

Australian Government

Australian Radiation Protection and Nuclear Safety Agency

Monte Carlo Conversion for the Australian Primary Standard of Absorbed Dose to Water in High Energy Photon Beams

Tracy Elizabeth Wright

Thesis submitted for the degree of Master of Science (Medical Physics) School of Physical Sciences University of Adelaide

August 2015

TABLE OF CONTENTS

Table of	Con	tentsi			
Abstract		iv			
Declarat	ion	vi			
Acknow	Acknowledgementsvii				
List of F	Figure	esix			
List of T	Table	sxiv			
List of A	Abbre	viationsxvii			
Chapter	1	Introduction1			
Chapter	2	Primary standards for radiation dose			
2.1	Con	sistency of international doses4			
2.2	Cali	bration of clinical chambers5			
2.3	Clin	ical equipment for dose measurement6			
2.4	Prin	nary standard dosimetry7			
2.5	Con	version from absorbed dose to graphite to absorbed dose to water			
2.6	Rev	iew of Monte Carlo methods to convert absorbed dose to graphite to			
	abso	rbed dose to water			
2.7	Req	uirements for a Monte Carlo conversion14			
Chapter	3	Linac modelling16			
3.1	Sele	ction of options in EGSnrc17			
3.1	.1	EGSnrc parameters			
3.1	.2	Variance reduction methods			
3.2	ARF	PANSA linac model description			
3.3	Vali	dation of linac model			
3.3	.1	Method of validation			
3.3	.2	Matching tolerances			
3.3	.3	Corrections and other considerations			
3.3	.4	Optimisation method			

