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We demonstrate a terahertz flat lens based on tri-layer
metasurfaces allowing for broadband linear polariza-
tion conversion, where the phase can be tuned through
a full 27t range by tailoring the geometry of the sub-
wavelength resonators. The lens functionality is real-
ized by arranging these resonators to create a parabolic
spatial phase profile. The fabricated 124 pm-thick de-
vice is characterized by scanning the beam profile and
cross section, showing diffraction-limited focusing and
~68% overall efficiency at the operating frequency of
400 GHz. This device has potential for applications
in terahertz imaging and communications, as well as
beam control in general. © 2017 Optical Society of America

OCIS codes:  (230.0230) Optical devices; (230.4000) Optical de-
vices, microstructure fabrication; (160.3918) Materials, metamaterials;
(050.1965) Diffraction and gratings, Diffractive lenses; (110.6795)
Imaging systems, terahertz imaging.
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Particular constraints in the terahertz range—namely histori-
cal difficulties in generating power [1], high atmospheric attenu-
ation [2], and free-space path loss—result in a pronounced need
for beam control devices in order to minimize power projected
into unwanted directions [3]. Conventional geometric lenses
and reflector devices are mature and readily available in the
terahertz range, but their physical thickness and weight pose
disadvantages. Compact, flat-profile beam control devices of
subwavelength thickness are generally preferable for practical
applications. A promising approach to realizing such devices
is the use of metasurfaces [4-7] consisting of a planar array of
heterogeneous elements that individually impart some particu-
lar phase shift to incident waves [8, 9]. The aggregation of these
phases produces a wavefront that dictates the form of the ensu-
ing propagating beam, and desirable behaviors have previously
been demonstrated in transmission [10] or reflection [11-14]
in the terahertz range. A full 27t phase tunability range is re-
quired for optimal wave front engineering, and in transmission
this typically necessitates the use of multiple layers of metallic

resonators [15-17], as a single layer is insufficient to support a
magnetic resonance [18]. An alternative approach is to make use
of the transmitted cross-polarization by employing anisotropic
resonators [8], where the phase can be tuned by tailoring the
resonator geometry, realizing functionality such as optical beam
focusing [19, 20].

In the terahertz range, single-layer metasurface flat lenses
have been demonstrated using C-shaped [21, 22] and com-
plementary V-shaped resonators [23-26], which offer cross-
polarized transmission efficiency below 25%, and in experiments
the focusing efficiency was only a few percent. In previous
work, the cross-polarization conversion efficiency was greatly
enhanced by making use of additional non-resonant layers, and
the tunable phase was exploited to enable a beam-steering de-
vice, with experimentally-demonstrated peak efficiency of 50-
60% over a broad frequency range around ~1.2 THz [27]. In
the present work, we adapt this approach to create a highly effi-
cient flat lens operating at around 400 GHz. The demonstrated
flat lens is of practical value, as it can be employed to enhance
antenna gain for high-volume communications [28], and focus
radiation for imaging applications [29]. Additionally, the selec-
tion of an operating frequency toward the lower end of the
terahertz range, as opposed to more terahertz—representative
values such as 1 THz, is informed by lower absorption due to
atmospheric gases [2], as well as a greater degree of compati-
bility with compact electronic terahertz sources and detectors
[30, 31]. In principle, however, a metasurface of this sort can
straightforwardly be scaled in size to serve higher frequencies,
if desired.

Fig. 1(a) illustrates a unit cell of the metasurface, consisting of
three layers of subwavelength metallic structures—two orthogo-
nal wire grids and an array of anisotropic resonators in between.
When the middle resonator is excited by the incident radiation
polarized in the x-direction, the resultant electric dipole has a
component that is orthogonal to the incident polarization, i.e.,
in the y-direction, and consequently, it radiates waves in the
cross-polarization. Alternatively, we can understand that the
anisotropic resonator is birefringent, converting the incident
linear polarization to elliptical polarization and creating the
cross-polarization component. The use of two non-resonant
wire-grids forms a cavity to dramatically improve the efficiency
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Fig. 1. (a) A unit cell structure of the tri-layer metasurface that allows for broadband linear polarization conversion, where a =
160 pm and ¢ = 120 pm. The adjacent diagrams show three different classes of resonator shape used in this work. There are 2um-
thick polyimide cap layers at the input and output surfaces, which are omitted for clarity. (b) Magnitude and (c) phase response
of the cross-polarized transmission for the 16 resonator structures shown in (d). Note that resonators 9-16 formed by flipping
resonators 1-8 in the x-axis. Consequently, their magnitude responses correspond identically, and are ommitted from (b). Track
width of all metal microstructures is 10 pm, and the unit for the specified dimensions in (d) is pm.

of polarization conversion. Essentially, the front wire grid allows
the incident waves to transmit through and interact with the
resonator, and at the same time blocks the back-propagating
waves with cross-polarization generated from the resonator. The
back wire grid reflects the co-polarized waves back to the res-
onator for additional interactions, but allows the transmission
of the cross-polarization. This enhances the conversion to cross-
polarization in the forward direction, and ultimately there is
only cross-polarized transmission (desirable) and co-polarized
reflection (undesirable). The latter can be minimized by appro-
priately tuning the dielectric spacer thickness, which leads to
destructive interference of multireflection from the metasurface
cavity [32].

