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Abstract

Fine-grained object recognition is an important task in computer vi-

sion. The cross-convolutional-layer pooling method is one of the sig-

nificant milestones in the development of this field in recent years.

Based on the method, we conducted a number of experiments on

a new fine-grained car dataset - CompCars. The corresponding ex-

periments illustrate its applicability and effectiveness on this newly-

designed dataset. Meanwhile, based on the experiments, we found

out that pooling the most distinguishable regions like car logos and

headlights areas in the indicator maps, which usually have higher

activations, with the local features in the same regions can achieve

better results than those by pooling the whole indicator maps with

the corresponding local features. Therefore, we conjecture that bet-

ter performance may be achieved if we have more powerful indicator

maps or pooling channels that can better highlight these distinguish-

able regions.

Based on the above hypothesis and inspired by the cross-convolutional-

layer pooling, next we propose the Spatially Weighted Pooling (SWP)

method, which is a simple yet effective pooling strategy to improve

fine-grained classification performance. SWP learns a dozen of pool-

ing channels or spatial encoding masks that aggregate local convolu-

tional feature maps with learned spatial importance information and

produce more discriminative features. It can be seamlessly integrated

into existing convolutional neural network (CNN) architectures such

as the deep residual network. It also allows end-to-end training. SWP

has few parameters to learn, usually in several hundreds, therefore

does not introduce much computational overhead.



SWP has shown significant capability to improve fine-grained visual

recognition performance by simply adding it before fully-connected

layers in off-the-shelf deep convolutional networks. We have con-

ducted comprehensive experiments on a number of widely-used fine-

grained datasets with a variety of deep CNN architectures such as Alex

networks (AlexNet), VGG networks (VGGNet) and the deep residual

networks (ResNet). By integrating SWP into ResNet (ResNet-SWP),

we achieve state-of-the-art results on three fine-grained datasets and

the MIT67 indoor scene recognition dataset. With ResNet152-SWP

models, we obtain 85.2% on the bird dataset CUB-200-2011 without

bounding-box annotations and 87.4% with bounding-box, 91.2% on

FGVC-aircraft, 94.1% on Stanford-cars with bounding-box informa-

tion and 82.5% on the MIT67 dataset.
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