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Abstract 

 

The processing of magnetotelluric (MT) data is typically carried out on a desktop 

computer and as a result suffers from a number of drawbacks. The time taken to process 

the data on the desktop computer is unacceptably long and can take approximately a 

month. The limited amount of random-access memory (RAM) in the desktop computer 

limits the length of the time series that can be used in the bounded influence remote 

referencing processing (BIRRP) program. Cloud computing is a new high performance 

computing (HPC) technology that can be accessed over the internet and has the 

potential to address the drawbacks presented by the desktop computer. Cloud 

computing reduces the cost of HPC by pooling computing resources on a large scale. 

Cloud computing offers on-demand resources allowing the user to use only what they 

need and to change the type of resources they require to suit an evolving need. To utilise 

the HPC capabilities of the cloud, a problem must exhibit a high degree of 

parallelisation. MT processing is particularly well suited to cloud computing because of 

its inherent ability to parallelise by the number of stations. To enable automatic 

utilisation of the cloud resources, workflow technology can be used in conjunction with 

the existing MT processing codes. This new approach to MT processing presents the 

opportunity to addresses other inefficiencies in the processing. As the cloud is 

accessible over the internet, this presents the opportunity to perform some processing in 

the field. The ability to process data in the field is advantageous because it allows for 

near instant feedback about the quality of the obtained data. This feedback can then be 

used by the survey team to change the survey to optimise the quality of the obtained 

data if required. However, to achieve this, a number of new processing techniques need 

to be introduced into the workflow.  
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Chapter 1: Introduction 

1.1  Overview 

 

Geophysics is one of the most computationally intensive scientific domains, utilising 

both complicated theoretical models and large datasets. Some of the computationally 

demanding applications of geophysics include seismic processing (Tulchinsky & 

Tulchinsky 2009), 3D geothermal simulations (Wolf et al. 2007), 3D simulations of the 

dispersal of volcanic particles (Ongaro et al. 2007), inversion of 3D MT data (Newman 

& Alumbaugh, 2000; Zyserman & Santos, 2000; Tang-pei & Qun, 2008; Lin et al. 

2009; Siripunvaraporn & Egbert 2009), geodynamo (Glatzmaier and Roberts, 1995), 

seismic wave propagation (Komatitsch & Tromp, 2002a, 2000b), mantle convection 

(Kameyama & Yuen, 2006; Matyska & Yuen, 2005), and lithospheric dynamics 

(Surussavadee & Staelin, 2006). Although the above examples vary in the degrees to 

which they are data- and compute-intensive problems, what is common to all of them is 

the interest in parallel computation to reduce the time taken to compute the problem.  

 

To overcome the limitations of serial processing and to address the problems of data-

intensive computing, a number of different computing architectures have been used to 

implement applications that can be decomposed and performed in parallel. These 

include the dedicated supercomputer, grid computing, clusters of computers and, more 

recently, cloud computing. Considerable progress in parallel computing with these 

architectures has already been made but many people are still using desktop computers 

to do their modelling. The desktop computer is fast reaching its limitations for even 

mildly data-intensive applications (Szalay & Gray, 2006). This is driving the need to 

make the transition from the desktop computer to a parallel architecture capable of 

large-scale parallelisation. The newest and most exciting of these architectures is cloud 
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computing. Cloud computing is exciting for a number of reasons, the most notable 

being its ability to provide on-demand computing resources. This new paradigm of high 

performance computing gives the user the ability to request and use resources to suit 

their demand. Further, the elastic nature of this service allows the user to change the 

resource type such as instance type, and number, with relative ease if they find that their 

current configuration does not suit their purpose. To allow the effective utilisation of 

these resources, workflow technology can be used to execute parallel computations 

automatically across the cloud infrastructure.  

 

The purpose of this investigation is to assess the suitability of cloud computing, 

workflow technology and parallelisation to overcome the current limitations imposed by 

the desktop computer in the processing of MT data. Currently, MT data is processed in 

a sequential manner in which each station in a survey is processed in sequence. The fact 

that the processing of these stations occurs independently means that this problem is 

very amenable to parallel execution, in which all stations can be processed concurrently. 

Problems in the current processing methodology are threefold. Firstly, the time taken to 

process the data can be as long as a month and needs to be substantially reduced by 

using parallelisation. Secondly, the limitations of the available RAM in the desktop 

computer means that only approximately a third of the obtained time series can be used 

in obtaining the MT responses. It is hoped that by using on-demand resources that an 

appropriate amount of RAM can be requested to address this problem. Thirdly, the 

processing itself is quite laborious and fragmented consisting of many folders of data 

that utilises different codes at different stages, resulting in a processing methodology 

that takes a considerable time to share, teach and master. Workflow technology has the 

potential to address this problem by providing an intuitive platform for the parallel 

execution of workflows. Additional benefits of a workflow system are that it allows for 
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easy sharing of the processing methodology. The major barrier to progress by utilising 

these technologies is that they are still in their infancy and are still evolving to suit the 

demands required of them. For this reason, very little work utilising these technologies 

has been demonstrated in the domain of geophysics. It is hoped that this pioneering 

work will reveal the current potential and applicability of these technologies for 

geophysical applications. 
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Chapter 2: Background 

2.1 A New Paradigm 

 

It has long been accepted that theoretical and experimental sciences have been the basic 

research paradigms for exploring nature (Bell et al. 2009). In recent decades, a third 

paradigm has emerged as specialisation of experimentation, and focuses on the unique 

opportunities provided by numerical techniques offered by computers. The relationship 

between the different paradigms is one of data volume. From theory, to 

experimentation, to computation, each level requires an increase in the amount of data 

consumed and produced (Nelson 2009). Science is currently facing a new crisis that is 

again driven by data volume. The use of sensor network, satellites, high throughput 

instruments and supercomputers has led to an exponential increase in data volumes as 

compared to only a decade ago (Bell et al. 2009). The desktop computer and data 

analysis programs such as Matlab and Excel are not capable of processing millions of 

data records and are primitive by most standards. This increase in data volume requires 

scalable processing methods to extract knowledge from the data (Szalay & Gray 2006). 

