

The Stenian-Cambrian Tectonic Evolution of Central Madagascar

Donnelly Brian Archibald

Department of Earth Sciences School of Physical Sciences The University of Adelaide

May 2016

Abstract	
	V
List of figures	vi
List of tables	ix .
List of supplementary appendices	xi
Declaration	xii
Journal Articles	xiii
Acknowledgements	xiv
Chapter 1 – Introduction and Geology of Madagascar	1
1.1 Introduction	2
1.2 Project outline	2
1.3 Project aims and hypotheses	8
1.4 Regional geology of Madagascar	10
1.5 Thesis outline	12
Chapter 2 – The Ambatolampy Group	15
Statement of Authorship	16
Abstract	18
2.1 Introduction	18
2.2 Regional geology of Madagascar	19
2.3 The Ambatolampy Group	22
2.3.1 Group description	22
2.3.2 Lithologies and stratigraphy	23
2.3.3 Previous work and interpretation	23
2.4 Analytical Methods	23
2.4.1 Zircon separation and imaging	23
2.4.2 Zircon U-Pb geochronology	24
2.4.3 Zircon oxygen isotope analysis	24
2.4.4 Zircon Lu-Hf analysis	24
2.5 Sample information and results	25
2.6 Discussion	32
2.6.1 Depositional age constraints of the Ambatolampy Group Protoliths	32
2.6.2 δ^{18} O in the Ambatolampy Group	33
2.6.3 Relationship to metasedimentary units in central Madagascar	33
2.6.4 Provenance and potential source regions for the Ambatolampy Group	37
2.7 Summary and conclusions	38
5	20

Chapter 3 – Zircon isotopic characteristics of the Imorona-Itsindro Suite	41
Statement of Authorship	42
Abstract	44
3.1 Introduction	44
3.2 Regional geology of Madagascar	45
3.3 The Imorona-Itsindro Suite	49
3.3.1 Suite description and contact relationships	49
3.3.2 Previous isotopic work	50
3.4 Analytical methods	51
3.5 Results	54
3.5.1 Sample description and U-Pb zircon results	54
3.5.1.1 Ikalamavony Domain	54
3.5.1.2 Itremo Domain	55
3.5.1.3 Central Antananarivo Domain	55
3.5.1.4 Northern Antananarivo Domain	58
3.5.1.5 Eastern Antananarivo Domain	59
3.5.1.6 Masora Domain	64
3.5.2 Oxygen and hafnium isotope results	64
3.5.1.1 Ikalamavony Domain	64
3.5.1.2 Itremo Domain	64
3.5.1.3 Central Antananarivo Domain	65
3.5.1.4 Northern Antananarivo Domain	65
3.5.1.5 Eastern Antananarivo Domain	66
3.5.1.6 Masora Domain	67
3.6 Discussion	68
3.6.1 Zircon U-Pb geochronological data for the Imorona-Itsindro Suite	68
3.6.2 Oxygen and hafnium isotopes in the Imorona-Itsindro Suite	69
3.6.3 Temporal and spatial distribution of the Imorona-Itsindro Suite	72
3.6.4 Tectonic implications	74
3.7 Summary and conclusions	77
3.8 Acknowledgements	78
Chapter 4 – Geochemistry of the Imorona-Itsindro Suite	79
Statement of Authorship	80
Abstract	81

4.1 Introduction	81
4.2 Regional geology of Madagascar	83
4.3 Analytical methods	85
4.4 Results	86
4.4.1 Field descriptions and contact relationships	86
4.4.2 Petrography and mineral chemistry	86
4.4.3 Whole-rock geochemistry	95
4.5 Discussion	106
4.5.1 Petrogenesis of the Imorona-Itsindro Suite	106
4.5.2 Tectonic implications	112
4.5.3 Implications for the tectonic development of central Madagascar	115
4.6 Summary and conclusions	117
4.7 Acknowledgements	118
Chapter 5 – Geochemistry of the Ambalavao-Maevarano Suite	119
Statement of Authorship	120
Abstract	121
5.1 Introduction	121
5.2 Regional geological context	123
5.3 Geology of Madagascar	123
5.3.1 Lithotectonic domains and unit descriptions	123
5.3.2 Structural and metamorphic context	127
5.4 Field relationships and previous work	128
5.4.1 Ambalavao Suite	128
5.4.2 Maevarano Suite	129
5.5 Analytical methods	130
5.6 Results	131
5.6.1 Sample descriptions and U-Pb geochronology	131
5.6.1.1 Ambalavao Suite in the Antananarivo Domain	131
5.6.1.2 Ambalavao Suite in the Itremo Domain	133
5.6.1.3 Ambalavao Suite in the Ikalamavony Domain	134
5.6.1.4 Maevarano Suite in the Antananarivo Domain	135
5.6.2 Oxygen isotopes	135
5.6.2.1 Ambalavao Suite	135
5.6.2.2 Maevarano Suite	135
5.6.3 Hafnium isotopes	137
5.6.3.1 Ambalavao Suite	137