Chapter 4		Conversion from dose to graphite to dose to water	34
4.1	Mea	surement of absorbed dose to graphite	34
4.1	.1	Quasi-adiabatic mode of operation	35
4.1	.2	Quasi-isothermal mode of operation	36
4.1.3		ARPANSA calorimeter description	37
4.1	.4	Corrections for the ARPANSA calorimeter	38
4.2	Moo	lelling the calorimeter	40
4.3	Vali	dation of calorimeter model	40
4.3	3.1	Imaging the calorimeter	41
4.3	3.2	Calculation of gap corrections	45
4.4	Moo	lelling the water phantom	45
4.5	Vali	dation of water phantom model	46
4.6	Con	verting from graphite dose to absorbed dose to water using Monte Carlo	47
4.7	Con ioni	verting from graphite dose to absorbed dose to water using cavity sation theory	49
Chapter	: 5	Uncertainty analysis and international comparisons	52
5.1	Ana	lysis of the uncertainty in the Monte Carlo conversion factor	53
5.1	.1	Uncertainties due to calorimeter geometry	54
5.1	.2	Uncertainties due to water phantom geometry	56
5.1 5.1	.2	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections	56 57
5.1 5.1 5.1	.2 .3 .4	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport	56 57 62
5.1 5.1 5.1 5.1	1.2 1.3 1.4 1.5	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport Statistical uncertainty in the Monte Carlo calculation	56 57 62 62
5.1 5.1 5.1 5.1 5.2	1.2 1.3 1.4 1.5 Unc	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport Statistical uncertainty in the Monte Carlo calculation ertainty in the clinical calibration coefficient $N_{D,w,Q_{user}}$	56 57 62 62 63
5.1 5.1 5.1 5.2 5.3	1.2 1.3 1.4 1.5 Unc Inte	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport Statistical uncertainty in the Monte Carlo calculation ertainty in the clinical calibration coefficient $N_{D,w,Q_{user}}$	56 57 62 62 63 63
5.1 5.1 5.1 5.2 5.3 5.3	1.2 1.3 1.4 1.5 Unc Inte 3.1	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport Statistical uncertainty in the Monte Carlo calculation ertainty in the clinical calibration coefficient $N_{D,w,Q_{user}}$ rnational comparisons Key comparison reference value	56 57 62 62 63 63 64
5.1 5.1 5.1 5.2 5.3 5.3 5.3	1.2 1.3 1.4 1.5 Unc 1.1 3.1 3.2	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport Statistical uncertainty in the Monte Carlo calculation ertainty in the clinical calibration coefficient $N_{D,w,Q_{user}}$ rnational comparisons Key comparison reference value Direct comparison with the BIPM	56 57 62 62 63 63 66 66
5.1 5.1 5.1 5.2 5.3 5.3 5.3 5.3	1.2 1.3 1.4 1.5 Unc 1.1 3.1 3.2 3.3	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport Statistical uncertainty in the Monte Carlo calculation ertainty in the clinical calibration coefficient $N_{D,w,Q_{user}}$ rnational comparisons Key comparison reference value Direct comparison with the BIPM Indirect comparison with the National Research Council Canada	56 57 62 63 63 64 66 66
5.1 5.1 5.1 5.2 5.3 5.3 5.3 5.3 5.3	1.2 1.3 1.4 1.5 Unc 3.1 3.2 3.3 3.4	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport Statistical uncertainty in the Monte Carlo calculation ertainty in the clinical calibration coefficient $N_{D,w,Q_{user}}$ rnational comparisons Key comparison reference value Direct comparison with the BIPM Indirect comparison with the National Research Council Canada Indirect comparison with the National Metrology Institute of Japan	56 57 62 62 63 63 64 66 66 67 69
5.1 5.1 5.1 5.2 5.3 5.3 5.3 5.3 5.3 5.4	1.2 1.3 1.4 1.5 Unc 1.1 3.2 3.3 3.4 Con	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport Statistical uncertainty in the Monte Carlo calculation ertainty in the clinical calibration coefficient $N_{D,w,Q_{user}}$ rnational comparisons Key comparison reference value Direct comparison with the BIPM Indirect comparison with the National Research Council Canada Indirect comparison with the National Metrology Institute of Japan	56 57 62 62 63 63 64 66 67 67 69 71
5.1 5.1 5.1 5.2 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.4 5.5	 1.2 1.3 1.4 1.5 Unc Inte 3.1 3.2 3.3 3.4 Con Mea 	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport Statistical uncertainty in the Monte Carlo calculation ertainty in the clinical calibration coefficient $N_{D,w,Q_{user}}$ rnational comparisons Key comparison reference value Direct comparison with the BIPM Indirect comparison with the National Research Council Canada sistency of comparison results	56 57 62 62 63 64 66 66 67 69 71 74
5.1 5.1 5.1 5.2 5.3 5.3 5.3 5.3 5.3 5.4 5.5 Chapter	1.2 1.3 1.4 1.5 Unc 1.1 3.1 3.2 3.3 3.4 Con Mea	Uncertainties due to water phantom geometry Uncertainties in the Monte Carlo interaction cross-sections Uncertainties due to Monte Carlo transport Statistical uncertainty in the Monte Carlo calculation ertainty in the clinical calibration coefficient $N_{D,w,Q_{user}}$ rnational comparisons Key comparison reference value Direct comparison with the BIPM Indirect comparison with the National Research Council Canada sistency of comparison results Rey results and discussion	56 57 62 63 63 64 66 67 69 71 74 79

6.2 Cor	Comparison of other uncertainties		
6.3 Clir	Clinical effect of the direct calibration method		
6.4 Fur	Further work		
6.4.1	Ionisation chamber modelling	85	
6.4.2	Small fields	86	
Chapter 7	Conclusions	87	
Appendix A	Publications arising from this work	89	
Appendix B	Complete set of matching profiles	90	
Appendix C	Complete uncertainty tables for 10 MV and 18 MV beams	97	
Appendix D	Reproduction of peer-reviewed publication	101	
Appendix E	Glossary of terms	124	
References			

ABSTRACT

Radiotherapy treatment entails the delivery of large radiation doses to malignant tissues in the human body. These doses must be accurate in order to balance tumour control and damage to healthy tissues. The first step in accurate dosimetry is the calibration of radiation dosemeters by the national primary standards laboratory. Any uncertainties in this fundamental step will be passed on to every radiotherapy patient in Australia. Absorbed dose to water is the quantity used for the calibration of linear accelerator (linac) beams and many treatment planning systems. The work in this thesis is devoted to the establishment of the Australian primary standard of absorbed dose with clinically used high energy photon beams, and in particular to the Monte Carlo methods employed.

