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Abstract

Utilising lattice QCD to calculate nucleon matrix elements has had a huge impact
on the knowledge of the structure of nucleons. From the comparison to experimen-
tal data, to the new insights into the structure of nucleons, the practices of lattice
QCD has cemented itself as a fundamental field for particle physics. Some key
contributions to the understanding of nucleon structure lattice QCD can provide
are parameters needed for the beyond standard model (BSM) extensions, under-
standing the size of the nucleons via the charge radii and the decomposition of the
spin and angular momentum of the quarks and gluons within the nucleon.

But the extraction of hadron matrix elements in lattice QCD using the standard
two- and three-point correlator functions demands careful attention to systematic
uncertainties. Although other systematics including discretisation, renormalisa-
tion and chiral extrapolation effects need to be analysed, one of the most recent
and emerging sources of systematic error is contamination from excited-states.

This thesis applies the variational method to calculate the axial vector current
gA, the scalar current gS, the tensor current gT and the quark momentum fraction
〈x〉 of the nucleon and we compare the results to the more commonly used sum-
mation and two-exponential fit methods. Proceeding with the same comparison of
methods, we extend the calculation to non-zero momentum transfer to access the
vector form factors for both the proton and neutron, as well as the iso-vector com-
bination of the axial and induced pseudoscalar form factors for the proton. The
results demonstrate how excited-states affect the extraction of nucleon matrix el-
ements and in the process discovering that the variational approach offers a more
efficient and robust method for the determination of nucleon matrix elements.

Through this demonstration of how excited-states impact lattice QCD calcu-
lation and how we can use methods to suppress these excited-states, we can hope
to achieve higher and higher precision determinations of nucleon matrix elements
form lattice QCD which will aid in our understanding of the structure of nucleons.
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