For data-intensive applications to be effective, they must be able to manage and process 

these large data volumes in an acceptable amount of time (Gorton et al. 2008). This 

data-intensive approach to discovering new knowledge has been described as a 

paradigm in its own right and has come to be known as the fourth paradigm.  
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2.2 Parallelisation 

 

Traditionally, software has been written for serial execution in which a single central 

processing unit (CPU) is used to process the problem. This is achieved by decomposing 

the problem into a series of discrete instructions that are then executed one after another 

(Barney 2010). In contrast, parallel programming seeks to use multiple computer 

resources simultaneously, such as a computer with multiple processors or a number of 

computers connected by a network, or both, to solve problems. This is achieved by 

breaking a problem down into a number of discrete parts (Barney 2010). The discrete 

parts are then broken down into a series of instructions that can be solved concurrently. 

Lower levels of parallelisation include a shared nothing approach in which totally 

independent processes can be executed concurrently instead of sequentially (see Figures 

2.1 and 2.2). The adoption of a parallel approach depends on the ability of the problem 

to be decomposed into smaller independent pieces and the ability of the parallel 

problem to be solved in less time than the serial version (Barney 2010). Barriers to the 

adoption of parallel computing by geoscientists include developing the parallel 

algorithms and the associated software, which is time consuming and often requires 

multidisciplinary expertise (Zhang et al. 2007). 

 

The current interest in parallel computation stems in part from the inability of desktop 

CPUs to process data in a timely manner and limitations in the amount of available 

RAM. In the past, the usual response to this problem was to produce increasingly faster 

CPUs. This increase in CPU speed has grown at almost a constant rate for the last two 

decades; a phenomenon known as Moore’s law (Sava 2010). Moore’s law states that the 

number of transistors that can be placed inexpensively on an integrated circuit has 

doubled approximately every 18 months, which can be seen in Figure 2.3 (Ongaro et al. 
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2007). The performance of many electronic devices such as processing speed and 

memory capacity are strongly dependent on Moore’s law and follow this exponential 

rate of improvement. However, Moore’s law cannot be sustained indefinitely.  

 

Ultimately, the physical limits of packing more and more transistors together on silicon 

chips will be reached as the miniaturisation of the transistors reaches its limits. 

However, a more immediate problem to the packing of additional transistors into one 

processor is one of heat dissipation. The smaller the transistors are, the faster they 

switch. This switching uses energy, producing power that is dissipated as heat. The 

transistors are located on a particular piece of dye and having more transistors on the 

dye results in the generation of increasing amounts of power. The amount of power that 

can be generated on any one processor before its performance is compromised is known 

as the power ceiling and can be seen in Figure 2.4. To overcome this problem, multicore 

architectures have been introduced that utilise multiple processors that each generates 

power under the 130W power ceiling, Figure 2.4. However, the multicore architecture 

brings with it the complication of a different programming methodology needed to 

allow for communication between the different processors or cores (Mudge, C. personal 

communication, 27 September 2010). 

 

2.3 Cloud Computing 

 

Cloud Computing is the newest iteration in the HPC market and was born from the 

culmination of years of experience with grid computing, high performance clusters and 

service oriented architecture fields (Simmhan et al. 2009). This technology is still in its 

infancy and as a result, its true potential for scientific research has yet to be realised. 

The word cloud itself is an ambiguous term and can lead to some confusion when 
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talking about the technology. ‘The cloud’ is simply a reference to the internet that is 

often reduced to a depiction of a cloud as an abstraction of its role in how resources are 

accessed over it (Christina et al. 2008). The cloud computing model has large clusters 

of computers typically contained in data centres, the construction of which can be seen 

in Figure 2.5. These clusters are remotely accessed over the internet. 

 

Further ambiguity about the nature of cloud computing is introduced because no formal 

definition about what it actually is has been decided on. While some informally use the 

term to denote any service that is accessed over the internet more formal definitions are 

beginning to come about, most of which agree that the basic features that define cloud 

computing are, a pay-per-use utility model, the potential for massive scalability, and 

virtualisation (Vaquero et al. 2009). Based on the economy of scale, cloud computing 

exploits the resources of massive data centres that are powered by many computer 

clusters composed of relatively inexpensive commodity components. The pooling of 

resources on this scale combined with load balancing lead to a resource optimisation, 

resulting in a very economically attractive model (Vaquero et al. 2009). The cloud 

computing paradigm has the potential to offer a number of services that include 

infrastructure as a service, which allows the user to interact with virtual servers and 

storage; software as a service, which allows the user to remotely access and operate 

applications; and platform as a service, in which the user can create and develop 

applications on the provider’s platform (Vaquero et al. 2009). Cloud computing is 

attractive to the scientific domain because it puts a layer between the scientist and the 

underlying infrastructure so they do not need to worry about managing the 

infrastructure or periodically upgrading a local computing infrastructure. This results in 

an accessible HPC technology allowing scientists to experiment and compete based on 

ideas and not budgets. Although cloud computing reduces some overheads, it also 
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introduces some others. Before the resource can be utilised for computation, a network 

must be set up and an image must be created or discovered before any computation can 

take place (Christina et al. 2008). An image is a virtual appliance that is used to create a 

virtual machine. The main components of an image are a read-only file system image, 

which includes an operating system such as windows, and any additional software 

required to deliver a service. By using virtual machines, the working environment is 

configured independently from the underlying resource allowing for multiple 

environments to be deployed on the resource at the same time (Christina et al. 2008).  

