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Abstract

Since the inception of lattice QCD, significant effort has been invested into ex-

ploring hadronic spectra, both to shed light upon the nature and properties of

various states, and to test the validity of the methodology itself. Critical chal-

lenges in this endeavour are the judicious selection of interpolating operators, and

the choice of calculation paradigm within which these operators are utilised to

extract observables.

In this thesis both of these challenges are addressed. Focusing on the topical

nucleon sector, various local five-quark interpolating fields are introduced and

spectroscopic calculations are performed with them. These local multi-hadron

operators of interest give rise to diagrams that contain loop propagators that

necessarily require a different calculation recipe. Stochastic estimation techniques

are utilised to evaluate these propagation amplitudes, and a method to smear

these propagators is developed.

The variational method for extracting hadronic excitations is then examined

by producing spectra with a variety of operator bases. Fitting a single-state

ansatz to the eigenstate-projected correlators is demonstrated to provide robust

energies for the low-lying spectrum that are essentially invariant despite originat-

ing from qualitatively different bases.

In the negative-parity nucleon sector, the introduction of local five-quark op-

erators permits the extraction of a state consistent with the S-wave πN scattering

threshold, while in the positive-parity channel the excited state spectrum remains

essentially unchanged under the addition of the local five-quark operators. De-

spite the use of multiple five-quark operators with qualitatively different quark,

γ-matrix and parity structures, the overlap of local five-quark operators with

five-quark scattering states is found to be low.

Non-local five-quark interpolating fields are then introduced, and stochastic

noise minimisation techniques are developed in order to combat the computa-

tional difficulties introduced by these operators. Explicitly projecting momenta

xi
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onto single-hadron pieces of these non-local multi-hadron operators is known to

provide significantly enhanced overlap with scattering states and as such we per-

form this projection enabling a presentation of a proof of principle calculation in

the negative parity nucleon sector.

Furthermore, the calculation methodology and associated algorithms to eval-

uate correlators directly from n-quark operators are developed with a high degree

of generality, forming the basis for a rich spectrum of future work in a wide variety

of channels.
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