

CAREER

* USPARY

090A.GI A135

INTEGRATED FARM MANAGEMENT FOR SMALL HOLDINGS IN LOMBOK (INDONESIA)

Thesis submitted by

ABDOERRAHMAN B.Sc (Brawidjaja), Ir (Gadjahmada) Indonesia Grad.Dip.Agr.(Roseworthy Agr.Coll) Australia

For the Degree of Master of Applied Science (Agriculture) in the University of Adelaide

Department of Business and Extension Agricultural and Natural Resource Sciences Faculty The University of Adelaide

ACKNOWLEDGEMENTS

I wish to thank my supervisors, Mr. Alastair J. Fischer and Christopher M. Boast, Dip.Ag., Dip.Farm Management, Dip.Farm Bus.Admin., M.Sc for their guidance and encouragement throughout this project. I also would like to thank Ir. H. Machmud of the Agricultural Department West Nusa Tenggara Province, John Perkins of the Department of Agriculture and Forestry, the University of Melbourne and R. John Petheram of the Victorian College of Agriculture and Horticulture Longerenong Campus for their advice and assistance, and Mr Peter Ninnes of the Key Centre, Roseworthy Campus, the University of Adelaide, for his interest in my study.

Thanks are due to Ian M. Cooper, B.Agr.Sc., M.Sc., Head of Department of Business and Extension, and Elizabeth M Hiskey, Postgraduate Co-ordinator of Department of Business and Extension, Faculty of Agriculture and Natural Resource Sciences, the University of Adelaide, for their advice and assistance.

For specific services I thank Mr. Brian M. Glaetzer, Computer Manager of Roseworthy Campus and Melissa Gibbs, Computer Manager of Faculty of Economics, the University of Adelaide, for their assistance during the analysis of data and also Margaret Cargill of the Language and Learning Service, Advisory Centre for University Education, the University of Adelaide, for her help in English expression.

ii

The work described in this thesis was made possible by the award of a scholarship from the Agricultural Department of the Republic of Indonesia. I gratefully acknowledge the Republic of Indonesia Government for the award.

Finally, my deep gratitude is extended to my wife Sri Sutrisni, my daughter Diah Rahmawati and my son Aries Dwi Ananto for their continuous support, understanding and encouragement.

DECLARATION

I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university. To the best of my knowledge and belief, no material described herein has been previously published or written by another person except when due reference is made in the text.

Abdoerrahman

iv

SYNOPSIS

The main problems of small farmers in Lombok Island particularly, are the small size of farm, lack of capital and low capabilities of managerial skill. These problems cause low outputs and incomes. Serious efforts are being made to overcome them. The Indonesian Government has paid a lot of attention to small farmers in an effort to increase their income through increasing food production, and to overcome their inertia in order that they are also able to play a role in the ongoing programme of agricultural development.

The problems of these farmers are the precarious marginality of their enterprise, with average incomes so low as to lift them only slightly above subsistence levels.

As expected from the small size of their holdings, these farmers concentrate on the production of staple food crops, especially rice, but also corn and/or peanuts and soybean, with little variation. The alternative typical crop rotations usually practised by the farmers of this region in a year, are: Rice-Rice-Corn, Rice-Rice-Mixed Crops, Rice-Rice-Peanut, and Rice-Rice-Soybean. The type of crop rotation as Rice-Rice-Soybean was practised more widely than the others. At the same time , small farmers possess some livestock, particularly cattle or buffaloes as draft animals for soil cultivation activities. Farmers cultivate the soil as well as possible, constrained by capital availability.

The performances of poorer farmers are hindered by a lack of capital to purchase the optimal quantities of inputs. The remedies would appear to lie in further extension of credit to poor farmer or in other measures to make the distribution of income more even.

In the effort to increase the small farmers' output, it is also necessary to look for appropriate technologies which are affordable by the farmers.

