

Phosphate transport in Mycorrhizal Plants: Cloning and Characterisation of Genes Encoding Phosphate Transporters

by

DONNA GLASSOP B.App.Sci., Grad.Dip.Biotech., M.App.Sc.(Life Sc.), Queensland University of Technology

A thesis submitted for the degree of Doctor of Philosophy School of Earth and Environmental Sciences The University of Adelaide

October, 2004

TABLE OF CONTENTS

Titl	Title				
Tal	Table of Contents II				
Lis	t of Tal	olesVI			
Lis	t of Fig	uresVII			
Ab	breviat	ions and SymbolsVIII			
Ab	stract .	Х			
De	claratio	n of OriginalityXI			
Δ.	knowle	drements			
4	Intro	duction 1			
1					
2	Revi	ew of the Literature			
	2.1	Supply of soil phosphorus and its importance to plants			
	2.1.1	Importance of P6			
	2.1.2	P in soil and acquisition8			
	2.1.3	The role of AM fungi in supplying P to plants10			
	2.1.4	AM fungal structures11			
	2.1.5	Plant/AM fungi interactions			
	2.2	The importance of phosphate transporters in P uptake14			
	2.2.1	The Pht1 family of P transporters14			
	2.2.2	Regulating P uptake15			
	2.2.3	P transporter kinetics			
	2.2.4	Verification of function of P transporters and kinetics by yeast complementation			
	2.2.5	Verification of function and kinetics in plant cell suspension cultures			
	2.2.6	Split root and hydroponic experiments			
2.2.7 P transporter kinetics in realistic growth conditions					
2.2.8 Expression analysis and localisation of P transporters involved with P uptake from AM					
	fungi 19				
2.3 Aims of the thesis					
3	3 Materials and Methods				
	3.1	Soil conditions and plant propagation			

	3.1.1	Soil, soil mixes and phosphorus amendments2	2			
	3.1.2	Plants, plant propagation, growth conditions and harvesting2	3			
	3 2	Wetering				
	J.Z	Hatering				
	3.3	Cultures of AM fungi2	.5			
	3.4	Analysis of mycorrhizal colonisation	5			
	3.5	Plant growth and phosphate analysis2	6			
	3.6	RNA extraction2	6			
	3.6.1	Large scale preparations2	6			
	3.6.2	2 Small scale preparations2	6			
	3.7	Genomic DNA extraction	:6			
	3.8	Clone analysis	27			
	3.8.1	Vectors2	!7			
	3.8.2	2 Ligation	28			
	3.8.3	3 Transformation of vectors into bacteria2	28			
	3.8.4	1 Miniprep analysis	29			
	3.8.5	5 Restriction enzyme digestion and analysis2	29			
	3.8.6	5 Transformation of vectors into plants2	29			
	3.9	Sequence analysis	!9			
	3.10	In-situ hybridisation protocol	0			
	3.11	Phosphate transporter nomenclature	31			
	3.12	Statistical analysis	32			
4	Variation between barley cultivars in P uptake and rate of colonisation					
	4.1	Variation between barley cultivars in P uptake and efficiency	33			
	4.1.	1 Materials and Methods: Barley P efficiency	35			
	4.1.2	2 Results: Barley P efficiency	36			
	4.1.3	3 Discussion: Variation between cultivars in P uptake and efficiency	11			
	4.2	Rate of colonisation by two mycorrhizal fungi	12			
	4.2.	1 Materials and Methods: Mycorrhizal colonisation of barley cultivars4	14			
	4.2.2	2 Results: Mycorrhizal colonisation of barley cultivars	15			
	4.2.3	3 Discussion: Mycorrhizal colonisation of barley cultivars4	17			