 

2.4 Workflow for E-science 

 

While much effort and progress had been made in developing high performance 

computing technologies that exploit parallelisation what scientists really need are tools 

that bring the power of these resources to their desktops. Traditionally, batch files, shell 

scripts, and general-purpose scripting languages such as Python have been used for tool 

integration. Scripting languages are used to complete tasks such as specifying the data 

and software to be used and coordinating the assignment and movement of data across 

locations (McPhillips et al. 2009). Although scripted applications have the ability to 

manage and control computations, they also suffer from some major drawbacks. To 

update an existing script by adding a new code or by updating the version of an existing 

code can prove to be error prone and costly. This is because to achieve this you have to 

manually scan through the scripts to make changes (Gil 2009). More importantly, 

scripting languages are programming languages and fall outside the expertise of many 

domain scientists who need to concentrate on their research and not computation (Gil 

2009). 
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The concept of the workflow has emerged in recent years as a challenger to traditional 

approaches to automating computational tasks. A scientific workflow acts like a 

specialised script and orchestrates the execution of a multi-step process (Deelman et al. 

2009). A typical workflow will be composed of a number of different processes that are 

linked by their dependencies to one another. For example, a workflow may be a data 

analysis protocol that consists of a sequence of calling data from a database, pre-

processing, submitting a job to a cloud computer, and post-processing steps (Goble & 

Roure 2009). Workflow systems vary in many respects such as what resources they use, 

how control flow is handled, how interactive they are and how tasks are allocated to 

resources (De Roure et al. 2009). However, the common goals and characteristics that 

differentiate them with respect to traditional tool integration approaches based on 

scripting languages are many. Firstly, scientific workflow systems are based on 

dataflow languages in which workflows are represented in directed graphs. The nodes in 

the graph represent computational stages and the pipeline between them represents data 

flow and dependencies between the nodes as can be seen in Figure 2.6 (McPhillips et al. 

2009). Secondly, many workflow systems use a graphical interface to allow visual 

authoring of a workflow. This is especially advantageous because it allows scientists, 

who may only have a basic understanding of programming concepts, to compose 

workflows (McPhillips et al. 2009). Thirdly, the dataflow programming language 

combined with the visual authoring mechanic allows data that is produced at one node 

to be easily routed downstream to many nodes. This results in workflows being more 

declarative about the interactions between the nodes, something that scripting languages 

have difficulty in achieving due to the flow between components being hard to visualise 

in the text of a complex code (McPhillips et al. 2009). Other advantages workflows 

have over traditional scripting processes are that workflows can automatically record 
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and process provenance and allow for easy concurrent execution of workflow tasks 

(McPhillips et al. 2009).  

 

Data provenance involves recording the creation history of a data object created by a 

workflow. The importance of provenance capture is something that should not be 

underestimated. Provenance capture allows for the possibility of reproducibility, which 

is at the heart of the scientific method (Deelman et al. 2009). The immediate benefits of 

provenance are obvious to the scientist who may want to collect enough information 

about the workflow to be published in research papers. However, it also allows the 

readers of the research to run the experiment to interrogate the results (Araujo et al. 

2009). Further, provenance allows the scientist to go back to dated research and re-run 

experiments performed long ago with new parameters, inputs or configurations to 

observe if there are any changes in the results (Araujo et al. 2009). A higher degree of 

reproducibility on this level is advantageous because it gives more people the ability to 

run the experiment ensuring that errors are found and addressed faster (Araujo et al. 

2009). 

 

The ability and importance of sharing workflows goes well beyond attaching workflows 

to research papers for critiquing. The myExperiment website has emerged as a social 

website that is based on the web 2.0 approach of social networking sites such as 

MySpace and Facebook. However, the big difference between these sites and 

myExperiment is that it is a social website for scientists, specifically designed around 

the sharing of workflows (De Roure et al. 2009). Sharing workflows in this way has 

many advantages. The most obvious advantage is for the ability of reuse. Workflows 

capture pieces of scientific processes and know-how that is often tacit and otherwise 

hard to share. The myExperiment website makes it possible to share this knowledge 
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with other scientists resulting in an acceleration in the time taken for a new scientist to 

perform experiments. Further, workflows can be branched, and workflow patterns and 

fragments can be reused to quickly adapt to new applications within and even outside 

their original purpose and domain (De Roure et al. 2009).  
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2.5 The Trident Workbench 

Very recently, Microsoft weighed into the workflow paradigm with the release of 

Project Trident. Project Trident gets its name from the Ocean Observatories Institute 

Project, which was formerly known as NEPTUNE. The overriding goal of this project is 

to turn oceanography from a data/knowledge poor science to a data/knowledge rich 

science by creating the first plate scale observatory, which can be seen in Figure 2.7. To 

do this, the project will deploy approximately 2,000 km of fibre optic cable along the 

seafloor to which a range of chemical, geological and biological sensors will be 

attached. It is hoped that gathering this data will allow for a better understanding of 

issues such as the ability of the ocean to absorb greenhouse gases and how stresses on 

the seafloor cause earthquakes and tsunamis (Barga et al. 2008b; Knies 2009; Simmhan 

et al. 2009). However, the collection of data on this scale brings with it the problem of 

how to manage and process the data to gain knowledge from it. From this, Project 

Trident was conceived and would serve as a tool for scientists to understand 

oceanography.  

 

The potential for applications of the workbench outside of oceanography was quickly 

recognised. A collaboration with Johns Hopkins University was undertaken to develop 

an astronomer’s workbench for the Panoramic Survey Telescope and Rapid Response 

System (Knies 2009). The goal of this project was to identify objects that were 

approaching Earth such as asteroids and comets (Barga et al. 2008a; Knies 2009). This 

project helped in developing the versatility of the workbench, which is best described 

by Roger Barga, who led the Advanced Research Services and Tools team that was 

responsible for developing the Trident Scientific Workflow Workbench: 

If you design a system with two or three different customers in mind, you 

generalize very well. You come up with a very general architecture. One of the 
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challenges we had to overcome was to not specialize on just one domain, or it 

would be too specialized a solution. Pick two or three, and balance the 

requirements so you build a general, extensible framework. We think we’ve 

done that (Knies 2009).  

 

2.6 MT Concepts 

 

The physical property that MT measures is resistivity. Resistivity is a measure of how 

well rocks conduct electricity and varies over seven orders of magnitude in the Earth. 

