

UNIVERSITY OF ADELAIDE, AUSTRALIA

CHARACTERISATION OF GLUTAMINE SYNTHETASE TO MAP NEW REGULATORY LOCI MODULATING NITROGEN USE EFFICIENCY IN HEXAPLOID WHEAT

Jonathan Castel Djietror

Thesis submitted in fulfillment of the requirements for the degree of Doctorate of Philosophy in the Faculty of Sciences at the University of Adelaide, Australia

The Australian Centre for Plant Functional Genomics (ACPFG), Adelaide

September 2, 2016

This thesis is dedicated to Catherine and the Kids, my mum Dora Akleh Djietror and to loving memory of Samuel Ayiku Djietror

Characterisation of Glutamine synthetase to Map New Regulatory Loci Modulating Nitrogen Use Efficiency in Hexaploid Wheat

Jonathan Castel DJIETROR

Supervisors:

Associate Prof. Ken Chalmers

Senior Research Fellow, Lecturer - Plant Breeding and Genetics University of Adelaide-Waite Campus PMB1, Glen Osmond, SA5064, Australia ken.chalmers@adelaide.edu.au

Prof. Diane Mather

Professor - Plant Breeding and Genetics JAT Mortlock Chair - Crop Improvement and Deputy Head (Research) University of Adelaide-Waite Campus PMB1, Glen Osmond, SA5064, Australia diane.mather@adelaide.edu.au

Associate Prof. Sigrid Heuer

Science Coordinator and Program Leader Australian Centre for Plant Functional Genomics University of Adelaide-Waite Campus PMB1, Glen Osmond, SA5064, Australia sigrid.heuer@acpfg.com.au

Dr. Darren Plett

Research Fellow Australian Centre for Plant Functional Genomics University of Adelaide-Waite Campus PMB1, Glen Osmond, SA5064, Australia darrren.plett@acpfg.com.au

Dr. Adam Croxford

Postdoctoral Researcher University of Adelaide-Waite Campus PMB1, Glen Osmond, SA5064, Australia adam.croxford@adelaide.edu.au

Dr. Julian Taylor

Research Scientist University of Adelaide-Waite Campus PMB1, Glen Osmond, SA5064, Australia julian.taylor@adelaide.edu.au

Thesis submitted in fulfilment of the requirements for the degree of **Doctor of Philosophy, Science**

School of Agriculture, Food and Wine Faculty of Science The University of Adelaide Waite Research Institute, Glen Osmond, SA 5064

Jonathan Castel DJIETROR

Email: jonathan.djietror@acpfg.com.au jonathan.djietror@adelaide.edu.au

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

02/09/2016

(Signed)

(Date)

Jonathan Castel DJIETROR

(1637082)

ACKNOWLEDGEMENTS

The contribution of the following persons at the Australian Centre for Plant Functional Genomics and University of Adelaide, Waite Campus is duly acknowledged and deeply appreciated. Ute Baumann is acknowledged for providing technical support in identifying reference gene sequences from polyploid species. Timo Tiirika served as a consultant on bioinformatics and phylogenetic assessment of glutamine synthetase and ammonium transporter genes. Trevor Garnett provided materials for cultivating plants used in the hydroponic experiments to evaluate enzyme activity and expression analysis. Yuan Li provided technical and advisory support on optimising qPCR experiment. Radowslav Sucheski served as advisor and consultant for the technical aspects of the POTAGE programme. Adam Croxford provided technical and advisory support on the sequencing of GS genes and the optimisation of PCR experiments. Beata Sznajder and Julian Taylor gave valuable technical assistance on the statistical analysis of enzyme activity, gene expression and QTL analysis. Members of the Molecular Marker Laboratory provided technical and advisory support in various ways and their contribution is very much appreciated.

LIST OF KEY TERMS AND ABBREVIATIONS

AMT: Ammonium transporter

cDNA: complimentary DNA

DNA: Deoxyribonucleic acid

FL: Flag leaf

FL-1: Fully extended leaf next the flag leaf

GDH: Glutamate dehydrogenase

GOGAT: Glutamate 2-oxoglutarate transaminase

GS: Glutamine synthetase

HN: High nitrogen treatment $(5.0 \text{ mM NO}_3 + \text{NH}_4)$

KASP: Kompetitive allele specific primer

LN: Low nitrogen treatment (0.5 mM $NO_3^- + NH_4^+$)