5 Barley P transporters, wheat mycorrhizal P transporter and maize mycorrhizal P transporter 49				
5.1	Introduction			
5.2	Methods and Materials			
5.2.	1 Production of transgenic barley Plants			
5.2.	2 Reporter gene analysis of transgenic barley53			
5.2.	3 Plant Propagation and growth conditions for RT-PCR, real-time RT-PCR and in-situ			
hyb	ridisation analysis			
5.2.	4 RT-PCR analysis53			
5.2.	5 Real-Time RT-PCR analysis55			
5.2.	6 In-situ Hybridisation			
5.2.	7 Pht 1 Family Topology			
5.3	Results			
5.3.	1 HORvu;Pht1;1 and HORvu;Pht1;2 transgenic barley plants			
5.3.	2 RT-PCR expression of barley P transporters			
5.3.	3 Real-Time RT-PCR of HORvu;Pht1;1;1, HvPT1;2 and HvPT1;860			
5.3.	4 In-situ localisation of HORvu;Pht1;862			
5.3.	5 RT-PCR of wheat mycorrhizal P transporter and <i>In-situ</i> images			
5.3	6 Identifying a maize mycorrhizal P transporter from a phylogenetic tree			
5.3	7 RT-PCR of maize mycorrhizal P transporter and <i>In-situ</i> images			
5.3	8 Pht1 family topology69			
5.4	Discussion			
6 Ide	ntification and expression patterns of the Phili family of P transporters and a			
mycorn	izal P transporter in fice			
6.1	Introduction73			
6.2	Methods and Materials76			
6.2	1 Screening the completed rice genome			
6.2	2 Primers designed for RT-PCR			
6.2	3 OsPT1 cDNA			
6.2	4 OsPT1 promoter			
6.2	5 In-situ hybridisation of ORYsa;Pht1;11			
6.3	Results			
6.3	.1 P transporters identified from the entire rice genome			

IV

	6.3 <i>.</i> 2	RT-PCR and gDNA PCR of putative rice P transporter genes	79
6.3.3		OsPT1 cDNA and promoter	81
6.3.4		In-situ hybridisation of ORYsa;Pht1;11	82
	6.3.5	Pht1 Family Topology	83
6	6.4	Discussion	84
7	Gen	eral discussion	86
7	7.1	Mycorrhizal P transporter sequence homology	86
7	7.2	Putative cis-regulatory elements in mycorrhizal P transporter promoters	87
7	7.3	The 'alternative' P acquisition pathway in mycorrhizal plants	90
Ap	pendix	1: Phosphate transporters isolated up to June 2003	97
Ар	pendix	2: Soil Analysis	116
Ар	pendix	3: Vectors	118
Ap	pendix	4: Sequences	123
		Barley P transporters	123
		Maize P transporter	133
		Rice P transporters	134
Tomoto P transporter1			
		SGFP	155
Ар	pendix	5: ANOVA's for results presented in Chapter 4	156
Bib	oliogra	ohy	160

List of Tables

Table	Title	Page
2.1	Functions of major essential nutrients in plants and the concentrations as % dry matter	
	required for optimal growth of barley	6
3.1	Plant species and cultivars used in the work described in this thesis	23
3.2	Composition of the nutrient solution used in all experiments	24
3.3	Common names of P transporters and the correct names used in this thesis	31
4.1	Total biomass dry weight (g/plant) and root:shoot ratio of 7 barley cultivars grown in	
	soil:sand culture	36
4.2	Root and shoot dry weight (g/plant) of 7 barley cultivars grown in soil:sand culture	37
4.3	Phosphorus concentrations (mg P/g DW) in plant tissues of 7 barley cultivars grown in	
	soil:sand culture	38
4.4	Total P uptake (mg P/g DW) and allocation of P to the shoots (%) in 7 barley cultivars	
	grown in soil:sand culture	39
4.5	Specific P uptake in 7 barley cultivars grown in soil:sand culture	40
5.1	Primer sequences, MgCl ₂ concentration and expected product size for RT-PCR of	
	barley, wheat and maize P transporters and wheat control	54
5.2	PCR primers used for real-time RT-PCR for HORvu;Pht1;1, 1;2 and 1;8	55
5.3	P concentration and extent of colonisation of barley cultivar Golden Promise plants	
	used for real-time-RT-PCR	58
6.1	A list of known rice P transporters and references	74
6.2	Primers used for RT-PCR of rice P transporters identified from rice genomic sequences.	77
7.1	Percent homology between the mycorrhizal P transporter amino acid sequences	87

