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ABSTRACT 

 

Radiotherapy treatment entails the delivery of large radiation doses to malignant tissues in 

the human body. These doses must be accurate in order to balance tumour control and 

damage to healthy tissues. The first step in accurate dosimetry is the calibration of 

radiation dosemeters by the national primary standards laboratory. Any uncertainties in this 

fundamental step will be passed on to every radiotherapy patient in Australia. Absorbed 

dose to water is the quantity used for the calibration of linear accelerator (linac) beams and 

many treatment planning systems. The work in this thesis is devoted to the establishment 

of the Australian primary standard of absorbed dose with clinically used high energy 

photon beams, and in particular to the Monte Carlo methods employed. 

 

The work described occurs in three stages: modelling of the accelerator head, modelling of 

the graphite calorimeter and water phantom in order to determine absorbed dose to water, 

and validation of the Australian primary standard of absorbed dose to water by comparison 

with international primary standards laboratories. 

 

The EGSnrc user codes BEAMnrc and DOSXYZnrc have been used for this work. The 

linac model is built using BEAMnrc component modules to match the components inside 

the real linac head. Validation of the linac model is performed by comparison of modelled 

PDDs and profiles with their measured counterparts.  

 

The ARPANSA measurement of absorbed dose to water is the basis for all absorbed dose 

calibrations performed in Australia. The determination of absorbed dose to water by 

ARPANSA begins with a measurement of absorbed dose to graphite. A graphite 

calorimeter is used to measure the heating caused by irradiation in order to determine the 

absorbed dose to graphite. The measured dose to graphite is converted to absorbed dose to 

water by a factor evaluated by Monte Carlo calculations. The conversion factor is 

calculated as the ratio of two components: the modelled dose to water at the reference 

depth in the absence of an ionisation chamber and the modelled dose to the core (the 

sensitive element) of the calorimeter. The calorimeter is modelled to replicate the device 

used with all Mylar coatings and air and vacuum gaps included. The physical calorimeter 

geometry is confirmed by kilovoltage imaging and gap corrections are calculated and 
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compared to similar calorimeters in the literature for added confidence in the calorimeter 

model.  

 

The final stage of method validation involves comparisons with measurements performed 

by other researchers. Primarily this is done by comparing the determination of absorbed 

dose to water with other primary standards laboratories. This thesis presents a direct 

comparison performed in the ARPANSA linac beams and two indirect comparisons with 

measurements by the other participants completed at their respective laboratories. In all 

cases the ARPANSA measurement was lower than comparison participant. The difference 

between the ARPANSA measurement and that of the other participant was 0.02 to 0.46% 

at 6 MV, 0.41 to 0.76% at 10 MV and 0.68 to 0.80% at 18 MV. All results for the 6 MV 

beam agreed within 1σ. At 10 MV one measurement agreed within 1σ. The remaining 

10 MV comparisons and all comparisons at 18 MV differed by between 1σ and 2σ. In 

addition to the validation methods, a detailed assessment of the uncertainties in the Monte 

Carlo conversion factor and the resulting calibration of an ionisation chamber are 

presented. The uncertainty in the calibration coefficient of an ionisation chamber after 

interpolation to the clinical beam energy is between 0.6 and 0.7%. 

 

The resulting quantity of absorbed dose to water is used to determine the calibration factor, 

ND,w, of an ionisation chamber. The ratio of calibration factors measured in a linac beam 

and in 
60

Co is the measured energy correction factor, kQ, at the linac beam quality. In 

addition to comparisons of absorbed dose to water, the measured kQ values for commonly 

used ionisation chambers have been compared to measured and modelled values of kQ 

published elsewhere. 

 

An important consideration in changing from using the IAEA kQ values published in the 

TRS-398 Code of Practice to directly measured kQ values at megavoltage energies is the 

shift caused in chamber ND,w factors. This varies with chamber type and beam quality. In 

this thesis four chamber types were considered: the NE 2571 Farmer chamber, and the 

NE 2611A, PTW 30013 and IBA FC65-G Farmer-type chambers. At 6 MV the expected 

shift in ND,w ranges from -0.2% to -0.9% across the four chamber types. For the 10 MV 

beam quality the expected shift is -0.8% to -1.3% and at 18 MV -1.1% to -1.4% is 

expected. The reason for these differences is twofold. The IAEA kQ values are typically 

higher than measured kQ values published by many authors. In addition to this, the 

ARPANSA measured kQ values tend to be low compared to the average of many measured 

kQ values. Regardless of the reasons, the shift has an impact on the beam calibration of 

clinical linacs and the implications of this effect are discussed.  
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