The work described occurs in three stages: modelling of the accelerator head, modelling of the graphite calorimeter and water phantom in order to determine absorbed dose to water, and validation of the Australian primary standard of absorbed dose to water by comparison with international primary standards laboratories.

The EGSnrc user codes BEAMnrc and DOSXYZnrc have been used for this work. The linac model is built using BEAMnrc component modules to match the components inside the real linac head. Validation of the linac model is performed by comparison of modelled PDDs and profiles with their measured counterparts.

The ARPANSA measurement of absorbed dose to water is the basis for all absorbed dose calibrations performed in Australia. The determination of absorbed dose to water by ARPANSA begins with a measurement of absorbed dose to graphite. A graphite calorimeter is used to measure the heating caused by irradiation in order to determine the absorbed dose to graphite. The measured dose to graphite is converted to absorbed dose to water by a factor evaluated by Monte Carlo calculations. The conversion factor is calculated as the ratio of two components: the modelled dose to water at the reference depth in the absence of an ionisation chamber and the modelled to replicate the device used with all Mylar coatings and air and vacuum gaps included. The physical calorimeter geometry is confirmed by kilovoltage imaging and gap corrections are calculated and

compared to similar calorimeters in the literature for added confidence in the calorimeter model.

The final stage of method validation involves comparisons with measurements performed by other researchers. Primarily this is done by comparing the determination of absorbed dose to water with other primary standards laboratories. This thesis presents a direct comparison performed in the ARPANSA linac beams and two indirect comparisons with measurements by the other participants completed at their respective laboratories. In all cases the ARPANSA measurement was lower than comparison participant. The difference between the ARPANSA measurement and that of the other participant was 0.02 to 0.46% at 6 MV, 0.41 to 0.76% at 10 MV and 0.68 to 0.80% at 18 MV. All results for the 6 MV beam agreed within 1 σ . At 10 MV one measurement agreed within 1 σ . The remaining 10 MV comparisons and all comparisons at 18 MV differed by between 1 σ and 2 σ . In addition to the validation methods, a detailed assessment of the uncertainties in the Monte Carlo conversion factor and the resulting calibration of an ionisation chamber are presented. The uncertainty in the calibration coefficient of an ionisation chamber after interpolation to the clinical beam energy is between 0.6 and 0.7%.

The resulting quantity of absorbed dose to water is used to determine the calibration factor, $N_{D,w}$, of an ionisation chamber. The ratio of calibration factors measured in a linac beam and in ⁶⁰Co is the measured energy correction factor, k_Q , at the linac beam quality. In addition to comparisons of absorbed dose to water, the measured k_Q values for commonly used ionisation chambers have been compared to measured and modelled values of k_Q published elsewhere.

An important consideration in changing from using the IAEA k_Q values published in the TRS-398 Code of Practice to directly measured k_Q values at megavoltage energies is the shift caused in chamber $N_{D,w}$ factors. This varies with chamber type and beam quality. In this thesis four chamber types were considered: the NE 2571 Farmer chamber, and the NE 2611A, PTW 30013 and IBA FC65-G Farmer-type chambers. At 6 MV the expected shift in $N_{D,w}$ ranges from -0.2% to -0.9% across the four chamber types. For the 10 MV beam quality the expected shift is -0.8% to -1.3% and at 18 MV -1.1% to -1.4% is expected. The reason for these differences is twofold. The IAEA k_Q values are typically higher than measured k_Q values tend to be low compared to the average of many measured k_Q values. Regardless of the reasons, the shift has an impact on the beam calibration of clinical linacs and the implications of this effect are discussed.

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint award of this degree.

I give consent to the copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published work contained with this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Tracy Elizabeth Wright

Date

ACKNOWLEDGEMENTS

First and foremost, I must thank all my supervisors. To my ARPANSA supervisors Jessica Lye and Duncan Butler, thank you for your ongoing support. In addition to your invaluable technical advice, your encouragement has helped me through the emotional challenges of a postgraduate degree. I could not have wished for two better supervisors to support me and keep me on track. And to my Adelaide-based supervisors Judith Pollard, Scott Penfold and Mohammad Mohammadi, thank you also for your support. Thank you to Judith for your help navigating the University system from a distance, and your understanding with a few surprise phone calls throughout the Masters journey. Thank you to Scott for your advice and clinical viewpoint which has been an important aspect of this work. And to Mohammad, thank you for your help early on and for our thought-provoking discussions.