In principle, any anisotropic resonators can be applied in
such tri-layer metasurfaces to achieve the linear polarization
conversion. It has been shown that varying the resonator geom-
etry can result in different transmission phases [27]. In this work
we use three different basic resonator forms as shown in Fig. 1(a).
The unit cell response is investigated with full-wave simulations
using CST Microwave Studio, representing an infinite, uniform
array of elements that is excited with normally-incident radia-
tion. The obtained cross-polarized transmission magnitude and
phase are plotted in Fig. 1(b) and (c), respectively, for a total of
sixteen different resonators shown in Fig. 1(d). It can be seen
from the results in Fig. 1(b) that the transmission efficiency at
the nominal operating frequency of 400 GHz ranges from 68% to
76%, and it has at least 50% efficiency over a 250 GHz range that
spans 300 GHz to 550 GHz, equivalent to 62.5% fractional band-
width. More importantly, the phase response results in Fig. 1(c)
show a smooth, near-linear phase gradient for all resonators,
with an approximate phase step of 77/8 separating adjacent

phase responses across the entire usable frequency range. Note
that resonators 9-16 are obtained by simply flipping resonators
1-8 in the x-axis, which alters their phase response by 180°, but
with identical transmission magnitudes between corresponding
resonators, as evidenced in Fig. 1(b,c).

In order to function as a lens, the metasurface must impart
the following phase distribution onto the transmitted radiation

[19],
o(r) = ko(VF2+ 12— F),

where ky is the free-space wavenumber, F is the desired focal
length, and r is the distance from the center of the flat lens. Itis
noted that the engineering phase convention is made use of, in
which a less-positive phase corresponds to a greater phase delay.

)

Fig. 2. (a) Spatial phase profile of the metasurface enabling
lens function, where the color coding represents the use of dif-
ferent resonators listed in Fig. 1(d), spanning a full 27t phase
range. (b) A micrograph of a portion of the fabricated sample,
showing two classes of resonators.
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Fig. 3. Measured raster-scanned field distributions spanning a 100 GHz range around the nominal 400 GHz operating frequency.
(a,c,e) xy-plane cross sections of the focused beam at 350, 400, and 450 GHz respectively, and (b,d,f) xz-plane beam profiles for
corresponding frequencies. Blue dashed lines give the intersection between the xy and xz planes in each of the plots, and blue
dotted lines give the expected location of the focal spots based on a simplified dispersion model. All field plots are normalized to

their respective maxima, in linear scale.

This phase distribution can be mapped to the sixteen resonator
designs via their discrete phase responses. For this design, a
focal length of 50 mm at the nominal operating frequency of
400 GHz is selected, and the results of this procedure are given
in Fig. 2(a).

The fabrication of the metasurface flat lens begins by spin-
coating and thermal-curing a 2 pm-thick polyimide layer (HD
MicroSystems PI-2525) onto a 4" Si substrate. A 200 nm-thick
gold (Au) back grating (track width = 10 um; duty cycle =
50%) is then fabricated using conventional contact lithography,
electron-beam evaporation, and metal lift-off. A 60 um-thick
polyimide layer is subsequently spin-coated and thermally cured
on hotplates at 300°C for 150 minutes, with a temperature ramp
of 2.5°C/min. The resonator array containing sixteen different
classes of Au resonator is fabricated atop this polyimide layer,
following the same steps used to realize the Au back grating.
A second 60 pm-thick polyimide layer is then spin-coated and
thermally cured on top of the resonator layer, followed by the
fabrication of the Au front grating, which is oriented orthogo-
nally to the Au back grating. Another 2 pm-thick polyimide
cap layer is subsequently deposited and thermally cured in or-
der to encapsulate the entire structure. Finally, the fabricated
structure is mechanically peeled off from the Si substrate in
order to establish a free-standing sample. A micrograph of a
portion of the resulting sample is given in Fig 2(b), showing
well-defined resonators and wire grids. The total area of the
sample is ~50x50 mm?, and hence there are a total of ~98,000
individual resonator elements.