The integration between livestock production and food crop production, will prove more beneficial when the farmers, as decision makers, have abilities not only in technical areas, but also in managerial ones, because integrated farming systems have a more complex management process.

In the sampled villages farming involves mainly loosely integrated mixed farming systems where most farmers engage in the production of food crops, cattle, and/or catch fish from the ponds. Integration of livestock into food crop production occurs not only when livestock are used as draft animals for soil cultivation, but also livestock as producing manure which is used as fertilizer for food crops (organic fertilizer). To increase the farmers' output, the quality

of farming practices must be considered. For this purpose a survey was done to collect data from farmer respondents, incorporating the results from interviews and questionnaires used.

The aim of the survey was to find out whether a number of farming practices can be improved.

The survey for this study was conducted in 1991 in six sampled villages of three regencies in Lombok island (West, Central and East Lombok), but only two villages of West Lombok were analysed for detailed consideration because of limitations of time. The sample used comprised 121 respondents, consisting of 58 farmers who had livestock and 63 farmers who did not.

In this survey data was collected not only on number and age of farmers, their educational levels and other personal data (relationships, etc.), but also on farming practices, i.e.: details of cropping pattern, livestock, inputs (amounts and values), outputs and gross margins of farming.

Furthermore, from the results of the survey we looked at farmers who have livestock compared to farmers who do not in terms of their inputs, outputs, gross margins, crop rotations, use of inorganic fertilizer and manure (organic fertilizer). and also the educational levels of the farmers.

In this study seven farm models were used based on crop rotation: (1) Rice-Rice-Corn, (2) Rice-Rice-Mixed Crops (With Livestock), (3) Rice-Rice-Mixed Crops (Without Livestock), (4) Rice-Rice-Peanut (With Livestock), (5) Rice-Rice-Peanut (Without Livestock), (6) Rice-Rice-Soybean (With Livestock), and (7) Rice - Rice -Soybean (Without Livestock).

Basically, farmers use inorganic fertilizer for their food crops, such as Urea, Triple Super Phosphate and Potassium Chloride, while manure (waste of livestock) is occasionally used for fertilizer of secondary crops (corn, peanut, soybean, sweet potatoes, and cassava).

The quality of these farming practices might be affected not only by the availability of capital, but also the levels of education of farmers themselves. In the sampled villages, most farmers (48.8 percent) attended primary school, while 36.4 percent did not have a formal education.

From the results of data analysis, it can be concluded that farmers with livestock have a statistically-significant higher gross margin than those without livestock. The reason for this appears to be that those with livestock are generally richer farmers, who are not faced with the same constraints of capital. Consequently they apply higher levels of inputs than those without livestock, and this is what appears to give rise to the higher gross margins.

In the year referred to in the survey (1990), some farm-models (rotation patterns) were better than others. The results showed that a farm model with rotation pattern Rice-Rice-Peanut had a significantly higher output and gross margin than other rotations patterns. This is partly because in 1990 the price of peanuts was higher than could have been expected from past prices. When the expected 1990 price of peanuts was used instead of the actual 1990 price, the expected gross margin was still higher than that of corn and soybean.

All farmers apply recommended levels of inorganic fertilizer for the rice crops, according to government policy, while for secondary crops farmers used less than the recommendation. However, manure was not used by the farmers as a fertilizer for rice, and only in small amounts for secondary crops. The analysis in that part of the thesis attempts to explain why farmers use so little manure, and derives a value for manure. The value of manure per Tonne implied by its nutrient content is or Rp.9.3 per kilogram. approximately Rp.9,300, An alternative measure based on its value in enhancing soybean yield gives Rp.5.3 per kilogram. Another result is that the use of manure was not related to distance from manure production site to the nearest field of farmers. A cost-benefit analysis of manure usage is undertaken, and shows that the cost of gathering, storing and spreading manure is worthwhile, and is likely to add 0.7 to 2.7 percent to gross margins.

