron in the network, the individual units may learn by applying the delta rule,

the amount of learning is represented as the difference (delta) between the desired

and computed outputs (Adeli and Hung, 1995).
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These multi-layer artificial neural networks can learn in more complicated learning

domains than those lacking hidden units. The feedforward net with BP of error has

been found to be an effective learning procedure for classification problems

(Rumelhart et al., 1986)

Maier and Dandy (1996) compared ANNs to statistical ARMA (Auto Regressive

Moving Average) class of models widely used for modelling water resources time

series in terms of advantages and disadvantages. They found that ANNs are more

flexible in working with complex non-linear system and in providing long term

forecasting. Similar comparisons between ANNs and other classes of statistical

modelling provided by Lek et al. (1996) and Paruelo and Tomasel (1997) also

emphasized the flexibility of ANNs.

Artificial neural networks thus bring an excellent alternative tool for analysing

ecological data and for modelling thanks to their specific features of non-linearity,

adaptivity through learning from samples, generalization and model independence

(Schleiter et al., 1995).

2.2.2 Application of ANN to modellíng ecosystem

ANNs have been applied to various fields of aquatic sciences and engineering,

especially in modelling habitat condition. Modelling freshwater habitat condition is

extremely difficult, as the interrelations between various influences are not known.

Hydrodynamic models are difficult to couple with chemical and biological models.

The action of hydrological process on ecological processes has hardly been

elucidated, as the requirements are different for both systems (Straskraba and Gnauk,

1985). The use of ANN may overcome many of these difficulties. Unlike

deterministic modelling, which is based on known theories and equations, ANN uses

the measured data to determine relationships. Therefore, the problem of producing

models that can address unidentified interactions and combine hydrodynamics with

ecological processes is clearly possible using ANN.

Maier and Dandy (1996) used ANN as a viable means of forecasting salinity in the

River Murray (South Australia) 14 days in advance. The results obtained had less
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than lVo average absolute percentage error. It was concluded that, ANN models

appear to be useful tool for forecasting salinity in rivers.

Recknagel et al. (1997) applied ANNs to the task of modelling and prediction of

algal blooms and to ídentification of the variables that play a major role in algal

growth. In their study, major ecological factors of a1l chemical physical and

biological categories, which could clearly define the environmental conditions of the

aquatic system, were included as input variables and five dominating phytoplankton

species were used as output variables. The resulting predictions on succession

indicate the ability of ANNs to fit the complexity and non-linearity of complicated

ecological phenomena. If an expanded database is available, not only a specific aim

can be investigated but also cost-benefit strategies for management can be addressed

applying ANN to scenario and sensitivity analysis (Recknagel,7997:' Recknagel et

al., 1998).

ANN had been applied very successfully to eutrophication processes. Research has

been done in Italy (Scardi, 1996), Japan (Yabunaka et al., 1997), and Turkey (Karul

et al., 2000). Models used physical and chemical parameters and also biological

variables as inputs to predict the behaviour of chlorophyll - a and other typical

eutrophication indicator. The studies showed that nonlinear relationships in the

eutrophication phenomenon could be modeled reasonably well. The ANN model can

also estimate an extreme value that lies outside the boundaries of the training set.

Conclusions were made that ANN models can be used to estimate the densities of

certain species as functions of environmental parameters.

Wen and Lee (1998) applied ANN to the problem of optimising water quality

management in a river basin. Their study focused on the objectives of environmental

quality, treatment cost of wastewater and the assimilative capacity of a river to

provide a solution to water quality management problems. The results of their work

show that using the backpropagation algorithm and feed forward neural network, a

multi objective programming model can simulate the decision makers' preferences

and successfully overcome the disadvantages of unknown preferences of decision

makers.

Recknagel and Wilson (2000) discussed the potential of ANN models in working

with aquatic ecosystems. They compared presentations of 6 prototypes of inductive
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and deductive models for phytoplankton including a regression model; time series

model; delerministic models for functional algal group succession and algal

population; heuristic model; and ANN. The result of comparisons showed that only

ANN provides an ability to predict both timing and magnitudes of species dynamics

and species succession in the lake, ANN models can support both prediction and

elucidation of ecosystem behavior with the potential to provide new insight into

mechanisms of systems from the results.

Maier et al.(1998) used ANNs for modelling the incidence of cyanobacteria in rivers

by forecasting the occurrence of a species group of Anabaena in the River Murray,

Australia. ANNs provided a good forecast of both the incidence and magnitude of a

growth peak of cyanobacteria within the limit required for water quality monitoring.

The models also defined predominant variables in determining the onset and duration

of cyanobacteria growth.

Lek-Ang et al.(1999) developed predictive modelling of Collembolan diversity and

abundance on a riparian microhabitat scale, Biological variables that were retained to

describe its structure in this model included abundance of dominant species, species

richness and biological indices. In the input layer, the main environmental variables

were considered. 807o samples were chosen randomly for the training process and

the remaining 20Vo were used for model validation. The resulting habitat profiles

illustrated the complex influence of each variable on the biological parameters of the

assemblage and also the non-linear relationship between dependent and independent

variabies. TLre study gave saiisfactory resuits over praciically the whoìe range of

values of dependent variables, which showed ANNs potential to predict biodiversity

and structural characteristics of species assemblages.

Gozlan et al (1999) applied ANN with the aim to predict the abundance of six fish

species in the river Garonne with back propagation as learning algorithm. The ANN

was successful in predicting the abundance of 0+ fishes on a microhabitat scale,

indicating that technique merits more frequent use in ecology and biodiversity

studies. The explanatory part of the analysis, coupled with the predictive power of

ANN, should facilitate the ecologically oriented management of aquatic ecosystems,

providing that the duration of the study is extended.
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In summary, ANNs based on machine learning techniques have proved to be

powerful tool in bioassessment of aquatic ecosystems and stream habitat

condition and have been applied worldwide in this field.

2.2.3 Current Achievement in Application of Al,{N to Assessment of Habitat

C onditions using Macroinv e rtebrate As s emblag e s

Walley and Fontama (1998) firstly reported a successful application of ANN in

prediction of macroinvertebrate taxa in unpolluted river sites and compared with the

performance of RIVPACS. The objectives of predictions were average score per

taxon (ASPT) and number of familìes presents (NFAM). Models were based on the

standard backpropagation networks. The results showed that the ASPT model

achieved a significantly higher level of performance in independent test data than the

NFAM model. Results of their study demonstrated the ability of ANN in training

with values of biological indices and understanding the relationship between

environmental variables and biotic indices that is often a very complicated and non-

linear problem. It was concluded from study that the neural networks performed

marginally better than RIVPACS. They also discussed further improvement to the

performance of neural network by extending the environmental data to include

relevant catchment characteri stics.

Schleiter et al. (1999) went one step further to model the population dynamics of

macroinvertebrates in German streams using ANN. They tested the suitability of

ANN for system analysis and impact assessment: (1) in temporal dynamics of water

quality; (2) in bioindication of chemical and hydromorphological properties using

benthic macroinvertebrates; (3) and long-terrn population dynamics of aquatic

insects. The satisfactory results of the study showed that ANN can meaningfully be

used in the analysis of effect-relation of species, including the identification and

assessment of complex impact factors, and also for forecasting system behaviour

which have specific, very complex and non-linear features. However, they admitted

that as ANNs learn from examples, their quality depends heavily on the

representativeness and compatibility of the database.
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Chon et al (2000a) applied Artificial Neural network to classify and predict

multivariate stream data even in a short period using benthic communities. This

study demonstrated that temporal ANNs could be utilised to forecast and analyse

short-period changes in multivariate data sets. The recurrent neural net'work appeared

to be effective in patterning development of benthic communities in streams

lesponding in a diverse manner to a wide range of pollution. The study also showed

the advantage of specific forecasting for an individual taxon is that it could assist to

characterise community changes.

Obach et aI (in press) modelled the total amount of individuals of selected water

insects based on a 30 years data set of population dynamics and environmental

variables in stream in Central Germany using Kohonen self-organising maps in

cornbination with some other types of neural netwcrks. Results were interpreted on

the basic of knorvn species traits. The conclusion was made from ihe study that it is

possible to predict the abundance of aquatic insects based on relevant environmental

factors using Artificial Neural Networks.

Spatial analysis of stream invertebrate distribution in the drainage basin had been

studied (Cereghino et al,, 2000). The study provided a stream classification based on

characteristic EPTC (Eplænteroptera, Plecoptera, Tricltoptero, Coleoptera) insect

assemblages at species level. The main interest of their results is that the stability of

these theoretical assemblages may be used to refine representative and/or reference

sites for biological surveillance, as a change in species composition within a given

region can be considered as a biological indicator of environmental changes,

Pudmenzky et aI.(1998) developed preliminary ANN models for predicting the

distribution of macroinveftebrates in the Queensland stream system based on

environmental variables. The network was trained with both categorical and

continuous attribute input data. The ANN proved promising in predicting the taxa,

which had the most even equal distribution of presence/absence (probability of

occuffence around 0.5). As work had been done with a shareware version of the

software package, only a subset of the data could be investigated. However, this is

the first work done in applying ANN to biological assessment of habitat condition in

Australia. Further research is highly recommended to investigate the possibility of

ANN as computational alternative to AusRivAS in supporling bioassessment of

habitat condition,
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2.2.3 Research Needs

ANN hasproved to be a very effective approach to support bioassessment of habitat

condition and had been applied all over the world with remarkable success. In

Australia, anthropogenic effects on streams and rivers have resulted in considerable

physical, hydrological and morphological changes in aquatic ecosystems (Smith et

al., 1999). In response to declining conditions in Australian rivers, National River

Health Program (NRHP) was established in 1992 with the aims to monitor and assess

the ecological condition of Australian river and stream; to assess the effectiveness of

current management practices; and to provide better ecological and hydrological data

on which to base management decisions (Schofield & Davis, 1996). AuRivAS is a

national bioassessment program that uses aquatic macroinvertebrates to assess the

health of river and stream systems. AusRivAS uses statistical models as a prediction

tools and exhibits some constraints in dealing with non-linearity and complexity of

freshwater ecosystem. Artificial Neural Networks, which had been studied and

applied in many areas all over the world with promising success, can be applied as

alternative computational tool to the AusRivAS model'

2.3 Summary and Thesis Aims

In conclusion, streams and rivers are very complex ecosystem with many processes

in close interrelations. River health assessment is a way of examining waterways

using tools such as water quality, habitat description, biological monitoring and flow

characteristics to create an overall picture of the ecological health of that waterway'

Bioassessment of freshwater stream habitat is an effective method to obtain an

accurate picture of condition or health of a waterway. Among indicator species used

for bioassessment, macroinvertebrates prove to be very appropriate for use in

studying stream and river habitat condition. Success in applying bioassessment in

freshwater management can be enhanced with the support of computer modelling,

especially using artificial neural network techniques.
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Artificial Neural Networks had been applied in the field of habitat condition

assessrtent using macroinvertebl'ate assemblages in many countries fol a long time

but no such of project had been done for Australian stream systems.

The goal of my research is to follow the preliminary study of Pudmenzky et al (1998)

to apply Artificial Neural Networks for the bioassessment of stream ecosystem. The

aim of this study is the development of an ANN model to predict habitat conditions

in Queensland river systems based on environmental variables and colonisation

patterns of 40 most common macroinvertebrate taxa. The predictions are based on a

comprehensive database, which was previously subject to a preliminary case study

by Pr,rdmenzky et al. (1998). Beside the prediction, I will also test the elucidation

capacity of ANN to explain the processes in freshwater ecosystems and to find out

dominant factors affecting distribution of macroinvertebrates within the system,

MoLItLscs of solid objects and weed beds of depositirtg substrata in running wctter (Hytvas, 1960).
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3 General Material and Methodology

3.1 Introductíon

This work investigated the application of an Artificial Neural Network model to

predict the habitat conditions in the Queensland stream system. The project was

aimed at determining if ANNs could be used as basic for a Queensland model. The

work had been done based on a comprehensive database from Queensland

Department of Natural Resources (QDNR) containing information taken from wet

and dry seasons on water quality, habitat characteristics and occurrence patterns of

macroinvertebrates for over 500 stream sites. This database was previously subjected

to a preliminary case study by Pudmenzky et al. (1998). Different combinations of

data had been studied and used for model development. This chapter discusses the

structure and characteristics of data used for network development.

Computational approach had been applied to analyse the relationship between

environmental variables and stream assemblages. The models had been developed by

mean of Artificial Neural networks. Fundamental concept and method of modelling

also are discussed in the chapter.

3.2. Study Sites ctnd Site Selectíon

The Queensland river and stream network spreads over the territory of the federal

state of Queensland (Australia). A diverse range of climatic conditions occur over the

state, ranging from high rainfall area (i600 mm /annual) in the tropical Northeast to

low rainfall arca (200 mm/ annual) in the Southeast. Study sites are spread

throughout the catchments of most major and many minor Queensland rivers.
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The majority of sites in the stream database are situated in relatively high order

streams of coastal lowland areas (see Fig. 4.1).

Kilometres

750

È

Figure 3.1 Møp of Oueensland indicating location of reference sites of the Queensland
stream database

In this work the concept of reference site and test site had been used. Reference and

test sites in Queensland were initially selected for the MRHI (Monitoring River

Health Initiative) program using protocols outlined in the River Bioassessment

Manual. Reference sites were those in near pristine condition. Test sites were those

experiencing an impact from water quality or habitat degradation. QDNR currently

?s00
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uses a list of the 10 selection criteria to determine whether or not sites are tn

reference condition (Conrick & Cockayne, 2000).

Table 3.1 Selection criteria used to determine reþrence sife condítion (Conríck &
Cockayne,2000)

For all sites each criterion was assessed with the level of impact given from I

meaning highly impacted to 3 with no/little impact. These levels were then summed

to give a total site assessment out of a maximum of 30. If the site assessment score

was <26 the site was consideredas atest site: assessments>-26 were considered as a

reference site. Criterion 5 is crucial. Site failing to have criterion 5 score of 3

automatically fails the overall assessment.

Database contains information about habitat characteristics of 896 samples taken

from reference sites and 1159 samples from test sites. Different combinations of data

are used for training, validating networks and for testing network in prediction step.

t30SITE ASSESSMENT

Instream conditions and habitat not altered10

Stream Channel not affected by major geomorphological change9

Riparian Zone and banks not excessively eroded beyond natural

levels or significantly damaged by stock
8

Riparian Zone of natural appearance7

Seasonal flow regime not greatly altered6

No dam or major weir within 20km upstream5

No significant point source waste water discharge within 20km

upstream
4

No major urban area (>5000 population) within 20km upstream-)

No major extractive industry (current or historical) within 20km
upstream

2

No intensive agriculture within 20km upstreamI

Level of
Impact

Reference condition Selection CriteriaNo
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3.3 Høbitat Condition Database - A review

Habitat condition database contains information about habitat characteristics, water

quality and colonisation pattern of macroinveftebrate in each site. For each site data

set contains thlee sub-sets, which are discussed below.

3.3.1 Physical Riparian and Other Predictor Variables

Physical habitat data were collected from longitudinal profile. Potenrial predictor

variables that are environmental variables that are relatively stable under the

influences of human impacts. They are used for developing network based on

reference condition approaches (Parsons and Nods, 1996; Simpson et al, 1997).

Chemical variables such as dissolved oxygen, pH, nutrient concentration are often

affected by anthropogenic impacts and they would provide spurious prediction if
used to predict the membership of test sites to the reference site groups.

Data of habitat characteristics included 39 potential predictor variables consisting of

discrete categorical or continuous data. Only some discrete categorical variables

were formed by classification schemes such as stream ordeL, most of them were

represented just as empirical criteria for habitat characteristics such as soil types and

vegetation type. These 39 potential predictor variables were used as input variables

of the ANN models. Predictor variables for network development mainly belong to 3

categories: geographical, topographical and meteorological.

(1) Geographical

Latitude (S), Longitude (E), Altitude (m): Geographical information about location if
site. Obtained by using GPS (Global Positioning System) and confirming readings on

a 1:100 000 topographic maps.

Streant Order: Hierarchical-ordering system based upon the degree of branching

(Strahler, 1957). Stream orders were determined using 1:100 000 scale maps. A

second order stream is formed by the joining of two first order stream; the junction of

two second- order stream form a 3'd order stream etc. (Figure 3.2.)
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Figure 3.2 Method used by QDNR to
determíne stream order (Strahler,
19s7)

Distance frotn Source (km): Dislance from the site to longest thread of stream source.

0-2 Reach: An assessment of where in the catchment a site lies with relation to the

watershed. This is a categorical variable.0: lower, 1: middle andZ: upper.

(2) Topographical

Habitat 1-5: Categorical variable describes a predominant habitat type at the study

site. Habitat types are prescribed because each habitat has a potentially distinct

fauna. The performance of the predictive models will therefore not be confounded by

differences in habitat availability between sites and time. In Queensland, five habitats

most likely to be encountered are:

1. Riffle: This is areach of relatively steep, shallow (<0.3m), fastflowing (>0.2mls)

and broken water over stony beds.

2. Edge/back water: edges are along the bank where there is little or no current and

extend to approximately 0.5m from the bank. There may be some terrestrial

vegetation, tree roots or the area may be bare. A backwater is a zone where the bank

indents and a pool of water forms away from the main channel. The backwater may

have a circular or back flow, and a silty bed with accumulated plant litter.

3, Run: This is a reach of relatively deep and fast flowing, unbroken water over a

sandy, stony or rocky bed. The are features of stream during a flood events, below

dams, where riffles have been 'drowned ' or in steep gradient streams flowing

through gorge.
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4. Pool bed: Pool bed habitats are zones of relatively deep, stationary or very slow

flowing water over silty, sandy, stony or rocky beds. This habitat occurs in the main

channel and should not be confused with backwaters. The velocity will indicate

whether it is a pool or run. The classification factor is the bed type. Two main types

are sandy/silty beds and rocky/gravel beds.

5. Macrophytes: Macrophyte habitats are areas where emergent, submer_9ent and

floating macrophytes or aquatic plants are present and can occur in slow to fast

flowing areas.

Slope (m/m) calculated by dividing contour distance (m) to distance of stream

between contour lines (m).

Substrate description: Visually estimates the composition of river substratum (to a

depth of 10cm) into the following substrate categories. The sum of all substrate

categories must total I00Vo.

- Bedrock (Vo)

- Boulder (7o): >256mm

- Cobble (7o): 64 - 256 mm

- Pebble (7o): 16 - 64 mm

- Gravel (7o):4 - 16 mm

- Sand(7o):I-4mm

- Silt/Clay (Vo): < lmm

Substratel-8: Categorical variable describes number of substrate types at the study

site. Category I describes a site dominated by L007o of one substrate type while

category 8 indicates site covering all types of substrate in different layers.

Soil Class Number (1-11): categorical variable attained from GIS map over lay

H Width (m) and H Depth (m): Width and Depth of habitat of the study sites.

0-4. Habitars: Categorical variable gives the assessment of the site. Nine criteria are

numerically assessed from excellent to poor. These criteria ate bottom

substrate/available cover, embeddedness, velocity/depth category, channel alteration,

bottom scouring and deposition, pool/riffle or run/bend ratio, bank stability, bank

vegetative stability, and streamside cover, Habitat assessment sheet with full detail of
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assessment can be found in Conrick & Cockayne (2000). Final habitat assessment is

the numerical score from 0 indicating poor condition to 4 indicating excellent habitat

condition.

Site-ntean phi; Yisual estimates of the percentage cover of seven particle classes at a

site were made: -9.5, -6.5, -4.5, -2,2,6.5,9.5. These estimates were averaged to give

a mean phi value for a site as a whole.

Mean Wetted Width, Mean Channel Width are measured or visually estimated if

measurement can not be made (Figure 4.3)

Wefted Width

Water level

Figure 3.3 Exømple of wetted width, channel width and stream depth (Nichols et a1.,2000)

Measurement applied method of Resh et al. (1996) for mean stream width and depth.

Mean streanx width: Measure the width of the stream in meters, from water's edge to

water's edge and perpendicular to the flow, for three different transects across the

stream

Mean streanx depth: Along the same transects as above, measure the depth (in cm) at

Vq the distance from the water's edge, again atVzthe distance (midstream), and at3/t

of the way across. Add the three values and divide by 4 to account for the shallow

water from the bank edge to the 7¿ distance mark. Average depth in meters was

recorded for each transects.

(3) Meteorological variables: Information can be extracted from the Bureau of

Meteorology. These variables include mean wet season monthly rainfall (a), mean

Ir
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Channel Width
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dry season monthly rainfall (b), annual range in mean monthly rainfall, range in wet

season monthly means, range in dry season monthly means, percentage rainfall in

wet season, mean annual rainfall, mean daily max temp, mean daily min temp, mean

daily temp range. Season I-2: categorical variable contains 2 value: 1 means sample

was taken in spring and2 for sample taken in autumn.

(4) Sonte other plrysical variable.¡ used a.s predictors

Vegetatiott Type ruunber (2-22): categorical variable describes number of both native

and exotic vegetation types present at study site.

SoiI Type Nmnber (2 - 38): categorical variables

Water Tentp (oC) measured at the site before sampling macroinvertebrates and

disturbing the streambed.

Alkalinity: an expression of the buffering capacity of water, measuted as the

milliequivalents of hydrogen ions neutralised by a litre of water (expressed as CaCO3

in mgl--l)

Table 3.2 summarised input variables used for network development. Totally, there

are 39 predictors used to study interrelationship between physical and biological

conditions of stream ecosystem

Table 3.2 Potential predictor variables

categorical0-4. Habitats20
categoricalVegetation Type Number39contlnuousAlkalinitv (meL-1 CaCO3)19
categoricalSoil Class Number38contlnuousWater Temp ("C)18
catesoricalSoil Type Number37continuousSilt/Clav (%)t'7
contlnuousMean daily temp range36continuousSutd (Vol16

conlinuousMean daily min temp35contrnuousGravel (7o)l5
contlnuousMean daily max temD34continuousPebble (7o)t4
continuousMean annual rainfall33conhnuousCobble (Vo)l3
contlnuousPercentage rainfall in wet season32continuousBoulder (%)12

contrnuousRange in dry season monthly means3lcontinuousBedrock (7o)11

continuousRanee in wet season monthly means30continuousH Depth (m)l0
continuousAnnual range in mean monthly rainfall29continuousH Width (m)9

continuousMean dry season monthly rainfall28conhnuousDistance From Source (km)8

contlnuousMean wet season monthlv rainfall27contrnuousSlope7

continuousMean Depth26catesoricalStream Order6
continuousMean Channel Width25continuousAlrirude (m)5

conhnuousMea¡ Wetted Width24continuousLoneitude (E) Decimal4
categorical0-2 ReachcontlnuousLarirude (S) Decimal3

conttnuousSite-mean phi22categoricalHabitat l-52
categorical0-8. substrate categories2lcategoricalSeason l-2I
Data TypePredictor variablesNoData TypePredictor variablesNo
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3.3.2 Environmental Water Qualíty Variøbles

This sub- set contains environmental variables, which are altered by human impacts.

They are used as inputs in dirty water approach. All water quality measurements and

water samples are collected upstream of the biological sampling area. They are taken

from a representative section of the streams.

Electrical Conùrctivity (¡ts/cnt): is a measure of the total concentration of inorganic

ions (salts) in the water.

pH: is a measure of the acidity or alkalinity of water and has scale from 0 (extremely

acid) to 14 (extremely alkaline), with 7 being neural.

Turbidiry @TU): is a measure of the water "muddiness" and is caused by the

presence of suspended particulate and colloidal matter consisting of suspended clay,

silt, phytoplankton and detritus.