5.6.3.2 Maevarano Suite	139
5.6.4 Whole-rock geochemistry	140
5.6.4.1 Ambalavao Suite	140
5.6.4.2 Maevarano Suite	140
5.7 Discussion	142
5.7.1 Age of the Ambalavao and Maevarano Suites	142
5.7.2 Oxygen and hafnium isotopes	145
5.7.3 Genesis of the Ambalavao and Maevarano Suites	147
5.8 Summary and conclusions	150
5.9 Acknowledgements	151
Chapter 6 – The Dabolava Suite	153
Statement of Authorship	154
Abstract	155
6.1 Introduction	155
6.2 Regional geology of Madagascar and Neoproterozoic tectonic develop	pment 158
6.3 The Dabolava Suite	161
6.4 Analytical methods	161
6.5 Results	162
6.5.1 Petrography	162
6.5.2 U-Pb geochronology	163
6.5.3 Oxygen and hafnium isotopes	167
6.5.4 Whole-rock geochemistry	168
6.6 Discussion	169
6.6.1 U-Pb age and zircon isotopes	169
6.6.2 Petrogenesis of the Dabolava Suite	175
6.6.3 Implications for Neoproterozoic tectonics in Madagascar	176
6.6.4 Implications for the amalgamation of Rodinia	180
6.7 Summary and conclusions	181
6.8 Acknowledgements	182
Chapter 7 – Summary and conclusions	183
7.1 The Proterozoic tectonic evolution of central Madagascar	184
Chapter 8 - References	189

Abstract

Madagascar occupies an important location in many Proterozoic plate reconstructions. It lies within the East African Orogen, which involves a collage of Proterozoic microcontinents and arc terranes wedged between older cratonic units during Gondwana assembly. Oceanic crust is an important component of palaeogeographic reconstructions that is often overlooked because exposures of in situ oceanic crust older than ~200 Myr do not exist. Therefore, studies of ancient oceanic crust require proxies such as analysing the products of magmatic arcs. The Malagasy basement preserves five magmatic suites emplaced consecutively from ~1100-500 Ma. During this time, the Rodinia supercontinent amalgamated then dispersed and the Gondwana supercontinent formed. This whole-rock geochemical and zircon isotopic study attempts to unravel the Proterozoic tectonic history of central Madagascar using the tectonic setting and duration of various Stenian to Cambrian magmatic episodes. These magmatic suites are the ~1080-980 Ma (Dabolava Suite), ~850-750 Ma (Imorona-Itsindro Suite) and ~650-520 Ma (Kiangara, Ambalavao and Maevarano Suites). Gabbroic and granitoid rocks of the Dabolava Suite combined with the coeval Ikalamavony Group represent a magmatic arc and volcano-sedimentary sequence deposited in an oceanic-arc environment based on isotopic and geochemical characteristics. The Imorona-Itsindro Suite represents contemporaneous emplacement of various lithologies from gabbro to granitoids and syenite. Oxygen and hafnium isotope data have a broad inverse relationship with apparent magmatic cycles occurring on the scale of ~15-40 Ma that emphasize periods of significant supracrustal assimilation evolving to "mantle-like" (or below) signatures. The spatial distribution of isotopic data indicates that the isotopic character of Tonian-aged zircon replicates the basement domain into which the magmas intruded. Samples intruding the Ikalamavony Domain exhibit a less evolved $\varepsilon_{Hf}(t)$ isotopic signature than Tonian-aged rocks intruding the domains to the east, implying melting of different source material. The zircon isotopic dataset emphasises the age range and composition of the Tonian lithosphere beneath central Madagascar. Geochemically, mid-Tonian rocks are calc-alkaline with trace-element characteristics consistent with a continental arc genesis. Radiogenic isotope data show evolved Sr and Nd signatures. Changes in subduction zone dynamics, crustal anatexis and crustal assimilation of the diverse basement domains into ascending magmas contributed to geochemical variations. Prolonged subduction (>100 Myr) provided sufficient time for the arc to mature and a shallow (<100km), metasomatised spinel lherzolite mantle source is preferred. The isotopic and geochemical characteristics of the Imorona-Itsindro Suite argue for a collective genesis in a supra-subduction zone tectonic setting with the Neoproterozoic suture located west of the Ikalamavony Domain. The Ediacaran to Cambrian Kiangara, Ambalavao and Maevarano Suites are post-collisional, mainly granitoid suites emplaced during the final assembly of Gondwana. Magmas incorporated crustal material and isotopic signatures reflect the basement unit in which samples intrude and these rocks are related spatially and temporally with major late-Neoproterozoic deformation episodes. Collectively, these data identify a previously unrecognised and long-lived (~500 Ma) active continental margin correlative to the present-day Pacific Ocean margin. Understanding this large dataset is critical for understanding Madagascar's tectonic evolution during the Stenian to Cambrian.