Farmers' formal education levels were not significantly related to gross margin. By this, it can be understood that educational level is a factor which influences the output and/or gross margin only indirectly. It appears that improving the techniques or managerial skills of adult farmers can be achieved by informal education through agricultural extension activities.

The conclusions of the thesis relate to three areas of farming practice.

First, it appears that the performances of poorer farmers are hindered by a lack of capital to purchase the optimal quantities of inputs. The remedies would appear to lie in further extension of credit to poor farmers, or in other measures to make the distribution of income more even.

Second, at current relative prices, farmers should be encouraged to grow more peanuts relative to soybeans. However, care needs to be taken in this area, because if all farmers in Indonesia undertook such advice in the same year, it would almost certainly result in the collapse of peanut prices and a large increase in soybean prices. For that reason, and to diversify farmer's crops (and hence reduce their exposure to risk) it is suggested that soybean farmers plant some peanuts as well. The result that significantly higher gross margins would accure to peanut farming rather than soybean production comes not only from the survey using the 1990 price and yield data, but was also sustained when expected 1990 price data was used. The 1990 peanut prices were higher

than expected and resulted in gross margins for rice-rice peanuts being 26 % higher than for rice-rice-soybean. But even when actual gross margins were replaced by expected gross margins, based on the price expected in 1990 on the basis of 1985-1989 prices, the expected gross margin for rice-rice-peanuts was 16 to 18 percent higher than for rice-rice-soybean. Thus it is clear that even on this basis, farmers would be a lot better off with peanuts (or a peanut-soybean mix) rather than soybean alone.

In addition to the possibility of a change in emphasis on crop rotation choice, it should also be possible, as production of rice continues to outstrip population growth, to phase down the production of secondary starch crops such as sweet potatoes and cassava, and to use that acreage for protein crops (soybean and peanut).

Third, a case has been made for a large-scale extension effort, concentrating on encouraging the use of natural manures on secondary crops. 140

INTEGRATED FARM MANAGEMENT FOR SMALL HOLDINGS IN LOMBOK (INDONESIA)

LIST OF CONTENTS

ACKNOWLED DECLARATI SYNOPSIS LIST OF C LIST OF T LIST OF F LIST OF A ABBREVIAT	OGEMENTS ON CONTENTS ABLES IGURES PPENDICE IONS USE	S D IN THIS THESIS	ii v ix kii kvi kvii kx
CHAPTER O	DNE :	INTRODUCTION 1.1 Background of the Study 1.2 Aims of the Study 1.3 Outline of Study 1.3.1 Source of the Data 1.3.2 Study Area 1.3.3 Sampling Methods 1.3.4 Method of Analysis 1.4 Outline of Thesis	1 5 7 7 8 8 11
CHAPTER T	WO :	<pre>THE THEORETICAL AND EMPIRICAL STUDIES OF FARM MANAGEMENT FOR SMALL HOLDINGS 2.1 Definition of Integrated Farm Management 2.2 Definition of the Small Holdings 2.3 The Problems of Small Holding in Improving Output 2.4 The Roles of Integrated Farm Management in Increasing the Small Holding's Output</pre>	13 13 15 18 19
CHAPTER T	HREE :	HYPOTHESES TO EXPLAIN FACTORS INFLUENCING THE SMALL HOLDING'S OUTPUT 3.1 Cost of Soil Cultivation 3.2 Fertilizers 3.3 Level of Farmer's Education 3.4 Crop Rotation 3.5 Importance of Rice as a Staple Food Crop	22 22 23 27 27 31
CHAPTER F	OUR :	METHODOLOGY 4.1 The Number of Respondents 4.2 Sampling Methods	35 35 40