This property can be used to separate the Earth into zones based on conductivity 

differences in the rocks. For example, ground water, minerals, and molten rock conduct 

electricity very well and have low resistivities. Water in sedimentary rocks is contained 

between the grains and has a larger range of conductivities. Drier crystalline rocks have 

high resistivities. Therefore, this property can be used to separate the Earth into zones 

based on conductivity differences in the rocks (Heinson, G. Personal communication, 

12 July 2010). 

 

The method itself is an electromagnetic method that uses time varying electric and 

magnetic fields that propagate into the earth to determine the resistivity structure of the 

earth. The bandwidth of MT ranges from 10,000Hz to ten thousandths of a hertz. High 

frequencies are used to investigate relatively shallow anomalies in the upper crust and 

can be used to explore for minerals, ground water, geothermal anomalies, and oil. In 

contrast, lower frequencies are used to investigate deeper into the Earth to the middle 

crust and down into the upper mantle approximately 50 km beneath our feet. MT can 

also be used to investigate the mantle transition zone, at about 400km, and even right 
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down into the core (see Figure 2.8) (Heinson, G. Personal communication, 12 July 

2010).  

 

Unlike other electromagnetic methods such as GPR, which uses a human-supplied 

signal source known as a transmitter to provide the signal, MT is a passive technique 

and uses naturally occurring phenomenon as a signal source. For the bandwidth from 

1,000Hz to a few hertz, the signal is due to lightning strikes occurring around the 

equatorial band. At lower frequencies, magnetic storms cause a squashing of the 

magnetic field lines resulting in a change in the magnetic field strength. At the lowest 

frequencies, the movement of the conductive ocean water through the Earth’s core 

magnetic field can produce a signal (see Figure 2.8) (Heinson, G. Personal 

communication, 12 July 2010). 

 

In the field, electrodes are put out that are typically pot electrodes containing an 

electrolytic solution. These electrodes are typically connected by wires to a voltmeter. 

The electrodes measure the natural voltage difference in the ground between two points. 

Two electrodes are deployed at each site and they are located orthogonal to each other, 

with one measuring a voltage gradient between two pot electrodes in the north-south 

orientation, and the other measures the voltage gradient in the east-west orientation. 

These measurements are measured with time because there is a time dependent change 

in all of these parameters. The electric field is not typically measured in the vertical 

direction because the air is a resistor, resulting in all electric current flowing parallel to 

the surface. A magnetic sensor is used to measure the magnetic field in three orthogonal 

directions typically one in the east, one to the north, and one vertically. The type of 

magnetic sensor used will depend on the purpose of the survey. The broadband method, 

which measures relatively shallow responses, uses induction coils. For the long period 
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method, which measures relatively deep responses, a fluxgate magnetometer is used 

(Heinson, G. Personal communication, 12 July 2010). 

 

The magnetic field is considered the input signal into the earth and causes the electric 

currents to flow in the earth by induction. The electric components Ex and Ey are 

considered the responses or outputs of the time varying magnetic field interacting with 

the earth. Linking these two is a two by two tensor, which represents the filtering effect 

that the earth applies to the signal. If the earth were a perfect resistor, we would have no 

current flowing so this effect would be small. If it is a good conductor then a great deal 

of current flows and the effect of the earth on the signal is large. By solving for how the 

earth acts as a filter on the signal the resistivity structure of the earth can be deduced, 

because the filtering effect is directly related to resistivity (Heinson, G. Personal 

communication, 12 July 2010). 

 

2.7 MT Processing 

 

To obtain a resistivity model of the earth, a number of different manipulations are 

applied to the raw field data. Figure 2.9 shows a general flowchart that outlines these 

manipulations applied to one station. This a general flowchart only because the order 

that these manipulations may be carried out can vary from processor to processor, who 

may use different programs to perform the manipulations. Note this process is repeated 

for every station in the survey. 

 

1. The first step in the processing stream is to transfer the field data from the logger 

to a computer. The data is contained in a folder that is named as a day number of 

the year. This folder contains the time series of the various components of the 
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magnetic and electric fields. Usually, at least two components are always 

measured for the electric field while at least two and up to three may be recorded 

for the magnetic field. Other files that are contained within the folder include a 

GPS file and an ambient temperature file. All files in this folder are generically 

named as station name, year, month, day, hour, minutes and seconds. This folder 

will typically contain many files because the loggers are only capable of 

recording the files at ten-minute intervals. Therefore, every ten minutes, a new 

group of ten-minute long files are recorded. Since the loggers can be recording 

for days at a time, this will result in the folder containing many ten-minute files. 

Although the amount of data collected will vary from survey to survey, the 

station folder typically contains around 1.5GB of data (Thiel, S. Personal 

communication, 19 July 2010). 

2. The second step in the processing stream is to erase spurious files from the day 

folder. A typical ten-minute time series file with a sampling rate of 500Hz will 

contain approximately 300000 values. Files that have large discrepancies from 

this value will need to be deleted. Spurious files typically occur at the start and 

the end of the recording and created when the logger is recording during the 

field setup (Thiel, S. Personal communication, 19 July 2010). 

3. In the third step, the discontinuous ten-minute time series files are merged into 

one coherent file resulting in one Ex, Ey, Bx and By file (Thiel, S. Personal 

communication, 19 July 2010). 

4. After the time series is merged, it is plotted and viewed to determine if there is 

any obvious noise present (Thiel, S. Personal communication, 19 July 2010). 

5. This step involves doing a unit conversion but depends on the type of survey 

being done. If a broadband survey is being done, then the unit conversion can 

only be done on the electric field. This is because in a broadband survey the 
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response of the induction coils is only known in the frequency domain so the 

magnetic field conversion must be performed in the frequency domain. For a 

long period survey, this is not an issue and so both the electric and magnetic 

field conversion are done here (Thiel, S. Personal communication, 19 July 

2010). 