The sample is excited with a collimated beam of the appro-
priate polarization. The central portion of the incident beam
is approximated by a Gaussian beam with a radius of 12 mm
at the operating frequency, but it also exhibits some intrinsic,
frequency-dependent irregularities. The cross-section (xy) and
profile (xz) of the focused beam are raster-scanned, and results
are presented in Fig. 3. Scans are presented at three frequencies
of interest, namely 350 GHz, the designed operating frequency
of 400 GHz, and 450 GHz. It is noted that the z-axis is defined
relative to the focal plane at 400 GHz, rather than the flat lens
device itself, as the realized focal distance is not explicitly known
due to factors including divergence of the incident beam, as well

as the internal configuration of the detector PCA. It is apparent
from the xy-scan that a focal spot is produced, shown in Fig. 3(c)
at the operating frequency, and hence this validates the func-
tionality of the nonuniform metasurface. The central portion of
this focal spot is closely approximated by a narrow Gaussian
beam, albeit with some un-desired fields surrounding the focus.
These fields are associated with irregularities in the incident
beam, which causes the output phase distribution to deviate
from those specified by Equation (1). The beam diameter of the
central portion is determined by curve fitting to be 2.3 mm, but
it is worth noting that this is spread by the detector, which is
approximated as a Gaussian aperture of diameter 1.32 mm. As
such, the true beam diameter is determined to be ~1.88 mm,
which is close to the diffraction-limited value of ~1.98 mm based
on the input beam radius of 12 mm. From the xz-scan at the
operating frequency presented in Fig. 3(d), the progression of
the beam is revealed, and it can be seen that the beam passes
through its focus, as expected. However, the aforementioned
irregularities of the incident beam are also evident here, as the
beam does not exhibit a strictly Gaussian intensity profile. For
instance, there are sub-maxima at either side of the optical axis
after it passes through its focus, which appear to correspond to
the aforementioned un-desired fields surrounding the focus in
the xy-scans in Fig. 3(c).

A flat lens of this sort is expected to be dispersive, given the
approximately-proportional relationship between focal length
and frequency for the frequency-invariant relative phase distri-
bution. This is especially true given the near-constant difference
in phase between resonator elements across the usable frequency
range shown in Fig. 1(c). For this particular flat lens, this disper-
sion relation predicts a difference of ~6.25 mm in focal length
for a 50 GHz difference in frequency. As such, the xy-scans
shown in Figures 3(a) and (e) are not at the device’s focal plane,
resulting in a broader spread in the electric field distribution. It
is also worth noting that the scan in Fig. 3(a) shows an annular-
like field distribution, which is ascribed to irregularities in the
incident beam. The calculated focal plane positions for 350 and
400 GHz are consistent with the xz-scans given in Figures 3(b)
and (d). However, the distance is greater for the scan shown in
Fig. 3(f). We attribute this to frequency-dependent divergence of
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Fig. 4. Overall efficiency, investigated by single-pixel mea-
surements, with error bars at one standard deviation given as
dashed lines.

the incident beam, which exaggerates the spatial dispersion of
the metasurface.

Of key interest to the performance of this device is the over-
all efficiency, and hence we evaluate this experimentally. The
approach that we have employed is to compare the peak power
delivered to the focal spot at 400 GHz with the power deliv-
ered by a standard polymethylpentene (TPX) lens of the same
focal length serving as a reference. Discrepancies in output po-
larization and device aperture are compensated by setting the
detector at a 45° angle, and passing the incident beam through
an iris of ~25 mm diameter, ensuring identical coverage of the
incident terahertz beam. The dissipation and reflection losses
of the reference lens are compensated analytically, based on
material properties from the literature [33], and this measure-
ment procedure is repeated five times in order to evaluate the
associated degree of uncertainty. The results are presented in
Fig. 4, revealing a mean peak efficiency of ~68% at the nominal
operating frequency of 400 GHz, which is consistent with the
unit cell simulations. Additionally, we extract a —3 dB spectral
bandwidth of 150 GHz from these results, spanning from 340 to
490 GHz. It is also worth noting that the standard error increases
markedly above the operating frequency, which is likely due to
diminishing dynamic range with increase in frequency.

In summary, we have presented the design, fabrication, and
characterization of a terahertz metasurface flat lens operating in
the vicinity of 400 GHz. The demonstrated diffraction-limited
focusing capability and operating frequency are amenable to
practical applications including imaging and high-volume com-
munications. The bandwidth of this device is mainly limited
by spatial dispersion, and is found to be approximately 37%,
which corresponds to 150 GHz of absolute spectral bandwidth.
The transmission efficiency of the metasurface is experimentally
evaluated to be ~68% at the operating frequency.
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