CHAPTER FIV	E THE 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2	 RESULTS OF THE SURVEY Sex and Age of Respondents Family Members The Educational Level of Respondents The Activities of Respondents The Farm Holdings Livestock Possession The Farm Model Inputs into Crop Production 5.8.1 Harvesting Costs 5.8.2 Soil Cultivation 5.8.3 Inorganic Fertilizers 5.8.4 Organic Fertilizer 5.8.5 Seed Variety Efficiency and Profitability 	42 42 43 44 45 48 50 53 56 57 58 61 65 68
CHAPTER SIX	: TES INF 6.1 6.2 6.3 6.4 6.5	 TING HYPOTHESES ABOUT FACTORS LUENCING THE SMALL HOLDING'S OUTPUT Introduction Farmers with Livestock Farmers not having Livestock Regression Analysis Analysis of Variance 6.5.1 Input Differences for Live Models 6.5.2 Soil Cultivation Costs 6.5.3 Manure and Farming Models 6.5.4 Seeds and Crop Models 6.5.5 Summary of Results of Different Crop Models 6.5.6 Educational Level 	T 74 75 77 79 88 89 90 92 95 95
CHAPTER SEVE	EN : ANA MAR 7.1 7.2	LYSIS OF EXPECTED PRICES AND GROSS GINS The Case of Corn The Case of Sovbean	98 99
	7.3	The Case of Peanuts Expected Gross Margins	105 110
CHAPTER EIGH	IT : MAN 8.1 8.2 8.3 8.4 8.5 8.6 8.6 8.7 8.8	URING Passive and Active Manuring The Characteristics of Manure The Content of Nutrients in Manure Benefits of Manuring The Money Value of Manure The Relationship Between Distance and Application of Manure The Manure Storage Storage and Spreading Costs 8.8.1 Summary	118 119 120 122 123 124 126 128 132 134

1

*

×

	8.9 Timing Problem of Manuring	135
	8.10 Soil Structure Improvement	135
	8.11 The Application of Manure	136
	8.12 Extra Benefits	137
	8.13 Overview	137
CHAPTER NINE :	IMPLICATIONS AND CONCLUSION	138
	9.1 Introduction	138
	9.2 Finding	139
	9.3 Policy Implications	142
	9.4 Research Implications	144
	9.5 Conclusions	145

BIBLIOGRAPHY APPENDICES

LIST OF TABLES

TABLE		PAGE
1.1	The Number of Livestock in West Nusa Tenggara	3
3.1	The Ability of Livestock to Cultivate Land per Hectare	23
3.2	Recomendation for Food-Crop's Fertilizer in West Nusa Tenggara	26
3.3	Projection of Consumption of Selected Food Commodities in Kg/Capita/year	32
3.4	The Total Food Consumption of Selected Commodities	33
4 . 1	Districts and Villages Surveyed in Each Region	36
4.2	The Number of Farmers and Farm Areas in the Selected Villages	37
4.3	The Number of Farmers Who Have and Manage Both Irrigated Lowland and Upland in the Selected Villages	38
4.4	Comparison of Average Size Between Popu- lation and Sampled Farmers in Each Regency	39
4.5	The Number of Respondents in Each Region	40
5.1	The Number of Respondents by Age Group	42
5.2	The Farmer's Family (excluding the Farmer)	43
5.3	The Number of Children	44
5.4	The Educational Levels of Respondents	45
5.5	Farm Incomes of Farmers of Various Sizes	47
5.6	The Farm Holding (Irrigated Lowland) of Respondents	48