List of Figures

Chapter 1		
Fig. 1.1	Palaeogeographic reconstruction of (a) Rodinia and (b) Gondwana	3
Fig. 1.2	Simplified basement geology of Madagascar	5
Chapter 2		
Fig. 2.1	Palaeogeographic reconstruction of the Neoproterozoic continents in Gondwana showing the location of the present study and the regional geology of Madagascar	20
Fig. 2.2	Geologic map of central Madagascar showing the distribution of the Ambatolampy Group and sampling locations	21
Fig. 2.3	Cathodoluminescence images for representative zircon (<10% discordant) from the Ambatolampy Group	28
Fig. 2.4	Tera-Wasserburg concordia diagrams for Ambatolampy Group U-Pb data	30
Fig. 2.5	Probability density plots for detrital zircon from the Ambatolampy Group	31
Fig. 2.6	Plot of the 207 Pb/ 206 Pb (zircon) age versus δ^{18} O for Ambatolampy Group samples	31
Fig. 2.7	$\epsilon_{Hf}(t)$ plotted against the ²⁰⁷ Pb/ ²⁰⁶ Pb (zircon) age for samples from the Ambatolampy Group	32
Fig. 2.8	Comparative U-Pb age of detrital zircon probability density diagrams for metasedimentary units in central Madagascar	34
Chapter 3		
Fig. 3.1	Palaeogeographic reconstruction of the Neoproterozoic continents in Gondwana showing the location of the present study and the regional geology of Madagascar	46
Fig. 3.2	Geological map of central Madagascar showing the extent of Tonian magmatism sampled in this study	47
Fig. 3.3	Representative field photographs of the Imorona-Itsindro Suite	50
Fig. 3.4	Selected cathodoluminescence images for representative zircon from the Imorona-Itsindro Suite	54
Fig. 3.5	Concordia diagrams showing zircon analyses for Tonian samples intruding the Ikalamavony and Itremo Domains	56
Fig. 3.6	Concordia diagrams showing zircon analyses for Tonian samples intruding the Central Antananarivo Domain	58
Fig. 3.7	Concordia diagrams showing zircon analyses for Tonian samples intruding the Northern Antananarivo, Eastern Antananarivo and Masora Domains	60
Fig. 3.8	δ^{18} O plotted against the interpreted crystallisation age for analyses of Imorona-Itsindro Suite samples	66
Fig. 3.9	$\epsilon_{Hf}(t)$ plotted against the interpreted crystallisation age for analyses of Imorona-Itsindro Suite samples	67