Chemical variables: Following chemical variables are analysed at laboratories

- Total Hardness (mgIL CaCO3)

- Total N (mgl--l as N)

- Total P (mgl-l as P)

- Na* (mg/L)

- K* (mgil-)

- Ca** (mgll)

- Mg** (mg¡L)

- HCO¡-(mg/L)

- COr--(mgl]-)

- Cl-(mg/L)

Following variables are also considered changeable under disturbance and belonged

to this group

- Habitat Velocity - max (m/s)

- Detrital cover (7o)

- Site Max Velocity

- Instantaneous Discharge
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3.3,3 Macroinvertebrate Distribution

Sampling is not conducted when streams are in flood. If, during the scheduled

sampling period, sites were consistently in flood, sampling resumed 4 - 6 weeks after

floods have subsided to ensure that sampling only cover macroinvertebrates normally

habit in the site. All macroinvertebrate samples were collected with a standard 250 -

pm mesh dip net. Sample a total distance of 10m, covering a variety of velocities and

different samples of habitat.

Colonisation pattern (presence/absence of macroinveftebrates) is preferred to use in

this project. Abundance data was collected by many different people with different

skill and experience, therefor quality control has shown that abundance data is not

reliable enough to be used (Chov & Marshall, personal communication). All

macroinvertebrate are identified to family level exeept for Oligochaeta (class),

Copepoda, Osracoda (sub-class), Acarina (order), Cladocera (sub-order) and

Chironomidae (sub-family). Adults and larvae for each family are combined for the

purposes of data entry and analysis. 40 most common macroinvertebrates taxa are

used as output for network development (listed in table3.3).

Outputs in the database receive only two values 0 and 1. I represents presence while

0 represents absence of this taxon at the study site.

3.3.4 Summary

Material used for neural network model development is a comprehensive database of

the Queensland stream system having two parts.

Part 1 containing 897 data set of reference sites is used for neural network model

training and internal validation.

Part 2 containing i159 data set of test sites is used for neural network model

extemal validation.

Each data set contains 3 subsets: 39 predictors describing physical condition of this

site; l7 potential impacted environmental variables; and colonisation pattern of 40

macroinvertebrates taxa at the site. Different combinations of data are used for

development of different neural network model approaches.
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Table 3.3 40 most common macroinver-tebrøtes taxa in Queensland stream system

Identification key (Hawking & Smith, 1997; CSIRO, 1999)

MothsOrder LepidopteraPyralidae40

Caddis fliesOrder TrichopteraPhilopotamidae39

Caddis fliesOrder TrichopteraCalamoceratidae38

Caddis fliesOrder TrichopteraHydroptilidae37

Caddis fliesOrder TrichopteraEcnomidae36

Caddis fliesOrder TrichopteraHydropsychidae35

Caddis fliesOrder TrichopteraLeptoceridae34

True fliesOrder DipteraTabanidaeJJ

True fliesOrder DipteraCeratopogonidae32

True fliesOrder DipteraSimuliidae31

True fliesOrder DipteraOrthocladiinae (sub-family)30

True fliesOrder DipteraTanypodinae (sub-family)29

BeetlesOrder ColeopteraHydrophilidae28

BeetlesOrder ColeopteraPsephenidae27

BeetlesOrder ColeopteraElmidae26

BeetlesOrder ColeopteraDytiscidae25

BugsOrder HemipteraVeliidae24

BugsOrder HemipteraPleidae23

BugsOrder HemipteraNotonectidae22

BugsOrder HemipteraCorixidae2l
Stone fliesOrder PlecopteraGripopterygidae20

Damsel fliesOrder OdonataCoenagrionidael9
Dragon fliesOrder OdonataLibellulidae18

Dragon fliesO¡der OdonataCorduliidaet]
Dragon fliesOrder OdonataGomphidae16

MayfliesOrder EphemeropteraProsopistomatidaet5

MayfliesOrder EphemeropteraCaenidaet4

MayfliesOrder EphemeropteraBaetidae13

MayfliesOrder EphemeropteraLeptophlebiidaet2

Freshwater PrawnsClass CrustaceaPalaemonidae11

Freshwater ShrimpsClass CrustaceaAtyidae10

Seed ShrimpsClass CrustaceaOstracoda (Sub-class)9

Water fleasClass CrustaceaCladocera (Sub-order)8

CrustaceansClass CrustaceaCopepoda (Sub-class)7

Water miteClass ArachnidaAcarina (order)6

MusselsClass BivalviaCorbiculidae5

SnailsCIass GastropodaThiaridae4

SnailsClass GastropodaPlanorbidaeJ

Segmented worrnsClassOligochaeta (Class)2

Flat wormsOrder TricladidaDugesiidae1

Common NameUpper classificationTaxaNo
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3.4 Artificial Neural lt{etworks

3.4.1 Fundamental Concept

Machine learning is a broad discipline in computer science that focuses on

knowledge acquisition by various automated induction techniques, Using advanced

machine learning techniques, comprehensive database and general basíc knowledge

on ecosystems, it is possible to automatically generate better models and in less time

than is the case by traditional model construction. Machine learning reduces to a

great extent the need to query the expert in the way that computer extracts

knowledge from the given data. It is able to identify and model a real world system

that we do not fully understand yet. (Kompare et al., 1994).

Two applications in this field, artificial neural networks and genetic algorithms, offer

inductive approaches to model building. They are highly connective and simulate

principles of natural evolution and knowledge discovery in large databases. In this

project, I applied Artificial Neural Networks (Al.[N) as a tool to study the problems.

This section discusses fundamental concept and mathematical background of the

ANN used in the project.

Biolo gic al Ì,{ e ural N e tw orks

ANNs are non-linear mapping structures based on biological principles of the

functioning of theof human brain. Hence, to understand their operations, it is useful

to understand the basic characteristics and operational mechanism of brain structure.

Human brain consists of approximately 10e to10l2 fundamental units called neurons

of many different types. A typical neuron has three major parts: the ceII body or

soma, the dendrites, and the axon. The cell body or soma is a main body of the nerve

cell. The cell body is connected with filamentary input paths called dendrites.

Dendritic trees are bunched into highly complex "dendritic trees", which have an

enorrnous total surface area. Axon is a filamentary output path. The axon ends in a

tree of filamentary paths called the axonic endìngs that are connected with dendrites

of other neurons. The connection or junction between a neuron's axon and another

neuron's dendrite is called a synapse, A schematic diagram of a typical biological

neuron is shown in Figure 3.4.
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Figure 3.4 Schematic díagrøm of a biologícal neuron (Kent, 1980)

The neuron is the basic "gate" of the nervous system. It is a complex biochemical

and electrical signal-processing factory. The neuron receives and combines signals

from many other neurons through the dendrites. "Computations" (decisions) are

performed in the celt body and the results are transmitted down the axon and its

branches in pulse-codes digital form, The synapses aie the inputs to the gate, where

the pulse-coded information is reconverted to analog form. The inputs are subjected

to weighted summation, and when a threshold is reached, the neuron fires, a new

output pulse is placed on the axon. In this diagram, information flow is roughly from

left to right through the neuron. (Kent, 1980)

A single neuron may have as many as 10,000 synapses and may be connected with

some thousands neurons (Vemuri, 1992). However, not all synapses are excited at

the same time. Because a received sensory pattern via the synapse probably

stimulates a relatively small percentage of sites, an enorrnous number of patterns can

be presented at the neuron without saturating the neuron's capacity. \ù/hen the action

potential reaches the axon ending, chemical messengers, neuroftansntitters, are

released. When a neurotransmitter is released, it drifts across the synaptic junction

and initiates the depolarization of the postsynaptic membrane. The stronger the

junction, the more neurotransmitters reach the postsynaptic membrane. Depending

on the type of neurotransmitter, the effect on the postsynaptic potential is either

excitatory (more positive) or inhibitory (more negative).

Decoding at the synapse is accomplished by temporal summation and spatial

summation. In temporal summation each potential of an impulse adds to the sum of
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the potentials of the previous impulses. The total sum is the result of impulses and

their amplitude. Spatial summation reflects the integt'ation of excitations or

inhibitions by all neurons at the target neuron. The total potential charge from

temporal and spatial summations is encoded as a nerve impulse transmitted to other

cells. The impulses received by the synapses of a neuron are further integrated oveÍ a

short time as the charge is stored in the cell membrane. This membrane acts first as a

capacitor and later as an intemal messenger when complex biochemical mechanism

take place (Kartalopoulos, 1996).

All integrated signals are combined at the soma, and if the amplitude of the

combined signal reaches the threshoW of the neuron, a "firing" process is activated

and an output signal is produced. This signal, either a single pulse or a sequence of

pulses ai a pariicuiar rate, is transmiiteci aiong the ceii's axonic endings,

In the real world of neural networks, the neurons do not all perform exactly the same

function or in exactly the same way. The functions of sensory neurons and neural

networks are quite diverse. This diversity adds to the complexity of the neural

network. Whereas all neurons contain the same set of genes, individual neurons

activate only a small subset of them. However, all neural networks exhibit certain

properties such as:

Many parallel connections exits between many neurons

Many of the parallel connections provide feedback mechanism to other neurons

and to themselves

Some neurons may excite other neurons while inhibiting the operation of still

others.

Neural networks are asynchronous in operation

Neural networks execute a program that is fully distnbuted and not sequentially

executed

Neural networks do not have a central processor. Instead processing is distributed
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Biological neural networks are charactenzed by a hierarchical architecture. Lower-

level networks preprocess raw information and pass their outcome to higher levels

for higher-level processing.

Artifíciøl N eural N etw orks

Artificial Neural Networks (ANNs) are systems that are purposely constructed to

make use of some organizational principles resembling those of the human brain.

They have following characteristics.

(l) ANNs have a large number of highly interconnected processirtg elentents (also

called nodes or units). These nodes usually operated in parallel and are configured in

regular architectures. The processing elements in ANNs are called artificial neurons.

(2) The connections (weights) amongst neurons hold the knowledge.

(3) Artificial Neural Networks are neurally mathematical models

Figure 3.5 below shows a simple mathematical model of biological neuron proposed

by McCulloch and Pit (1943, cited by Lin & Lee, 1995), called an M-P neuron.

xl

X

Weights
Output path

Processing
element i

Figure 3.5. Schematic diagram of a Ma Culloch and Pitts neuron

In this model, the i't'processing element computes a weighted sum of its inputs and

outputs !i according to whether this weighted input sum is âbove or below a certain

threshold 0¡:

a(

0¡

(
t
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(3.1)

y,(t + l) = a(f ) lri¡x¡(t)-0,

where a(f) is a the activation function or ffansfer function

The weight wij represents the strength of the synapse connecting neuron j (source) to

neuron i (destination)

(4) A neuron can dynamically respond to its input stimulus, and the response

completely depends on its local information; that is, the input signals arrive at the

neuron via impinging connection and connection weights.

(5) Like a hurnan brain, Artificial Neural Networks have collective behavior that

demonstrates ability to learn, recall, and generalize information from training pattern.

This collective behavior illustrates the computational power, and no single neuron

carries specific information (Lin & Lee, 1996).

3.4.2 Basic Models and Leørning Rules

There are three basic attributes that characterize the models of Anificial Neural

Networks: models of the processing elements (neurons), models of synaptic

interconnections, and the training or learning rules for updating the connecting

weights. This section studies the basics of these three attributes.

Processing Elements

The function of an M-P neuron can be extended to a general model of a processing

element (PE). The information processing of a PE consists of two parts: input and

output. Associated with the input of a PE is an integration function I The function

combines information, activation, or evidence from an external source or other PEs

into a net input to the PE. In the case of an M-P neuron, this is usually a linear

function of the input x¡ to the PE:

f , = net, =frw,,x, - 0,, Q.2)
j=I

More-complex integration functions can also be considered as follows.
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Quadratic ftutction:

f,

Spherical fi.utctiott.

a(Ð =

function):

a(Ð = sgn(/) =

i*uxl-0,,
j =l

nt

(3.3)

(3.4)

(3.6)

(3.1)

f, = p-t)(r, -wù)2 -eí,
j=l

where p and w¡ are the radius and the centre of the sphere, respectively.

Polynonùal function:

f,=f i rüt x jxt* *o,'+ *îr -0,, (3'5)
j=I k=t

where w¡r is the weight on the conjunctive link connecting PEi and PE k to PE ¿, and

c[.¡ and cx,¡ âro real constants. This equation can be extended to include higher-order

terms. A PE with a polynomial integration function is called a sigma-pi ()ll) unit.

A second action of each PE is to output an activation value as a function of its net

input through an activation function of transfer function a (fl. Some commonly used

activation functions are as follows:

Step function:

1

0

if r >0
otherwise ,

Hard limiter ( threshold

1

I
tf
tf

f>0
f<0

'Where sgn(.) is the signum function

Rantp function:

i if
if
if

f
0

f >0
0<"f<1
/<0,

a(J) =
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Unip ol ar s i gnto id fiutct i on.

B ip olar signtoid fiutction.

2
Cr( t l: 

--

I + e-^J

(3,e)

(3.10)

where À> 0 determines the steepness of the continuous function a(f)near ftO

A PE with a linear integration function and a hard limited activation function is

called linear threshold tmit (LTU), and a PE with linear integration function and a

graded activation function (Eq.(3.9) or (3.10) is called linear graded unir (LGU),The

LTU and LGU are most frequently used models in ANNs (Lin & Lee, 1996). In my

tesearch, the LGU, unipolar sigmoid function had been used as transfer function for

network performance,

Connections

Architecture defines the network structure, that is not only the number of processing

elements but also their interconnectivity. Each PE is connected to other PEs or to

itself; both delay and lag-free connections are allowed (Lin and Lee, 1996). There are

five basic types of connection geometries.
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Figure 3.6 Basic network connection geometries (Lin and Lee, 1996)

(a) Single-layer feedforward network (b) Multilayer feedforward network (c) Single

node with feedback to itself (d) Single-layer recurrent network (e) Multilayer recurrent

network
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ln the single-Iayer feedforward network (Fig. 3.6a), a PE is combined with other PEs

to make a layer of these nodes. Inputs can be connected to these nodes with various

weights, resulting in a series of outputs, one per node.

Several layers can be interconnected to form naltilayer feedforward network (Fig.

3.6b). Input layer receives inputs and typically performs no function other than

buffering of the input signals. The outputs of the network are generated from the

output layer. Any layer between the input and output layers is called a hidden layer

because it is internal to the network and has no direct contact with the external

environment. There may be no or severaì hidden layers in an ANN. The two

mentioned types are feedforward networks because no PE output is an input to a

node in the same layer or in a preceding layer.

The outputs can be directed back as inputs to same- or preceding-layer nodes, in this

case, the network is afeedback network If PE output is directed back as input to PEs

in the same layer, the network is lateral feedback. Feedback networks that have

closed loops are called recurrent network. A single node with feedback to itself is the

simplest recurrent neural network (Fig. 3.6c)

In a single-layer network with a feedback connection (Fig. 3.6d) PE output can be

directed back to the PE itself, to other PEs, or to both. In a multilayer recurrent

network, a PE output can be directed back to the nodes in the preceding layer (Fig.

3.6e). A PE output can be also directed back to the PE itself and lo the other PEs in

the same layer.

More than one of the basic connection geometries can be used together in an ANN.

Choice of neural network architecture define a priori probability distributions over

non-linear functions. Feedforward neural networks such as multilayer perceptrons

prove to be useful tools for nonlinear regression and classification problems

(MacKay, L997). This type of ANNs models have been applied to various fields of

aquatic sciences such as modelling water quality and relating community

characteristics with environmental variables (Schleiter et al., 1999)'

Learning Rules

The neurodynamics of neural networks defines their properties, that is, how the

neural network learns, recalls, associates, and continuously compares new
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information with existing knowledge, how it classifies new information, and how it

develops new classifications if necessary. Learning is the process by which the

neural network adapts itself to a stimulus, and produces a desired response. Learning

is also a continuous classification process of input stimuli; when a stimulus appears

at the network, the network either recognizes it or it develops a new classification.

During the learning process, the network adjusts the synaptic weights in response to

an input stimulus so that its actual output response meets the desired output response,

When the actual output response is the same as the desired one, the network has

completed the leaming phase that means it has "acquired knowledge"

(Kartalopoulos, 1996)

Assuming that there are n PEs in an ANN and each PE has an exactly m adaptive

wcight, ihen the weiglit niatrix (or the coiinectian niaírix) W is defined by:

w wttT

T

nt112

wtz w t,,,

w !̂Dtw

w

W
2 wzt 11w

w

(3. r r)

w

where wi=(w¡t,wi2,...,wirr)7,i=l,2,..,,r2, istheweightvectorof PEI andw¡isthe

weight on the link from PE j (source node) to PE i (destination node).

Suppose that the weight matrix W contains all the adaptive elements of an ANN,

then the set of all possible W matrices determines the set of all possible information

processing configurations for this ANN. In other words, if the information processing

performance is realised by this ANN, the ANN can be realized by finding an

appropriate matrix V/. Therefore, learning rules for ANNs need to be developed to

efficiently guide the weight matrix 'W in order to approach a desired matrix that

yields the desired network performance.

Learning rules are very important attributes to specify an ANN. In general, learning

rules are classified into three categories: sttpervised leanùng, reinforcentent leanùng

and ttnsupervised leaming. (Lin & Lee,1996).

T
n

w tIn
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I

(a) Supervised leanüng

In the learning session of a neural network, an applied input stimulus results in an

output response. This response is compared with a priori desired output signal, the

target response. If the actual response differs from the target response, the neural

network generates an error signal. This error signal is then used to calculate the

adjustment that should be made to the network's synaptic weights so that the error is

minimized closely to zero (the actual output matches the target output). The error

minimization process requires a special circuit known as a supervisor'

The amount of calculation required to minimize the error depends on the algorithm

used, this is purely a mathematical tool derived from optimization techniques. Some

important parameters are time required per iteration, the number of iterations per

input pattern for the error to reach a minimum during the training session, whether

the network has reached the global or local minimum, and, if a local one, whether the

network can escape from it or it remains trapped.

(b ) Reinfo rc ement Ie arning

Reinforced leaning is an extreme case of supervised learning. In this case, a

supervisor does not indicate how close the actual output is to the desired output but

whether the actual output is the same with the target output or not. There is only a

single bit of feedback information indication whether output is right oÍ wronç.

If the supervisor's indication is "wrong", the network readjust its parameters and

tries again and again until it get its output response "right". During this process there

is no indication if the output response is moving in the right direction or how close to

the correct response it is. Consequently, the process of correcting synaptic weights

follows a different strategy than the supervised learning process.

Important parameters for the reinforcement leaming are the same as of supervised

learning. When reinforced learning rules are applied, certain boundaries should be

established so that the trainee should not keep trying to get the correct response ad

infinitum.
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( c ) Unsup erttis ed leanùng

In unsupervised learning, there is no supervisor to provide any feedback information.

There is no feedback from the environment to say what the output should be or

whether they are correct. The network must discover for itself patterns, features,

regularities, correlations or catogories in the input data and code them in the output.

While discovering these features, the network undergoes changes in its parameters;

this process is called self-organizirtg.

A typical example is making an unsupervised classification of objects without

providing information about the actual classes. The proper clusters are formed by

discovering the similarities and dissimilarities among the objects. During the training

session, the neural net receives at its inputs many excitations and it arbitrarily

organizes the patterns into categories. When a stimulus is applied later, the neural net

provides an output response indicating the class to which the stimulus belongs. If a

class cannot be found for the input stimulus, a new class is generated. Even though

unsupervised Iearning does not require a supervisor, it requires guideline to

determine how it will form responses.

Supervised learning of rules is a very popular application of Artificial Neural

Networks in pattern recognition work. The goal of process is to adapt the parameters

of the network so that it performs well for patterns from outside the training set

('Werbos, 1992). This goal meets the purpose of developing the ANNs to study bio-

community of freshwater ecosystem. Feedforv,¡ard Networks and Supervised

Learning is discussed in the next session.

3,4.3 Feedforward l,{etworks and Supervised Learning

Single - Layer Perceptron lt{etworks

Single-layer feedforward networks, known as sintple perceptron is shown in Figure
a-J. t,
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Figure 3.7 A simple perceptron

In which:

- Input pattern: x(k)=lx/k), x2(k),..., *rlk)f'; m: number of inputs

- Particular output pattem: ¡u<)=¡¿fr), dt(n),..., d,r(o)l'; n: number of outputs

- Actual output pattern: tu<)=gfr<), y2(o),..., yu(o)f' ;k=L,2,..,p, p: number of input-

output pair in the training sct

Desired performance of networks after training process is that the actual output

pattern to be equal to the target pattern.

(u' \
y,to' = a(wf x(k)) = nl t -,,*,'o' l= df', (3.12)

[r- )
i=|,2,...,n; k=I,2,. ..p,

where w¡T=lw¡1, wi2,...,wi,,rfr is weight vector associated with PE i.

A simple leaming rule determines the set of weights w¡ needed to achieve the desired

perfonnance for simple perceptron. A Perceptron Learning RuIe is applied for

simple perceptrons with linear threshold units (LTU) and Widrow-Hoff learning rule

is applied for simple perceptrons with linear graded units (LGU) (Lin & Lee, 1995).

In this section learning rule for PEs with continuous and differentiable activation

functions - Widrow-Hoffleanüng rule - is discussed.

Widrow -H off Le arning Rule

The learning problem that is of interest belongs to the class of supervised leaming as

indicated in Eq. (3.I2).For a given set of p training patterns,{(*(t), lt), (*('), ó')),...,

(x(n), lr)¡ ¡, the goal is to find a correct set of weights lti such that

-@.-
T,,
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Lr,*',r' - ¿{r) , k =r,2,..., p. (3.13)
j=t

To find the weights from above equation, a cost function E (w), which measures the

system's performance error, is defined by

The smaller E (w) is, the better w; will be. E (w) is normally positive but approaches

zero when y(k)approaches dlt) for k=r,2,.,.,p. The goal of the leaming rule is to find

the weights that will minimize the mean squared error E (w).

In general, learning rules start with a general initial guess at the weight values and

than make successive adjustments based on the evaluation of an objective function.

They eventually reach a near optimal or optimal solution in a finite number of steps.

Given the cost function E (w) in Eq. (3.14), we can improve on a set of weights w7 by

sliding downhill on the surface it defines in the weight space. The usual gradient-

descent algorithm suggests adjusting each weight wiby an amount Aw¡ proportional

to the negative of the gradient of E (w) at the current location

Aw =eY *E(w) (3.1s)

That is,

p p p( ,, \r(3.14)
E(w) = +> (d'rt - y'r')t = +I GIr*t - w'x(*))' = +)l at*' - ltr,*.,'r' Ir=l r=l *='\ j=t )

L*, = ry+= nfr(d,ti -w,x(^)¡xj.o), j =r,2,,.,,m. (3.16)' dr, r=-r'

If these changes are made individually for each input pattern x(k) in turn, then the

change in response to pattern x(k) is simply:

Lr, = n@G) - *r*(t) ¡"(t) (3.r7)

The learning rule in Eq. (3.I7) is called Widrow-hofflearning rule.It is also refer to

as the least mean square (LMS) rule. In this method, weights are initialized at any

value. (Lin &Lee, 1995).

Multiløy er F e edforw ard N etw orks

Single layer Perceptron Network is able to solve a problem with the condition that

the input patterns of the problem be linearly separable or linearly independent. This
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limitation does not apply to feedforward networks with hidden layers between input

and output layers. This section discusses the most popular learning algorithm applied

for multi layered Artificial Neural Networks - the Back- Propagatiott.