xii

xiii

5.7	The Farm Holding (Upland) of Respondents	49
5.8	The Average Farm Size	50
5.9	The Livestock Population in Lombok (in 1988)	51
5.10	The Number of Livestock Possessed	52
5.11	The Number of Farmer Respondents for Each Farm Model	55
5.12	The Cost of Inputs in Rupiah and % of Total Inputs	57
5.13	The Cost of Harvesting for Each Farm Model per Hectare	58
5.14	The Number of Work-Days and the Cost of Labour and Livestock Used in Soil Cultivation for Each Farm Model	59
5.15	The Total Costs of Soil Cultivation for Each Farm Model per Hectare	60
5.16	The Amount and Value of Fertilizers Used for Rice Crop, per Hectare, per Year	61
5.17	The Amount and Value of Fertilizers Used for Secondary Food Crops (Other Crops After Rice Crop), per Hectare	63
5.18	The Amount and Value of Fertilizer Used for Each Crop per Hectare (Recommendation)	64
5.19	The Amount of Manure Used for the Secondary Food Crops	66
5.20	Mean Value of Total Inputs, Output and Gross Margin for Each Farm Model	68
5.21	Mean Value of Output, Inputs and Gross Margin for Each Kind of Crop Rotation	69
5.22	The Efficiency of Each Farm Model	72
5.23	The Efficiency of Rice and Another Crops	72
6.1	Correlation Matrix Between Each Variable on Irrigated Lowland / Have Livestock	75

xiv

6.2	Correlation Matrix Between Each Variable on Upland / Have Livestock	77
6.3	Correlation Matrix Between Each Variable on Irrigated Lowland/Without Livestock	78
6.4	Correlation Matrix Between Each Variable on Upland / Without Livestock	79
6.5	The Significance of Variables Between Crop Model and Live-Model	90
6.6	The Different of Amount of Manure Between Crop Model and Live Model (ANOVA)	92
6.7	Mean of Manure Used per Hectare, per Year	93
6.8	The Relationship Between Amount of Manure per Hectare and Gross Margin per Hectare (ANOVA)	93
6.9	Mean of Input's Components per Hectare of Each Crop Model	94
6.10	The Relation Between Level of Education and Gross Margin	96
6.11	The Relationships Between Educational Level and Gross Margin (ANOVA)	96
7.1	Farmgate and Retail Prices of Corn in Lombok, Period 1985-1990	100
7.2	Farmgate and Retail Prices of Soybean in Lombok, Period 1985–1990	102
7.3	Farmgate and Retail Prices of Peanuts in Lombok, Period 1985–1990	105
7.4	Expected, Actual and Regression Estimate Prices of Corn, Soybean and Peanut.	110
7.5	Mean of Actual Gross Margin per Hectare of Each Crop Model and Live Model	111
7.6	Mean of Observed Expected Gross Margin per Hectare of Each Crop Model and Live Model	112
7.7	Mean of Regression Estimate Gross Margin per Hectare of Each Crop Model an Live Model	113

8.1	The	Nutrient	Cont	tent of	Mar	nure		122
8.2	The	Influence	of	Manure	on	Soybean	Growth	123

xvi

LIST OF FIGURES

FIGURE		PAGE
1.1	Diagram of Integrated Farming Systems	4
3.1	Diagram of Crop Rotation	29
5.1	The Educational Level of Farmer Respondents	46
5.2	Efficiency of Each Type of Crop Rotation	71
7.1	Farm-Gate, Retail and Real Farmgate Prices of Corn, Period 1985-1990	101
7.2	Farm-Gate, Retail and Real Farmgate Prices of Soybean, Period 1985–1990	103
7.3	Regression Estimate Price of Corn in 1990	104
7.4	Regression Estimate Price of Soybean in 1990	104
7.5	Farm-Gate, Retail and Real Farmgate Prices of Peanut, Period 1985–1990	106
7.6	Farm-Gate, Retail and Real Farmgate Prices of Rice, Period 1985–1990	107
7.7	Regression Estimate Price of Peanuts in 1990	108
7.8	Regression Estimate Price of Rice in 1990	108
8.1	The Relationship Between Distance and Application of Manure	127