List of Figures

Figure	Title	Page
2.1	Schematic representation of supply of phosphorus to plant roots in soil systems	8
2.2	Internal AM fungal structures	11
2.3	Images of AM fungal external hyphal network	12
2.4	Schematic images of the PHT1 family phosphate transporters	14
2.5	Concentration-dependence of ion uptake by plant cells, illustrating the dual-isotherm	
	Michaelis-Menten kinetics	16
4.1	Colonisation of barley cvs Franklin, Golden Promise and Sahara by two mycorrhizal	
	fungi	45
4.2	The effect of soil P concentration on mycorrhizal colonisation	46
5.1	GFP images of transgenic barley roots, transformed with HORvu;Pht1;1 or	
	HORvu;Pht1;2 promoters fused to GFP	57
5.2	RT-PCR analysis of the Hordeum vulgare Pht1 family of P transporters	59
5.3	Real time RT-PCR results for expression of HORvu;Pht1;1 , HORvu;Pht1;2 and	
	HORvu;Pht1;8	61
5.4	Detection of HORvu;Pht1;8 transcripts by in-situ hybridisation on sections of barley	
	roots colonised by Glomus intraradices, G.sp. WFVAM23 and Scutellospora	
	calospora	63
5.5	RT-PCR analysis of expression of TRlae;Pht1;myc	64
5.6	Detection of TRIae; Pht1; myc transcripts by in-situ hybridisation on sections of wheat	
	roots colonised by G. intraradices, G.sp. WFVAM23 and Sc. calospora	65
5.7	Phylogenetic tree of all P transporters listed in appendix 1	67
5.8	RT-PCR analysis of ZEAma;Pht1;6	68
5.9	Detection of ZEAma; Pht1;6 transcripts by in-situ hybridisation on sections of maize	
	roots colonised by G. intraradices and G.sp. WFVAM23	69
5.10	Predicted topology of P transporters HORvu;Pht1;8, TRIae;Pht1;myc and	
	ZEAmycPHT1;6	70
6.1	RT-PCR results for rice genes, 1, 2, 8, 14, OsPT1 and OsPT2	80
6.2	Detection of ORYsa; Pht1;11 transcripts by in-situ hybridisation on sections of rice	
	roots colonised by G. intraradices, G.sp. WFVAM23 and Sc. calospora	82
6.3	Predicted topology of P transporter ORYsa;Pht1;11	83
7.1	Phylogenetic tree of all mycorrhizal P transporters	87
7.2	Illustration of the putative cis-regulatory motifs	89
7.3	Schematic representation of supply of P to plant roots via two alternative pathways	91

Abbreviations and Symbols

Abbreviation	Full title
~	Approximately
%	Percentage
>	Greater than
#	Catalogue number
°C	Degrees Celsius
bp	Base pair of nucleic acids
cDNA	Complementary DNA
cm	Centimetres
CV	Cultivar
DNA	Deoxy ribonucleic acid
eg.	Example
et al.	And others
g	Gram
gDNA	Genomic DNA
h	Hours
kDa	Kilodalton, molecular mass
kg	Kilogram
K _m	Affinity of a substance for an enzyme – Michaelis-Menton constant
L	Litres
lb sq.in1	Pounds per square inch, a measure of pressure
m	Minutes
Μ	Molar
mg	Milligram
mg kg ⁻¹	Milligram per Kilogram
mL	Millilitres
mm	Millimetres
mМ	milli Molar
m ² s ⁻¹	Metres squared per second
ng	Nanograms
nm	Nanometres
Ν	Normal = 1 Molar
Р	Phosphorus, phosphate

s . .

Abbreviations and Symbols continued...

Pi	Inorganic phosphate
rpm	Revolutions per minute
RNA	Ribonucleic acid
s	Seconds
μg	Microgram
μL	Microlitres
μm	Micrometres
μΜ	micro Molar
UV	Ultra violet light
V	Volts
Vmax	Maximum velocity of a reaction

Abstract

Many Australian soils are phosphate deficient. This has encouraged the use of fertilisers for profitable agricultural production. However, the inefficiencies, expense and environmental issues associated with high fertiliser use have led to a search for technologies that improve phosphate (P) uptake and utilisation.

Most crop plants are adapted to low soil P through symbiotic relationships with mycorrhizal fungi that enhance P acquisition. Mycorrhizal plants have two possible routes for P uptake from soil a) the direct uptake pathway via the root epidermis and root hairs, and b) a mycorrhizal pathway. In the latter mycorrhizal fungi deliver P from the soil to the interfacial zone between the symbionts, where plant P transporters in the cortical cell membranes acquire the P provided.