Fig. 3.10	Histogram and probability density plot of all reliable (as indicated in the text) magmatic crystallisation ages for the Imorona-Itsindro Suite intruding the Masora, Antananarivo, Tsaratanana, Itremo, and Ikalamavony Domains in Madagascar	70
Fig. 3.11	Plot of (a) δ^{18} O and (b) $\epsilon_{Hf}(t)$ plotted against the interpreted crystallisation age for all Tonian zircon analysed in this study	73
Fig. 3.12	Longitudinal coordinates plotted against (a) the interpreted crystallisation age, (b) δ^{18} O, and (c) $\epsilon_{Hf}(t)$ for all zircon in central Madagascar with Tonian crystallisation ages between ~850 and 750 Ma	75
Fig. 3.13	Plot of δ^{18} O versus $\epsilon_{Hf}(t)$ for all zircon analysed in this study	76
Chapter 4		
Fig. 4.1	Palaeogeographic reconstruction of the Neoproterozoic continents in Gondwana showing the location of the present study and the regional geology of Madagascar	82
Fig. 4.2	Geological map of central Madagascar showing the extent of Tonian- aged magmatism sampled in this study	85
Fig. 4.3	Plutonic rock classification diagram plotting samples of the Imorona- Itsindro Suite collected in this study using modal mineralogy	87
Fig. 4.4	Representative outcrop photographs of the Imorona-Itsindro Suite	88
Fig. 4.5	Representative photomicrographs for samples of the Imorona-Itsindro Suite	89
Fig. 4.6	Mineral compositions from EPMA analyses	103
Fig. 4.7	Harker major element variation diagrams for major element oxides, showing the extent of fractionation in the Imorona-Itsindro Suite	103
Fig. 4.8	Chondrite-normalized REE diagrams	104
Fig. 4.9	MORB normalised trace-element spider diagrams	105
Fig. 4.10	Plutonic rock classification diagram using normative mineralogy for all Imorona-Itsindro Suite samples (n=355)	108
Fig. 4.11	Tectonic setting and classification diagrams for samples of the Imorona- Itsindro Suite	110
Fig. 4.12	Radiogenic isotope plots for samples of the Imorona-Itsindro Suite Major and trace-element data for the Imorona-Itsindro Suite plotted	111
Fig. 4.13	against reference datasets from the GEOROC Database for the Andes and the East African Rift	115
Fig. 4.14	Geochemical data plotted against longitudinal coordinates for samples of the Imorona-Itsindro Suite	117
Chapter 5		
Fig. 5.1	Palaeogeographic reconstruction of the Neoproterozoic continents in Gondwana showing the location of the present study and regional geology of Madagascar	122
Fig. 5.2	Geological map of central Madagascar showing the extent of Ediacaran- Cambrian magmatism sampled in this study	124
Fig. 5.3	Representative field photographs of the Ambalavao and Maevarano Suites	128
Fig. 5.4	Quartz-Alkali-feldspar-Plagioclase (QAP) diagram for the Ambalavao and Maevarano Suites using the normative mineralogy	130
Fig. 5.5	Cathodoluminescence (CL) images for representative zircon from the Ambalavao and Maevarano Suites	132
Fig. 5.6	Concordia diagrams showing zircon analyses from the Ambalavao Suite vii	134

Fig. 5.7	Concordia diagrams showing zircon analyses from the Ambalavao and Maevarano Suites	137
Fig. 5.8	Field photographs of the sampling location of DA14-126	138
Fig. 5.9	Oxygen and hafnium isotope diagrams for samples of the Ambalavao and Maevarano Suites	139
Fig. 5.10	Harker major element variation diagrams for various major element oxides, showing the extent to which Ambalavao and Maevarano Suite samples are fractionated and the degree of compositional overlap between the two suites	142
Fig. 5.11	Chondrite-normalized REE diagrams and primitive mantle normalised trace-element spider diagrams for samples of the Ambalavao and Maevarano Suites	143
Fig. 5.12	Kernel density plot of U-Pb age data for all available geochronology data for late Cryogenian to Cambrian magmatism in Madagascar	144
Fig. 5.13	Tectonic setting and classification diagrams for samples of the Ambalavao and Maevarano Suites	149
Chapter 6		
Fig. 6.1	Simplified basement geology of Madagascar showing the major tectonic domains and shear zones	157
Fig. 6.2	Geologic map of the Ikalamavony Domain and the western margin of the Antananarivo Domain showing the extent of Stenian-Tonian magmatism sampled in this study	159
Fig. 6.3	Representative field photographs of the Dabolava Suite	163
Fig. 6.4	Cathodoluminescence (CL) images for representative zircon from the Dabolava Suite	165
Fig. 6.5	Concordia diagrams showing zircon analyses from the Dabolava Suite	166
Fig. 6.6	Oxygen and hafnium isotope diagrams for five samples of the Dabolava Suite	168
Fig. 6.7	Harker major element variation diagrams for the Dabolava Suite	173
Fig. 6.8	Chondrite-normalized REE diagrams and primitive mantle normalised multi-element variation diagrams for samples of the Dabolava Suite	173
Fig. 6.9	Tectonic setting and classification diagrams for samples of the Dabolava Suite	175
Fig. 6.10	Major and trace-element data for the Dabolava Suite and Ikalamavony Group amphibolite plotted against reference datasets from the GEOROC Database for the Andes continental arc and the Aleutian Arc	177
Fig. 6.11	Palaeogeographic reconstruction of the Rodinia Supercontinent at ~900 Ma and tectonic cartoon illustrating the development of magmatic arcs in the Mozambique Ocean with emphasis on those also involved in the East African Orogen near Madagascar (Azania)	181