LIST OF APPENDICES

Appendix	1	:	Questionnaire of The Survey	152
Appendix	2	:	The Amount of Manure Used in West, Central and East Lombok	160
Appendix	3		Farm-Gate, Retail and Real Farm-Gate Prices of Rice, Corn, Peanut and Soybean, Period 1985–1990, in Lombok, West Nusa Tenggara, Indonesia	166
Appendix	4	:	Analysis of Variance The Relationship Between Output and Input,Manure and Educational Level of Farmers (Irrigated Lowland/With Livestock)	167
Appendix	5	•	The Relationship Between Output and Input,Manure and Educational Level of Farmers (Irrigated Lowland/With Livestock)	169
Appendix	6	:	The Relationship Between Output and Soil Cultivation, Inorganic Fertil Manure and Educational Level (Irrigate Lowland / With Livestock)	izer, d 171
Appendix	7	•	The Relationship Between Output and Input,Manure and Educational Level of Farmers (Upland/With Livestock)-ANOVA	175
Appendix	8	:	The Relationship Between Output and Input,Manure and Educational Level of Farmers (Upland/With Livestock)	177
Appendix	9	:	The Relationship Between Output and So Cultivation,, Manure and Educational ((Upland /With Livestock)	il Level 179
Appendix	10		The Relationship Between Output and Input,Manure and Educational Level of Farmers (Irrigated Lowland /Without Livestock)- ANOVA	181
Appendix	11	:	The Relationship Between Output and Input,Manure and Educational Level of Farmers (Irrigated Lowland /Without Livestock)	183
Appendix	12	:	The Relationship Between Output and So Cultivation, Inorganic Fertilizer, Ma and Educational Level (Irrigated Lowla Without Livestock)	il anure nd / 185

3	The Relationship Between Output and Input,Manure and Educational Level of Farmers (Upland/Without Livestock)	100
		189
:	The Relationship Between Output and Input,Manure and Educational Level of Farmers (Upland/Without Livestock)	191
		151
	The Relationship Between Output and So Cultivation, Manure and Educational (Upland /Without Livestock)	Level 193
•	Analysis of Labour for Soil Cultivation Between Crop Model and Live Model	n 195
:	Analysis of Livestock for Soil Cultiv Between Crop Model and Live Model	ation 196
	Analysis of Seed's Value per Hectare Between Crop Model and Live Model	197

Appendix	19 :	Analysis of Planting per Hectare	
		Between Crop Model and Live Model	198

- Appendix 20 : Analysis of Fertilizing per Hectare Between Crop Model and Live Model 199
- Appendix 21 Analysis of Weeding per Hectare Between Crop Model and Live Model 201
- Appendix 22 : Analysis of Pesticide per Hectare Between Crop Model and Live Model 202
- Appendix 23 : Analysis of Spraying per Hectare Between Crop Model and Live Model 203
- : Analysis of Harvesting per Hectare Appendix 24 Between Crop Model and Live Model 204
- Appendix 25 : Analysis of Total Inputs per Hectare Between Crop Model and Live Model 205
- Appendix 26 : Analysis of Outputs per Hectare Between Crop Model and Live Model 206
- : Analysis of Gross Margin per Hectare Appendix 27 Between Crop Model and Live Model 207
- Appendix 28 Mean of Variables Each Crop Model and Live Model 209
- Appendix 29 : Analysis of Amount of Manure per Hectare Between Crop Model and Live Model 217

Appendix 13

Appendix 14

Appendix 15

Appendix 16

Appendix 17

Appendix 18

~	ч.	\mathbf{v}
~	1	~
	-	

Appendix	30	:	Mean of Amount of Manure for Each Crop Model and Live Model	218
Appendix	31	:	Analysis of Actual Gross Margin per Hectare Between Crop Model and Live Model	219
Appendix	32	:	Analysis of Observed Expected Gross Ma per Hectare Between Crop Model and Live Model	argin 9 220
Appendix	33	:	Analysis of Regression Estimate Gross Margin per Hectare Between Crop Model and Live Model	221
Appendix	34	•	Mean of Actual, Observed Expected and Regression Estimate Gross Margin per Hectare Each Crop Model and Live Model	222
Appendix	35	:	Analysis of Actual Output per Hectare Between Crop Model and Live Model	224
Appendix	36		Analysis of Observed Expected Output per Hectare Between Crop Model and Live Model	e 225
Appendix	37	•	Analysis of Regression Estimate Output per Hectare Between Crop Model and Live Model	e 226
Appendix	38	÷	Mean of Actual, Observed Expected and Regression Estimate Output per Hectare Each Crop Model and Live Model	227
Appendix	39	:	Relationship Between Educational Level and Gross Margin per Hectare	229
Appendix	40	:	Mean of Actual Gross Margin per Hectare Each Level of Education of Farmer	230
Appendix	41	••	Total Areas of Rice, Corn, Soybeans and Peanuts, West Nusa Tenggara Province, Period 1984-1990	231