This project has successfully identified four plant P transporters that are expressed in mycorrhizal roots of the major cereal crop species barley (*HORvu;Pht1;8*), wheat (*TRlae;Pht1;myc*), maize (*ZEAma;Pht1;6*) and rice (*ORYsa;Pht1;11*) and are implicated in the mycorrhizal uptake pathway. The information on barley, maize and wheat is new; *ORYsa;Pht1;11* from rice was reported in 2002 with further information presented here. In barley the expression of *HORvu;Pht1;8* and two other barley P transporters, that appear to be involved in the direct uptake pathway, has been compared in plants grown in high and low P soil and in the presence and absence of mycorrhizal colonization. The expression pattern of these genes is indicative of the mycorrhizal P uptake pathway being utilised by the plant.

It is known that cereals are not highly responsive to mycorrhizal colonization in terms of either growth or P uptake and it might be expected that the mycorrhizal P uptake pathway is relatively unimportant. However, it has been recently shown that other non-responsive plants can receive 100% of their P via the mycorrhizal pathway, implying that P transporters in the direct pathway (epidermis and root hairs) are switched off. This hypothesis can now be tested with cereals. The finding that field grown (and hence mycorrhizal) barley and other cereals may acquire P via mycorrhizal fungi and not directly via the epidermis and root hairs would have significant implications for improvement of P efficiency.

DECLARATION OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

D.Glassop

ACKNOWLEDGEMENTS

CRC Molecular Plant Breeding, The University of Adelaide and CSIRO Plant Industry supported this thesis.

I would like to thank my supervisors Prof. Sally Smith, The University of Adelaide, and Dr Frank Smith, CSIRO Plant Industry. Their advice and guidance has been invaluable. Prof. Sally Smith has introduced me to the wonderful world of mycorrhizal fungi where her expertise is immense and personality generous. Dr Frank Smith has been leading the research in P transport, sharing this knowledge with me, and providing me with laboratory expertise that will be constantly called on in my career. Thank you both for accepting my application and giving me the opportunities I desired.

Thank you to May-Ling Goode, Janine Jarmey, Dr Stephen Mudge and Dr Anne Rae for providing a great working environment in the laboratory and their helpful advice and encouragement. Thanks also to Dr Chris Lambrides and Dr Ky Matthews for assistance with statistical analysis.

Special thanks to Debbie Miller, Dr Sandy Dickson and the staff at Adelaide University who provided assistance from afar and always made me welcome on visits to Adelaide.

Thank you to Louise Burton for her expertise with Microsoft Word and formatting of the thesis.

Finally, thank you to my parents, Mark and Shirley Glassop, fiancé, Ron Thyen, and family who have supported my studies, and all that I choose to do, with great enthusiasm.

1 Introduction

Plants must have access to the macronutrients nitrogen (N), phosphorus (P), potassium (K), magnesium chloride (Mg), calcium (Ca) and sulphate (S), as well as micronutrients, for optimal plant growth. P is involved in many plant biochemical processes as a primary energy source, adenosine triphosphate - ATP; as an essential structural component in cell membranes and nucleic acids, as well as buffering cell solutions. P is often the limiting factor in plant growth because of the low concentrations or poor availability in soils worldwide. In order to overcome this limitation the use of P fertilisers has become common practice.

Crops do not access applied P fertilisers effectively. Only 5-30% of soluble P applied is recovered in the first crop and the remainder of the P (70-95%) accumulates in the soil as inorganic and organic P compounds (Bolland & Gilkes R.J., 1998). This inefficiency has been managed by increasing the application of fertilisers, a wasteful practice which is further magnified by the diminishing stock of high grade rock P and the increasing cost of fertilisers (Trolove *et al.*, 2003). Because soils worldwide are often either P deficient or contain P in inaccessible forms, research into the processes of P acquisition by plants is required in order to improve P uptake and increase P acquisition from less available sources.