6. The time series of the electric and magnetic fields is converted to the frequency 

domain using the BIRRP program. The third and fourth Fourier coefficients are 

calculated for 12 decimations of the time series producing 24 Fourier 

coefficients that are essentially the MT responses (Thiel, S. Personal 

communication, 19 July 2010). 

7. The BIRRP output files are reformatted into the .edi, .dat, .coh, .imp formats 

(Thiel, S. Personal communication, 19 July 2010). 

8. In this step, all of the MT responses from every station are used. The phase 

tensor analysis provides information about the dimensionality and strike of the 

site and is needed in the inversion package to rotate the data to the right strike 

and to determine if the site is suitable for an inversion (Thiel, S. Personal 

communication, 19 July 2010). 

9. The inversion takes the MT responses and produces a resistivity model of the 

earth. This is an iterative process and can take 10–20 iterations for a 3D 

inversion or hundreds of iterations for a 2D inversion. However, a single 3D 

iteration takes much longer than a single 2D iteration resulting in the 3D 

inversion process taking much more time overall to execute (Thiel, S. Personal 

communication, 19 July 2010). 
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Chapter 3: Approach 

3.1 Approach 

 

The approach to using a HPC technology to process MT data involved a number of 

discrete steps. The aim of the investigation is to explore the feasibility of taking an 

existing processing code to see if it lends itself to concurrent execution. This could be 

achieved by simultaneously processing a number of stations in parallel that would 

otherwise occur sequentially. Using existing processing codes would be advantageous 

because it will allow for a large speed up with a relatively small energy investment. To 

achieve this, all of the available processing methodologies were catalogued and assessed 

for their suitability to be used in a workflow and cloud environment. Secondly, 

familiarity with the Trident workflow system was developed to determine how transfer 

and execute programs in this environment. Additionally, familiarity with how to 

construct and execute workflows was developed. Thirdly, a cloud infrastructure was 

chosen based on ease of use and economics. 

 

3.2 Applications of Parallel Processing to MT Data 

 

The problems with processing MT data are primarily caused by data overflow. In the 

field, a variable number of stations are deployed. The exact number of stations deployed 

will depend on a number of factors such as the purpose of the survey, the nature of the 

terrain, and the size of the field team. A typical survey may consist of 50 stations. Each 

station records orthogonal components of both the electric field and magnetic field as a 

time series. The time series is composed of a number of samples of the magnetic and 
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electric fields. The number of samples recorded as a time series will depend on the 

amount of time the instruments are left in the field and the frequency at which they are 

sampling. A typical broadband survey will sample the fields at 500Hz and will collect 

data for approximately 24hrs. This will result in around 50 million samples being 

collected for one component, of one field, at one station. It is the analysis of this large 

number of samples that is primarily responsible for the inconveniently large amount of 

time required to process the data. 

 

The time series data need to have a number of manipulations performed on them as 

outlined in section 2.7, steps 1–7. The primary purpose of these manipulations is to 

obtain the MT responses in an edi format. The edi format is a format specified by the 

MT community and serves as a standardisation of results it is also the format of data 

required to perform the inversion. The diagram in Figure 3.1 shows how the data from 

each site is typically processed in a sequential manner using one desktop computer. The 

time taken to process each site using the desktop computer typically takes four hours for 

a broadband survey resulting in the processing from the raw time series from the logger 

to the EDI file taking             . For 50 sites, this equates to                 

      . Assuming the processor is working an eight-hour day this easily equates to a 

month of work.  

 

From Figure 3.1, it can be seen that the time series from each site is processed 

independently from each other, with the time series data from one site producing one 

EDI file for each site. As there is no interdependence between the sites, this 

immediately lends itself to a simple shared nothing type of parallelisation. Figure 3.2 

shows the conceptual framework of a shared nothing parallelisation approach to the 

processing of MT data on different nodes. In this framework, instead of the time series 



 

20 

 

being processed sequentially, one after the other, they are processed at the same time. In 

this scheme, the nodes are analogous to different desktop computers all running at the 

same time. The immediate benefit of this is that instead of the execution time being the 

number of sites multiplied by the time taken to process one site, it becomes the time 

taken to process on site because they are all being processed concurrently. 

 

To assess the suitability of MT processing for concurrent execution, the current 

processing methodologies were catalogued. The purpose of this was to try to find a 

processing methodology that would best suit the ultimate goal of automated concurrent 

execution. The advantage of using an existing processors code base to achieve 

concurrent execution is that it allows for a relatively large speed-up, with a relatively 

small energy investment because the processing algorithms do not have to be written 

from scratch. Figure 3.3 shows an overview of the MT processing performed by the 

different processors. Essentially, they all manipulate the data in the same way as 

outlined in section 2.7, steps 1–7. Noticeable differences between them include the 

degree to which they are automated and the different code bases that they utilise. 

Immediately, it appears that processor 1 has developed the most attractive methodology 

for concurrent execution. The reasons for this is that it is the most automated and is also 

capable of automatically detecting and processing both broadband and long period data. 

This is in contrast to the other MT processing methodologies that only process one or 

the other, which can be seen in Figure 3.3. 

 

A more detailed and accurate diagram of processor one’s processing methodology can 

be seen in Figure 3.4. From Figure 3.4, it can be seen that the processing methodology 

consists of two discrete Python programs. The first program is called DataPrep and the 

second program is called BIRRPInterface. The automation of the second program is 
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driven by references to a spreadsheet, containing field data, which enables the automatic 

creation of header and script files. However, the process is not fully automatic because 

to obtain the length of the time series to be analysed the time series must first be plotted. 

This is necessary because perturbations that occur in the time series must be accounted 

for before further processing and to date the most effective way to determine this is by 

visual inspection of the time series.  