Thank you to all my colleagues in the ARPANSA Radiotherapy section who have contributed through measurements and technical expertise throughout the project. In particular, the work performed by Ganesan Ramanathan and Peter Harty in the area of calorimetry is the key measurement for the primary standard of absorbed dose to water. Without your measurements my work toward the Monte Carlo conversion factor would be meaningless. And to the rest of my colleagues Chris Oliver, Viliami Takau and David Webb, thank you for your support and advice. I feel lucky to work with such a great group of people.

A huge thank you goes to Sean Reilly from the eResearch South Australia helpdesk for his help in making the EGSnrc submission scripts compatible with both the Hydra and Corvus supercomputers at different stages of the project. Without his help the modelling would have taken significantly longer and may not have been possible. Thanks also to Paul Marks for his assistance with the imaging for the calorimeter geometry validation and Keith Pardarlis for help converting the peer-reviewed publication to single page images for insertion into the Appendix.

For the advice I have received, I would like to thank Dave Rogers for a brief but valuable discussion on the uncertainties in the EGSnrc graphite stopping powers. Thanks also to the anonymous reviewers of the paper produced as a result of this work. Their comments and suggestions helped to improve the method and clarity of the uncertainty analysis in the

article and subsequently in this thesis. Lastly, thank you to Ivan Williams for your advice in the review of this thesis. It has improved the quality of the writing within and been a valuable lesson about writing structure.

Finally, I would like to thank my family. To my mum, thank you for your love, encouragement and understanding. And to my wonderful husband, I can't thank you enough for your stability, love and compassion. I'm sure I couldn't have made it without your endless support and encouragement.

LIST OF FIGURES

- Figure 4-4: Detailed schematic of the calorimeter model. The key internal components surrounding the core have been enlarged and labelled to the right of the figure. 39

- **Figure 4-9:** This figure shows the staged approach to assessing influences on the dose calculated in an equivalent-sized volume using different user codes and the effect of gaps around the scoring volume. The red shapes at the top of each block of water depict the area of the scoring volume. In each simulation, the dose was assessed in the middle layer of the phantom, shown by either gaps or heavy blue lines. The red lines in the DOSXYZnrc section show the vertical voxel boundaries.

- **Figure 6-2:** Uncertainties in the calibration coefficients $(N_{D,w})$ of transfer chambers from the K6 comparison at each of the laboratories. Since the BIPM has participated in all of the comparisons, the uncertainty shown was taken from the comparison with ARPANSA. The dashed vertical lines indicate the grouping of comparisons in terms of energy ranges. 82

Figure 6-4: Differences in $N_{D,w}$ between an ARPANSA direct megavoltage calibration and a ⁶⁰Co calibration with the AAPM k_Q values for four common chamber types. The dashed red line shows one relative standard uncertainty in $N_{D,w,Q_0} \times k_{Q,AAPM}....85$

LIST OF TABLES

Table 2-1: List of national measurement institute abbreviations and countries. 10
Table 3-1: Beam transport parameters used in BEAMnrc and DOSXYZnrc. Deviations from the default settings are marked by an asterisk (*)
Table 3-2: Running parameters for the production of phase space files for the 10×10 cm^2 fields used for validation and Monte Carlo calculated dose conversion.22
Table 4-1: Corrections applied to the ARPANSA calorimeter measurements in the determination of absorbed dose to water. 39
Table 4-2: Original and corrected thicknesses of each layer in the calorimeter model44
Table 4-3: Monte Carlo conversion ratios for the three beam qualities available on theARPANSA linac. The ESDM is reduced by running the simulation with a large numberof histories to ensure confidence in the conversion ratio
Table 4-4: Cavity ionisation method parameters and resulting ratio between the calibration coefficients derived by cavity ionisation theory and the Monte Carlo method. 50
Table 5-1: Total combined relative standard uncertainty in the conversion ratio, $[D_w/D_g]_{MC}$
Table 5-2: Uncertainties in calorimeter geometry and resulting uncertainty in the doseto the core, D_g at 6 MV. The estimate is nearly the same for 10 and 18 MV (seeAppendix C)
Table 5-3: Uncertainties in water phantom geometry and resulting uncertainty in thedose to water, D_w at 6 MV. The estimate is nearly the same for 10 and 18 MV (see thecomment below the table)
Table 5-4: Sensitivity of dose at reference depth, and the gradient of the ratio of measured and calculated PDDs, to a change in density of water or graphite. Here m_{ρ} is the gradient of the ratio of two calculated PDDs in units of cm ⁻¹ per 1% increase in density (B). Quantity C is used to calculate the uncertainty due to an imperfect match between the measured and modelled PDD
Table 5-5: Sensitivity of dose at reference depth, and the gradient of the ratio of measured and calculated PDDs, to a change in measurement depth in water and graphite. Here the gradient at the reference depth is the relative change in dose at that point, in % per cm