Back - Propagation Learning Algorithrn

The backpropagation (BP) was developed first by Rumelhart (1986) and since then,

the back-propagation algorithm has been widely used as learning algorithm in

feedforward multilayer neural networks. The BP is applied to feedforward ANNs

with one or mors hidden layers. Those networks associated with the back-

propagation learning algorithm are called backpropagation networks. Based on this

algorithm, the network learns a distributed associative map between the input and

output layers. Given a training set of input-output pairs {(x(o), d(o))}, the algorithm

provides a procedure for changing the weights in a backpropagation network to

classify the given input patterns correctly. The basic for this weight update algorithm

is simply the gradient-descent method as used for simple perceptrons with

differentiable units. The back-propagation algorithm performs two phases of data

flow:

The input pattern xlo) is propagated from the input layer to the output layer and

produces an actual output y(ft).

The error signals resulting from the difference between d(t) and y(k) at" back-

propagated from the output layer to previous layer for them to update their

weights.

Figure 3.8 shows three-layer networks with m PEs in the input layers, I PEs in the

hidden layer and n PEs in the output layer. The solid lines show the forward

propagation of signals and the dashed lines show the backward propagation of effors.
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Figure 3.8 Three layer feeilforward backpropagation network (Lin & Lee, r99s)

Given an input pattern x, a PE q in the hidden layer receive a net input of

T
j =l

and produce an output of

net vrxjq

zq = a(net ,) = a

The net input for a PE i in the output layer is then
II

l*,ozr=Z

)
j=l

voix,

w,ra
q

(3.20)

(3.2r)!. = a(net,) =

The above equations indicate the forward propagation of input signals through the

layers of neurons and their back propagation. The error signals and their back

propagation will be considered next. Firstly, a cost function is defined:

,$,, r,) =,1 f,,,, o( i"",, l''1,
\o=' / [n=' [;=' ))

E(w) -¡ifa, - !,)' =¡fra, - a(net,)l' =åì[r, - 
{Ð.ø.,1',

(3.22)

Then according to the gradient-descent method, the weights in the hidden-to-output

connections are upgraded b
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AEL*,n = -Il;-,. owiq
(3.23)

(3.24)

(3.2s)

(3.28)

(3.2e)

In which, r¡ is learning ratio

Using described equation and chain rule of ôE/ôwqi ,we have

6w i,, = rl#)l#]t#l = rttd,- ),rr a'(,,et,))r zotLlt' .,20,

where ôoi is the error signal of the ith node in the output layer, that defined by

6 
", L-rlpl|-+-]= ,tra, - y,fra'(net ,)),= 'Lay, lLònet, )

where neti is the net input to PE I of the output layer and a'=ôa(neti )/â neti.

1,.=+#)=-i#[w]=i#Whll#l

For the weight update on the input-to-hidden connections, we use the chain rule with

the gradient-descent method and obtain the weight update on the link weight

connecting PE j in the input layer to PE q in the hidden layer,

(3.26)

Each error term ldry¡], i=I,2,...,n, is a function of zr.Evaluating chain rule, we have

Lr, = -rti l@, - ! ¡)a'(net ,)*,oh'(net ,,)x ,,
(3.27)

i=l

L, , = -rti l@ ",, ,rh'(r", o)* , = 46 n, x i,
i=t

where fi.,' is the error signal of PE q in the hidden layer and is defined as

õ hq

The error signal of a PE in a hidden layer is different from the error signal of a PE in

the output layer. Because of this differences, the above weight update procedure is

called generalized. delta leanting rule. One important feature of the back-propagation

algorithm is that the update rule is local. To compute the weight change for a given

connection, we need only quantities available at both ends of that connection.

= _ 
=àE = _[3rltþ-l = a,(net )f 6 

",*,0,ðnet, LA.rllðnetol í=,
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The learning procedure requires only that the change in weight be proportional to

ôE/ôw. True gradient descent requires that infinitesimal steps s be taken. The

constant of proportionality is the learning ratio t1. The larger this constant, the larger

the change in weights. the more rapid learning but it might results in oscillations.

One way to increase the learning rate without leading to oscillation is to include a

tl'tonxentutlx term to the generalized delta rule (Rumelhart & McClelland, 1988). This

scheme is implemented by giving a contribution from the previous time step to each

weight change:

A,v(t + 1) = U6 oox ¡ * aLv(t) (3.30)

In which, cx,€ [0,1] is a momentum parameter

Constant q determines the effect of past weight changes on the current direction of

movement in weight space. This provides a kind of momentum in weight space that

effectively filters out high-frequency variations of the error-surface in the weight

space. A value of a=0.9 is often used (Rumelhart & McClelland, 1988; Lin & Lee,

r9e6).

3.4.4 Summary

In summary, the artificial neural network is an adaptive communication network that

cornmunicates a "cost function" for a desired output. Mathematically speaking, a

neural network represents a dynamic system that can be modelled as a set of coupled

differential equation.

The performance of the Artificial Neural Networks is described by the figure of

merit, which expresses the number of recalled patterns when input patterns are

applied that are complete, partially complete or noisy. In designing an artificial

neural network, following parameters were considered to be very important

Network topology: number of layers in the networks, number of neurons or nodes

per layers, interconnections among neurons

Learning algorithm

Number of iterations per pattern during training

Number of calculations per iteration
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Choice of transfer function and the range of operation of the neuron

The wide choice of architectural configurations, in conjunction with variety of

learning ruies, led to the development of over thirty types of neural network models.

The choice of a type of network models depends on a number of factors. Howevet,

once a particular architecture and learning rule has been proposed, its properties can

be analyzed and studied in detail.

Feedforward Back-propagation is now the most widely used tool in the field of

supervised Neural Networks. It is a very powerful for application with pattern

recognition. It is generally used with a very simple network design but the same

approach can be used with any network of differentiable functions ('Werbos, 1992).

Recently, Multilayer Feedforward Back-propagation had been implemented for

studies of stream hydrological and ecological responses to climate change (Poff et

al., 1996), modelling water quality (Schleiter et al., 1999), and also for studying

biological condition by mean of macroinvertebrates (Walley & Fontama, 1998). It

proves to be a useful tool to study freshwater ecosystem'

In this research, I develop Artificial Neural Networks with multilayer

feedforward connection characteristic with backpropagation algorithm in an

attempt to study high non-linearity and high complexity of nature of

freshwater ecosystem.

3.5 Procedure for Network Developrnent

3.5.1 Software

The project had been performed with software package NeuroSolution ver. 3.0 - the

Neural Network Simulation Environment, which is a product of NeuroDimension

Incorporated company.

NeuroSolutions provides an object-oriented simulation -environment for neural

network design and application. It has quickly evolved into the software tool of

choice for both the neural network beginner and expert alike. This software combines
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a modular, icon-based network design interface with an implementation of advanced

learning procedures including backpropagation and backpropagation through time.

NeuroSolutions can be used to design neural networks to solve many different types

of problems in a variety of fields. The result is a virtually unconstrained environment

for designing neural networks to solve real-world problems such as forecasting,

pattern recognition, process control, targeting marketing, and many more.

NeuroSolutions is based on the concept that neural networks can be broken down

into a fundamental set of neural components. By allowing the user to arbitrarily

interconnect these components, a virtually infinite number of neural models can be

constructed. Neural components, such as axons, synapses, and gradient search

engines, are laid out on a graphical breadboard and connected together to form a

neural network. Input components are used to inject signals, and probe components

are used to visualize the network's response,

Neural networks are often cnticized as being a "black box" technology. With

NeuroSolutions' extensive and versatile set of probing tools, this is no longer the

case. Probes provide you with real-time access to all internal network variables, such

as: inputs/outputs, weights, errors, hidden states, gradients, sensitivity analysis,

Networks are developed using NeuroSolutions for Excel, which is one powerful tool

in the NeuroSolutions package. NeuroSolutions for Excel was designed to allow user

to develop a complete solution to a problem in one easy to use package while also

giving the flexibility to customize its operation using Visual Basic for Applications

as a scripting language.

NeuroSolutions for Excel is a revolutionary product which benefits both the beginner

and advanced neural network developer. For the beginner, NeuroSolutions for Excel

offers visual data selection, one step training and testing, and automated report

generation. For the advanced user, NeuroSolutions for Excel offers the ability to

perform parameter optimization, run batch experiments, and create custom batch

experiments programmatically, The best part is that all of these tasks can be

performed without ever leaving Microsoft Excel.
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ANN Design

Implication fol Stream
Management and Research

Sensitivity Analysis

Exter¡al Validation for
Prediction of Water Quality

Rate of C.P

ANN Validation

ANN training

ANN design

Data Consistency Test

Stream Database
Preprocessing

3.5.2 Data Preprocessing and Llodelling

Flow chat below shows the procedure of network development (Figure 3.9)

Yes

No

Figure 3.9 Approach for data-preprocessing and ANN modelling ( Hoang et al., 2001)

Processes in each box are explained below

Data preprocessing and consistency test

Data used for training processes are designed dependent on method of modelling.

Data set of sites containing incomplete or unreasonable data will be removed. The

remaining data sets will be randomly divided into training and validation data sets.

From the total number of samples in the data set, 80Vo is randomly taken for ANN

the training processes and the remaining 20Vo are used for network internal

validation.
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,ANN Design

Design step decides structure of network and training algorithm. Feedforward

backpropagation is used as training algorithm.

Multilayer perceptrons (MLPs) are layered feedforward networks typically trained

with static backpropagation. These networks have found their way into countless

applications requiring static pattem classification. Their main advantage is that they

are easy to use, and that they can approximate any input/output map. The key

disadvantages are that they train slowly, and require lots of training data (typically

three times more training samples than network weights).

Generalized feedforward networks are a generalization of the MLP such that

connections can jump over one or more layers. In theory, a MLP can solve any

problem that a generalized feedfoward network can solve. In practice, however,

generalized feedforward networks often solve the problem much more efficiently. A

classic example of this is the two-spiral problem. Without describing the problem, it

suffices to say that a standard MLP requires hundreds of times more training epochs

than the generalized feedforward network containing the same number of processing

elements (NeuroDimension, 1999). Therefor this paradigm is chosen for network

development in this research.

Design step also decides the architecture of networks including

number of inputs in the input layer

number of outputs in the output layer

number of hidden layers as well as number of neurons (Processing Elements)

contained in each hidden layer

NeuroSolutions simulations are vector based for efficiency. This implies that each

layer contains a vector of PEs and that the parameters selected apply to the entire

vector. The parameters are dependent on the neural model, but all require a non-

linearity function to specify the behavior of the PEs. In addition, each layer has an

associated learning rule and learning parameters, The number of PEs and learning

parameters are entered in the corresponding fields. Parameters such as step site,

momentum coefficient, number of iterations characterise the performance of the
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designed networks. Architecture and performance parameters will be changed

experimentally during the training and internal validation time in order to optimise

results for designed input layer.

ANN " trainin g " p erþ rm an c e

Neural network determines the weighted connectance between input and output

nodes by the neurons (processing element). The neurons are located in the hidden

layer and feed a non-linear sigmoid function. A learning process (training) forms the

interconnection between the neurons and the nodes.

The aim of the training of a neural network is to minimize the output error with the

respect to the known desired output. This error is defined to be the sum of the

dìfferences between the network outputs and the measured outputs they are supposed

to predict. Once formed by training, the interconnections remain fixed in the hidden

layer and the neural network can be used for predictions.

The cross validation set is used to determine the level of genera-liza|-ion produced by

the training set. Cross úalidation is executed in concurrence with the training of the

network. Every so often, the network weights are fÍozen, the cross validation data is

fed through the network, and the results are reported. The stop criteria of the

controller can be based on the error of the cross validation set instead of the training

set to insure this generalization. This is an indication that the network has begun to

overtrain. Overtraining is when the network simply memorizes the training set and is

unable to generalize the problem.

Cross validation was estimated by means of mean square enor (MSE) between

calculated and targeted outputs. Chapter 4 will discussed more detal on how cross

validation can be use to identify overtrained situation. Overtraining results in

increasing values of MSE with increasing number of iteration. MSE of training set

continues to decrease but in this case, network only memories the database from

training set but does not generalise the patterns.

Training process will be carried out by data from training set.
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.ANN v alidatio n p r o c e s s

ANNs will be validated with independent data set to test the performance of

networks. A comparison between the actual values collected from sites with the

value predicted by the model will be made to evaluate performance of networks. The

validation results are represented by percentage of correct predictions of colonisation

pattern of each macroinvertebrate taxa,

Sensitivity Analysis

A sensitivity analysis will be conducted for all ANN models for specific

macroinvertebrate taxa in order to improve models' validity. Method of sensitivity

analysis as follows: The first input is varied between its mean +/- a defined number

of standard deviations so that it covers whole range of this input in the database

while all other inputs are fixed at their respective means. The output is calculated for

a certain number of steps above and below the mean. The processes will be repeated

for all inputs and for each of 40 outputs.

The sensitivity will be qualified in term of percentage output change over the range

of input data. Input makes the output change below 407o will be considered

redundant for this specific macroinvertebrate taxon. Refer to results of sensitivity

analysis we can decide which variables are sensitive to distribution of specific

macroinvertebrates and which variables are redundant.

Refining networks

Redundant inputs for each network will be taken out and new ANNs will be designed

with taxa specific input layers. Training and intemal validation processes will be

repeated for refined networks in order to receive designed rate of correct prediction.

The condition is designed in accordance with the purpose and requirement of

network user. Processes are repeated until validation results satisfy the required

condition of the rate of correct prediction. In this project, the condition of '707o

correct prediction for all macroinvertebrate taxa is applied for fulfillment of network

performance.
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Bxternal valídation and Stream Síte Prediction

Trained networks aÍe applied in prediction step. External validation and site

prediction are made to test ability of trained networks to be applied in predicting

habitat conditions at sites for management purposes. Details of these methods are

addressed in chapters 4 and 5, where each model approaches are discussed.

I¿teral view of the larva of a species of water pentry Psephenidae (Gulland & Cranston, 2000))
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4 Adopting Clean Water Approach

4.1 Introduction

4.1.2 Clean Water Approach

This model had been developed based on the referential approach (Reynolson et al.,

1,997) to predict the fauna at impacted sites as if they were unimpacted.

The concept of a reference condition is now being widely applied for biomonitoring

and bioassessment of aquatic resources. The reference condition is central to the idea

of "biocriteria" developed by the US Environmental Protection Agency (Davis &

Simon, 1995). The same approach has been used in the UK for river classification

and water quality assessment (Wright, 1995) and is fundamental for the National

River Health Program in Australia (Parson and Norris, 1996).

Reference condition is defined as the condition that is representative of a group of

minimally disturbed sites organised by selected physical, chemical and biological

characteristics. Reference conclitions are described based on pre-established criteria

that exist at a wide range of sites. The reference conditions then serve as the control

against which test conditions are compared. Reference condition represents the best

available conditions and is made upby information from numerous sites. (Reynolson

et al., 1997). Selection criteria used to determine reference site conditions in the

Queensland stream system are described in chapter 3

In the current application, the reference condition is employed to compare the

biological attributes of individual test sites with a group of reference sites. Reference

condition uses an array of reference sites that characterise the potential biological

conditions in a region for which assessments are to be made. A test site is
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subsequently compared to what is either the most appropriate subset of reference

sites or to the entire reference site.

The main feature of this approach is that comparisons need to be made where site

attributes are expected to yield similar invertebrate communities in the absence of

disturbance. This analytical approach for comparisons with reference condition was

adopted from RiVPACS, used for predicting the macroinvertebrate fauna in flowing

water in UK (Wright, 1995) and AusRivAS in Australia (Parson & Noris, 1996). In

both RiVPACS and AusRivAS, the number of taxa expected is calculated as the sum

of the probabilities of those predicted (Moss et al., L987). The number of those taxa

actually collected is then compared with the number expected.

The severity of any environmental impact is assessed based on how much the

number of taxa observed (O) deviates from the number expected (E), calculated as

the OÆ ratio. When the OÆ ratio indicates impairment, the types of organism

predicted to occur but not collected, or not predicted but collected, are used for

interpretation.

4.1.2 Aims ønd Hypothesis

The aim of the stream modelling was to determine biological conditions of sites with

respect to reference conditions based on the presence and absence of invertebrate

taxa. The model was trained by means of reference data. Therefore the model outputs

strictly reflect "reference condition". The assessment of the health of specific sites is

than based on the comparison between observed and predicted site data.

A typically observed response of aquatic macroinvertebrate communities to

environmental disturbance is general loss of diversity, especially with pesticide load

or elevated nutrient enrichment (Cranton et al., 1996). The hypothesis of neural

network model development by the clean water approach is that the number of taxa

observed at the degraded sites should be less than the expected number, which

reflects reference conditions. The value of the criterion OÆ should range from a

minimum of 0 (indicating that none of the families expected at a site were actually

found at that site) to a theoretical maximum of 1, indicating a perfect match between

the families expected and those that were found. In practice, this maximum can
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exceed l, indicating an unusual diverse site, which should be a subject of further

research to explain the cause and nature of such overpopulation (Coysh et al, 2000).

In order to simplify interpretation and aid tmanagement decisions, the OÆ ratio can

be divided into bands representing different levels of biological condition ranging

from reference to severely degraded (Table 4.1).

Tahle 4.1 Divísion of O/E taxa into categories for reporting (Coysh et al, 2000)

Series of ANN models were developed with database from the Queensland stream

system to study interrelations between macroinvertebrates assemblages and abiotic

factors at reference habitat conditions. Developed neural network models then could

be applied for predicting the conditions of freshwater environment. Habitat

characteristics will be expressed by the criteria OÆ range sites from reference to

severely degraded condition.

Moderately to severely degraded

sites

Very few of expected

families remain

olB<o.4

Mildly to moderately impaired siteFewer families than expected0.8>oÆ>0.4

Near pristine conditionExpected number of families

within the range found at

807o reference site

1.2>OlÞ0.8

Richer invertebrate community

than pristine - potential nutrient

enrichment

More families found than

expected

o/E> t.2

Environmental conditionOÆ taxaValue of

otE
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4.2 Møterials ønd Methods

4.2.1 Datø Analysis

In the context of the modelling framework, site specific habitat features are used to

predict the occurrence of invertebrate taxa at a site not affected by environmental

stress. Habitat characteristics such as altitude, stream order and annual rainfall are

suitable as such predictor variables. By contrast, chemical variables such as dissolved

oxygen, pH and nutrient concentrations could easily be affected by anthropogenic

impacts and would not be suitable as predictor variables. They would cause

misleading predictions on the membership of test sites to the reference site groups

(Smith et al., 1999). As a result, 39 physical riparian from the first subset of the

database were used as predictor variables for neural network modelling, as listed in

the Table 3.2 (Chapter 3). These predictor variables include both discrete categorical

and continuous data. Only some discrete categorical variables are formed by

classification schemes such as stream order; most are represented just as empirical

criteria for habitat characteristics, such as soil types and vegetation type.

After removing incomplete or unreasonable data, 896 data sets from reference sites

were used for neural network modelling, in which 716 data sets were taken randomly

for training and the remaining 180 sets were used for internal validation. 1159 data

sets from test sites were used for external validation or prediction steps.

4.2.2 N etw ork Architecture

The design of the ANNs resulted in the selection of 39 environmental predictor

variables considered as input nodes in the input layer and each of 40 the

macroinvertebrate taxa considered as output nodes. Accordingly, 40 models were

developed in this study.

The backpropagation algorithm was used for the training of the ANNs. One of the

disadvantages of backpropagation algorithm is that it is difficult to determine in

advance the number of hidden layers and number of nodes in each hidden layer.

Many optimisation studies were carried out to select the best model configuration.

For the initial ANNs, the best neural network was set up with a single hidden layer

with 15 neurons. Figure 4.1 represents the general ANN architecture of the stream

habitat model for each macroinvertebrate taxon.
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Figure 4.1 ANN architecture of the stream høbitat model for each macroinvertebrate
taxon

4.2.3 Method of Training

ANN training by the specific data is an important step of the modelling process. The

feedforward backpropagation is applied as a learning algorithm to adjust the

connectivity weights through convergence (Rumelhart et al., 1986), and the

sigmoidal is used as the transfer function. The error term is the sum of the

differences between the output and the targeted data, and the chosen criterion for the

error term allowing convergence was 0.01.

Cross validation was applied to control overtraining. Cross validation was estimated

by means of the mean square enor (MSE) between calculated and targeted outputs.

Figure 4.2 illustrates plot to show how cross validation was used to identify an

overtrained situation. Overtraining results in increasing values of MSE with an

increasing number of training iterations. The MSE of training sets continues to

decline but, in this case, the neural network only memorises the database from the

training set but does not generalise the patterns. The optimum for training is reached

when a minimal MSE of both cross validation and training are observed.
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Figure 4.2, Cross validation results of some trainíng examples

After a number of training trials, the network obtained the optimal technical training

parameters as follows:

Number of iterations: 5000

Learning rate for hidden layer and for output layer: 0.1 and 1 respectively

Momentum coefficient: 0.9

4.2.4 Method of Validation

Validation is conducted in order to test the ability of networks to generalise

relationships between habitat condition and macroinvertebrate assemblages in the

reference condition. Neural networks may provide up to I00Vo correct answers when

applied to training sets simply because they memorise the whole database but do not

generalise the relationships between the inputs and targeted output. Trained networks

were validated with data from an other 180 sites. Data of these sites had neverbeen

introduced to these neural networks before. They are therefore called "independent

sites" and they also belong to reference conditions.

The validation is tested by means of correct predictions of the presence/absence of

each macroinvertebrate taxa in 180 sites. If the validation gave appropriate results,
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and the conclusion could thus be drawn that the neural networks have already

genelalised relationships within the system, networks can be used in a prediction

stage.

Output nodes in the database contained only the values 0 and 1 representing presence

and absence of macroinvertebrate taxon respectively. Neural networks provided

output values in the range from 0 to 1, describing the probability of this taxon

occurring at the site. It was decided that, if the probability of occurrence ) 0.5, then

the taxon was considered as present at the site; if the probability of occurrence was <

0.5 then the taxon was considered as absent at the site.

4.2.5 Method of Prediction

Validated neural network models can be applied for predictions. In the prediction,

studied sites are tested by the models for biological impairment. The networks

predict the presence and absence of each taxon at these sites given that they are

unimpacted. Consequently, the sum of taxa present at the site gives an expected

number of macroinvertebrate taxa that should occur at the sites. This expected

number would be compared with the observed number of macroinvertebrate taxa at

the sites to deterrnine a value of the criterion OÆ.

The criterion OÆ can be used as a biotic index to evaluate the habitat characteristics

of stream sites ranging from reference conditions to severely degraded sites. The

values of the OÆ figures identify levels of degradation in the test sites.

4.3 Sensitivity Analysis

A comprehensive sensitivity analysis was conducted for the 40 ANN models for

specific macroinvertebrate taxa. The method of sensitivity analysis is described in

Chapter 3. For neural networks developed in this chapter, the inputs were varied

between their mean +/- five levels of standard deviations, in order to cover the whole

range of inputs in the database and the outputs were calculated for 150 steps above

and below the mean.
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Sensitivity analyses were only conducted for continuous inputs and those categorical

inputs that were formed by classification schemes such as stream order, 0-4 habitat.

Categorical variables represented just as empirical criteria for habitat chalacteristics,

such as soil types and vegetation type, were not investigated by sensitivity analysis.

4.3.1 Results of Sensitivity Analysis

Plots were generated for each input variable for each taxon specific ANN model,

illustrating the network output over the range of the varied input in the database. As

an example, Figure 4.3 shows the sensitivity of Cladocera to 10 input variables.

The results of the sensitivity analysis are summarised in Table 4'2

The primary intention of this sensitivity analysis was to identify sensitive inputs for'

each model in order to improve network performance by removing insensitive inputs.

However, this process also provided new insights into relationships between

environmentai variation anci the occurrence of Queerrsiand stream

macroinvertebrates. Chapter 6 discusses detailed examples of such relationships and

the potential of the technique to enhance our understanding of anthropogenic impacts

on components of aquatic ecosystems.