Improved P acquisition is achieved by plants using one or more of the following mechanisms (Comerford, 1998; Trolove et al., 2003; Hedley et al., 1994; Lynch & Brown, 1998):

- Alterations in root morphology (development of long, fine, hairy roots; increased root growth in regions of high P; cluster roots)
- Changes in the soil chemistry, which increases P availability (e.g. release of inorganic P by changing pH or releasing chelating agents; accessing organic P by releasing hydrolytic enzymes).
 These mechanisms will increase the solution concentration of P in the rhizosphere and expose P transporters expressed in epidermal cells of the root to higher concentrations of P.
- Formation of associations with arbuscular mycorrhizal fungi (AM fungi) that provide the plant with an
 alternative avenue of P uptake by accessing P beyond the range of the plant root system and
 delivering the P past the root epidermis to the cortical cells.
- Altering the expression of P transporters so that they are present at sites of available P. The expression of P transporters in root epidermal cells, associated with acquiring P from the soil, is reduced when the plant is colonised by AM fungi. AM fungi deliver P to root cortical cells where P transporters (different from root epidermal P transporters) are able to acquire the P (Liu *et al.*, 1998b).

The genetic manipulation of P transporters to alter their regulation may increase the P acquired by plants. Before this approach can be taken it is important to identify which P transporters are associated with P acquisition at the interfaces between roots, AM fungi and soil, particularly those that are activated when plants are grown in the field. Field experiments or at least experiments in soil-based systems are particularly important as soil has many complexities (physical, chemical and biological) that will influence the way in which a plant acquires P.

Plants acquire P against a steep electrochemical gradient (Mimura, 1999). P concentration in cytoplasm and soil have been measured at 10 mM and 1 μ M respectively, which together with the negative potential difference across the membrane equate to energy demanding conditions for uptake of negatively charged H₂PO₄- ions (Mimura, 1999). In order to accumulate negatively charged H₂PO₄- ions in higher concentrations than the external environment the plant utilises active H₂PO₄-/ H⁺ symporters (referred to as P transporters throughout this thesis). Many plant P transporters have now been identified/cloned (mainly from various crop species). P transporters are membrane-associated proteins involved in P acquisition from soil or from the AM fungal interface and in mobilisation and redistribution of P within the plant. The P transporters work by an energy-mediated co-transport process, whereby protons (H⁺) and H₂PO₄- ions move through the membrane together into the cell (Clarkson & Grignon, 1991; Muchhal & Raghothama, 1999). The proton motive force for H⁺ transfer is supplied by a membrane bound H⁺-ATPase pump that pumps H⁺ ions to the outside of the membrane (Smith *et al.*, 2003a). Once P is acquired by the plant from the soil or from AM fungi it is translocated throughout the plant where it may be found in various chemical forms, inorganic ion or as organic derivatives, depending on function and location (Mimura *et al.*, 1996).

P uptake and translocation are regulated by the concentration of P available for uptake and the P concentration within plant cells, particularly the vacuolar concentration (Schachtman *et al.*, 1998). An example of loss of this regulation occurs in the *Arabidopsis* mutant pho2 that is unable to down-regulate the P uptake system and thus continues to accumulate P within leaves to a point of toxicity (Delhaize & Randall, 1995). Regulation of P uptake and mobilisation is reflected in the transcription levels of P transporters; eg the barley P transporters (*HORvu;Pht1;1* and *1;2*) have reduced transcription levels when plants have a sufficient supply of P compared to when P is limiting. Understanding the regulation of P transporters and P content within plants, as well as the mechanisms of P acquisition, is important if these systems are to be manipulated in order to overcome low concentrations of available P in soils.

The research presented within this thesis investigated the effects of the symbiosis between plants and AM fungi on P acquisition, with particular emphasis on the expression of P transporters and their