N: Nitrogen

NH₄⁺**:** Ammonium

NO³: Nitrate

NUE: Nitrogen use efficiency

NRT: Nitrate transporter

OFB: Older fully extended leaf

PCA: Principal component analysis

PCR: Polymerase chain reaction

PTM: Post translational modification

POTAGE: PopSeq ordered *Triticum aestivum* gene expression

qPCR: Quantitative polymerase chain reaction

SNP: Single nucleotide polymorphism

YEB: Young fully extended leaf

Zadoks stages: distinct phases of cereal growth and development

TABLE OF CONTENTS

DECLARATION	vi
ACKNOWLEDGEMENTS	vii
LIST OF KEY TERMS AND ABBREVIATIONS	viii
TABLE OF CONTENTS	1
GENERAL INTRODUCTION	6
CHAPTER ONE: Introduction and Literature Review	10
1. Introduction	10
1.1 Importance of Nitrogen in Crop Production	12
1.2 Glutamine synthases in N-linked and Metabolic pathways	16
1.3 Quantifying Nitrogen Use Efficiency (NUE)	20
1.4 Genetic Control of Nitrogen Use Efficiency	21
1.4.1 Evidence for Heritable Genetic Variation for NUE Traits	21
1.4.2 Forward Genetic Studies Involving QTL Mapping	22
1.4.3 Candidate Genes and Productivity QTL Collocation	24
1.4.4 Gene Families in Nitrogen Assimilation and Metabolism	26
1.5 Glutamine synthase Functional Traits and Sub-cellular Localisation	28
1.6 Quantitative Expression of <i>GS1</i> and <i>GS2</i>	34
1.7 Post-translational Modification of <i>GS1</i> and <i>GS2</i>	40
1.8 Characterisation of Enzyme Activity	42

CHAPTER TWO: Gene Identification, SNP Genotyping and Locus		
Mapping of <i>TaGS1.1</i> and <i>TaGS2</i> Conserved Domains	45	
2. Abstract	45	
2.1 Introduction	46	
2.2 Materials and methods	50	
2.2.1 Overview of Experimental Activity	50	
2.2.2 Germplasm Material	51	
2.2.3 In-silico Gene Sequence Identification	53	
2.2.4 Phylogenetic Analysis of <i>TaGS1</i> and <i>TaGS2</i> Homologues	57	
2.2.5 Primer Design and Gene-Genome Specificity Confirmation	57	
2.2.6 Polymerase Chain Reaction and Optimisation	59	
2.2.7 SNP Marker Assay and Fine Mapping of GS Homologues	62	
2.2.8 Marker-based Analysis of Genetic Structure	64	
2.3 Results	67	
2.4 Discussion	85	
2.5 Conclusion	89	
CHAPTER THREE: Full-length Gene Sequencing to Capture	e Phylogeny	
and Allelic Variation in Wheat Glutamine synthetases	90	
3. Abstract	90	
3.1 Introduction	91	
3.2 Materials and methods	97	

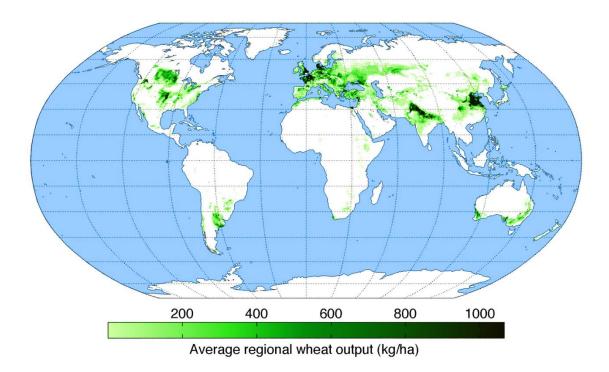
3.2.1 Sequence Assembly and Identification of GS Genes	97
3.2.2 Primer Design and Gene Sequence Amplification	99
3.2.3 Next Generation Sequencing with MiSeq Sequencing Tools	101
3.2.4 Polypeptide Function Detection Using Web-Based Tools	103
3.2.5 Phylogenetic Analysis	104
3.3 Results and Discussion	105
3.3.1 Phylogeny of GS Sequences from Different Plant Species	105
3.3.2 Polymorphism between Wheat GS Alleles	112
3.4 Conclusion	121
CHAPTER FOUR: Regulation of Glutamine synthetases in Wheat	122
4. Abstract	122
4.1 Introduction	123
4.2 Materials and methods	129
4.2.1 Experiment 1 - Gene Expression Analysis Using a Novel Tool	129
4.2.2. Experiment 2 - Confirmation of the POTAGE Analysis of GS Tra	anscript
Abundance	130
4.2.2.1 Primer Design, PCR Amplification and PCR Product Sequencing	132
4.2.3 Experiment 3 - Hydroponic Assessment of GS Expression in Plants	135
4.2.4 cDNA Synthesis from RNA Samples	138
4.2.5 Quantitative Real-Time Polymerase Chain Reaction (qPCR)	138
4.2.6 Gene Expression Analysis	139
4.3 Results	141