I
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Table 4.2 Summary of the input sensitivity of 40 MI taxø by mean of percentages of output
change for Clean Water Approach

10.5l50.74402021.10.70,82.9100676Pyralidae40

000600.500I53000.27.2810.1Gripoterygidae39

00.42.t00.20000000000Prosopistomatidae38

000.261000000000.200Philopotamidae37

883'750339t3915.992369616.710.0725.922Calamoceratidae36

3.'74.92.01.410.518.80.7690.799972.562t3;7ó5Ecnomidae35

00009805.2002.70004.34.2Tabanidae34

10.0209.5491004.599437Ttt.'7r 3.0t2.09895t4Simuliidae33

0.100099000.100000.30.10Psephenidae32

586670332662366228677L368710081Veliidae31

801.10000.4014.815.8000.5006.3Pleidae30

10.65.200.10098682.000.20.20.112.00.2Notonectidae29

323.1517.22.63.85.596852.42.51.7ó5665.2Corduliidae28

8.6'7.614.56.86.23.04.85914.099293245r 6.52.1Corbiculidae27

0.6969586978696470.5487.199999394Thiaridae26

988096989682932622979573849788Planorbidae25

r 0.0346.9t35.02.3l'127552.42.62.23.82.151Dugesiidae24

8593509.8929513.8949094257.960t.916Hydroptilidae23

0.50450;79805.42.40.'797000l30.2Hydropsvchidae22

8s0.85.04l13.34t974.32;777ó.111.31.295r.8Leptoceridae2t

10.4202290tt.7t2.l47943.8967.735986340.sCeratopogonidae20

8315507t8652817277637073754596Orthocladiinaet9

68914.0824612.08422985.297748.29664Tanypodinael8

992.11.2239.2278375t.43.20.920.97.58.47.6Hydrophilidae17

9888303250t4l1.l8.291487796912.683Elmidael6

79809257828682964492929590100100Dytiscidae15

85999797837L32635L28349.922776lCorixidaet4

l3r.0098350.7099000.10.7255.20.1Coenagrionidael3

2;79697950.490831001000.20.91.92.03.438Libellulidaet2

879136938692l't.28830969285999381Gomphidaell
99385.25999979.5909566tt.476988327Caenidae10

t'7.796359795819393ó5876487909696Baetidae9

8020.020.93 8.ó6.815.3978911.212.24797494t24Leptophlebiidae8

31 .532.00.212.31.2991001.90.70.40.4l.l39905.9Palaemonidae7

38.76.9r3.031.636.01.16.440.64.5284723254525Atyidae6

r 8.04.39.235.8954.898957740.5988.282100Ostracoda5

100t8.75.31008659.0771000t.700992r12.0Cladocera4

31.098969743.0992;72.92.810.09887863.197Copepoda3

91779l36.08477748594484389909286Aca¡ina2

690.010063t.4960.02.60.00.00.70.10.1098OligochaetaI
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Table 4.2 (continued)

0.860.ó5Il51000u44790t1151.570Pyralidae40

00.364000001004000000Gripoterysidae39

0000000000000000Prosopistomatidae38

0000000000000000PhilopotamidaeJI

l512.620.120.69917.5948073764.62418.013.08181Calamoceratidae36

4734474631.710.71.6t.69.72.60.6791.8r6.7100Ecnomidae35

I1.00000.500.1000000000Tabanidae34

976.28.5380.84.r596.219,510.62.510.6r0.88243lSimuliidae33

000.300000000.40.81.02.100.6Psephenidae32

94347t7376247860918115.96483573997Veliidae3l
02.7830.13.40000.2004900.30.20.2Pleidae30

00.8691.76000.5002.'100.50.302.00Notonectidae29

3.7944l1.27.04.628931.03.21.02.31.64.56.55.7Corduliidae28

5.79.35815.8t2.392832.0997219.83.2882.398100Corbiculidae27

9071730.79986974.5922.80.24.62.79.04.799Thiaridae26

989795778215.0o5t7.37793316612.715.64.9100Planorbidae25

206t99tl.78.52.62.73.563r4.219.51)2.514.72.3100Dugesiidae24

929592819344938495493.1636.7532t50Hydroptilidae23

0834.5000.14.81.00
., 107.200.3t.40.3Hydropsychidae22

991.09.70.998909.670342.99.'718.68010.08.023Leptoceridae2t
o594703.73.895r00232.967936.22.8)16377Ceratopogonidae20

644638777L9072954887787073967299Orthocladiinaet9
83s.ó7.1271.38.36.3J,I8.3359.7993l3917.0100Tanypodinae18

6.0976.787t.71.9886.396360.210.91.569942.8Hydrophilidaet7
94999490949.0459699999.27789)t998.1Elmidaet6
957977369149998886952634979892100Dytiscidael5
90Í6;722l310054462924t4.4845873357L18. ICorixidaet4
703.2300334084870.8930000.300.2Coenagrionidael3
452.31000.7670.676931000.212.01.38.90.5100Libellulidaet2
9790846.3919778tr.7t4.58.29957l ó.019.07lGomphidael1

9010093225.74610094846699887.0458594Caenidael0
959796482083982138587745479297100Baetidae9

98604.65.587779952.657.47t811009447.59698Leptophlebiidae8

1009799t7.91.9ló.0230.39326.02.20.50.94.852.020.4Palaemonidae1

476.715.6360't.6386.017.0'1.116.78.29.128.242.027.OAtyidae6

7.195967.514.38.49437.597I 1.375858.122.8982t.2Ostracoda5

105.2586300027.040.0780.0990.07.00.0o5Cladocera4

842.82.3992.7245.3998.91.320.56.1974.097CopeDoda3

9l97668597374592749475489494t566Aca¡ina2

950.196s.t0000.00.80.00.00.10.0640.05.2Oligochaeta1
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4.3.2 Network Revision

An input showing a range of output changes less than 40Vo ovet its range was

considered redundant and was excluded from the network architecture (Chapter 3).

After excluding defined redundant inputs, the neural networks were revised for each

taxon. Inputs for percentages of substrate compositions are closely linked to each

other, Therefore, network refinements did not take into account those inputs,

although sensitivity analyses had been conducted for them. These inputs together

with empirical categorical variables, which had not considered as part of the

sensitivity analysis, remained in the revised neural network models.

Some taxa appeared to be very sensitive against changes of most of the inputs,

including Acarina, Leptophlebiidae, Dytiscidae, Baetidae and Orthocladiinae.

Therefore, criteria to consider inputs as sensitive were extended for these cases to

50Vo of output change over the range of input change, in order to consider only the

most sensitive inputs for improving these ANNs. The numbers of input nodes were

different for different taxa. Table 4.3 summarises the number of input nodes for each

taxa specific network after revision

Table 4.3 Number of inputs in the taxon'specift'c revised networks

1019Pyralidae4010I7Gripopterygidae20

10t3Philopotamidae391018CoenagrionidaeI9

1023Calamoceratidae381022Libellulidae18

1529HydroptilidaeJI1020CorduliidaeI7

1024Ecnomidae361532Gomphidae16

1015Hydropsychidae3510t3Prosopistomatidae15

1020Leptoceridae341534CaenidaeI4

1013TabanidaeJJ1534BaetidaeT3

1527Ceratopogonidae321531Leptophlebiidael2

1020Simuliidae311019Palaemonidae11

1536Orthocladiinae301018Atyidae10

102lTanypodinae291527Ostracoda9

t020Hydrophilidae281020Cladocera8

1013Psephenidae211022Copepoda7

15JJElmidae261535Acarina6

1535Dytiscidae251024Corbiculidae5

1531Veliidae241527Thiaridae4

1015Pleidae231529PlanorbidaeJ

10t7Notonectidae2210t7Oligoçhaeta2

1525Corixidae2I10T9Dugesiidae1

Number of
nodes in HD

Number of
inputs

TaxaNNumber of
nodes in HD

Number of
inputs

TaxaN
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Taxon-specific models were developed for each macroinvertebrate taxon as a result

of revision. Each taxon required a specific set of input variables. The numbers of

nodes in the hidden layers were selected after a series of optimisation trials. It

appeared to be optimal that models having more than 25 vanables as inputs were

developed with 15 nodes in the hidden layer, and models with less than 25 inputs

were developed with only 10 nodes in the hidden layer.

Other technical parameters including learning rates for hidden and input layers,

momentum remained the same as for initial models. Neural network models were

trained with 5000 iterations.

4.4 Validation Results ønd Comparison with AusRivAS model

4.4. 1 Validation Re s ults

The settled target, to achieve correct predictions for 70Vo of the cases in the

validation data set of 180 reference sites, was achieved. After refining each taxon -

pecific ANN rnodel based on sensitivity analysis and validation, the chosen condition

for the network performance was achieved. The overall rate of correct predictions of

taxa presence at stream sites in the validation data set by all models was better than

70 7o. Table 4.4 and Figure 4.4 illustrate the development of correct predictions from

the initial models prior to sensitivity analysis to the final refined models.
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Table 4.4 The correct predictíons for presence/absence of 40 macroinvertebrate taxa of
initisl models wíth 39 ínputs antl revised m.odels after sensítívity a,nalysis with tøxø-speciftc
number of inputs

Results demonstrate that all macroinvertebrate models had been improved, even

though specific improvement rates differed greatly, The Copepoda model achieved

the highest improvement with conect prediction increasing by 14.377o, followed by

the Gomphidae model with l\Vo improvement in correct prediction. Performances of

the model developed for Notonectidae remained unchanged. The mean value of

correct predictions for the validation set was 16.74Vo for the initial models and

82.l6Vo for taxa specific models after exclusion of redundant inputs.

73.0563.69Gomphidae4083.2376.65Corduliidae20

74.8564.07Hydrophilidae3979.0477.84Acarinal9

73.6564.07Palaemonidae3884.4379.04Ecnomidae18

/O.UJoJ.¿oLOnXlOaeJI63.¿3/9.U4Leptophiebiidaet7

79.6465.27Copepoda3686.2380.24Thiaridae16

73.6565.87Elmidae3583.8380.24Ceratopogonidae15

72.0565.87Dytiscidae3486.2380.84Corbiculidaet4

70.6566.47Orthocladiinae5585.0382.04Calamoceratidae13

79.6467.66Hydroptilidae3286.2382.63SimuliidaeT2

73.0567.66Caenidae3186.6983.1 rPyralidael1

72.6568.26Baetidae3083.8383.23Coenagrionidae10

77.8468.26Atyidae2988.0285.63Psephenidae9

76.6568.86Tanypodinae289r.6286.83Hydropsychidae8

'77.2570.06Ostracoda2789.2287.43Tabanidae7

77.8470.06Oligochaeta2689.8289.82Notonectidae6

75.457r.86Veliidae259t.6289.82Planorbidae5

79.6473.65Libellulidae2492.8r90.4rPhilopotamidae4

80.2474.25Dugesiidae2392.8191.01PleidaeJ

8r.4475.45Leptoceridae2296.2092.39Gripoterygidae2

82.0476.04Cladocera2T10098.37ProsopistomatidaeI

RevisedInitial
(3e

inputs)

TaxaNoRevísedInitial
(3e

inputs)

TaxaNo
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Figure 4.4 Correct predictions of presence/absence of macroinvertebrate tøxa beþre and

afte r exclusions of redundant input

To promote further validation of the ANN models, predictions of stream sites using

the training and validation data sets were conducted and evaluated by the ratio of

observed to predicted (OÆ) data. An O/E value in the range from 0.8 to 1.2 was

selected as corresponding with the central 80Vo of reference sites to indicate whether

a specific site was biologically degraded or not. This criteria was previously

suggested for applications of AusRivAS models (Coysh et al., 2000). Under optimal

conditions, the OÆ values of both models should meet this range for reference

samples, as reference samples were used for developing and validating both models.

The results in Fig.4.5 clearly indicate that there is a95.67o correspondence with the

reference sites for the training data. The 4.4Vo of sites outside the range were the sites

with extreme conditions. Even though they belong to reference conditions, only 4 or

fewer from a total of 40 taxa were observed at 2.'77Vo sites having OÆ< 0.8

(MRHI1/250, MRHI2/456 MRHI3/200, MRHI4/067, MRHI2/299, MF.}jr{lt7z,

MRHI4/294).

tr 39 lnput Variables

I Taxa Specific lnput Number after Exclusion of Redundant lnputs
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A. Training Data (Reference sites)

0
ôr<tqcorôl 9qqSc!çÇçe4EFiiesoÑ+(ooF$¡slagFô¡-ðctd--;

Observed/Expected Ratios

Figure 4,5 OlE criteria for trainíng set

Figure 4.6 shows the validation results for 180 sites in the validation set. 85.O37o

correspondence with the reference sites for the validation data. Again, sites with

given OÆ criteria outside the range 0.8-1.2 appeared to have extreme number of taxa

observed. The following 13 sites (MRHIl/311, MRHI3/l61, MRHI1/300'

MRHI2/484, MRHI1/012, MRHI2/488, MRHI4i319, MRHI1/051, MRHI1/388,

MRHI2/345, MRHI3/160, MRHI4/L4I,ll4P.HI4|259) having 7 or less taxa had been

predicted wirh OÆ <0.8. Other 11 sites (MRHI1/529, MRHI3/072, MRHI3/113,

MRHI4/349, MRHI3/019, MRHI3/lI1, MRHI4/|12, MRHI4/128, MRHI4/129,

MRHI3/137) having 22 or more taxa had been predicted with OÆ >1.2. However the

value of OÆ predicted for these sites were only slightly outside the range indicating

the reference conditions.
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B. Validation data (Reference sites)
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Figure 4.6 O/E criteria calculated for validation set

Even though some models had failed to predict OÆ criteria for extreme sites, the

good validation results for majority of the ANN rnodels finally justified their

application to the prediction and assessment of strearn test sites.

4.4.2 Comparision with AusRivAS model

In order to evaluate the relative performance of the ANN models, a comparison with

the model AusRivAS (Coysh et al., 2000) was carried out. It was applied to the

Queensland stream system based on the same training and validation data of

reference sites as used for ANN modelling.

Data restriction

There were no sites of macroph¡e habitat considered in this comparison as no

AusRivAS models have been developed for macrophyte habitats. To obtain a site

assessment by AusRivAS, the appropriate biological and habitat data from the test

site under investigation were entered and preliminary analyses are performed to

determine whether the test site fell within the experience of that model. Any sites
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with no appropriate reference group for comparison were identified "outside the

experience of the models" (Coysh eta1.,2000). These sites were also excluded from

the data set. Therefore, the data sets were reduced. The OÆ ratios were calculated for

the training data (data from 600 reference sites used to generate the model), and the

validation data (data from 160 randomly withheld reference sites).

In both cases these calculations are restricted to the 40 taxa. Rare taxa had to be

removed according to AusRivAS protocols prior to classification. Taxa occurring at

less 107o of sites if there are less than 100 sites or taxa occurring at less than 10 sites

if there are more than 100 sites considered rare taxa. Prosopistomatidae occurred at

less than 10 sites from total 760 studied sites and they were removed from models.

Two models were therefore comparable.

Comparison results

The OÆ ratios number of taxa for samples were calculated from AusRivAS output.

In accordance with the AusRivAS methodology (Simpson et al., 1997), the expected

-,,*L^- ^f +^-^ f^- ^^^L "---l^ *,,oo ^ol¡rrlafarl ac fha crrm nf nrnhqhiliticc nfllLlllluvl ul Lc^4 lul v4vrr ù4¡IrP¡v Yv 4r v4rvurslvs su

occumence of taxa with a 507o or greater probability of occurrence. Ratios OÆ

number of taxa was also calculated from ANN output. The expected number of taxa

as sum of taxa was predicted by models after data preprocessing (Hoang el al., in

press).

The comparison of OÆ data calculated from outputs of the ANN and AusRivAS

models are plotted in Figure 4.7 and 4.8.

The results of the model comparison in Fig. 4.7 clearly show that the ANN models

identifying much better the reference sites as unimpaired than AusRivAS. While the

ANN models identified the correspondence of training data to reference sites by

94.27o, AusRivAS did only by 60.10Vo.

95



A. Training Data (Reference sites)

Figure 4.7 Distribution of Observed/Expected ratios for predicted stream sites using the

AusRivAS and the ANN models.

The ANN models performed similarly well for the validation data (81.07Vo)

compared to 54.117o by AusRivAS models (Figure 4.8).

B. Validation data (Reference sites)
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Figure 4.8 Distribution of Observed/Expected ratios for predicted stream sites using the

AusRìvAS ønd the ANN models.
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AusRivAS failed to predict extreme sites as discussed earlier. Moreover, the values

of OÆ predicted by AusRivAS for extreme poor sites was <0.4, AusRivAS even

failed to cope with some normal sites, which are defined to have number of taxa in

the range of mean + SD (calculated as 14.64 + 4.36 for whole data set).

The results of this study clearly illustrate the excellence of the ANN models

compared to the AusRivAS models in terms of validity.

4.5 Apply for Prediction Step - Prediction Results

Test sites refer to the site being tested by model regarding biological impairment.

The test sites may be sites with unknown or suspected impacts, sites selected for

regional assessment or reference sites resampled for periodic testing of the model. It

is important that all stream and river types, which may be represented by the test

sites, have been sampled at sites considered to be equivalent to reference conditions.

That is to ensure that test sites will be compared against reference conditions that can

be expected for in the absence of impact (Coysh et al., 2000)'

The application of the validated ANN models to an independent test data set of

stream sites resulted in a slightly positively skewed distribution of the OÆ data (Fig,

4.9) that might be representative for a field data set.

Whilst the majority of data (36.15 Vo) were in the range of 0.8<0Æ<7.2 and

indicated no degradation effects of corresponding stream sites, 16.82 Vo of the data

indicated mildly to moderately impaired sites. In 47.02 Vo of the data richer

invertebrate communities were indicated than observed at refetence sites that might

be subject to research for causal clarification.
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Fígure 4.9 Application of ANN to predict biological impairment of test sites

Table 4.5 shows the average number of taxa present in each range of OÆ. As

hypothesised, the reference sites showed significantly higher taxon richness than

possibly degraded sites

Table 4.5 Average numbers of taxa observed at sites in according environmental
conditions assessed by the value of O/E crítería

This implies that the reference sites were well chosen and showed minimal

impairment relative to the test sites.

104
1902.07 1 8.1

043
138

5.78

802

11.39
10.44

15.01

16 31

't9.84

Moderately to severely degraded
sites

3.18 r 1.51olE<o.4

Mildly to moderately ìrnpaired
site

9.19 t2.650.8>o/E>0.4

Near pristine condition13.73 !3.231.2>OÆ>0.8

Richer invertebrate community
than pristine - potential nutrient
enrichment

t7.7 + 3.63otB> t.2

Environmental condition classified
by AusRivAS

Average number of taxa at sites

(average number of taxa at
reference sites - 14.64 taxa)

Value of OÆ
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4.6 Discussíon

4.6.1 Perfornxance of Artificinl Neural Networks

Results of the comparison of the ANN models with AusRivAS models showed that

the performance of the ANN models is in general better than statistical predictions.

Walley & Fontama (1998), Schleiter et al. (1999) and Gabriels et al. (2000) also

came to similar conclusions for predicting macroinvertebrates in freshwater streams

and rivers based on different sets of environmental characteristics.

ANNs provide similar good results for validations with both the complete and the

restricted database used to compare with AusRivAS models, in which macrophyte

habitat could not be assessed. The results showed that ANNs are able to work with

all habitat types provided that samples from these habitats have been included in the

learning procedure.

Reliability is not only obtained by the correct prediction of presence/absence of

macroinvertebrate taxa at sites. For all taxa, numbers of sites where taxa presented

were similar for predicted and observed data in the validation set.

Table 4.6 Numer of sites where taxa were present in total 180 valídation sites (results from
revised models)

8282Gomphidae402930Corduliidae20

5048Hydrophilidae39rr7118AcarinaT9

9088Palaemonidae38)t32Ecnomidae18

7680Corixidae379693Leptophlebiidael7
9898Copepoda364445Thiaridael6
8275Elmidae355762CeratoDosonidae15

7267Dytiscidae342626Corbiculidaet4
9l85OrthocladiinaeJJ2624Calamoceratidae13

6159Hydroptilidae3¿404lSimuliidaeL2

t23119Caenidae31JI38Pyralidae11

128r23Baetidae305762Coenagrionidae10

9493Aryidae2935JJPsephenidae9

t24130Tanypodinae285854Hvdropsychidae8

6258Ostracoda272423Tabanidae7

7072Olisochaeta262629Notonectidae6

4239Veliidae251922Planorbidae5

7064Libellulidae242426Philopotamidae4

383tDugesiidae232I20PleidaeJ

r22119Leptoceridae2219t7Gripoterygidaez

4745Cladocera2l22ProsopistomatidaeI
PredictedObservedTaxaNoPredictedObservedTaxaNo
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This fact demonstrates that correct prediction provides the meaningful information

for the reliability of network performance. Predictions of rare taxa like

Prosopistontatidae, Gripoterygidae and Philopotatnidae are examples. If networks

could not generalise presence patterns for these taxa from database but only

statistically predicted that these taxa never occur in any site, this information had

already achieved more than 907o corroct prediction, because these taxa occured at

less than I)Vo of sites observed. The high percentages of con'ect prediction of taxa

present at around 50Vo of sites such as Leptophlebiidae, Ceratopogonidae,

Leptoceridae, Oligochaeta, Atyidae, Copepoda are really a significant achievement.

The validation results proved that the ANN models had worked successfully not only

with very common but also with very rare species such as Prosopistomatidae,

Gripoterygidae, Pleidae, and Planorbida¿. These results showed that ANN models

could work with all taxa with nonzero probabilities of presence at sites.

4. 6.2 Relations hip b etw e e n Pre díctor Variable s and Macroinv ertebrate

Assemblages

The results of the neural network models developed indicated that physical predictor

variables have close relationships with presence/absence of macroinvertebrates.

Geographical predictors easily measurable from maps, such as latitude, longitude,

altitude and distance from sources explain significant variation in the benthic

macroinvertebrate community. These variables appeared to be highly sensitive for 32

out of the 40 taxa in this study (see examples in Figure 4.10). Corkum (1989) and

Bailey et al. (1998) also found geographical predictors to be useful in studing benthic

invertebrate communities in various streams in North America. This information

makes the test of a community's deviation from reference conditions much more

sensitive, Therefore, taking advantages of the predictable component of variation in

benthic invertebrate communities with these easily measured geographical variables

can improve biological assessments of the community expected at test sites.
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Figure 4.I0 Retation between geographical inputs and distribution of macroitwertebrates

Sensitivity analysis showed relatively consistent changes between seasons for 16

taxa. Figure 4.11 illustrates some of these changes. Other taxa showed no clear

change according to seasons.
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Figure 4.11 Relation between seasons ønd macroinvertebrate distribution

This seasonal variability is also reflected in water temperature, which is highly

sensitive for 2I taxa. Dodelec (1989) found that many macroinvertebrate taxa, which

are typical for high quality water, favoured cold water. Cool habitats are also favorite

by aquatic insects as cool water contains more oxygen at saturation than does warm

water ('Ward, 1992). These earlier findings are supported by results of current project

(Figure 4.12).
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Substrate compositions were found to be very sensitive for most of the taxa even for

rare taxa such as Philopotantidae and Gripoterygidae. For the taxa Psephenidae,

Philopotamidae and Tabanidae, substrate compositions are the only driving variables

for their distributions in the streams. The presence of only a few taxa (Atyidae,

Dugesiidae, Corbiculidae, Ecnomidae and Prosopistomatidae) does not rely on

substrate compositions.