 

The Amazon Elastic Compute Cloud was chosen as the cloud infrastructure to develop 

with. It was chosen because it provides the most comprehensive service, and is easy to 

use and access. The Amazon EC2 web service offers a number of services that are too 

numerous to list here. Table 3.1 shows some of the on-demand instances that are 

available. To process the data for each site, each site will require an instance type. Table 

3.1 shows some of the different instance types and their cost. Ultimately using 

concurrent execution the processing will take approximately 4 hours. For a survey 

consisting of 50 sites, this could equate to a cost of                         

using the small instance type. However, one of the problems with the current processing 

methodology is the inability of the desktop computer to process all of the time series 

due to the limited amount of available RAM. Clearly as the desktop computer possesses 

2GB of RAM, then the small instance type is not going to be an efficient final solution. 

However, the small instance type may be economically attractive in performing initial 

test experiments. To process the entire time series approximately 48 GB would be 

required. From Table 3.1 the only instance type that can meet this stipulation is the 

quadruple extra large instance type. Using this instance type, the cost of processing a 

50-site survey would become                         . This represents a 

significant increase of a factor, of approximately 20, as compared to using the small 

instance type. However, this cost is still only small fraction of the cost of the entire 
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survey. Possible ways of reducing cost include exploring other instance types such as 

the double extra large or extra large types that may produce data of comparable quality 

to the quadruple extra large instance type, but at a fraction of the cost.  
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To enable concurrent execution of this processing, methodology on a cloud 

infrastructure it is proposed that a workflow system is used. The advantages of using a 

workflow system are that it allows for an easy parallel execution environment, further 

enables automation and results in a methodology that is easily shared. Figure 3.5 

demonstrates how this processing methodology could be executed using the Trident 

workbench in a sequential manner. This could be achieved by wrapping the Python 

codes and using Visual Studio 2010 to generate the programs as activities. This method 

is advantageous because allows the current codes to be used with little rewrite. 

However, some code around the activity needs to be written so that the station 

information required by the program to run automatically can be inputted. Once this has 

been achieved, a parallel activity can then be used to execute the processing of any 

number of sites at the same time. Figure 3.6 shows the potential for concurrent 

execution of two sites at the same time, which can easily be extrapolated to any number 

of sites. The major disadvantage with this approach is that because it relies on calling 

the BIRRP program and initiation files from a folder, then such a folder would need to 

be set up on every instance required to process a station. This approach could lead to 

potential inconveniences and inefficiencies if for any reason parameters within the 

initiation files or BIRRP program need to be altered. Due to the flexibility of the 

workflow technology, there are a number of different ways that the same goal can be 

obtained. Instead of using the approach above, a more streamlined approach may 

involve making actors out off each program. For example, the BIRRP would be an actor 

in the workflow therefore eliminating the need to call it from a folder. Further 

advantages of breaking up the processing methodology into as many discrete actors as 

possible include the ability to slot new actors that may be required in the future such as 

a filter, between existing actors. This may not be possible using the BIRRP interface 
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program as an actor because it does many discrete processes. Another advantage of this 

method is that by having more discrete actors with a specific purpose the code behind 

them becomes easier to understand and change. Disadvantages of this approach include 

a larger energy investment in creating more discrete actors, integrating automation in 

the way of automatic generation of script and header files and long linear segments of 

the workflow.  
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Chapter 4: Discussion 

 

Although this provides a good mechanism for concurrent execution of the MT 

processing, it does not address all of the problems. This is because the MT processing 

methodology is still in a constant state of improvement driven largely by new tools and 

necessities. The current necessity driving the evolution of the MT processing is the need 

to assess data quality in the field. The need to check data quality in the field is 

something that should not be underestimated. Conducting surveys is expensive and time 

consuming and nothing could be more inconvenient than coming back from a survey 

only to find that the data is not of the required quality. This could happen for a number 

of reasons, such as a nearby generator contaminating the electrical signal with 50Hz 

noise. The ability to check the quality of data in the field means that these problems can 

be identified and if possible, the survey can be redesigned in near real time to address 

the problem. Further, checking of the quality of the data in the field means that the 

survey can be redesigned to optimally accommodate new information obtained about 

the sub-surface geology. Again, the new tool that has the potential to address this 

necessity is cloud computing. By accessing a satellite from the field, the site data can be 

uploaded to a data centre for processing much like that outlined in Figure 3.6. However, 

to concurrently execute a workflow on the cloud in the field, an additional number of 

caveats need to be introduced to make such a system viable. First and most pressingly, 

the bandwidth limitations mean that the site data needs to be reduced to allow for 

uploading the data in a time efficient manner. Currently, the time series data is stored as 

ASCII. This is a very inefficient way to store the data. To overcome this limitation, an 

algorithm to compress the time series would need to be developed to reduce the volume 

of data before it is uploaded. In addition, another algorithm would need to be developed 

to uncompress the data before further processing in the cloud.  
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Due to the limited time available for processing in the field, further automation needs to 

be integrated into the workflow to detect automatically the length of the usable time 

series and account for possible noise in the data. Figure 4.1 shows a sample of the time 

series collected for orthogonal components of the magnetic and electric fields for 300 

seconds. The sharp spikes represent lightning strikes from around the world, with the 

larger spikes representing lightning strikes that are closer to the site while the smaller 

spikes represent more distant strikes. The longer periods in the data are due to 

magnetospheric activity. This is an example of good data because it has a continuity that 

is expected from MT data. Figures 4.2 and 4.3 show the power spectra of the time series 

for the By and Ex components of the time series shown in Figure 4.1. The power 

spectra is the Fourier transform of the time series and in the diagrams shown is for ten 

minutes of data. The power spectrum goes from zero frequency to the nyquist frequency 

of 250Hz. The power spectrum shows the variation in signal strength with change in 

frequency. Figures 4.2 and 4.3 show a smooth, continuous spectra, which means that the 

energy is fairly evenly distributed across the frequencie range. At 200Hz the roll off 

starts to occur and is due to the sensitivity of the induction coil. The small peaks that 

begin at around 8Hz are due to the Schumann resonance. The Schumann resonance is a 

cavity resonance and is related to the thickness of the ionosphere. The source of the 

resonance is a lightning strike at the equator that then causes the signal to propagate 

around the earth as a standing wave. The following peaks at around 16Hz, 24Hz and 

32Hz are harmonics. Figures 4.4 and 4.5 show the power spectrum map of By and Ex. 