Appendices

Fig. A.6.1	Results of Plešovice zircon standard analyses	388
------------	---	-----

List of Tables

Chapter 2 Table 2.1	Summary of standard data collected for each method in this study	25
Table 2.2	Summary of sample locations, rock characteristics and mineralogy	27
Table 2.3	Physical and optical characteristics of zircon from the Ambatolampy Group	29
Chapter 3		
Table 3.1	Summary of the major tectonic elements of central and northern Madagascar with the approximate age of each sedimentary unit or magmatic suite	48
Table 3.2	Summary of sample names, lithology, locations and mineralogy for samples of the Imorona-Itsindro Suite	52
Table 3.3	Physical and optical characteristics of zircon from the Imorona-Itsindro Suite	53
Table 3.4	Summary of U-Pb data collected by BGS-USGS-GLW (2008) re- examined in this study	59
Table 3.5	Summary of U-Pb data and age deductions for Tonian rocks in central Madagascar	61
Table 3.6	Summary of all Imorona-Itsindro Suite zircon U-Pb, $\delta^{18}O$, and $\epsilon_{Hf}(t)$ isotopic data	68
Chapter 4		
Table 4.1	Summary of sample names, lithology, locations and geographical	90
Table 4.2	reference for samples of the Imorona-Itsindro Suite Petrographic summary of samples from the Imorona-Itsindro Suite	91
Table 4.3	Representative mineral chemistry (in wt. %) for alkali-feldspar from the	93
Table 4.4	Imorona-Itsindro Suite Representative mineral chemistry (in wt. %) for plagioclase from the Imorona-Itsindro Suite	94
Table 4.5	Representative mineral chemistry (in wt. %) for feldspar exsolution lamellae from the Imorona-Itsindro Suite	95
Table 4.6	Representative mineral chemistry (in wt. %) for amphibole from the Imorona-Itsindro Suite	96
Table 4.7	Representative mineral chemistry (in wt. %) for biotite from the Imorona-Itsindro Suite	97
Table 4.8	Representative mineral chemistry (in wt. %) for biotite from the Imorona-Itsindro Suite	98
Table 4.9	Major and trace element geochemical data collected in this study from the Imorona-Itsindro Suite. Eu/Eu*, La_N/Sm_N and Tb_N/Lu_N ratios were calculated using chondrite normalising values from Sun and McDonough (1989).	99
Table 4.10	Nd, Sm, and Sr isotope data	107

Chapter 5		
Table 5.1	Summary of sample names, lithology, locations and geographical reference for samples of the Ambalavao and Maevarano Suites	131
Table 5.2	Physical and optical characteristics of zircon from the Ambalavao and Maevarano Suites	132
Table 5.3	Summary of U-Pb data and age deductions for the Ambalavao and Maevarano Suites in central Madagascar	136
Table 5.4	Summary of U-Pb, O, and Hf isotope data collected for samples of the Ambalavao and Maevarano Suites in this study	139
Table 5.5	Major and trace element geochemical data collected in this study from the Ambalavao and Maevarano Suites	141
Chapter 6		
Table 6.1	Summary of sample names, locations, lithology and mineralogy for samples of the Dabolava Suite	164
Table 6.2	Physical and optical characteristics of zircon from the Dabolava Suite	165
Table 6.3	SHRIMP II oxygen isotope results from zircon	170
Table 6.4	MC-LA-ICP-MS hafnium isotope results from zircon	171
Table 6.5	Major and trace element geochemical data collected in this study from the Dabolava Suite	172
Table 6.6	Summary of zircon U-Pb, oxygen and hafnium isotope results	174
Appendices		
Table A.3.1	Summary of standard data collected for each method in this study during Imorona-Itsindro Suite zircon analyses	231
Table A.4.1	Detection limits for major element oxides, minor and trace elements analysed in this study	289
Table A.5.1	Summary of standard data collected for each method in this study during Ambalavao and Maevarano Suite zircon analyses	359
Table A.5.2	Detection limits for major element oxides, minor and trace elements analysed in this study	360
Table A.6.1	Summary of standard data collected for each method in this study during Dabolava Suite zircon analyses	389
Table A.6.2	Detection limits for major element oxides, minor and trace elements analysed in this study	391