Climatic and meteorological variables also provided significant impacts on

macroinvertebrate distribution. The presence of all taxa, except for four rare species,

relies on weather conditions. Among.these variables, range in wet season ntonthly

tneans, mean daily max temperature and mean daily temperature ratxge are the most

important variables. Sensitivity analyses showed that they are highly sensitive for

most taxa. The high sensitivity of these easily obtained hydrological and

meteorological variables demonstrated the applicability of the proposed methods.
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Topographical characteristics also play an important role in the presence of

macroinvertebrates. Habitat Width and Depth were highly sensitive for 28 taxa.

Slope was less sensitive, although it still was greatly sensitive for 10 taxa and

moderately sensitive for 4 others. Stream order was very sensitive for 13 taxa, while

Site-mean phi was significant for 12 taxa.

More details of the sensitivity analysis and relationships between predictor variables

and distribution of macroinvertebrates are discussed in Chapter 6.

4.6.3 Reference Condition Approachfor Røpid Assessment

The reference condition approach is considered one of the most effective ways of

usìng the information available from biological communities to established

"biocriteria" such as OÆ (Bailey et al., 1998). This approach is widely used for the

rapid assessment of river health (Resh & Jackson, 1993).

The first objective of using rapid assessment is to reduce efforts and costs in

assessing environmental conditions at a site. This can be achieved by: (1) reducing

the number of habitats sampled and replicate sample units taken per habitat, (2)

considering only a fraction of the animals collected, which means fewer have to be

identified.

Another objective of rapid assessment approaches is to summarise the results of site

surveys in a way that can be understood by non-specialists such as managers,

decision-makers and the concemed public. This is done by using analysis measures

that express results as single scores, as well as by placing the scores obtained in

categories of environmental quality based on regional data (Resh & Jackson, 1993).

The success of the rapid assessment approach ultimately depends on the ability to

detect impacted and unimpacted conditions. A test community falling outside of the

range "fails", while a community that is within this range "passes". Communities

either above or below criteria values may fail because they are unusual relative to

reference communities (Bailey et al., 1998).
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At the assemblage level, presence-absence data appear sufficiently strong to allow

detection of reasonably subtle differences among sites. Previous works had shown

that OÆ could distinguish four bands of degradation with acceptable errors (Wright,

1995: Norris, 1996, Clarke et al., 1996). These bands represent classes of biological

impairment ranging from'equivalent to reference'to'poor'. The robustness of

presence-absence data in allowing an assessment of biological condition has

important implications for bioassessment.

However, the clean water approach applied in this work appeared to have some

limitations. Reference conditions are classified as near pristine condition. In practice,

a reference condition of nearly pristine can hardly be found at the present time; they

only represent the least impaired sites within the area of interest (Hawkins et al.,

2000). Even site, which meets all requirements for reference conditions, may

experience many types of disturbance. The empirical foundation of the method itself

therefore contains some information relating to pollution. Test sites can only be

judged by the relative conditions to the reference. Moreover, the approach cannot be

annlied for areas. where near oristine or even least impaired sites no longer exist, and--rr---

where data of study sites in pristine conditions has never been collected. Therefore, it

is extremely difficult to obtain appropriate databases for training the networks.

Moreover, the OÆ criteria showed some problems in application for management

purposes. OÆ takes into account only the richness, the number of taxa present at a

site, as a single descriptor to use as a basic biocriterion for bioassessment work. It

assumes that the importance of all taxa is the same, while in fact the responses of

some taxa are different to different environmental stressors (Hellawell, 1986). The

presence of some indicator families actually indicates conditions with some degree of

pollution. Therefore, the predicted taxon list is also required to provide a "target"

invertebrate community to rectify identified impacts. The type of predicted taxa may

also provide clues as to the type of impact that a test site is experiencing. For

example, the absence of predicted Leptophlebiidae might indicate an impact on a

stream from trace metal input (Hellawell, 1986). Families in Ephemerotera,

PLecoptera and. Tricoptera orders are taxa identified in some Rapid Assessmeut

Protocol (Plafkin et al, 1989; Resh & Jackson, 1993) because they provide more

"indicator value" than others taxa, and distribution of these taxa can give elucidation

for environmental stressors (Ward, 1992).
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Interpretation of the OÆ criterion is not very clearly understood. The hypothesis was

that low OÆ ratio (OÆ<<1) implies that test sites are adversely affected by some

environmental stressors. Practical examples showed that the assessment score of test

sites did not vary in understandable ways. Interpretation for sites havingO/E >>1 is

poorly understood.

AusRivAS suggested that higher levels of the criterion OÆ exceeding 1 are probably

caused by nutrient enrichment (Coysh, 2000). However, it is argued that aÌthough

intermediate levels of organic enrichment may favour certain suspension- or deposit-

feeding macroinvertebrate groups, changes in substratum and low dissolved oxygen

concentrations that often occur at high levels of organic enrichment usually result in

the disappearance of intolerant taxa (Hynes, 1960; Hellawell, 1986).

Organic enrichment in the aquatic ecosystem is one of the oldest and most fully

documented forms of pollution. Several taxa either increase or decrease in response

to organic effluents in rivers. At intermediate levels of organic enrichment, numerical

changes occurred mostly within the established, ambient taxa complex within each

system. However, as the severity of organic pollution increased, system similarities

increased as well. Ultimately this can be result in a predominance of some species

such as Chironomus riparius pupae at high pollution levels (Johnson et al., 1993).

4.7 Chapter Summary and Conclusion

The Artificial Neural Network models developed for Queensland stream systems are

producing prornising results. The "clean water approach" models adopted the

referential condition approach from the AusRivAS models to provide first-pass

assessment of rivers over large areas and to help identify what additional information

is required. Better results of the ANNs models compared to AusRivAS showed that

ANNs can be suitable alternative tools to study distinct non-linear relationships

within freshwater ecosystem. The clean water approach provides qualitative

assessments and should be satisfactory for state-of-the-environment reporting (Smith

et al., 1999).

106



The usefulness of the reference condition approach can be increased not only by

modelling but also by explaining variation in the community descriptors among the

reference sites. This elucidation possibility of predictive models can be achieved by

means of sensitivity analyses with ANNs. Further details are discussed in Chapter 6.

The clean water approach can successfully be used in bioassessment if the

community descriptor adequately summarise the nature of community present at a

reference site, and ideally respond when degradation by the stressors is present. The

predictor variables must describe, either directly or indirectly, the habitat of stream

pertinent to the invertebrate community, be relatively easy to measure, and be

unaffected by potential stressors.

The most important element of this approach is the explanation of community

variation with variation in habitat conditions at the sites. Clear and fully reliable

elucidation of these variations is unfortunately not available.

The alternative to this are "dirty water" models, which utilise a wider range of input

. r i r: -- rt--^^ ¿t- ^¿ f,. ^^-tL^ ^L^-.1^¿--, ^f ,.,^+^- ^,,^l:f,, 1'1^^ ^;* ^f ^ Ä1.+',vartaDles lncluolllB Lllus9 ur¿l1 u95uLru(, ulrçlrrrstlJ ur w4Lçr 9u4rrrJ. rrrv 4rrrr vr 4 urrLJ

water model is to identify input variables that exert some influence on outputs, and

then run simulations of various scenarios through the model to predict the ecological

consequences of altering input variables. Full details of these models are discussed in

Chapter 5.

AduttGripoterygidae, presence of which is a good indicator for clean water

condition (Gullan & Cranston, 2000)
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5 Developing Dirty Water Approach

5.1 Introduction

5.1.2. Dirty Water Approach

It has been widely demonstrated that interactions among chemical and physical

processes create environmental conditions at a range of scales that strongly influence

the distribution and abundance of lotic taxa, and thus the composition of lotic

assemblages (e,9. Hynes, 1970). Many studies have identified substrate composition,

complexity and heterogeneity as major determinants of in-stream biota (e.g. Ward,

1992). Turbidity, an optical property of water and a measure of light attenuation by

suspended particular matter, plays an important role in the life of benthic

macroinvertebrates. Suspended solid loads < 40 mgl above normal levels resulted in

a 25Vo reduction of aquatic insects of riffles. Densities were reduced 60Vo when

suspended solid were 120 mgfl or more above normal (Gammon, 1970). Dissolved

oxygen plays a major role in spatial temporal distribution patterns of aquatic insects

('Ward, 1992). Responses include microspatial positioning, depth distribution,

migratory behaviour, and predator-prey interaction. pH influences food availability

and leads to differences in species richness, the distribution of species among order

of insects in different conditions of acidity in watershed (Otto & Svensson, 1983). A

survey of streams in the southeastern United States revealed that mollusks, mayflies,

beetles and dipterans were better developed in the hard highly alkaline streams, while

stoneflies and caddisflies were better developed in the soft water of low alkalinity

(Neel, 1973). Other abiotic factors such as flow velocity (e.g. Statzner et al., i988)

and water chemistry (e.g. Bunn et a1., 1986) have been found to also influence biotic

composition.
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The physical and chemical properties of running waters and their effects on the

community are driven by numerous environmental variables such as climatic

conditions, production-respiration ratio, urban storm water run-off and waste water

effluents. The interactions and dependencies among these properties are only partly

understood. Since knowledge of species-habitat interrelation remains insufficient,

consequently, prognostic assessment of ecosystem properties is not presently

available (Vannote et al., 1980; Townsend, 1989).

Some research has been done to present applicability of ANNs in bioindication of

chemical and hydro-morphological habitat characteristics with benthic

macroinvertebrates (Schleiter et al., 1999; Chon et al., 1996; Chon et al., 2000) and

demonstrated potential of ANNs in this field.

Main feature of this approach is that neural nets study the relations between

distribution of macroinvertebrates and habitat characteristics from both reference and

potentially impacted sites. Data on water polluted sites were used for modelling, the

approach therefore is called "Dirty Water Approach".

5.1.2 Aims and Hypothesis

The aim of the model was to study functional interrelation between water quality,

habitat characteristics and colonisation patterns of benthic macroinvertebrates within

stream and river ecosystems.

'Dirty water' models utilised a wider range of input variables, including those that

were altered by anthropogenic impacts. The aim of a dirty water model was to

identify input variables that exerted some influence on outputs, and then run

simulations of various scenarios through the model to predict the ecological

consequences of altering input variables.

Investigation of sensitivity curves derived from dirty water ANN models using the

methods outlined in chapter 3 should greatly enhance our understanding of the

effects of impacts of various types on individual macroinvertebrate taxa. This would

enable impact specific indicator taxa to be readily identified and should enhance our
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capacity to determine and mitigate the effects of human activities on stream

ecosystems.

The hypothesis was that the distributions of macroinvertebrates at family level were

cletermined not only by physical variables but also by the chemical water quality and

by the distributions of other macroinvertebrate taxa. Using both chemical and

physical predictor variables, Artificial Neural networks were able to predict

combinations of macroinvertebrate taxa present at study sites.

Furthermore, a hierarchy of factors determining the community structure of

invertebrates could be identified from number of impact variables (Schleiter et al.,

1999).

5.2 Materials and Methods

5.2.1 Data Analysis

Physical characteristics are always the driving variables to define the typical taxa,

which should occur at each specific habitat site and condition. All 39 predictor

variables used in clean water approach were also used as inputs in this approach.

Chemical variables such as ions, pH and nutrient concentrations could easily be

affected by anthropogenic impacts and would not be suitable as predictor variables

for clean water approach. In the dirty water approach, models intended to study

effects of water chemistry in impacted sites, these chemical variables therefore were

also considered as driving variables to predict presence/absence of macroinvertebrate

taxa. There were 77 variables belonging to this group (chapter 3). They were all

continuous data.

Dirty water approach also considered interrelations among macroinvertebrate taxa.

To serve this purpose, neural network models determined a combination of taxa

presence instead of a distribution of each individual taxon as developed in clean

water approach. Therefore, 40 macroinvertebrate taxa were used as outputs in only

one model.

110



The database contained information of 716 reference sites and 1159 sites potentially

having impacted conditions. From this database, 80Vo of sites were considered as

training set. The remaining 207o were used to validate models' performance.

The training set contained data from 1193 sites of both reference and potentially

impacted conditions, from which 100 sites had been taken randomly for cross

validation

The validation set contained data from 300 sites, 115 of which were potentially

impacted, 185 others belonged to reference condition.

5.2.2 Netw ork Architecture

One ANN model was developed to study functional interrelation. The structure of the

network was as follows:

Input layer contained 56 nodes

Single hidden layer with 33 nodes

Outputs layer with 40 nodes

5.2.3 Method of Training

The ANN model had been trained with data from the training set where cross

validation was applied to control overtraining. The training parameters that appeared

to be optimal read as follows:

Number of iterations: 10000.

Step sizes: I and 0.1 for hidden layer and output layer respectively

Learning rule: Momentum

Momentum: 0.7
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5.2.4 Method of Validation

The validation was conducted with data from validation set. Validation results were

estimated by means of correct prediction of presence/absence of all

macroinvertebrate taxa in the validation set. A target o170Vo correct predictions for

all taxa in the validation set was settled to manage reliability of network

performance.

5.3 Sensitivity Analysis

5.3.1 Results of Sensitivity Analysis

Method of sensitivity analysis was the same as applied for clean water approach.

Inputs were varied between their mean +/- only three standard deviations that proved

to be sufficient to cover whole set of inputs in the database.

The ANN sensitivity was also estimated by means of output change over the range of

inputs in the database as discussed in the chapter 3. There were 56 plots calculated

for each taxon. The results are summarised in table 5.1
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Table 5.1 Summary of input sensitivity of 40 MI taxa by rneøn of percentages of outputs

ch.onge fnr Dirty WaterAapproach

24I1227J0J625150)90Pyralidae

0000000000000000Philopotamidae

156l329839I3883211J23429583Calamoceratidae

4I4856I267o4152-t2Hydroptilidae

24512533347522t82l.J42253681Ecnomidae

500633l534l32282591542329399Hydropsychidae

1500283255I52422ll4I99Leptoceridae

20I1l0II0I000000t6Tabanidae

8I157326042333229Ceratopogonidae

3I2I0341t47603793499Simuliidae

44I63'72633112243132845205270Orthocladiinae

2900T424l2I1345165096l044Tanypodinae

317196863l86315ó9i51949725Hydrophilidae

242535I3350132925T967182593Psephenidae

383295Õl65543585323232T92892Elmidae

180918J23ll3l6882l1558601597Dytiscidae

40J51064321223l04t389100Veliidae

J02504I0I65I42I9Pleidae

26I719I815'7lr6912J2728938Notonectidae

I42t3t7Il51683433tl26r034l5100Corixidae

00000ô0000000000Gripopterygidae

25I23l563516494J6431Coenagrionidae

2006I260I2027I52Libellulidae

530020I6III0I4IItraCorduliidae

20Il538I15J3l544168552tt511Gomphidae

0000000000000000Prosopistomatidae

3054JJ3437l78446ll26520554tCaenidae

846t1304l35l61730122022I4434267Baetidae

15128I4545I2781t4I936l6I4Leptophlebiidae

23029136242892528t0l530t318l6Palaemonidae

l3I1l42I226232-t252l0121ll097Atyidae

502I0120200IJI74Ostracoda

36I4872t021283289203s1866Cladocera

55I1862t2451038l3202T788r599Copepoda

20386740263423433l72349262628Acarina

2842027831112l8281824724l615Corbiculidae

2I9J19506428236254Thiaridae

t2010424292l37432t349T6Planorbidae

8505T792l52l1el5l157628l0Oligochaeta

28I6t29232Il012I5829515Dugesiidae
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Table 5.1 (continued)

77623266)J7J554969Pyralidae
0000I00000000000Philopotamidae
l35712302754921947545267475156Calamoceratidae

2713JI23I5Jl86l1459Hydroptilidae
31472T4332284828164322s04463556lEcnomidae
4L272462It9242t326243247235448Hydropsychidae

5423l02'7214854584266Leptoceridae
0.30.20.80.60.10.4r.31.10.622.r0.7t.4114.71.6Tabanidae

267984JJI7)5325I3l525ItCeratopogonidae
6I42r8623I32l22103920Simuliidae
18494r637l62991572I85267t6040Orthocladiinae
15362513r5r'7273l38l1l0,7

442345Tanypodinae
737202549t22632139632055203120Hydrophilidae
184525l3242525I41939292622262460Psephenidae

10265l'725562421l47I630535L35lt
Dytiscidae

Elmidae
t426l53503138546153259l32631

45l3J1l49116I363769l5102Veliidae
54I15222234266t191Pleidae

58t91532t53642088t255552349t7Notonectidae
2224121022l81931I52l82850608446Corixidae
0.10.10.10.10.60.100.100.10.60.10.10.80.10.1Gripopterygidae
40162.844t365.3455.7669.4429l5526Coenagrionidae
5.85.42.22.4364.32.62.70.1r.3I9158.78.2304.7Libellulidae
1.85.61.91.822.41.8ll0.34.2t.70.6362.r)13Corduliidae
364225122l3032416T4295430l98529Gomphidae
00000000000I0000Prosopistomatidae
607348JJ594327392t546l4393975783Caenidae

528527213818248452542306l56t4Baetidae

l569261ll52T84t69409l972692482Leptophlebiidae
2523242228t44942T204472264023Palaemonidae

296014632254828I10t5t074932531Atyidae
2III241J072632IJIOstracoda

7t4I6Il08106l682251862485724Cladocera

592I¿t33294l965l5685787)198513lCopepoda

6t5fr33I74355235118286l4870756l30Acarina
602t241.9r64764l02.368368784797825Corbiculidae
l3157.rt22.946240.1588.5l996787.84Thiaridae
1.31.40.8239.42.63.63.4<)5.4154.76.5350.5Planorbidae
2T156.8T444.945a)8.5455.34857504t11Oligochaeta
lll32r.628l5203.8t.49.65.38L7357622Dugesiidae

èa

d

o
=(/)

:aa\
ÎJ
CJ
ct

ñ
õ
ç

(.1

s
I
-o
-o()
ô.

ñ
c)

-ôo(J

o\
!o

NO

o

O
q

oâ

E

E

o

o
(,/)
L

t¡.
9?

o

(,/)

oç
o
çJ

L
(t

(J

o!

ò¡
oJ

()
!

C)
bo
õ
o
â
c5

<d

4
F

tt4



Table 5.1 (continued)

471344457323JI3t0202r5Pyralidae

000ll000000000000Philopotamidae

54637730372Q466635234343t4T215Calamoceratidae

19I72913l536T2I31229I355315Hydroptilidae

54531944535346554l3911I9449t751Ecnomidae

60794l5934l3t4545864209044l630Hydropsychidae

45Iõ921043l6412tT2I64l6Leptoceridae

0I315I3I2IIIIt2L2Tabanidae

l892I2820I6l05t4I5I2211Ceratopogonidae

223103614l018442I5231Simuliidae

7947514337i56l2'7745J2818326275óOrthocladiinae

201,4r5L6677492It2I6t04I695Tanypodinae

1816õ5986153751392236T715L26872Hydrophilidae

l03848))234627151822435207l5Psephenidae

83803445343043361345314t8343863Elmidae

5155355463I9432t30l1l58J11t228Dytiscidae

l620T47l6853441045416322t92tVeliidae

526140I4t24t2I0I2Pleidae

3958l0798393682345103715161938Notonectidae

5278632379t33728JJt925l36l64877Corixidae

0000000000000005Gripopterygidae

3730l91l46262488136J6225Jl0Coenagrionidae

5I22421lt28722I702It5Libellulidae

2I6I8I48t22IIII04Corduliidae

27922t9196967502025-t5t4l3l5_î0linmnhìrlae

000000I000000000Prosopistomatidae

3334574651536819l5JI364226507048Caenidae

54404854585951503572735695649Baetidae

5086183395322022531529J1826T7Leptophlebiidae

324968877725837327224t9653233Palaemonidae

268502l5825943915t2392263127Atyidae

69554I321II50I4t6Ostracoda

3322l92428t49233t810l3261515l374Cladocera

222839313766852l820651l46t236Copepoda

305651471a435tr54474328402691675Acarina

272632682l525588224IT78282I76Corbiculidae

4257826,11
81811599552J1i23Thiaridae

6435Ì3l5626I6284I6r6I]Planorbidae

2l2629264443a^T6525t536283128Oligochaeta

ll2830970349l63T2J20I25l355Dugesiidae
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5. 3.2 Netw orks Revisiott

Redundant inputs needed to be removed in order to improve transparency and

validity of the ANN model. ANNs with simpler architectures required less time to

learn and generalise pattern from database.

Each input had a certain effect on output nodes and as the number of inputs used in

this approach was much higher than in clean water approach, the individual

sensitivity level of each input was lower compared to its sensitivity in the clean water

approach. For this reason, the criteria for declaring input as redundant needed to be

revised as less strict. Those inputs affecting the range of output changes by less than

30Vo over their range were considered as redundant

Some inputs appeared to be highly sensitive for certain taxa but less sensitive for

others. However this approach considered combinations of macroinvertebrate

families as ANN outputs, therefore, effects of single input need to be assessed for the

whole set of outputs. Inputs, which caused small change in presence/absence of most

macroinvertebrate taxa, were considered redundant in overall. Turbidity, CO32-, Cl-

concentrations, Il Width were redundant for all outputs. 0-4 Habitat were also

redundant for all outputs except for Copepoda. However, many other inputs provided

sensitivities at higher level than 0-4 Habitar for this taxon, thls, 0-4 Habitat was

removed from the data set. Similar situations occurred for the inputs Mean depth and

Hardness.

As the results of sensitivity analyses, 10 inputs were considered as redundant and

were removed from the revised ANN. They were from both physical and chemical

variable:

Physical variables: H'Width, Mean Wetted Width, 0-4 Habitat and Mean Depth

Chemical variables: Turbidity, Hardness, Na*, Mg*2, COr-', Cl- concentrations.

The final ANN model was developed with 46 nodes ìn the input layer, same 40

nodes as outputs and 30 nodes in the single hidden layer.

It had been run with the same technical parameters as mentioned before for training

with 5000 iterations.
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5.4 Validation results

Validation results are summarised in table 5.2 and plots are shown in figure 5.1

Even though the settled condition for verification of network performance was not

achieved for Oligochaeta (6LVo of overall correct prediction), and just nearly

achieved for Palaentonidae (69.67Vo) and Hydrophilidae (69.33Vo), clear

improvements wero observed for all taxa at quite different rates by means of the

revised ANN structure. Clear improvements were obtained for both reference sites

and impacted sites Average value of correct predictions for all taxa improved from

75.757o to 79.017o for reference sites, from 74.77o to 79.07Vo for potential irnpacted

sites, and from75.23To to19.037o in overall.