Table 5-8: Uncertainties in the $N_{D,w,Q_{ARP}}$ of a clinical ionisation chamber calibrated in amegavoltage beam.65

Table 5-11: Results of the comparison between NRC and ARPANSA. The resultspresented are the average ratios of calibration coefficients of the two NE 2571 chambersused in the comparison.68

Table 5-12: Results of the comparison between NMIJ and ARPANSA. The PTW

 30013 results are the average ratios of calibration coefficients of the two chambers used

 in the comparison.

 69

Table 5-14: Uncertainties in the direct ARPANSA:NRC comparison. The correlated uncertainty in the Monte Carlo transport, shown in brackets, is subtracted from the other uncertainty contributions.

 73

 Table 5-16: Average measured k_Q values for the four most common clinical referencechambers in Australia. The relative standard uncertainty is shown in brackets for eachvalue.75

Table C-1: Uncertainties in calorimeter geometry and resulting uncertainty in the doseto the core, D_g at 10 MV.97

Table C-2: Uncertainties in calorimeter geometry and resulting uncertainty in the doseto the core, D_g at 18 MV.98

LIST OF ABBREVIATIONS

AAPM	American Association of Physicists in Medicine
ACPSEM	Australasian College of Physical Scientists and Engineers in Medicine
ANSTO	Australian Nuclear Science and Technology Organisation
ARPANSA	Australian Radiation Protection and Nuclear Safety Agency
BIPM	Bureau International des Poids et Mesures
DVM	Digital volt meter
ECUT	Electron cut off energy
ENEA-INMRI	Ente per le Nuove Tecnologie, l'Energia e l'Ambiente – Istituto Nazionale di Metrologia delle Radiazioni Ionizzanti (Italy)
EPOM	Effective point of measurement
ESDM	Estimated standard deviation of the mean
FWHM	Full-width half-maximum
IAEA	International Atomic Energy Agency
IMRT	Intensity-modulated radiation therapy
K6	Key comparison BIPM.RI(I)-K6
KCDB	Key comparison database
<i>k</i> _Q	Energy correction factor
KRISS	Korea Research Institute of Standards and Science (Korea)
Linac	Linear accelerator
LNE-LNHB	Laboratoire National de Métrologie et d'Essais – Laboratoire National Henri Becquerel (France)
MC	Monte Carlo
METAS	Swiss Federal Office of Metrology and Accreditation (Switzerland)
$N_{\mathrm{D,w}}$	Calibration coefficient for the absorbed dose to water
NIST	National Institute of Standards and Technology (USA)

NMI	National measurement institute
NMIJ	National Metrology Institute of Japan
NPL	National Physical Laboratory (UK)
NRC	National Research Council (Canada)
PCUT	Photon cut off energy
PDD	Percentage depth dose
PDI	Percentage depth ionisation
РТВ	Physikalisch-Technische Bundesanstalt (Germany)
QA	Quality assurance
SSD	Source-to-surface distance
TG-51	AAPM's TG-51 protocol for clinical reference dosimetry of high- energy photon and electron beams
TRS-398	IAEA Code of Practice for absorbed dose determination in external beam radiotherapy (Technical Report Series No. 398)
XCOM	NIST photon cross-section database