ABBREVIATIONS USED IN THIS THESIS

IROUT_HA	:	Outputs of Irrigated Lowland (sawah) per
IRINP HA		Hectare, per Year Total Inputs of Irrigated Lowland (Sawah) per
		Hectare, per Year
ICLAB_HA	:	The Amount of Labour used in Soil
		Cultivation of Irrigated Lowland (Sawah) per
ICIS HA		The Number of Livestock (Cattle) used in
1020_III	-	Soil Cultivation of Irrigated Lowland (Sawah)
		per Hectare, per Year
IFERT_HA	:	The Amount of Inorganic Fertilizer used for
		Food Crops on Irrigated Lowland (Sawah) per
IWAST HA		The Amount of Manure (Waste) used for Eood
	0	Crops on Irrigated Lowland (Sawah) per Year.
		per Hectare
EDC1		The Educational Level of Farmers
UPOUT_HA	:	Outputs of Upland (Lahan Kering) per Hectare,
	~	per Year
UPINP_HA		Hectare per Year
UCLAB HA		The Amount of Labour Used in Soil
	127	Cultivation of Upland (Lahan Kering) per
		Hectare, per Year
UCLS_HA	5	The Number of Livestock (Cattle) Used in
		Soil Cultiovation of Upland (Lahan Kering),
HEEDT HA		per Hectare, per Year
UPERI_HA	2	Food Crops on Unland (Laban Koring) per
		Hectare, per Year
UWAST_HA	31	The Amount of Waste (Manure) Used for Food
		Crops on Upland (Lahan Kering), per Hectare,
		per Year
SCLABHA		The Amount of Labour Used in Soil
		Costs of Soil Cultivation Using Labour
COOCEBIIA	•	Hectare, per Year
SCLSHA	:	The Number of Livestock (Cattle) Used in
		Soil Cultivation per Hectare, per Year
COSCLSHA	:	Costs of Soil Cultivation Using Livestock
0000		(Cattle) per Hectare, per Year
SEEDHA	a a	The Value of Seeds per Hectare,, per Year
PLANLBHA		The Amount of Labour in Planting per
		Rectare, per Year Costs of Planting por Hostons, por Year
FERTHA	-	The Value of Inorganic Fertilizers per
		Hectare, per Year
WASTEHA	;	THe Value of Manure per Hectare, per Year
FERTLBHA	:	The Amount of Labour in Fertilizing per
		Hectare, per Year
COFERTHA		Costs of Fertilizing per Hectare, per Year

WEEDLBHA	: The Amount of Labour in Weeding per Hectare,
COWEEDHA	: Costs of Weeding per Hectare, per Year
PESTICHA	The Value of Pesticides per Hectare, per Year
SPRALBHA	: The Amount of Labour Used in Spraying per
	Hectare, per Year
COSPRAHA	: Costs of Spraying per Hectare, perr Year
COHARVHA	: Costs of Harvesting per Hectare, per Year
IRRINPHA	Total Inputs in Irrigated Lowland (Sawah) per
	Hectare, per Year
IROUTHA	🗈 Output of Irrigated Lowland (Sawah) per
	Hectare, per Year
GROSSMHA	: Total Gross Margin per Hectare per Year
COSCLTOT	: Total Costs of Soil Cultivation per Hectare,
	per Year
EFFICNCY	: Efficiency