Predictions for test sites achieved slightly better improvement. The biggest

improvement was observed for the prediction of presence of Oligochaeta af test sites

where correct predictions increased by nearly I4Vo. Prcdiction for Tabanidae at the

test sites was the only case when conect predictions declined after revision (from

96.557o by initial network to 93.977o by revised network). Prediction remained the

same for few cases (Simulidae at test sites, Hydrophilidae at reference sites)

Even though the average correct prediction rates at reference and test sites were

similar, the rates of correct predictions were quite different at reference and test sites

for different taxa.
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79.0379.0779.0175.2374.775.57Average
6t62.0760.3352.6746.5556.52Oligochaeta40

7L3368.173.376263.7960.87Gomphidae39
70.677t.557O.TI63.6765.5262.5Hydroptilidae38
70.6768.977t.746563.7965.76OstracodaJI
69.6769.8369.5765.6763.7966.85Palaemonidae36

7272.4171.7466.3366.3766.3rOrthocladiinae35
70.677 r.5570.tr67.3363.7969.57Corixidae34
I+.JJ73.287567.6767.2467.94LeptophlebiidaeJJ
69.3369.8369.0268.3367.2469.02Hydrophilidae32
72.67757 t.268.3370.6966.8sLeptoceridae31
73.337572.2868.3365.5270.1 1Tanypodinae30

7274.t470.656967.2470.rtAtyidae29
75.6775.8675.547068.17r.2Libellulidae28

7470.6976.0970.3364.6673.9rBaetidae27
7775.8677.7270.677 t.5570.rCaenidae26
7772.4r79.897T65.5174.46Copepoda25
7773.2879.357r.3366.3874.46Coenagrionidae24

78.3373.288t.5272.3367.2475.54Cladocera23
74.3381370.1 173.3379.3169.56Ceratopogonidae22
81.3377.5983.77468.9777.r7Thiaridae2I
78.3381.0376.637474.t473.9rEcnomidae20
76.3372.4r78.874.3368. r078.26Dytiscidae19

7774.t478.87572.4t76.63Acarina18

77.6783.6273.9r75.3381.97r.2Elmidaet7
75.6775.8675.5476.6775.8677.r7Dueesiidae16
79.337582.077775'/8.26Simuliidae15

80.6782j679.3577.3378.4576.63CorduliidaeI4
7981.0377.7277.6780.1776.09Veliidae13

83.6781.0385.3379.6781.978.26Pyralidaet2
8787.9386.4r80.6780.1780.98Planorbidaei1

86.3392.2482.6184.339t.3779.89Calamoceratidael0
86.3387.0785.8784.3382.7685.33Notonectidae9
8',7.6785.3489.1384.6780.1787.50Corbiculidae8

8887.O788,5984.6782.7685.87Pleidae7
89.3388.7989.6786.3385.3486.96Hydropsychidae6
88.6792.2486.4r87.6790.5185.87Psephenidae5
90.6793.9788.s99096.5585.87Tabanidae4

9293.9790.7690.3393.1088.59PhilopotamidaeJ
96.3396.5596.2093.6795.6992.39Gripoterysidae2

9999.r498.9198.3398.2898.37ProsopistomatidaeI

46 Input
Overall

46 Input
Test Sites

46 Input
Ref. Sites

56 Input
Overall

56 Input
Test Sites

56 Input
Ref. Sites

Taxa

After Exclusion of Redundant
Inputs

Initial Models

Table 5.2 Correct prediction of presence/absence of macroínvertebrate taxa in dirty water
approach beþre and after sensitivity analyses
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Validation Results

Macroinvertebrete Taxa

Figure 5.1 Coruect predíction of presence/absence of macroinvertebrates beþre and after
exclusion redundant inputs explored by models of dirty water approøch.

Numbers of sites where taxa observed and predicted by models as present are

comparing in tabie 5.3. Comparisons show that models can predict approximately the

same number of sites where taxa are present. The results verify the reliability of

correct predictions obtained by models shown in table 5.2.
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657024274T43Pyralidae40
354010102530Philopotamidae39
4650t213345tCalamoceratidae38
869031JJ5357HydroptilidaeJI
657425294045Ecnomidae36
9410132396262Hydropsychidae35

2162068682130r24Leptoceridae34
3035462629TabanidaeJJ
778l25265255Ceratopogonidae32
777630314745Simuliidae3T

t72t756770105105Orthocladiinae30
2342238884r46139Tanypodinae29
8999364I5358Hydrophilidae28
36398112828Psephenidae27
115ll8363t7981Elmidae26
109t144l406874Dytiscidae25
727523224953Veliidae24
4045r5t72528Pleidae23
363615t22l24Notonectidae22
t49r4563598686Corixidae2t
182tJ415t7Gripoptervsidae20

10610450475657Coenagrionidae19

118t2843507578Libellulidae18

505515t93536CorduliidaeI7
125l3l4I438488Gomphidae16

71JJ44Prosopistomatidae15

2152078780128r27Caenidaet4
23822r8982149t39Baetidae13

163t645048113116Leptophlebiidaet2
148i534850100103Palaemonidae1t
15715060569794Aryidae10
t25r295558707IOstracoda9
929339JI5356Cladocera8

r721656765105100Copepoda7

2192t4lft74t43140Acarina6
475325282225Corbiculidae5
10110953574852Thiaridae4
353915t62023PlanorbidaeaJ
14015064707680Oligochaeta2
546023253135DueesiidaeI

PredictedObservedPredictedObservedPredictedObserved

300 overall
validation sites

115 test sitesL85 reference sitesTaxa

Table 5.3 Number of sites where presence of taxa was observed or predicted by revised
models

t20



'-l
,l

5.5 Discussion

5.5.L Perþnnance of Artiftcial Neural Ì'{etworks

The ANN models provided similarly good validation results for both reference sites

and probably impacted sites. A series of chemical and hydro-morphological

properties could be modelled with reasonable low error. The results clearly indicated

functional relationships between colonisation patterns of benthic macroinvertebrates

and chemical and hydro-morphological habitat characteristics within river and stream

ecosystoms. Moreover, a hierarchy of factor determining the community structure of

invertebrates may be identified from numerous impact variables. The rule induction

algorithm of the ANN model correctly chooses the families that are indicative of

habitat conditions, in conjunction with other families that refer to co-occurrence of

specific taxa.

The ANN architecture used in this approach was extremely complex. The complexity

of model could induce noise that may have negative impacts on the ANN

performance. Evidence was given by the fact that sensitivity levels were significantly

reduced for most of inputs compared to their sensitivity obtained by clean water

models, where fewer input variables were applied to develop models. That means

that the performance of ANNs can be improved by simplifying their structure.

Specific procedures applied for selection of the most relevant variables can reduce

input dimension and therefore simplify the complexity of network in a rational way.

In ANN models the best pre-selection method was a sensitivity analysis (Schleiter et

al., 1999). Sensitivity analyses can be conducted several times until an optimal

structure is obtained. Within the framework of this research, sensitivity was

conducted only once and improvement was clearly observed. The procedure can be

repeated to further remove redundant inputs and make models more transparent.

Good results were obtained for common taxa as well as rare and moderately frequent

taxa. Results again revealed that ANN models are able to cope with taxa represented

by probability of presence at sites greater than 0.

I

i

I t2t



5. 5.2 Relatio ns hip b e tw e e n M acroinv ertebrate s and H abitat C onditions

Sensitivity analyses showed that the effects of physical predictor variables to

macroinvertebrates distribution were similar to relationship studied by the clean

water approach. The trends of output changes over the ranges of inputs appeared to

be the same for most taxa, even though the magnitudes of changes were largely

different

Relationship between physical predictors and the distribution of macroinvertebrates

was discussed fo¡ the clean water approach in chapter 4 and will be discussed further

in next chapter" In this chapter, the discussion focuses on relationships between the

distribution of macroinveftebrates and input variables, which are potentially affected

by anthropogenic activities.

Current and discharge

So-called H Velocity, site max velocity and instantaneous discharge were identified

as sensitive inputs for the ANN performance. Habitat velocity was highly sensitive

for distribution of 16 taxa and also affected 5 others. Discharge also appeared to be

significantly sensitive for 12 taxa and moderately for 5 others. Site max velocity also

influenced to the presence of 19 taxa.

Much of the ecological information on water current-insect interactions deals with

the relationship between distribution patterns and the corresponding spatial variations

in water velocity (Ward, 1993). In addition to their direct effects, current and

discharge play major roles in structuring habitat conditions for stream

macroinvertebrates by influencing mineral and organic substrate, suspended and

aquatic flora. Changes in discharge increase the number of aquatic insects drifting

downstream

Sittutlidae, filter-feeding black flies have feeding mechanisms that depend on current

(Chutter, 1969). Many species belonging to the Sintulidae family loses their feeding

capability at still water. The cephalic fans of Sinuliunx onxútlulx var. nitidifrons, for

example, close and lose their feeding function at velocity < 19cm/sec (Harrod, 1965).

Figure 5. 2 illustrate result of sensitivity analysis shows that Simtúidae prefers fast

flowing habitat with H velocity exceeding 0.5 m/s.
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Network Output(s)for Varied lnput H Velocity - max
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Figure 5.2 Relatiottship between ntax H velocity and presence of black flies Sinuùidae

Predacious diving beetles Dytiscidae favour habitat amongst weed in still water

(Hawking & Smith, 1997). The relation was revealed by sensitivity analyses as

shown in figure 5.3

Network Output(s)for Varied lnput H Velocity - max

Ê
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Var¡ed lnput H Vslocity - max (m/s)

Figure 5.3 Relation between Max H Velocity and presence a/Dytiscidae

Edington (1968) found that the nets of various species were concentrated in certain

velocity ranges. Hydropsycchidae is a rapid family that constructs net in the fast

water (15 - 100 cmlsec). Figure 5.4 shows that fast flowing streams are favourite

habitats of Hydrop sy cchidae.
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Figure 5.4 Relations between H velocity and Site velocity, and presence of
Hydropsychidae

pH

pH has many influences on the aquatic life, Aquatic organisms have ranges of

tolerance and optima of pH themselves as the enzyme functions are controlled by

specific pH values, Acidity levels influence the solubility and formation of metals

ions in the stream water. Those ion concentrations have direct impacts on the life of

macroinvertebrates (Lamberti & Sommer, 1991). Cleanwater rivers vary in acidity

(Giller & Malmqvist, 1998). Conditions within the Queensland stream system

confirm this fact. While reference sites have pH values in the range from 4.4 To 9.43,

test sites have pH value in the range of 5.1 - 10. Low pH is observed at catchments

with hard, igneous rock being low in dissolved salts and buffering capacity. On the

other hand, catchments with sedimentary rock are rich in carbonates and the

originating streams are usually well buffered, hard water systems with high pH.

pH was observed to be at medium sensitive level for colonisation patterns of

macroinvertebrates. However results showed that it was really sensitive for 72 taxa.

Several invertebrate families appeared to be absent from low pH sites (e.g. molluscs,

mayflies) while others were usually well presented (e.g. stoneflies, blackflies).
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Mayflies posses a well-known sensitivity to acid conditions, only few mayflies can

tolerate low pH (Giller & Malmqvist, 1998). However, exceptions ale some

Leptophlebilds, which can be found in water of very low pH. Sensitivity analyses

showed that mayflies Leptophlebidae and blackflies Sintulidcte were mostly present

at low pH condition (figure 5.5).
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Figure 5.5 Blackfli¿s Simulidae ønd mayflies Leptophlebidaefavour low pH conditions

Physiological effects of low pH have also been demonstrated on chironomids,

mayflies and crustaceans (Giller & Malmqvist, 1998). Sensitivity analyses (Figure

5.6) revealed such relationship. Examples are shown for Corbiculidae belonging to

the class mussel Bivalvia and for the sub family Tanypodinae of chironomids, which

can only be present at conditions of high pH, Caenidae favour high pH conditions

but also tolerate lower level of pH down to 5 (Otto & Svensson, 1983)
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Figure 5.6 Relations between pH and mussel Corbiculidae, chironomid sf-Tanypodinae
and mayfly Caenidae

C onductivity ønd ion c onc entrations

Conductivity takes into account the total concentration of inorganic ions in the water.

Inorganic ions can significantly impacts on biology of macroinvertebrates in

freshwater ecosystem. Low calcium levels, for example, can cause osmotic problems

and affect shell cuticle secretion in invertebrates as observed for crustaceans,

crayfish and snails (Giller & Malmqvist, 1998). The ANN models used several

concentrations of inorganic ions as inputs, from which only concentrations of K*,

Ca* are considered relatively sensitive variables to the distribution of
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macroinvertebrates in the Queensland stream system. Conductivity caused

significant impacts on presence of 9 taxa. Figure 5.7 and 5.8 illusl.ra[e some

examples.
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Figure 5.7 Copepoda, Oligochaeta, Tanypodinaefavour conditions of low conductivity
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Network Output(s) for lnput Conducrivity (¡rscm-1)

ø
tq
Jo

o7

06

05

o4

03

02

0.t

o

l-rùd;p"y.hd*l

0 500 r000 2m 25m

Varled lnput Conduclivity (lsm-1)

Network Output(s) fo¡ lnput Conduct¡vity (pscm-1)

Â
Jo

t

08

06

o.4

o2

0

0 500 1m Í5m 2000 2500

Variêd lnput Conductivlry (Þæm-l)

Figure 5.SDyticsidaeand Hydropsychidaefavourconditions of highconductivity

Mineral nutrie nt c onc e ntration

Mineral nutrients are usually divided into the macro element (N, P, S, K, Mg, Ca,

Na, Cl) which usually make up >0.IVo of the organic matter, and the trace elements

(Fe, Mn, Zn,B, Si, Mo...) according to the amounts required. All these elements can

be considered as mineral nutrients dissolved in water. Theoretically, any of these

elements could become an essential, limiting resource. In most freshwater

ecosystems, however, many of them are almost always in excess, so that the

spectrum of limiting nutrients can be narrowed to N, P and some trace elements

(Lamberti & Sommer, 1997). The productivity of autotrophic stream producers is

influenced by nutrient concentrations, particular phosphorus and nitrogen (Giller &

Malmqvist, 1998). Nutrient-rich rivers can be dominated by filterers, grazers and

some predators (Peterson et al., 1993).

Figure 5. 9 illustrate favorite habitat conditions for grazer Cladocera, blackflies

Simuliidae and carnivore water tiger Dytiscidae occur at high concentration of N and

P.

r28



Network Output(s) for Varied lnput Total N

ø
)e
o

I

0s

06

o.4

o2

0

-Ðtiscklaê

2 4

Varied lnput Total N (mg/l as N)

Network Output(s) for Varied lnput Total P

Ê
o

1

08

o6

04

0

o.0 05 10 't.5

varlod lnput Total P (mg/l) as P

Network Output(s) for Var¡ed lnput Total N

aè
ao

I

o8

o6

o4

o2

0

-Õadæ6râ

o ,| 3 4

Varied lnput Total N (mg/l as N)

Figure 5,9 Relations between concentration oÍ N and P and grazer Cladocer4 bløckflies

Simuliidae and water figer Dytiscidae

Figure 5.10 shows that shredders such as Leptophlebidae and predators such as

dragonflies Gomphida¿ favour low concentration of N and P.
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Figure 5.10 Relatiotzs between concentratíon of N and P and melÍlies Leptophlebidae,
and drag on flie s Gomphidae

Detrítal cover

Detrital cover should significantly influence the presence of macroinvertebrates,

especially those feeding on detritus. 'Wetzel (1983) defined detritus as " organic

carbon lost by non-predatory means from any trophic level (includes egestion,

excretion, secretion, and so forth) or inputs from sources external to the ecosystem

that enter and cycle in the system". Detritus is all dead organic carbon,

distinguishable from living organic and inorganic carbon. Detritus originating as

ungrazed primary production support a "detritus food chain", which is defined as any

route by which chemical energy contained within detrital organic carbon becomes

available to the biota (Weltzel, 1983). Therefore, detritus, as a component of

environment, can either directly or indirectly affect the distribution of

macroinvertebrates in freshwater ecosystems.

kr this study, detrital cover appeared to be sensitive for 12 taxa. Examples include

models for Libelullidae, Hydropsychidae, Hydrophilidae, Dugesiidae,

Calamoceratidae. Fignre 5.11 illustrates relations between detrital cover and some

taxa, where taxa presence of which appeared to be sensitive to detrital cover.
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Relations between detrital cover and distribution of macroinvertebrates should be

highly complex. Even though non of direct correlations between detrital cover and

presence of certain macroinvertebrate taxa had been found in the literature so far, the

relation plots discovered by sensitivity analyses provided new insight and hypotheses

for further research in this field.
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5.5.3. Data Limitation

Several chemical variables such as oxygen concentration, which can probably partly

explain of the variation between different macroinvefiebrate communities, are not

available in the database. Oxygen is considered crucial to the life of aquatic fauna

especially macroinvefiebrates that depend on oxygen in solution to meet their

respiratory needs. In addition, the interactions of oxygen with other variables such as

current, substrate, or temperature are considered important in the context of aquatic

ecology (Hynes, 1960; Hellawell, 1986, Ward, L992). Oxygen condition in watercan

be expressed by dissolved oxygen (DO) or biological oxygen demand (BOD).

It has been known that quantities of certain trace elements exert a positive or

^^-^+:.,^ :-f1.,^-^ +i^ -^l -J ^-i--^I l:C^ :- ^l--l:--- rl-- l:-r:l-- r:- clrçB4uve ilUrut,iluv ulr ilquauu pt¿1ilt ailu ¿1ilil11¡11 Iil9 liluluuillB ulc ulsl-lluuuUu ul

macroinveftebrates. Trace elements play important part on the enzyme functions.

Bivalves and crustaceans are extremely sensitive to heavy metals concentrations. On

the basis of their biology, they are exceÌlently suited for use as heavy metals

indicator organisms (Forstner & Wittmann, 1983).

Impacts of toxicity, biotic and abiotic degradation of insecticide and pesticide

residues on aquatic organisms are very important issues that need to be considered.

Aquatic organisms including macroinvertebrates may be contaminated by chemicals

through several pathways: directly via uptake through gills or skin as well as

indirectly via ingestion of food or contaminated sediment given. Insects are known to

be highly sensitive to insecticide toxicity, crustaceans are at lower level as well.

Macroinvertebrates represent the most sensitive to biological response range to DDT,

malathion and endrin (Mason, 1996).

Unfortunately, data of the parameters discussed above is not available for all

samples. Some data of oxygen level are still in preparation. We hope to be able with

an extended database to develop more reliable models in order to improve prediction

capability of ANN models based on dirty water approach.
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5.6 Chapter Summary and Conclusion

The dirty water approach proved to be useful to assess stream habitat conditions.

Good prediction results for both clean and potentially impacted sites prove the

possibility of the approach to be applied for management purposes. Once functional

interrelations between water chemistry and distribution of macroinvertebrates have

been determined, the approach can be applied in the reverse way, using colonisation

patterns of macroinvertebrates and easily-measured physical predictor to predict

chemical variables, which ate representative for the distributions of

macroinvertebrates. This application provides a quantitative assessment of stream

habitat conditions.

Investigation of sensitivity curves derived from dirty water ANN models using the

methods described in this study greatly enhanced the understanding of the effects of

impacts of various types on individual macroinvertebrate taxa. Results will enable to

identify impact specific indicator taxa. The shape of the sensitivity curves of taxa

t:-r ---1-^,--^- ---irLi.- ^^-t^'.,^ l^^---l- i-woulo lnolcate now lmportant l[ ls t() rnanage ulsturu¿1ilççs w1uilIl uçttalll uuullus lll

order to maintain healthy aquatic ecosystems. More details about sensitivity analysis

and how to apply results of sensitivity analyses as management tools are discussed in

the next chapter.

However, a better database is required especially with data about water quality to get

more meaningful interrelation such as oxygen and nutrient level, concentrations of

trace metal and poisonous elements in stream habitats.

Tnte flies Chironomid, are among the most pollution-tolerant macroínvertebrates (H),nes, 1960)
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6 Elucidation of Freshwater Habitat

Condition Discovered by a Sensitivity

Analysis

6.1 Introductíon

After training a neural network, sensitivity analysis is carried out in order to find out

the effect that each of the network inputs is having on the network output. Sensitivity

analysis is a method for extracting the causal relationships between the inputs and

outputs of the network. The input variables that produce low sensitivity values can be

considered insignificant and can usualy be removed from the network. This will

reduce the size of the network, which in turn reduces the complexity and the training

time. FurtheÍnore, this may also improve the network performance.

Sensitivity analysis was conducted for each of ANN models. Each input

variable was varied between its mean +l- a ceftain number of standard

deviation while all other inputs were fixed at their respective means. The

number of standard deviation is defined so that the computed range covers

whole value of this input in the database. By theory, mean +/- 3 standard

deviations can cover 99% of database, except for some extreme values (Bury,

1975). The network output was computed for a defined number steps above

and below the mean. This process was repeated for each input variable. Plots

were generated for each input variable and for each taxon specific ANN model

illustrating the change of network output over the range of the varied inputs.
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The primary intention of this sensitivity analysis was to improve the neural network

model performance by limiting input variables to those that were sensitive for each

model. Analysis of sensitivities allows to estimate the percentage change of the each

output within the range of specific input. Howevet, this process also identified

important relationships between environmental variation and the occurence of taxa.

6.2 Design and Interpretation of Sensitivity Plots

Various shapes of sensitivity plots can be distinguished which illustrate relationships

between ANN input variables and outputs. Names indicate family-level

identification of taxa. Outputs on the Y-axes are the predicted occurrence of a taxon

ranging between 0 and 1, and inputs on the X-axes are environmental input variables

over the ranges they were varied.

Some input variables had little influence on outputs. In these cases there was either

no output response to input variation (Figure 6.1a) or the change in output response

occurred over a very small range (Figure 6.1b). This type of response indicated that

inputs had little or no influence on the occurrence of the macroinvertebrate family of

concern.
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Figure 6,7 "FIat" responses

Of greater interest were the input parameters that resulted in a large range of output

response as they vary (Figures 6.2, 6.3, 6.4). These were the variables that had a

large impact on whether the ANN models predicted taxa to be present or absent in a

sample. The nature of the relationships between input variables and rhe

presence/absence of macroinvertebrate taxa was classified based on the shape of the

sensitivity plots as follow.
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As they varied, some input parameters produced a 'ramp' response in the predicted

probability of a taxon being present, in which probability changed gradually from

high to low. The ramp were either positive, meaning that the probability of taxon

presence increased with increasing values of the input variable (Figure 6.2a) or

negative, meaning the probability of taxon presence decreased with increasing values

of the input variable (Figure 6.2b).
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Figure 6.2 "Ramp" responses

The second type of response was a 'threshold' whereby the probability of occurrence

changed from high to low over a narrow range of input variability. Once again the

relationships were positive (Figure 6.3a) or negative (Figure 6.3b), The slope of the

threshold can vary from almost a vertical drop (a 'cliff') to a much gentler 'incline'.

1æ 2@ 3æ 400 5@

(a)
1

0g

04

o2

0

(b)

too
FMh¡

145 150 155

Vårl6d lnpuÌ Longlludô (E)

20 g0

Vâded Input GEvel (7")

Figure 6.3 "Threshold" responses

The two remaining types of relationship between inputs and outputs identified from

the sensitivity plots were a'plateau'or a'valley'. The plateau response had a

continuous range of input values in which there was a high probability a taxon was

present, with a drop off to low probability at either end of the range (Figure 6.4a).

The valley response was the converse with low probability over a range of input

values and high probability at either end (Figure 6.4b). In both cases there was

variation between examples in the extent of the range of variable values at the top of

the plateau or the bottom of the valley, producing either a broad or narrow plateau or

valley. There was also variation in how steeply the output responses rose or fell
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outside the input ranges at the bottom of the valley or top of the plateau, and in some

examples there was asymmetry between the slopes at the two ends of the range.
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Figure 6.4 "Plateau" and "Valley" responses

Interpretation of these sensitivity curves provides new insights into relationships

between the occurrence of macroinvertebrate families in Queensland streams, and

variation in some physical properties as well as water chemistry of aquatic habitats.

6.3 Elucidation of Causal Relationship by Sensitivity Plots

The shapes of the sensitivity curves indicated the ecological response of taxa to an

environmental variable. Ramp curves indicated a gradual change in preference over

a range of an environmental parameter, whereas a threshold appeared more

indicative of a more abrupt cut off in the tolerable range of a variable. A plateau

response was really a modification of either the ramp or threshold curves with drop

offs at either end rather than just one. The valley curve was more perplexing and

may represent different preference and tolerance profiles of two or more species in a

family. In principle, where more than two species with differing requirements are

included in a family, sensitivity curves could contain multiple valleys or plateaus.

