BUBBLE HYDRODYNAMICS IN GAS FLUIDIZED BEDS

by

KYM MARTIN IDE B.E. (Hons.), ADELAIDE

A dissertation submitted in fulfilment of the requirements for the degree of Master of Engineering Science in The University of Adelaide

February, 1989

Department of Chemical Engineering The University of Adelaide Adelaide, S. A. 5001 Australia To my mother

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any University and, to the best of the author's knowledge and belief, the thesis contains no material previously published or written by another person, except where due reference is made in the text or where common knowledge is assumed.

The author consents to the thesis being made available for photocopying and loan if accepted for the award of the degree.

Kym M. Ide

PREFACE

I would like to thank the following people and organisations for their assistance in this work :

- Dr. Pradeep Agarwal, my supervisor, for his valuable guidance and constant encouragement throughout this work;
- The academic staff of The Chemical Engineering Department, in particular, Dr. Brian
 O'Neill and Prof. John Agnew;
- Particular thanks to David Atkinson for professional writing of the data collection software;
- The technical staff, Peter Kay for experimental apparatus construction, Bruce Ide ("Dad") for construction of the capacitance probes, Andrew Wright, Brian Mulcahy and Colin Tipper for assistance;
- The South Australian State Energy Research Advisory Committee for providing the financial assistance necessary to perform this investigation;
- Theo Sudomlak of the The Psychology Department for loan of the video camera;
- The Materials Engineering Department for loan of the video recorder and television;
- Rashid Muhammad, Lim K. S. and the other postgraduate students for fruitful discussions and help;
- My girlfriend, Mandy Furlan for support and compassion;
- and Most importantly, my mother, Elizabeth, Bill Richards and John, for the opportunity to come this far and for support, encouragement and patience.

TABLE OF CONTENTS

DECLARATION	i
PREFACE	ii
LIST OF FIGURES	v
LIST OF TABLES	vii
ABSTRACT	viii
CHAPTER I : INTRODUCTION	1
CHAPTER II : LITERATURE REVIEW	4
2.1 EXPERIMENTAL METHODS FOR STUDYING GAS-SOLID FLUIDIZED BEDS	4
CHAPTER III : EXPERIMENTAL SYSTEM	18
3.1 CAPACITANCE PROBE DESIGN CRITERIA	18
3.2 DATA COLLECTION SYSTEM	20
3.3 DATA COLLECTION PROGRAM CALIBRATION	22
3.3.1 EXPERIMENTAL SYSTEM FOR CALIBRATION	22
3.3.2 SIGNAL INTERPRETATION - IDEAL BUBBLE	23
3.3.3 SIGNAL INTERPRETATION - REAL BUBBLE	24
3.4 DUAL TIP CAPACITANCE PROBE	27
3.5 DATA ANALYSIS	29
3.6 EXPERIMENTAL APPARATUS	36
3.7 EXPERIMENTAL PROCEDURE	40

PAGE

CHAPTER IV : COMPARISON OF EXPERIMENTAL DATA	
WITH BUBBLE HYDRODYNAMIC MODEL	42
4.1 BUBBLE CHARACTERISTIC MODEL	42
4.1.1 BUBBLE CHARACTERISTIC MODEL EQUATIONS	43
4.1.2 BUBBLE CHARACTERISTIC MODEL PARAMETERS	45
4.2 PROCESSING THE EXPERIMENTAL DATA	52
4.2.1 LOCAL BUBBLE RISE VELOCITY AND PIERCED LENGTH	52
4.2.2 LOCAL BUBBLE SIZE DISTRIBUTION	55
4.3 COMPARISON OF EXPERIMENTAL DATA WITH BUBBLE HYDRODYNAMIC MODEL	58
CHAPTER V : EXPERIMENTAL RESULTS	88
5.1 DISTRIBUTIONS OF BUBBLE VERTICAL DIMENSION	88
5.2 DISTRIBUTIONS OF BUBBLE RISE VELOCITY	133
5.3 REPLICATE EXPERIMENTS	178
5.4 OVERALL BED CHARACTERISTICS	199
CHAPTER VI : CONCLUSIONS AND RECOMMENDATIONS	212
NOMENCLATURE	217
BIBLIOGRAPHY	220
APPENDICES	226
APPENDIX A DERIVATION OF BUBBLE DIAMETER FORMED AT THE DISTRIBUTOR	227
APPENDIX B COMPUTER PROGRAMS	230