Supplementary Appendices

Appendix 2.1 - Ambatolampy Group U-Pb (zircon) data	208
Appendix 2.2 - Ambatolampy Group oxygen isotope (zircon) data	222
Appendix 2.3 - Ambatolampy Group hafnium isotope (zircon) data	225
Appendix 3.1 - Genesis of the Imorona-Itsindro Suite analytical methods	229
Appendix 3.1.1 - Sample collection and processing	230
Appendix 3.1.2 - U-Pb (zircon) geochronology	230
Appendix 3.1.3 - Oxygen isotopes in zircon	230
Appendix 3.1.4 - Hafnium isotopes in zircon	231
Appendix 3.2 - Imorona-Itsindro Suite U-Pb (zircon) data	233
Appendix 3.3 - Imorona-Itsindro Suite oxygen isotope (zircon) data	275
Appendix 3.4 - Imorona-Itsindro Suite hafnium isotope (zircon) data	281
Appendix 5.4 Informa fisinaro Sune narmani isotope (Zireon) data	201
Appendix 4.1 - Petrogenesis of the Imorona-Itsindro Suite analytical methods	286
Appendix 4.1.1 - Sample collection and processing	287
Appendix 4.1.2 - Petrography and mineral chemistry	287
Appendix 4.1.3 - Whole-rock geochemistry	287
Appendix 4.1.4 - Sm-Nd and Sr isotope analysis	287
Appendix 4.2 - Petrogenesis of the Imorona-Itsindro Suite EMPA mineral data	290
Appendix 4.2.1 - Representative mineral chemistry for alkali-feldspar	290
Appendix 4.2.2 - Representative mineral chemistry for plagioclase	302
Appendix 4.2.2 - Representative mineral chemistry for feldspar exsolution lamellae	312
Appendix 4.2.3 - Representative mineral chemistry for biotite	312
Appendix 4.2.5 - Representative mineral chemistry for blotte Appendix 4.2.5 - Representative mineral chemistry for amphibole	332
Appendix 4.2.6 - Representative mineral chemistry for clinopyroxene	348
Appendix 4.2.7 - Representative mineral chemistry for titanite	350
Appendix 4.2.8 - Representative mineral chemistry for garnet	353
Appendix 5.1 - Genesis of the Ambalavao and Maevarano Suites analytical methods	357
Appendix 5.1.1 - Genesis of the Antonavao and Waevarano Suites anarytical methods Appendix 5.1.1 - Sample collection and processing	358
Appendix 5.1.2 - U-Pb (zircon) geochronology	358
	358
Appendix 5.1.3 - Oxygen isotopes in zircon	
Appendix 5.1.4 - Hafnium isotopes in zircon	358
Appendix 5.1.5 - Whole-rock geochemistry	359
Appendix 5.2 - Ambalavao and Maevarano Suite U-Pb (zircon) data	361
Appendix 5.3 - Ambalavao and Maevarano Suite oxygen isotope (zircon) data	379
Appendix 5.4 - Ambalavao and Maevarano Suite hafnium isotope (zircon) data	382
Appendix 6.1 - Genesis of the Dabolava Suite analytical methods	387
Appendix 6.1.1 - Sample collection and processing	388
Appendix 6.1.2 - U-Pb (zircon) geochronology	388
Appendix 6.1.2 - O-P6 (ZhCoh) geochronology Appendix 6.1.3 - Oxygen isotopes in zircon	389
	389 389
Appendix 6.1.4 - Hafnium isotopes in zircon	
Appendix 6.1.5 - Whole-rock geochemistry	390
Appendix 6.2 - Dabolava Suite U-Pb (zircon) data	392

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Donnelly B. Archibald

Journal Articles

Archibald, D.B., Collins, A.S., Foden, J.D., Payne, J.L., Taylor, R., Holden, P., Razakamanana, T., Clark, C., 2015. Towards unravelling the Mozambique Ocean conundrum using a triumvirate of zircon isotopic proxies on the Ambatolampy Group, central Madagascar. Tectonophysics 662, 167-182.