There is not the scope to present and discuss all sensitivity plots in this study,

because each taxon may need comprehensive study for response to habitat

conditions. I hereby only select some example to illustrate the types of relationships

that were evident between input environmental variables and the predicted

presence/absence of macroinvertebrate taxa. The objective'of this is to demonstrate

the usefulness of the technique, rather than to report specific relationships.

t31



Worms

Dugesiidae are large, free-living flatworms. This is the most well-known of the

freshwater flatworm families, and is widespread and common in streams in Australia.
'Worms are sensitive species to pH and are dominant in high-pH conditions

(Hawking & Smith, 1997).
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Figure 6.5 Preference of Dugesädae to H velocity and pH

Oligochaeta (earthworrns, segmented worms) are predominantly an aquatic class.

Segmented worrns inhabit on substrata of still and slow-flowing waters and also

sensitive to acidic conditions. Figure 6.5 and 6.6 clearly support theoretically

expected preference of Dugesiidae and Oligochaeta.
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Figure 6.6 Preference of Oligochate to pH and site velocity

Crustaceans

Atyidae (freshwater shrimp) live in many types of water body but prefer

comparatively still waters where they congregate under banks, large submerged

boulders and aquatic vegetation. Most of them prefer surface-waters (Choy &

Horwitz, 1995). Figure 6.7 illustrate the preference of Atyidae in flat habitat with

slow current velocity.
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Figure 6.7 Preference of Atyidae to H velocity and slope

Palaentonidae (freshwater prawns) live in running or still pennanent waters, and

away from the coast (Horwitz, 1995). They are tropical species and therefore arc

mostly observed in high temperature waters (Figure 6.8)
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Figure 6,8 Preference of Palaemonidae to longitude and mean døily temperature

Copepoda appeared to occur at warm and still water (Figure 6.9)
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Cladocera (water fleas) is known to be freely swimming (nektonic) and requires

slow flowing water at depth. While water depth is increasing flow velocity is slightly

decreasing towards high order downland streams at low altitudes with small channel

widths. The sensitivity curve in Figure 6.10 indicates optimum depths for Cladocera

species from 0.2 to 1.2 m.
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Figure 6.10 Preference ol Cladocera to H Depth and water temperature

Figure 6.11 shows optimal temperature for several Daphnia species regarding

physiological effects such as ingestion and reproduction rates maximum (Lampert

and Sommer 1997). This relationship between temperature and biological activities is

described as unimodal curves. A decrease in activity above the maximum is usually

more rapid than the increase in the activity rate at sub-optimal temperature. A similar

shaped relationship was discovered for water temperature (see Figure 6.10) that

indicates optirnum conditions for Cladocera in the range from l0 to 30oC.

Fígure 6.11 Physiologícal effects of water temp. to Daphnia (Lampert & Sommer, 1987)

Ostracoda (seed shrimps) are also good swimmers and often found to be abundant at

water surface of fresh or saline water (Hawking & Smith, 1997). The sensitivity

curve (Figure 6.12) shows prefened habitat depth for Ostracodabetween 0.5 and 1m

in the lower reaches.
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Snails and mussels

Planorbidae is a cosmopolitan family of mainly left-coiled freshwater snails, which

is confined to waters of low salinity, usually with algal growth or water weed on

which the animals feed. Some species occur among dead leaves or other debris of

slow-flowing rivers. They have been observed at habitat, which were highly

polluted, oxygen depleted or very deep. They utilise haemoglobin or carry other

respiratory modifications for coping with such conditions. Some exhibit

considerable drought resistance. Planorbids ofterr are the domirrani molluscs at a site

(Smith, 1996). Figure 6.13 shows that Planobidae can survive in drought condition

with even extremely low dry-season-monthly-mean (DSMM) rainfall.
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Figure 6.13 Preþrence of Pltnobidae to slope and range ín DSMM

Thiaridae (marsh snails, black snails) is a worldwide-distributed family of almost

exclusively freshwater snails. They are often found in great numbers, and in coastal

lowland Queensland streams, where they are regularly the dominant molluscs, often

in muddy habitats (Smith, 1996). The sensitivity plots in Figure 6.14 supports

literature finding on Thiaridae.
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Corbiculida¿ are strong-shelled bivalves with a preference for flowing dowland river

with sandy substrate (Smith, 1996). Corbiculidae are very sentivitive to low pH.

They also accumulate toxic chemicals in the tissues. Corbiculids therefore have been

used to monitor pH and various chemical contaminants. The sensitivity plots in

Figure 6.15 show distinct sensitivity of Corbiculidae to pH and stream order.
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Fígure 6.15 Preference of Corbiculidae to stream order and pH

Water mites

Norton et al. (1988) suggested that water mites (Acarina) are demographically as

least as conservative as soil-dwelling relatives. They live in cold, oligotrophic waters

and have multi-year generation time.

Models in both clean and dirty water approaches revealed that Acarina occurred in

condition of low water temperature and low level of N and P, which characterise

oligotrophic water (Figure 6.16).
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Mayflies

Baetidae are most common in clear, cold streams (Suter, 1996). They are amongst

the earliest of mayflies to emerge where some appear on warrn days at the end of

winter. In Queensl and, Baetida¿ was observed in southern part and never found in

tropical areas. As fast swimmer (Hawking & Smith, 1997), Baetidae nymphs prefer

deep habitat. This information was confirmed by the sensitivity analyses curves

(Figure 6.I7).
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Fígure 6.17 Preþrence Baetidae to water temperature and H depth

Prosopistomatidae is unusual mayfly from tropical rivers in north Queensland. They

are common in riffles and fast-flowing, warrn water (Dean, 1996) and are regarded as

rare. Sensitivity curves show the trends of this taxon towards latitude and water

temperature (Figure 6. I 8).
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Caenidae prefers slow-moving stream. They are rare found in swift flowing waters.

Nymphs burrow into the mud and sediment on the bottom of ponds and standing

rock pools (Ward, 1992). Large channel also plays the role in current velocity.

Narrow channels likely have higher velocity than wide channels. Figure 6.19 shows

the preference of Caenidae in wide channels with slow-current streams.
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Figure 6.19 Preference of Caenidae to Site max Velocity and Mean Channel Width

Leptophlebiidae are adapted to various habitats from warm standing waters of coastal

watersheds to melted snow of sub-alpine areas. In Queensland, nymphs were found

in southeastern parts. As discussed in Chapter 5, these mayflies prefer low pH

conditions. (Figure 6.20)
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Figure 6. 20 Preference of Leptophlebiidae to Longitude and H velocity

D ra g onfli e s, dams efli e s and stoneflie s

Many species of Odonata burrow in fine sediment. Dragon fly nymphs typically lie

buried in silt with only the eyes and respiratory aperture above the sediment.

Gomphidae are cosmopolitan, swift, lender forms. They are frequent in running

water. Corduliida¿ are found in eastern Australia. They are usually observed at clear

fast streams. Libellulidae are tropical origin, mostly of still.or slowly running water.

The sensitivity plots in Figure 6.21 support these findings.
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Figure 6.21 Preference of Libellulidae to water temperature, Cordulidae to site max
velocity, and Gomphidae fo H Velocity and SíIt'clay

Coenagrionidae are mainly tropical as resulted in Figure 6.22. Ad:ults can be found

in low-ordered static water, while nymphs live among aquatic plant.
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Figure 6.22 Preference of Coenagrionidae to reach and mean daily temperature.

Stoneflies Gripopterygidae nymphs live in the water with stony or gravel bottom.

They require cool well-aerated water and can be found in shallow upper reaches of

streams. Larvae occur on swift or on slow-flowing streams. Their distributions are

observed in North Queensland. Because of the often highly specific environmental

requirements of nymphs, stoneflies are particularly good water-quality indicators,

especially where oxygen-demand pollutants are concerned (Ward, 1992). Dirty water

models predicted presence of stoneflies at 10Vo of clean-water sites and only at2Vo of

dirty-water sites. Stoneflies tend not to occur where temperatures can exceed 25oC

due to their oxygen requirement (Hynes, 1970). This is also demonstrated by the

sensitivity plots in Figure 6.23.
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Corixidae are predacious bugs that swim actively in the still and slow-flowing water

and feed mainly on insect larvae in the bottom ooze in coastal areas (Carver et al.,

1991). Sensitivity plots in Figure 6.24 confirm these findings.
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Figure 6.24 Preference of Corixidae to longitude and H velocity

Notonectida¿, predatory bugs, swim upside-down, usually just under the water

surface, and are common in still or slowly running waters as indicated by Figure

6.25. The family is cosmopolitan and occurs throughout Australia (Carver et al.,

1991).
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Figure 6.25 Preference of Notonectidae to H depth(clean) and H velocity (dirty)

Pleidae are frequently abundant in the tropical north (see Figure 6.26) in swamps and

lakes (Carver et al., 1991).
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Veliidae are found swimming in large groups in sheltered side pools or along the

edges of bodies water. They live amongst emergent vegetation and floating leaves at

the surface of quiet areas of still and flowing water (Carver et al., 1991). Figure 6.27

shows the preference of Velüdae in flat habitat with habitat current velocity less than

0.5 m/s.
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Beetles

Dytiscidae (Figure 6.28) live in a variety of aquatic habitats but are most common in

the littoral zone at the edges of lakes and ponds, and are found in running and still

waters (Lawrence & Britton, 1991).

Figure 6.28 Preþrence of Dytiscidae to H depth and H velocity
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Elmidae (Figure 6.29) were found in all kinds of streams. They are more common in

shallow running water, rocky bottoms, clear water and high oxygen contain. They

frequently the only Coleoptera¡z.r present in torrential streams (Ward, 1992).
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Figure 6.29 Preference of Elmidae to H velocity and alkalinity (cleøn)

Larval psephenids (Figure 6.30) are streamlined animals. They feed on algae on

rocks in exposed positions with high-energy flows.
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Most larvaI Hydrophilidae (Figure 6.31) are fully aquatic, occur in a wide range of

lotic habitats, though shallow well-vegetated margins of still waters, quiet areas of

flowing water and stream banks are most favoured (Lawrence & Britton, 1991)
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Figure 6.31 Preþrence of Hydrophilidae to H Depth (clean) and detrital cover

True flies

Midge larvae (chrinomids) are the most dominant in aquatic ecosystem. The neural

network models considered two subfamilies Tanypodinae and Orthocladiinae.

Orthocladiinae have cold-stenothermic nature and are dominant in subalpine and

mountain streams, where the maximum water temperature in summer may reach

10oC. In middle and lowland sffeam, where temperature may exceed 2OoC,

o5
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Orthocladiinae significantly decrease (Lindegaard & Brodersen. 1995). Sensitivity

analyses confirmed the presence of Orthocladiinae at upper reach and cold water

(Figure 6.32)
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Figure 6.32 Preference of Orthocladiinae to reach and water temperature

Tanypodinae appear very few in montane and subalpine streams and increase

furthers downstream the river continuum with higher water temperature (Lindegaard

& Brodersen, 1995) (Figure 6.33)
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Figure 6.33 Preþrence of Tanypodinae to stream order and water temperature

The Simutiidae (blackflies) are amongst the most characteristic running water macro-

invertebrates. The characteristic habitat of blackflies is attaching to substratum of

flowing water in highland stream as indicated in Figure 6'34.
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Figure 6.34 Preference of Simuliidae to H velocity and altitude

Ceratopogonidae andTabanidae (horse flies, marsh flies) (figure 6.35) are amongst

the commoner of the "highef' Diptera in aquatic habitats. They vary in habit, but

prefer wet sand and mud at cool stream margins'
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Figure 6.35 Preference of Ceratopogonidae and Tabanidae to Water temperature and
Habitat depth
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Caddis flies

Leptoceridae (Figure 6.36) arc very common Trichoptera found in a wide range of

habitats: from mountain streams to lakes, including temporary pools and saline

waters. Leptocerida¿ was included in the list of aquatic insect families characteristic

of potamal zones, where the annual range of water temperature exceeds 20oC; the

current is slow and dissolved oxygen deficits occur at time ('Ward, 1992).
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Hydropsychidae (figure 6.37) build fixed retreats of plant material or rock fragments

in fast running water and constructs a filter net in the current to capture algae,

organic debris and small invertebrates as food. Distribution is observed in eastern

Australia (Neboiss, 1991, Hawking & Swmoth, 1991).

Figure 6,36 Preference of Leptoceridae to H velovity and water temperature
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Figure 6.37 Preference of Hydropsychidaeto longditude and H velocity

The larvae Ecnomidae construct fixed tubes of silk incorporating plant and mineral

material, attached to logs and rocks (Neboiss, 1991). Their habitats include still and
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flowing water thus sensitivity analyses shows that they prefer fast flowing water, and

as most of caddish flies they prefer cool water temperature (Figure 6.38) (Hawking

& Smith, 1991; Hellawell, 1986).
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Figure 6,38 Preference of Ecnomidae to H velocity and Water temperature

Hydroptilidae are very small caddisflies (micro-caddis), which live in ponds,

backwaters and areas of deep silt. The larvae are free-living. The case is attached to

the substrate immediately prior to pupation. The sensitivity analyses shows the

shallow habitat with few boulder substrates was favourite for them (Figure 6.39)
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Figure 6.39 Preþrence of Hydroptilidae to H depth and boulder content

Calamoceratidae inhabit sluggish still or slow flowing rivers and feed on plant

debris (Neboiss, 1991). The illustrated response to water temperature (Figure 6.40)

may represent the different ecological requirements of Calamoceratid caddis fly

species from north and south Queensland (Marshall et al',2000)
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Figure 6.40 Preþrence of Calamoceratidae to Water temperature H velocity
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Philopotanüdae Small to medium sized Trichoptera found mostly amongst latge

stone in clear, rapid streams where they build fixed silken tubes or sack-like nets

(Cartwright, l99l). Sensitivity analyses shows the trend of these caddis flies to

present in rapid habitat velocity and highland streams (Figure 6.41)
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Figure 6.41 Preþrence of Philopotamidae to H velocity

Moths

Most moth species with aquatic larvae belong to the family Pyralidae (Figure 6.42).

They are attached to bedrock in fast-flowing streams and rivers (Hawking & Smith,

1997).
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Figure 6.42 Preþrence of Pyralidae to H Velocity and ToCobble

Many other relations were detected and were in most cases confirmed with related

ecological results, when information was available. The results indicate that

developed neural network models in many cases work in ecological meaningful

manner
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6.4 Contradiction to Literature Findings

Most of the relationships found by sensitivity analyses were confirmed by literature

finding. However, there were few cases where contradiction was observed.

Plots in Figures 6.43 is discussed some cases as examples

Giller & Malmqvist (1998) discussed that a majority of stream living tríclads (only

one family Dugesiidae) is cold-living species. The sensitivity curve (Figure 6.43a)

however shows that Dugesiidae could present only in conditions of water

temperature exceed 20oC.

Libellulidae are tropical origin but sensitivity curve (Figure 6.43b) shows their

absence at latitude above -20(S), which is characterised for tropical zones of

Queensland.

Dytiscidae have the greatest diversity occurring in the southeast part of Australia and

are most common in the littoral areas (Lawrence & Britton, 1991). Information

obtained by sensitivity analysis (Figure 6.43c and d) shows that they were found only

in North Queensland at low-ordered streams.
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These contradictions are very interesting parls of results as well. They require further

research to find out whether the models generate wrong pattems or they provide new

insight into those relationships.

6.5 Limitation of the Method

The method only considered the impact of single input on output response. In fact,

effects of habitat conditions on distribution of macroinvertebrates are always

multivariate pattems. Many factors are not independent but closely interrelated.

The interrelation among current, temperature and oxygen demands of

macroinvertebrates is an example. The current continually replenishes water and

hence also oxygen in the immediate vicinity of the respiratory surface of the animal

and quite low levels can be tolerated in strong currents that renew oxygen at a high

rate. Generally, metabolic rates and oxygen demand are higher in stream

invertebrates than in still water forms at a given temperature, Respiration is

temperature-related and rates can increasebyl1%o or more per loC temperature rise.

Thus increased temperature does not only reduce oxygen availability but it also

increases oxygen demand that can add to the physiological stress of organisms

(Giller & Malmqvist, 1998).

The most important hydraulic characteristic for individual organism is the prevailing

current velocity striking the organism head-on (Statzner et al., 1988). Species do

react differently to current velocity, show differential preferences and consequently

different flow conditions lead to divergent assemblages of organisms. In a detailed

survey, boundary layer Re (Renolds number) was the most strongly correlated

individual variable with invertebrate distribution and taxon richness in two New

Zealand streams but a combination of mean velocity, substrate size, and depth gave

stronger correlation than any single variables (Quinn & Hickey, 1994). It appears

that the interaction between current velocity and stream substrate size is impor-tant in

determining invertebrate distributions.

Onh & Maughan (1983) determined optimum velocity, depth, and substrate for

major taxa on benthic macroinvertebrates of warm-water woodland stream. The
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combination of current velocity of 60cm/sec, a depth of 34 cm and rubble-boulder

substrate resulted in optimal diversity of benthic assemblages. Recognising that

habitat selection by benthos may be based on factor combinations, the investigators

derived 'Joint preference factors" using the product of the individual preference

factors.

Ecological patterns that underlie these multivariate patterns are characterised, for

example, by the fact that mean species richness and total species pools increase with

pH (Hildrew & Townsend, 1987). Stream with a pH as high as 6.5 but low alkalinity

(low Ca2*) often show similar features to more acidic waters (pH< 5.5, Willoughby

& Mappin, 1988). Effects of pH on aquatic fauna are different on different conditions

of water temperature (Hynes, l9l0). Food supply also depends on current speed,

either to convey particles to filter feeding organisms or to deposit detritus (Hellawell,

1986). Toxicity of ammonia and hydrogen sulfide to aquatic organism is dependent

on both temperature and pH conditions (Smith & Maasdam, 1994).

These and other examples illustrate the multivariate effects of different habitat

condition variables on distributions of macroinvertebrates. To study the effect of

individual variable while keeping all other variables at their respective means ignores

the very important pattern-combination of factor preferring by macroinvertebrates.

Further research needs to consider this fact and improve the practicability of

sensitivity methods on elucidation of the freshwater habitat conditions.

6.6 Using Sensitivity Analysís for Management Purposes

The sensitivity curves obtained by sensitivity analyses can contribute information for

better management and maintenance of good condition of streams and rivers. The

shape of the sensitivity plots of taxa would indicate how important it is to manage

disturbances within certain bounds in order to maintain healthy aquatic ecosystems.

Taxa with a threshold response to a disturbance would be eliminated from a stream

beyond a certain disturbance level, whereas taxa with ramp responses would

gradually become rarer as disturbance intensified. The identification of such

thresholds would provide water resource managers with a powerful tool.
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Investigation of sensitivity curves derived from dirty water ANN models with more

comprehensive database using the methods outlined here should greatly enhance our

understanding of the effects of impacts of various types on individual

macroinvertebrate taxa. This will enable impact specific indicator taxa to be readily

identified and should enhance our capacity to monitor and mitigate the effects of

human activities on stream ecosystems.

Family level identifications were used in this study because data were collected to

develop rapid assessment techniques. Sensitivity curves could be more usefully

applied to generic and preferably species level data to better study the ecological

responses of macroinvertebrates to freshwater habitat conditions.

Mayflies Baetidae arc usually one of the mostfrequently encounteredfamilies
in lotic habitats (Giller Malmqvist, 1998)
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7 General discussion

7.1 Perþrmance of Artificial Neural l'{etworks

The capabilities of Machine Leaming technique in general, and Artificial Neural

Networks in particular, do not just only come from the specific induction method, but

from a proper and meaningful formulation of the problems, representative data, and

from crafting the model representation to make learning tractable. For example, there

is no point in developing an ANN to predict water quality variables in stream from

hydrological and meteorological information. Field applications of machine learning,

including ANN techniques and sources of power in applied machine learning, were

the main sources of discussion in the edited work by Michalski et al. (1999). In

supporting biological assessment of stream habitat conditions, machine learning has

not completely automated the knowledge engineering process, but it has replaced

knowledge engineering with two simpler tasks: characterising the problem and

designing a good data representation. This section discusses the most important steps

in successfully applying artificial neural networks to solve the given problems.

The first step in using any machine learning technique, including artificial neural

networks, to solve any real-world problem is to reformulate the problem in terms that

can be dealt with by some induction method (Langley & Simon, 1999). Studying the

relations between stream habitat conditions and biological responses such as

distributions of macroinvertebrates is a complex task, yet we need to identify

components that involve simple classification, a task for which robust induction

algorithms exist. In this research, presence/absence of a single taxon might not be an

optimally chosen target task. Discrete outputs contain only two values (0 and 1), that

might cause difficulties in induction algorithms of ANNs (Rumehart et a1., 1986).
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Functional feeding groups or abundance of indicator taxa, which are represented by

continuous numerical values, may be better alternatives to improve the performance

of neural network models.

The second important step is to settle on an effective representation for both training

data and the targeted knowledge to be learned. Representation refers to features used

to describe examples and to characterise the results of learning. The representation of

the problem classified in the research is based on the expeft knowledge about the

ecological requirement and attributes that are likely to have predictive value. For

example, data of oxygen conditions in the systems was crucial in the dirty water

approach (Chapter 5). Lack of this information might severely affect the performance

of neural network models.

After settling on a task and representation, training data needed to be collected for

the induction process. In some cases, this process is straightforward and can even be

automated, but in others it can pose a signifícant challenge. Training data can be very

representative for sites or not reliable as a result of technical problems. Most data fall

somewhere between these two extremes, and the expert is needed to classify training

data or to generate it. Therefore accessing the available data and generating data

where it is lacking is an important part of applied work in machine learning.

Rules induced from training data are not necessarily of high quality. A standard

approach to evaluation involves dividing the data into two sets, training on the first

set, and testing the induced knowledge on the second. This process can be repeated a

number of times with different splits, and the results of testing are then averaged to

estimate the rules' performance on completely new problems (Wilson & Recknagel,

200I). An important part of the evaluation process is the experts' examination of the

learned knowledge. If significant problems emerge at this stage, they may suggest

revisions to the problem formulation or representation (Langley & Simon, 1999).

The final stage in application is employing the learned knowledge base. Machine

learning can either confirm the expert knowledge or introduce an extension to the

knowledge base. Results of sensitivity analyses obtained by neural network models

in this study provided many confirmations to findings from the literature on

interrelations between habitat conditions and distribution of macroinvertebrates.

Apart from their elucidation potential, some problems have risen which need further
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research, such as the cause of ove¡population of macroinvertebrate taxa in many

sites, or the effect of detrital cover on distribution of taxa. Explanation and

application capabilities of neural network models depend heavily on the

requirements and objectives of users. Therefore, it is extremely important to motivate

users and domain experts to participate in the design and application process in order

to improve the effectiveness of applied neural networks (Langley & Simons, 1999).

The good performance of ANN models in both clean and dirty water approaches

confirmed the potential of neural networks in predicting habitat conditions of

freshwater streams. Sensitivity analyses carried out by ANN models allow the

determination of major variables that affect ecosystem quality. Method should be

considered further investigation in order to be applied in river ecosystem

management. Further research is needed to determine the optimal neural network

configuration. Moreover, the impact of the applied training algorithms, as well as the

risk of overtraining the network, should be further investigated to obtain reliable and

meaningful predictions in the long run.

The predictions for moderately frequent taxa such as Gomphidae and Oligochaeta

were less accurate than for common and rare taxa. The results of sensitivity analysis

showed that the distributions of these taxa were controlled by a greater number of

variables. It is obvious that the more controlling factors, the greater the chance for

potential sources of errors - a classic case of the complexity/uncertainty trade-off

(Chapter 4). The enorrnous amount of information available on macroinvertebrate

taxa is often too superficial, specific and contradictory, as data collection depends

heavily on sampling methods, identification protocols and many other subjective

factors such as experiences of samplers. Potential sources of errors could be an

inappropriate identification of macroinvertebrate taxa and the spatial-temporal

variability of physical and chemical variables as well as natural noise in the data set.