LIST OF FIGURES

3.1	Detail of Capacitance Probes used in this study	19
3.2	Data Collection System	21
3.3	Experimental System for Data Collection Program Calibration	22
3.4	Probe Signal when Single Tip Probe hit by an ideal rising bubble	23
3.5	Output from Single Tip Capacitance Probe	25
3.6	Calibrated Output from Single Tip Capacitance Probe	26
3.7	Dual Capacitance Probe	27
3.8	Dual Capacitance Probe Tip Dimensions	28
3.9	Process List choices of Data Collection Program	29
3.10(a)	Probe Data Modification with Process List	32
3.10(b)	Probe Data Modification with Process List	33
3.10(c)	Probe Data Modification with Process List	34
3.11	Modified Probe Signal when Dual Tip Probe Hit by rising bubble	35
3.12	Experimental System	37
3.13	Experimental System Dimensions	38
3.14	Calculation of Minimum Fluidization Velocity of AB Glass Beads	39
3.15	Layout of Probe Positions	41
4.1	Effect of Varying k on $f(d_{br})$	46
4.2	Effect of Varying k on $F(d_{br})$	47
4.3	Effect of Varying m on $f(d_{br})$	48
4.4	Effect of Varying m on $F(d_{br})$	49
4.5	Effect of Varying s on $f(d_{br})$	50
4.6	Effect of Varying s on $F(d_{br})$	51
4.7	Averaged and Non-Averaged Bubble Pierced Times	54
4.8	Characteristic Bubble Dimensions	56
4.9	Probability Density Function of Bubble Vertical Dimension	60
4.10	Cumulative Distribution of Bubble Vertical Dimension	61

v

4.11	Probability Density Function of Bubble Vertical Dimension	62
4.12	Cumulative Distribution of Bubble Vertical Dimension	63
4.13	Probability Density Function of Bubble Vertical Dimension	64
4.14	Cumulative Distribution of Bubble Vertical Dimension	65
4.15	Probability Density Function of Bubble Vertical Dimension	66
4.16	Cumulative Distribution of Bubble Vertical Dimension	67
4.17	Probability Density Function of Bubble Vertical Dimension	68
4.18	Cumulative Distribution of Bubble Vertical Dimension	69
4.19	Probability Density Function of Bubble Velocity	70
4.20	Cumulative Distribution of Bubble Velocity	71
4.21	Probability Density Function of Bubble Velocity	72
4.22	Cumulative Distribution of Bubble Velocity	73
4.23	Probability Density Function of Bubble Velocity	74
4.24	Cumulative Distribution of Bubble Velocity	75
4.25	Probability Density Function of Bubble Velocity	76
4.26	Cumulative Distribution of Bubble Velocity	77
4.27	Probability Density Function of Bubble Velocity	78
4.28	Cumulative Distribution of Bubble Velocity	79
4.29	Variation of Local Bubble Rise Velocity with Pierced Length	80
4.30	Variation of Local Bubble Rise Velocity with Pierced Length	81
4.31	Variation of Local Bubble Rise Velocity with Pierced Length	82
4.32	Variation of Local Bubble Rise Velocity with Pierced Length	83
4.33	Variation of Local Bubble Rise Velocity with Pierced Length	84
4.34	Bubble Rise Velocity vs Pierced Length from Glicksman et. al. (1987)	85
5.1 -		
5.44	Cumulative Distribution and PDF of Bubble Vertical Dimension	89 -
5.45 - 5.88	Cumulative Distribution and PDF of Bubble Rise Velocity	134
5.89 -	Cumulative Distribution and PDF of Bubble Vertical	
5.108	Dimension and Bubble Rise Velocity of Replicate Tests	179
5.109 - 5.112	Bubble Frequency vs Radial Position	200
5.113 -		204
5.116	Bubble Volume Fraction vs Radial Position	204
5.117 - 5.120	Bubble Gas Flow vs Radial Position	208
6.1	Variations in Overall Bed Characteristics	215

LIST OF TABLES

PAGE

2.1	Summary of Experimental Methods For Studying Gas-Solid Fluidized Beds	15
3.1	Summary of Data Collection Program Process List	30
4.1	Bubble Analysis as stored by Data Collection Program	52
4.2	Comparison of Bubble Characteristics	86

ABSTRACT

Thorough knowledge of the hydrodynamic properties of gas fluidized beds is a prerequisite for complete mastery of fluidization as a process technology. Detailed analyses require prohibitively large quantities of computer time and effort. Only limited bubble size and velocity distribution data are available in the literature. Invariably, mean bubble properties are tabulated, reducing the quantity of data available for model fitting and calculation of bed performance. The aim of this investigation was to develop a technique capable of quick, simple and inexpensive measuring of the distribution of bubble sizes and velocities in a gas fluidized bed. An extensive tabulation of measured bubble characteristics is provided.

Tests were conducted in a 23 cm diameter gas fluidized bed. Construction in perspex enabled visual observation of the fluidization process. AB Glass ballotini served as the bed material with air as the fluidizing medium. A dual tipped capacitance probe was employed to measure the local variations in bed porosity. Unique computer software enabled the elimination of many complex hardware components previously employed in this type of study. All data collection and analysis was performed in real-time by the computer software.

Comparison of the collected data with a population balance model proposed by Agarwal (1986) was performed. The model predictions were in good agreement with the experimental bubble vertical dimensions but significant departures from the bubble rise velocities were noted. The median bubble characteristics derived from the experimental data and correlations were

contrasted with predicted average values. The average bubble characteristics were greater than the median values. A significant contribution from small bubbles may be neglected when an average characteristic is employed.

Figures detailing the distributions of bubble vertical dimensions and rise velocities are presented. As bed height increases the bubbles conglomerate towards the centre of the bed and as a consequence bubble size and rise velocity increase in the centre of the bed.

This investigation should be of great benefit to future studies linking bed hydrodynamics to fluidized bed performance and any study where high speed data acquisition is necessary given the improvement in the ease of measurement.