Archibald, D.B., Collins, A.S., Foden, J.D., Payne, J.L., Holden, P., Razakamanana, T., De Waele, B., Pitfield, P.E.J., Thomas, R.J., 2016. Genesis of the Tonian Imorona-Itsindro Magmatic Suite in central Madagascar: Insights from U-Pb, oxygen and hafnium isotopes in zircon. Precambrian Research 281, 312-337.

Archibald, D.B., Collins, A.S., Foden, J.D., Razakamanana, T. under review. Petrogenesis of the Tonian Imorona-Itsindro Suite. Journal of Geology.

Archibald, D.B., Collins, A.S., Foden, J.D., Payne, J.L., Holden, P., Razakamanana, T. under review. Tectonics and chemistry of late to post tectonic magmatism in the Malagasy Mozambique Belt. Lithos

Acknowledgements

I would like to extend my gratitude to Prof Alan Collins for his guidance and encouragement during the course of my PhD. Most of all, I would like to thank him for the opportunities to experience exotic cultures in new countries while completing my project. These opportunities have made me a better geologist and scientist by providing me with the opportunity to travel around Australia and the world. I would also like to thank my co-supervisor Emeritus Prof John Foden for his insight, guidance and support especially when trying to understand and interpret geochemical and isotopic data.

This project would not have been possible if not for Prof Theodore Razakamanana from the University of Toliara, Madagascar. His upbeat personality, knowledge of the Madagascan geology and technical assistance in the field made for two enjoyable field seasons.

The Razafinjoelina family, in particular Auguste and Berthieu are thanked for providing transportation, assistance in the field, and their hospitality during fieldwork in Madagascar.

I would like to thank my co-authors, Dr. Justin Payne for his assistance acquiring hafnium isotopic data and for careful manuscript editing. David Bruce is recognised for his assistance acquiring Sr and Nd-Sm isotopic data and Dr. Peter Holden for his assistance acquiring oxygen isotopic data. Dr. Richard Taylor and Dr. Chris Clark are thanked for their assistance acquiring SHRIMP U-Pb data.

I would also like to thank several members of the PGRM project including Bert De Waele, Bob Thomas and Peter Pitfield for providing samples and for providing alternative interpretations on the geology of central Madagascar. The staff at Adelaide Microscopy, in particular, Dr. Ben Wade, Ms. Aoife McFadden, and Mr. Angus Netting are acknowledged for their technical assistance when acquiring analytical data. Dr. Diana Plavsa is recognised for her assistance helping me get this project started.

I would like to acknowledge the University of Adelaide geology faculty for their support over the past three years. I would especially like to thank Dr. Rosalind King, Dr. Stijn Glorie, Dr. Dave Kelsey, Dr. Katie Howard and Dr. Graham Heinson for allowing me to learn and develop my teaching skills while demonstrating undergraduate practicals.

My "officemates" Katherine and Morgan made walking into Mawson everyday entertaining. I would not have made it to Australia if it were not for Bonnie Henderson visiting Canada and convincing me Adelaide was worth moving half-way around the world. I thank Lachlan for giving me a place to live when I arrived and for not kicking me out for almost 2 years! Funny and Stijn moved to Australia at the same time as I did and they made the transition a lot easier. Funny's cooking made my early days feel like home. Finally, I would like to thank Francesco and the rest of the PhD cohort at Adelaide (both new and old) for their friendship and support over the past 3+ years.

Last and certainly not least, finishing this project would not have been possible without the love and support of my Canadian Family and my new Australian Family. It was difficult to move to Adelaide but Maggie, Brian, Daniel, Amanda and the rest of my friends and family supported me every step of the way. My second family (Kath, Steve, Annie, Bruce, Joan and Theo) in Australia made being away from home easier and fun. Eliza, for being there with me during all of the fun times and difficult times I am forever grateful to you. Hopefully, we will have many more adventures together as we begin our next chapter in Canada.