In summary, the potential sources of error in the predictive capabilities of Artificial

Neural Networks can be caused by the potential mis-configuration of the ANNs (e.g.

overlitting). They can be explained by the fact that most river system database do not

contain enough information in order to extract the main relations existing between

the structural, physical, chemical and biological variables. However, representation

of data can be rectified in many ways in order to improve the performance of neural

networks in solving the given problem.
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7.2 Improvement of Input Data Representation

The most important basis for successful neural network modelling is a reliable and

representative database. The networks learn from examples, and the quality of the

ANN models depend heavily on the quality of the database. Therefore, representative

and compatible data are the main requirement for neural models.

To increase the effectiveness of ANN learning, it is necessary to perform some

preprocessing of the data before presentation to the network. Many categorical

variables are just empirical presentation, and the numbers are just notation of the

information. These input variables need to be split into several categories to avoid

misinte¡pretation of notations as arithmetic numbers (Masters, 1993). Rather than

supplying a single category with values such as 1. 2, 3. three input nodes should be

created instead, each representing a category and containing l/0 values only

corresponding to whether the category was selected or not. The following variables

needed to be sub divided into several inputs:

Habitat 1-5: 5 nodes

Substrate categories: 8 nodes

Reach O-2:3 nodes

Soil Type number: 18 nodes

Soil Class number: 8 nodes

Vegetation Type number: 9 nodes

Ordered categorical criteria such as stream order should not be split, as their order

clearly affects weights of the connection links in neural networks.

Many water quality variables, such as oxygen concentration, nutrient levels,

concentrations of trace metals were found crucial for distribution of

macroinvertebrates (See Chapter 5) but were not available for inputs in the database.

There was also no information on macrophyte density at sites and some other

riparian variables that were considered important for macroinvertebrate assemblages

such as riparian cover, deciduous cover (Hawkins et al., 2000). These data need to be

supplemented for better representation of the database.
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In summary, data representation can be improved by re-expression of categorical

inputs into more conducive to ANN learning and collection data of more relevant

forcing functions in the input layer.

7.3 Temporal ønd Spatiøl Variations

Variation in the distribution and activity of aquatic organisms is evident at all spatial

and temporal scales, but especially in streams, where biotic differences are often

obvious from rock to rock within a reach, from reach to reach within a watershed,

and across watersheds. The distributions, abundance, and activities of aquatic biota

vary conspicuously with time, as well, over temporal scales raging from second or

minutes to years (Stewart and Loar, 1994). The distributions and activities of benthic

invertebrates vary greatly, both spatially and temporally, over all scales in polluted

and non-polluted flowing-water systems (Hynes 1960,1970, Cummins, L979).

7.3.1 Spatiøl Variance in Invertebrate Datø

At small spatial scales, flow strongly affects the spacing patterns and foraging

activities of macroinvertebrates. The spacing difference between competitive success

or failure, metabolic activities and feeding status of taxa is in the order from

millimeters to centimeters or a few metres distance (Stewart &Loar,1994; Newbury,

1996). At whole-pool and within-pool spatial scales, species-level and ontogenetic

shifts in behaviour attributed to predation risk can strongly influence invertebrate

communities (Gilliam et al., 1989).

Over larger spatial scales, changes in invertebrate activities and abundances within

streams and rivers can be large, even in the absence of human impacts. This

expectation emerges naturally in consideration of the river continuum concept

(Vannote et al., 1930). Major shifts in species and./or functional groups of aquatic

insects occur in response to changes in substrate, temperature, chemical constituents,

food supply and predators, with increase in stream order (Stewart & Loar,1994).

In the clean water approach, the models showed the similar levels of impact at the

test sites, probably indicating a high level of redundancy among the habitat types.
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The inclusion of more than one habitat in a predictive model may cause confounded

assessment of biological impairment. When habitats are included as individual

objects, prediction of test sites into groups of equivalent reference sites is made

according to the characteristics of particular habitat types rather than general site

features. In Australia, edge and woody debris are the most common by occurring

habitat in large lowland rivers (Parson & Norris, 1999). The recommendation can be

made that separate models need to be developed for each of habitat types;

consequently five models in total should be made for riffle, edge, run, pool bed and

macrophyte habitats.

However, Parsons & Norris (1999) suggested that riffle and edge are adequate to

detect biological impairment. In addition, many of the macrophyte beds are located

in the marginai areas, and it is often ciifficuit to ciistinguish an ecige habitat from a

macrophyte habitat. These two habitats can be accounted for by only sampling the

edge, with no detrimental effect on the outcome of the predictive models and save

the cost of sampling and simplify the data processing and model developing.

Therefore, four separate models should be developed to improve the performance of

neural network models.

7.3.1 Temporal Variance in Macroinvertebrate Datø

Macroinvertebrates have a strong seasonal cycle of abundance and/or activities, They

also tend to have a shorter life cycle than fish. The shorter life cycles suggest more

rapid responses at the community level, which is an important advantage of using

macroinvertebrates as bioindicators; however greater temporal variability needed to

be consìdered (Steward & Loar, 1993). The database of the Queensland stream

system does not contain any temporal information except seasonal category. It

therefore did not allow a deeper study of the long-term effects of any variables,

especi ally water chemistry vari ables, on macroi nvertebrate assembl ages.

Although tropical, Queensland has a seasonal climate and does not exhibit the

environmental constancy associated with wet equatorial tropics. The time scale of

sampling, particularly when it is carried out over more than one season, can

significantly affect results of bioassessment (Linke et al., 1999). Season should be

explicitly taken into account in bioassessment and monitoring studies, although

seasonal variation is currently most often addressed by constraining the time frame
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of sampling. The recommendation can be made that the neural network model for

this database should be developed for each season to study behaviours of

macroinveftebrates in wet and dry seasons separately.

7.3.3 Summary

It is very important for management to predict how communities respond to changes

in habitat condition after being exposed to disturbance. Communities can respond

either progressively with further disturbance or regressively in recovering from

pollution (Hellawell, 1986). Time-series predictions are significant for monitoring

water quality and deciding on-going management tactics for freshwater ecosystem

(Chon et al., in press). Analyses of temporal and spatial patterns in community

dynamics have been the objectives of many studies in applying ANN models in

freshwater bioassessment and have achieved significant success such as: in

predictions long-term population of aquatic insects (Schleiter et al., 1999), in

patterning community change and short-term prediction of community dynamics

(Chon et al., 1996; Chon et al,, 2000a; Chon et al., 2000b), and modelling population

dynamics (Obach et al., in press)

Ecosystem analysis and prediction with empirical statistical and analytical methods

are often limited by the spatial complexity and temporal dynamics of ecological

processes and typical non-linear interrelations of variables and species, with data not

being normally distributed (Schleiter et al., 1999). Artificial neural networks provide

specific features such as non-linearity, adaptivity, generalisation and model

independence, which allow them to better cope with spatial and temporal variations

within freshwater ecosystems.

The neural network models developed in this study were still steady-state models

and temporal variation was not considered. An additional effort would be more

beneficial to collect data for detecting differences through time and among sites. It is

important that methods are developed to characterise how a community varies in

space and over time simultaneously, caused either by natural or anthropogenic

disturbance. However, improvements in model performance can be achieved by

separating neural network models by seasonality and for different habitat types. This

can simplify the network performance and avoid potential effors caused by

misunderstanding categorical notations designed for habitat types and seasonality.
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7.4 Representation of Data on Mscroinvertebrate Taxa

7.4.1 Functional Feeding Groups

Family-level identification of macroinvertebrates proved to be appropriate for use as

biological indicators for habitat assessment. However, sometimes the taxonomic

framework is inadequate to allow identification to this level, such as in the case of

Oligoclrueta at class level, Acarina at order level, or time does not permit resolution.

Moreover, discrete presence/absence information given by family level of data can

make it difficult for neural networks to generate the patterns. Taxa identified at

family-level assume that a higher taxonomic category summarises a consistent

ecology or behaviour amongst all member species, and indeed this is evident from

responses noted in earlier chapters. However, many closely related taxa diverge in

their ecology, and higher-level aggregates therefore contain a diversity of responses.

By contrasl, functional feeding grouping requires no taxonomic assumptions but use

mouthpart mo¡phology to identify feeding modes (Gullan & Crantons, 2000). The

following categories are generally recognised based on feeding mechanisms of

macroinvertebrates:

Shredders feed on living or decomposing plant tissues, including wood,

which they chew, mine or gouge;

Collectors feed on fine particulate organic matter by filtering particles

from suspension or fine detritus from sediment;

Scraper or grøzers feed on attached algae and diatoms by grazing solid

surfaces; and

Predators feed on cells of living animal tissues by engulfing and eating the

whole or parts of animals or piercing prey and sucking body fluids (Gullan

& Crantons, 2000)

One important ecological observation associated with such functional summary data

is the often-observed sequential downstream changes in proportions of functional

feeding groups. This aspect of the ríver contìnuum concept relates the sources of

energy inputs into the following aquatic system to its inhabitants. In riparian tree-

shaded headwaters where light is low, photosynthesis is restricted and energy derives
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from high inputs of materials such as leaves, woods etc., shredders tend to

predominate, because they can break up large matter into finer particles. Further

downstream, collectors filter the fine particles generated upstream and themselves

add particles (faeces for example) to the current. Where the waterway becomes

broader, with increased available light allowing photosynthesis in the middle

reaches, algae, diatoms and macroph¡es develop and serve as food lor graTers.

Predators tend only to track the localized abundance of food resources (Vannote et

al., 1980). Changes in functional feeding groups associated with human activities

include:

Reduction in shredders with loss of riparian habitat, and consequent

reduction in autochthonous inputs;

Increase in grazers with increased periphyton (algae and diatom)

development resulting from enhanced light and nutrient entry;

Increase in filtering collectors below impoundment, such as dams and

reservoirs, associated with increased fine particles in upstream standing

waters (Gullan & Crantons, 2000).

Use of the functional feeding group approach may be advantageous in that it allows a

numerical assessment of the degree to which the invertebrate biota of a given aquatic

system is dependent upon particular nutritional resources. This numerical assessment

may better suit application to neural network models. As the relative dominance of

various food resource categories changes, there is often a corresponding shift in the

ratios of the different functional feeding groups. Invertebrate functional group

analysis is sensitive to both normal pattern of geomorphic and the biological changes

that occur along the river continuunt (Vannote et al., 1980), as well as to alterations

in these pattems resulting from human impacts (Cummins, 1993). In addition, the

functional feeding group method is relatively independent of sample size, and its use

requires minimal equipment and is accomplished at a level of resolution that can be

chosen to be appropriate to the expertise of those performing the analysis (Cummins,

1993). Therefore, for the purpose of rapid assessment, functional feeding group may

be a suitable alternative to family-level identification.
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7.4.2 Abundance data

Populations of a species might have good potential for environmental monitoring,

Many factors associated with population dynamics could be used to assess

environmental quality. Environmental conditions which impair growth and mortality

or reproduction success would become evident when populations were examined

quantitatively (Hellawell, I 986).

Harswick et al (1995) used Chironomid to rapid biological assessment of streams in

the Blue Mountain, Australia. The study confirmed fhat Chironontids dominated

large proportion in polluted site because they are among the most pollution-tolerant

of all stream macroinvertebrates (Hynes, 1960). The abundance rather than presence

of Chironomids in such rapid assessments may therefore better indicate the

ecosystem states.

If the concentration of organic matter is high enough to produce deoxygenation, most

of macroinvertebrate families can not survive. Where only very little oxygen remains

in the water, or the river bed is completely covered over with organic solids or

sewage fungus, the main inhabitants are always the sludge worrns of the family

Turbificida¿. In such places, they are particular favoured, they have abundant food in

the rich organic mud and they are free from enemies and competitors which cannot

stand the low concentrations of oxygen. However, if the organic matter concentration

is not high enough, the various members of the macroinvertebrate communities are

encouraged such as chironomids, leeches and few others, and occur with Tubificids.

Species richness therefore does not detect the level of organic enrichment but

abundance of Turbificidae can be used as more effective indicator for organic

enrichment (Hynes, 1960; Norris & Georges,1993).

Changes in the composition of a macroinvefiebrate community are almost certainly

due to suspended solids and the resulting slight increase in the siltiness of the

environment. However, some mayllies and caddisflies need clean stones on which to

attach. Therefore, a slight increase in siltiness would reduce the amount of suitable

living space for these creatures, Tanytarstts, on the other hand, build their tubes of

silts, they therefore are favoured by an increase in the amount of silt in the riverbed

and show a marked increase in numbers in this condition (Hynes, 1960; Cranston et
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al., 1996). Abundance of these macroinvertebrates can better explain the habitat

condition than the presence of taxa.

Abundance information seems to be particularly useful for macroinvertebrate data

sets with a poor classification structure, and it should be useful to assess disturbances

that result in changes in abundance rather than species loss. Especially it seems to be

important in cases, when changes in abundance may signal a beginning impact that

has not yet reached the level of severity resulting in species loss.

In addition, abundance prediction does not rely on cluster analysis, continuous data

of output can help ANN models more effective in learning the patterns and

consequently improve the performance of ANN models. Abundance data can be

meaningfully used in time series predictions in order to detect the effect of potential

impacts. Schleiter et al. (1999) used environmental variables including maximum

monthly water temperature, discharge and monthly precipitation to predict long-term

population dynamics of aquatic insects in Germany. Chon et al. (2000a, 2000b and in

nrcss\ were verv successful in temrroral patterning of community changes and short--.J.._.----.--r-'Ìa

term prediction of benthic macroinvertebrates in urbanized streams with biological

and environmental factors. Obach et al. (in press) used feed-forward ANN to predict

the abundance of aquatic insect based on the abundance of parental generations and

several environmental variables. The results showed that abundance patterns of

aquatic insects based on knowledge of their life history and biological traits were

related to the patterns of environmental variables. The studies demonstrated that the

prediction of aquatic macrôinvertebrates with ANN models was promising even

though the restricted number of input variables might have limited the quality of the

results. Research on abundance of macroinvertebrates is therefore recommended

provided the data is available and reliable for developing ANN models'

Fresltwater shrintp Atyidae, popular crustacean in the streants (Giller Malntqvíst, 1998))
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I Thesis Conclusions and

Recommendations for Further

Research

8.1 Conclusions

8.1.1 Usefulness of Macroinvertebrøtes as BiologicøI Indicators

The results of this study demonstrate that the structure of a macroinvertebrate

community can reflect the state of freshwater streams they inhabit. Both Clean and

Dirty water approaches show that there are close relationships between freshwater

macroinvertebrate assemblages and their habitat conditions in the Queensland stream

system. The distribution of macroinvertebrates at family level is driven by a number

of environmental factors. Physical variables strongly determine the habitat where

certain macroinvertebrates live. However, macroinvertebrate assemblages are also

affected by chemical variables. Both input categories proved to be useful for the

prediction distribution of macroinvertebrate assemblages.

The routine use of freshwater macroinvertebrates as indicator organisms to assess

ongoing environmental condition requires considerable understanding of the factors

involved in determining these conditions. These factors include physical and

chemical characteristics of the habitat where the organisms originate: e.g. the

chemistry of potential contaminants involved, and the physiological behaviour of

taxa exposed to these contaminants need to be taken into consideration. By contrast,

research on response of macroinvertebrate assemblages to habitat conditions can

improve our understanding of that.
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Species-level identification is assumed to have the greatest information content as a

result of studies on individual population, However, identification to the species level

is sometimes difficult because of the small size of organisms, a lack of adequate

species-level keys and descriptions. On the other hand improved keys are now

available that allow identifications at the family level. The use of higher-level

category at family can be justified depending on the purpose of study, the leveì of

sensitivity required, and the type of index or analysis being used (Resh & McEltravy,

1993). In this study, macroinvertebrate assemblages at family level proved to be

appropriate to detect the gross pollution that may have dramatic effects on the fauna

and to provide "early warning" of potential problem or changes in communities.

Biotic indices have been extensively used to evaluate pollution stress. The

multivariate approach may enhance our understanding of the effect of pollution

stress. However, emphasis on improving the efficiency, accuracy, precision, and

predictive ability of biotic indices and scoring system is needed.

8.1.2 Usefulness of Artíficial Ìr{eural Network øs Prediction Tools

The results of the study have shown that Artificial Neural Networks (ANNs) can

successfully and meaningfully be applied to the analysis of causal relationships

including the identification and assessment of complex impact factors and for the

prediction of system behaviours. Particularly, they have advantages if the

relationships are unknown, very complex or nonlinear as typical for river and stream

ecosystems.

Generally, the ANNs performed very well to predict the macroinvertebrate taxa

based on physical as well as on chemical predictor variables. This method does not

only generate results with low prediction error, but also allows the user to identify

associations and general trends in the data. These capabilities make ANNs more

appealing than just black box modelling by statistical techniques.

The conclusion can be made that ANNs tend to be grey box prediction techniques,

allowing the user to combine a high accurate prediction with getting some

information on general trends in the data. Therefore, this methodology can be applied
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to determine ecological requirements of stream organisms that are not fully

understood.

The present study has justified that the data collected in the Queensland stream

system could be used for prediction with ANNs. Although many possible

improvements in the data representation can be suggested, the existing

database proved to be appropriate to develop the ANN models to assess river

habitat conditions. This fact demonstrates that ANN models are verified as a

powerful tool to investigate and model ecosystems from limited data available.

The method therefore can be applied for other stream systems in Australia to

assess river health.

Both applied approaches achieved reasonable good results in predicting

presence/absence patterns of macroinvertebrate families. The application of these

approaches for management purposes requires further researches in detail, A protocol

for applying the Clean Water approach has already been designed through the

multivariate criteria OÆ; however, the interpretation of criteria value has not yet

been well understood. The Dirty Water approach can only be applied for quantitative

assessment after further studies on how to determine the best representative taxa can

be used for designate chemistry of water they inhabit.

8.1.3 Elucidation by Sensitivity Analyses

Sensitivity analyses allow studying the impact of the input variables on the presence

and absence of macroinvertebrate taxa. Many relations were detected by this method

that supported previously detected findings by means of related ecological research

methods. This indicates that the ANN models perform in meaningful ecological

manner. Based on of sensitivity analyses, ANN models allow to determine the major

driving variables that affect the stream and river ecosystem quality, and should be

taken under direct consideration in the river ecosystem management. The

determination of major driving variables improves the generalisation and

simplification of the model, and allows a better understanding of interrelationships

within systems.
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Sensitivity analyses allow a better interpretation of the prediction results by ANN

models, easing the cause-allocation of the actual river status and increasing the

insight needed to improve assessment system. Relation plots also allow stimulating

the effect of potential management options and thus support active decision-making.

The development of efficient monitoring networks based on the interpretation of

these interrelations is probably another important advantage.

With the aid of sensitivity analyses, data pre-processing methods, ecological

prediction and analysis of causal relations can be improved substantially.

The sensitivity analyses not only confirmed expert knowledge on relations between

habitat conditions and distribution of macroinvertebrates, but revealed new relations

as well. Further study on new and sometimes contradictory findings may enlarge

expert knowledge on river ecosystem if they would be confirmed by laboratory and

field experiments. Conversely, finding the cause of contradictions may improve the

performance of ANN models for better predictions and applications for management

numoses_
Í "- f '- "

8.1.4 Limits of Using,AlÍI/s

As ANNs learn from examples, the quality of ANN models heavily depends on the

quality of the database, in particular whether it is representative for the given

problem, the given site or the given study period. Therefore, representative and

compatible data are the main prerequisite for ANN models. In reality, interrelation

between biological diversity and abiotic factors are highly nonlinear and complex

and no monitoring data contains enough information for reflecting these relations.

Time-series analysis, for example, can be a powerful tool to study community

dynamics of macroinvertebrates, which in turn provide much information for

assessing habitat condition and preparing on-going management tactics for aquatic

ecosystem. Time-series analyses can be conducted effectively by ANNs. However,

time-series analysis relies on data that are collected regularly at time intervals more

frequent than the period of variation among the variables of interest. These

requirements are quite stringent to be fulfilled by most monitoring programs.
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The training process of ANN models is always very much black box. It does not

explicitly provide understanding of the mechanisms it is based on. ANN models

extract and generate patterns from data inductively and it is very difficult for

modelers to get insight into this process in order to optimise model configuration and

performance parameters. Optimisation therefore can be done by experiments and in

some cases, the best configuration and performance of ANN models can only be

decided intuitively.

8.2 Recommendations for Further Research

Depending on the objectives of the present research project, recommendations can be

made as follow in order to improve the ANN performance as well as to have better

understanding of ecological processes and phenomena.

8.2.I Further Research on ANN Perþrmance

Further research is necessary to determine the optimal neural network

configuration. E.g, Waley & Fontama (2000) applied an ANN with two

hidden layers for similar simulations. The impact of the algorithm applied for

ANN training as well as the risk of overtraining the ANNs should be further

analysed to obtain reliable and meaningful predictions in the long run. It is

recommended to test algorithm for neuro-genetic training in order to optimise

ANNs performance as suggested by Montana & Davis (1989).

Improve results by using other more continuous value inputs. In ihe clean

water approach, flow regime should be considered. Oxygen concentration,

nutrient levels and concentration of some toxicants should be crucial for dirty

water approach.

a

Procedure to pre-processing data needs to be improved in order to avoid

using non-reliable data in the modelling process. Empirical categorical

vanables should be split into nodes, each node contains two values 1 or 0

depending on whether this category is chosen or not.

o
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The spatial-temporal variability of physical and chemical variables should be

considered. Separate models for different habitats and seasons. As discussed

in previous chapters, four models are developed for four different habitats

and two seasons for each habitat. As a result, eight models should be

developed.

Improve the performance by applying different input combinations to develop

models. Experiments with different sets of input variables do not only results

in an alteration of prediction errors but also the complexity of networks as

well as the relative importance of some trends can be affected'

Sensitivity analyses should be carried out several times to obtain further

simplification of ANN models by further exclusion of redundant inputs for

both approaches.

Time-series analysis may be used to develop predictive models based on

variation in past time series. It may overcome the problem of auto-correction

in data between sites or times. The method can determine the occurrence

trends, often a primary aim of monitoring studies.

The next step of pollution or environmental assessment studies should attract

not only qualitative but also quantitative analyses of benthic

macroinvertebrates. Hypothesis generation through classification, ordination,

model construction, and the accuracy of model prediction should be tested.

Better representation of macroinvertebrate data can be improved by

classifying families into functional feeding group or obtaining abundance

data. The better representation of macroinvertebrates may overcome

difficulties for ANN training caused by the distribution of presence/absence

(1/0) data in cases where species had too high or too low probability of

occurÏence.

Training and validation of ANNs using databases from other Australian

stream systems will contribute to a generalisation of the ANN stream models.

Better visualisation of results by means of interactive user interface and GIS

will help non-specialist to understand interpretation of prediction as well as

a

a
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8.2.2 Further Research on Elucidation of Freshwater Habítat Conditions

Cause and nature of overpopulation predicted for some test sites in clean

water approach needs to be clarified.

Improve the method of sensitivity analyses by considering pattem-

combination of factors preferred by macroinvertebrates.

o

o

o

a

elucidation from sensitivity analysis. User-friendly software should be next

step to apply ANN models for management purposes

other machine leaming technique can improve the prediction results,

Multivariate analysis of data by Kohonen networks should be very promising

alternative.

Study cause and effect of relations discovered by sensitivity analyses that

appeared to be contradictory to expert knowledge.

A caddisfly larva (Hydropsychidae) in its retreat; the silk net is used to catch food
(Gullan & Cranston, 2000)
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