4.4 Discussion	150
4.4.1 Transcript Abundance of <i>TaGS1.1</i>	150
4.4.2 Transcript Abundance of <i>TaGS2</i>	151
4.4.3 GS1.1 and GS2 Transcript Abundance in Wheat Tissues	
4.4.4 Nitrogen Effect on GS Expression	154
4.5 Conclusion	157
CHAPTER FIVE: Glutamine synthetase Activity in Wheat at H	igh and Low
Nitrogen Treatments	159
5. Abstract	159
5.1 Introduction	160
5.2 Materials and methods	166
5.2.1 Experiment 1: GS Activity at Four Growth Stages	166
5.2.2 Experiment 2: GS activity based on Zadoks Growth Stages	167
5.2.2.1 Germplasm Material for Experiment 2	167
5.2.2.2 Experiment 2 Activities	
5.2.2.3 Hydroponic System Set-up and Growth Conditions	
5.2.2.4 Buffer Preparation and Biochemical GS Assays	170
5.2.2.5 GS Activity Determination	172
5.2.2.6 Genetic Analysis of GS Activity	173
5.2.3 Experiment 3: GS Activity in Plants Grown in Soil	174
5.3. Results	175
5.4 Discussion	193

5.5 Conclusion	200
CHAPTER SIX: General Overview and Future Perspe	ectives for GS
Characterisation	201
6. Introduction	
6.1 Advances in Knowledge from the Present Study	203
6.2 Future Directions for GS Characterization in Wheat	210
6.3 Concluding Remarks	214
Appendix	216
List of References	238

GENERAL INTRODUCTION

Each year, cereal crops such as wheat, rice, maize and barley are cultivated and harvested to serve as staple foods that contain calories, dietary fibre, vitamins and minerals in the diets of over 70% of the world population. Wheat is among the most cultivated cereal crops. The major wheat production areas include the Mediterranean production areas of the Middle East (Fertile Crescent Region), Europe, North America, Asia (India and China) and Australia (Fig. G.1). Wheat cultivation involves considerable application of nitrogenous fertilisers to the plants in order to maximise yield. Annually, the global nitrogen (N) fertiliser application in crop production estimates at 85 - 90 mMt; of which 53.3 mMt is applied to cereals. Nitrogen fertilizer is vital for crops as the plants utilise nitrogenous compounds (N₂O, NO, N₂ and NH₃⁺) to synthesise amino acids essential for grain development.


Nitrogen is added to soils in the form of inorganic fertiliser and processes such as precipitation, atmospheric nitrogen fixation (lightning and thunderstorms), and the activity of soil micro-organisms in root nodules of leguminous plants. The movements of N out of agricultural soils is by gaseous losses (volatilisation) to atmosphere, leaching from topsoil and uptake in crop plants for growth and physiological development (conversion of N to biomass). Concerns over excess NH_3^+ on the atmosphere and climate, environmental impact of excess nitrogenous fertilisers in croplands and the damaging effects in aquatic ecosystems have highlighted the need for the introduction of more N-efficient crop varieties into cropping systems.

Nitrogen response in plants can be assessed in terms of grain yield per N supplied per area and in terms of physiological variables including plant height, biomass, chlorophyll content, leaf area (Asplund et al. 2016, Barutçular et al. 2016; Elazab et al. 2016; Singh et al. 2016). These traits are controlled by genetic factors including specific enzymes such as Glutamine synthetase (GS) that affect N uptake in plants and may determine positive correlation between N-uptake genes and plant (grain and stem) N content (Habash et al. 2007). Various isoforms of GS have been shown to catalyse metabolic processes in N uptake and biosynthetic pathways within cereal crops including hexaploid wheat (Sukanya, et al. 1994; Singh & Ghosh, 2013; Urriola & Rathore, 2015; Basuchaudhuri, 2016).

Currently, there are few studies of GS in wheat. Glutamine synthetase studies in related cereal species have, revealed however, crucial links between the GS enzyme and N- related traits. For example, quantitative trait analysis has revealed genetic loci for GLN1 cytosolic GS isoform, whose activity relates to grain production in maize (Hirel et al, 2007; Galais and Hirel 2004) and rice where there is correlation between cytosolic GS protein content and grain number/size (Yamaya et al. 2002, Obara et al. 2004).

- 7 -

This current study attempts to decipher the genetic characteristic of GS in N metabolism principally in hexaploid wheat, but may be applicable to related cereal crop species and non-related species more generally. The objective of this study is to characterise the different isoforms of GS enzymes that are actively involved in nitrogen metabolism in hexaploid wheat.

Fig. G.1 Global map of wheat production (mean percentage of cultivation land x mean yield in each grid cell) by the University of Minnesota, Institute of Environment.Source:https://en.wikipedia.org/wiki/International_wheat_producti on_statistics#/media/File:WheatYield.png.

Specific Aims and Objectives of the Present Study

The main aim of this research project is to identify and characterise genetic variation within a diverse collection of wheat germplasm for key enzymes linked with N metabolism in wheat and related cereal species. Moreover, the study will attempt to address the following research objectives:

- Identity and confirm the genetic loci of GS homologues in hexaploid wheat genome.
- Characterise sequence diversity among different accessions of wheat through phylogenetic analysis.
- Develop molecular markers within the GS conserved domain sequences.
- Assess GS expression by quantifying the transcript abundance under high and low N treatment of wheat plants.
- Evaluate effects of genetic variation on GS activity under high and low N.

The germplasm for this project is sourced from a genetically diverse pool of wheat, adapted for the growth in the major cultivation zones around the world, and represent a unique resource for use in this study.