The power spectrum map shows the intensity of the power spectrum in colours. This 

plot differs from Figures 4.2 and 4.3 by showing the power spectrum at each time, 

which is denoted on the y-axis. Again, the Schumann resonances and harmonics are 

clearly visible. The roll off is also clearly visible as the graduation from yellow to blue. 
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From Figures 4.4 and 4.5, it is clear by the uniformity of the image with time that there 

is little to no change in the power spectrum with time. This is an example of good MT 

data.  

 

An example of a time series that has been affected by noise is shown in Figure 4.6 and 

displays the By and Ex channels again. The window length here is much shorter than 

that of Figure 4.1 and is only 0.3 seconds long. In Figure 4.7, the time series is 

dominated by a 50Hz signal from powerlines. Figures 4.7 and 4.8 show the power map 

of the 50Hz affected time series. From these power maps, it is obvious that the spectrum 

is dominated by spectral lines at 50Hz and the 3
rd

 5
th

 and 7
th

 harmonics. This noise is 

described as stationary noise because the noise remains at the same frequency with time, 

which can be seen in Figures 4.7 and 4.8.  

 

In Figure 4.9, another time series is shown. From 0 to 225 seconds, the signal has lost 

the typical continuity expected from good MT data. The reason for this is that for this 

period a transmitter was active. From 225 seconds onwards the transmitter was turned 

off and the signal returns to that expected for MT data. For the time from 0 to 225 

seconds, the noise is so bad that this data should be excluded from further processing. 

Although the longer periods are still faintly visible in this window, to get them out 

would require a great effort. Figures 4.10 and 4.11 show the power map of this time 

series, which contains noise past the time interval, expected from that expected in the 

time series. From this, we may conclude that the data is also influenced by cultural 

noise. Figure 4.10 shows the By component and as can be seen from the power map 

contains both stationary and non-stationary noise. Figure 4.11 shows the Ex component, 

which only shows stationary noise.  
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To enable automatic detection of the useable length of the time series, an algorithm 

could be developed that takes into account large variations from that expected for good 

MT responses. For example, Figure 4.9 shows noise for approximately 0–225 seconds 

that has a much larger variation and magnitude than expected for good MT data. A 

further stipulation that should be built into the algorithm would be to take into account 

if there is little or no variation between a certain number of data points. This can happen 

in the field if one of the channels is disconnected from the interface box. A final 

stipulation that might be included in such an algorithm would be to detect if there is 

enough time series present from which to obtain good MT responses.  

 

Pre-BIRRP quality control should include an inspection of the power spectrum as 

explained above. If the power spectrum is clean, as shown in Figures 4.3, 4.4 and 4.5, 

then the data can move straight on to being processed by BIRRP. However, if the data is 

affected by electrical noise, such as the data in Figures 4.6, 4.7 and 4.8, then a filter 

maybe applied to it to eliminate the noise before passing the time series to the BIRRP 

program. Further, this process could be made automatic. Electrical noise occurs at 50Hz 

and has predictable harmonics. Figures 4.2, 4.3, 4.4 and 4.5 show the power spectrum 

for good MT data, which has a good consistency. Deviations from this consistency at 

frequencies where electrical noise is known to occur can then be attributed to electrical 

noise. Using this information, an algorithm could be developed that compares the 

intensity of the power spectrum at the frequencies responsible for electrical noise with 

all other frequencies to check for consistency. If large deviations from the expected 

consistency are found at 50Hz, then this data should be passed to a 50Hz filter, before 

being passed to BIRRP.  
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Another scenario is that the data has non-stationary noise such as that shown in Figure 

4.10. To deal with this scenario, a further stipulation would need to be built into the 

algorithm discussed to detect electrical noise. The stipulation would simply detect 

discontinuities in the intensity of the power spectrum with time and frequencies. If the 

discontinuity is present in many frequencies, then it can be flagged as non-stationary 

noise. If non-stationary noise is detected in the workflow, then this information must be 

returned to the field team. The field team may then want to redo the site or change its 

location to try to avoid the noise. This measure is necessary because non-stationary 

noise cannot be easily filtered. 

 

Post-BIRRP quality control measures may include analysis of plots of coherence. Plots 

of coherence show how well the electric channel is predicted by the magnetic channel. 

This is possible because the electric fields are caused by induction. Plots showing 

relatively high coherence, coherences of above 0.8, are considered to result from good 

MT data. Figure 4.12 shows mostly high coherence with different periods and 

represents good MT data. This contrasts to Figure 4.13, which shows some good 

coherence for the high frequencies but poor coherences for lower frequencies. As the 

coherence is a measure of how good the data is, this may also be used as a source of 

quality control. In addition, plots of coherence may be used to alter a survey to improve 

data quality. In Figure 4.12, the data displays high coherences for the short and 

intermediate wavelengths but at a periodicity of approximately 50 seconds, the 

coherences start to decrease dramatically. If analysis of the longer periods is essential in 

the survey, then the field crew may decide to leave the instruments out for longer to 

increase the coherence values at longer periods.  
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Another area in which near instant feedback in the field would be beneficial is 

dimensionality analysis. Dimensionality analysis of a site tells the geophysicist about 

the dimensionality of the sub-surface geology. Having access to this information in the 

field is advantageous because it would allow the geophysicist to redesign the survey to 

highlight areas of interest or deploy more sites over an area of interest if need be. A 

recent Fortran code that was developed to determine the dimensionality of MT data is 

called WALDIM. Figure 4.14 shows an overview for how the WALDIM application 

works. Integration of such an application into a workflow would not be difficult to 

achieve and would be a valuable tool to have in the field. 

 

  



 

31 

 

Chapter 5: Conclusion 

 

Despite increases in the performance of desktop computers, in accordance with Moore’s 

law, the growing amount of data needing to be processed in domains such as geophysics 

is facilitating the transition to HPC technologies. It has been shown that the processing 

of MT data lends itself particularly well to parallelisation and consequently is ideally 

suited to the cloud computing paradigm. Further, the level of parallelisation addressed 

by the MT processing is well suited to workflow technology, which allows for the easy 

execution of the processing methodology across the cloud. However, to fully utilise this 

approach, a number of changes and additions to the MT processing methodology need 

to be made so the full potential of the technology can be realised. From this research, it 

is not difficult to conceive that this approach would be widely applicable to other 

geophysical applications that have an inherent ability to be parallelised. For example, 

large-scale gravity and magnetic maps are composed of a composite of smaller maps. It 

is not difficult to imagine that the creation of the smaller maps could be concurrently 

executed in the cloud analogous to the way the MT sites were. In general, the cloud 

computing paradigm is attractive for a number of reasons. Firstly, the pooling of 

resources on this scale result in a HPC technology that is affordable for everyone. 

Secondly, the on-demand nature of these resources means that the HPC resources can be 

accessed, terminated or changed to suit the changing needs of the user. Finally, the 

cloud computing paradigm furthers the current trend of accessing services over the 

internet, resulting in a service that is easily accessed and used. From the geophysicist’s 

perspective, this is especially advantageous because it means that for the first time, HPC 

technology can be accessed in the field. This is especially important because it has the 

potential for field surveys to be redesigned in almost real time to accommodate the 

incoming data. Disadvantages of the technology include its newness and the small 
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amount of similar work that has been conducted with cloud computing. However, these 

disadvantages are true of all new technologies that require pioneers to reveal their 

potential. The biggest disadvantage of the use of this technology lies within bandwidth 

considerations. Unfortunately, by using this technology to address data-intensive 

applications, the limiting factor becomes how fast you can transfer information across 

the internet. For applications such as the MT processing, it is not difficult to conceive 

ways of compressing the data so that this is achievable. However, the applicability of 

this approach to other geophysical applications remains uncertain, and subject to further 

research.  
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Tables and Figures 

 

Figure 2.1: Sequential Execution of Independent Processes at Different Times 

 

 

Figure 2.2: Parallel Execution of Different Processes at the Same Time 

 

Figure 2.3: Graph Showing the Increase in the Number of Transistors on 

Processors with Time 
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Figure 2.4: Relationship Showing the Power Ceiling Wall with Increasing Number 

of Transistors on Processors (Mudge, C. personal communication, 27 September 

2010) 

 

 

 

Figure 2.5: Depiction of a Data Centre in which the Servers are Located in 

Shipping Containers (Mudge, C. personal communication, 27 September 2010) 
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Figure 2.6: A Workflow Utilising the Trident Workflow Workbench Showing the 

Nodes Called Actors and the Flow of Data between Them 

 

 

 

Figure 2.7: The Proposed Plate Scale Observatory on the Juan De Fuca Plate 

(Barga et al. 2008b) 
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Figure 2.8: Comparisons between Frequency and the Properties of different EM 

Induction Techniques (Heinson, G. Personal communication, July 12, 2010) 
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Figure 2.9: General Flowchart of the Processing Methodology 
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Figure 3.1: Depiction of the Serial Processing of the Time Series Data from the 

Field to the EDI Target Format 

 

 

Figure 3.2: Depiction of a Shared Nothing Parallel Processing Framework of the 

Sites. 
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Figure 3.3: Overview of the Different MT Processing Methodologies of the Three 

Different Processors 
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Figure 3.4: Detailed Overview of Processor One’s MT Processing Methodology 

 

 

 

Table 3.1 Different Instance Types and Prices Offered by Amazon EC2 

Standard On-Demand 

Instances 
Windows Usage Memory 

Small (Default) $0.12 per hour 1.7 GB 

Large $0.48 per hour 7.5 GB 

Extra Large $0.96 per hour 15 GB 

Micro On-Demand Instances Windows Usage  

Micro $0.035 per hour 613 MB 

High-Memory On-Demand 

Instances 

Windows Usage  

Extra Large $0.62 per hour 17.1 GB 

Double Extra Large $1.24 per hour 34.2 GB 

Quadruple Extra Large $2.48 per hour 68.4 GB 
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Figure 3.5: Sequential Execution of the MT Processing Using Existing Processing 

Codes 

 

 

 

 

Figure 3.6 Parallel Execution of the MT Processing Using Existing Processing 

Codes 
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Figure 4.1: An Example of Good MT Data for Orthogonal Components of the 

Electric and Magnetic Fields Sampled at 500Hz 

 

 
 

Figure 4.2: Power Spectra of the Time Series for the By Component Shown in 

Figure 4.1 
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Figure 4.3: Power Spectra of the Time Series for the Ex Component Shown in 

Figure 4.1 

 

 

Figure 4.4: Power Spectra Map of the Time by Component Showing the Change of 

the Power Spectrum with Time 
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Figure 4.5: Power Spectra Map of the Ex Component Showing the Change of the 

Power Spectrum with Time  

 

 

Figure 4.6: An Example of Time Series Data Affected by 50Hz Electrical Noise 
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Figure 4.7: Power Spectra Map of the By Component Showing the Change of the 

Power Spectrum with Time 

 

 

 

Figure 4.8: Power Spectra Map of the Ex Component Showing the Change of the 

Power Spectrum with Time 
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Figure 4.9: An Example of a Time Series Affected by Intermittent Transmitter 

Noise 

 

 

Figure 4.10: Power Spectra Map of the By Component Affected by the 

Transmitter Showing Both Stationary and Nonstationary Noise  
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Figure 4.11: Power Spectra Map of the Ex Component Affected by the 

Transmitter Showing Stationary Noise 

 

 

 

Figure 4.12: A Coherence Plot Characteristic of Good MT Data 
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Figure 4.13: A Coherence Plot Characteristic of Poor MT Data 
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Figure 4.14: An Overview Flowchart of how the WALDIM Dimensionality 

Analysis Program Works (Marti et al. 2009). 

 