regulation in response to mycorrhizal colonisation and P nutrition. Mycorrhizas form in the roots of most plant species, with associations being found in fossils dating back 500 million years (Redecker et al., 2000). It is the interaction with AM fungi that is of particular interest in this project as these fungi have been shown to increase the uptake of P by plants, including many crops (Howeler et al., 1987; Smith & Read, 1997). The symbiotic relationship involves the exchange of nutrients. The plant provides a source of reduced carbon to the AM fungi while receiving P and other nutrients from the fungi (Marschner, 1995). The external hyphal networks of AM fungi acquire P from the soil. P transporters expressed in external mycelium have been identified from two AM fungi (Harrison & van Buuren, 1995; Maldonado-Mendoza et al., 2001). The P is then translocated along the hyphae to the internal AM fungal structures (Smith et al., 2001). Within the root cortical cells, AM fungi form finely branched intracellular structures known as arbuscules. The fungi are also able to form hyphal coils and arbusculate coils within cortical cells, dependent on fungal species (Cavagnaro et al., 2001). Generally plants benefit from increased P uptake and plant growth is increased when associated with AM fungi, although considerable variations in P uptake and growth responses have been reported (Smith & Read, 1997). This variation is associated with factors such as plant species, plant cultivar, AM fungal species and growth conditions (Johnson et al., 1997). AM fungi are able to enhance P uptake in plants by accessing P supplies not accessible by plant roots due to soil conditions, distribution of soil P and by delivering the P directly to colonised root cortical cells, bypassing the P depletion zone formed around the plant roots.

There are several lines of evidence implicating arbuscules as the main site of P transfer to the plant:

- The arbuscule/peri-arbuscular membranes have a large surface area (Dickson & Kolesik, 1999),
- There is no evidence of fungal P transporters expressed within colonised roots. Consequently the AM fungi cannot take up P that it has originally made available for plant uptake at the arbuscule/peri-arbuscular membranes. (Harrison & van Buuren, 1995),
- H⁺⁻ATP-ase activity is high in cortical cells containing arbuscules. This would provide the proton motive force necessary for plant H⁺/H₂PO₄- symporters to acquire P. (Gianinazzi-Pearson *et al.*, 2000) and,
- Prior to the start of this research a P transporter cloned by Rosewarne *et al.* (1999) from tomato (*LePT1/LYCes;Pht1;1*) was found to be expressed in cortical cells containing arbuscules and at the root apex and root hairs of non-colonised roots (Rosewarne *et al.*, 1999; Liu *et al.*, 1998a).

While initial evidence points to the arbuscule as being a site of P delivery to the plant other mycorrhizal associations such as internal hyphae (intra- and inter-cellular), arbuscular coils and hyphal coils could also be involved with P delivery.

I investigated how cereal crops access phosphate (P) from the soil. Plants are able to acquire P via two pathways. One pathway (the direct pathway) utilises the root system in contact with the soil, while a second pathway is via AM fungi. The main focus of this research was on the P transporters used by the plant to acquire P via both pathways, and how the colonisation of the plant with AM fungi influences the expression of plant P transporters. Chapter 2 reviews the current literature to explain in detail the importance of P for plant growth, strategies for accessing P from the soil, how mycorrhizas are one of these strategies and how P transporters are involved in P uptake. This is followed by Chapter 3, which details the methods and materials that are common to more than one experimental chapter.

¥

and the second

Chapter 4 describes two experiments that identify barley cultivars that may acquire P with different efficiencies and secondly determines if they vary in colonisation by AM fungi. Prior to determining pathways of P acquisition an experiment was designed to establish if there was any variation in P efficiency between barley cultivars. Barley cultivars of low and high P efficiency were then assessed to determine if their ability to acquire P caused any variation in colonisation by different AM fungal species. Within the literature the interaction between plant species or plant cultivar with AM fungal species is highlighted with respect to the overall benefits to the plant.

Chapter 5 reports on several experiments looking at P transporters in barley, wheat and maize. My research had access to several P transporters that had been identified in barley. Three of these transporters had been identified as being expressed within roots cells, one was expressed in shoots and the others had unidentified tissue expression patterns. This suite of transporters allowed further research into how these P transporters interacted when barley plants were colonised by AM fungi and which pathway of P acquisition they may be involved in. As well as identifying barley P transporters involved in acquiring P from AM fungi, other cereal crops including maize and wheat have been assessed for analogous P transporters.

During the time I was identifying cereal P transporters involved with P acquisition from AM fungi the rice genome was published. Screening of the rice genome with a rice P transporter (Godwin, 2002) revealed 13 putative P transporters. Chapter 6 reports the expression pattern of these putative P transporters in AM colonised and un-colonised rice roots.

A general discussion of the results and future work that could be continued is presented in the final chapter.

The CRC for Molecular Plant Breeding supported the research presented in this thesis,

4

1.

2 Review of the Literature

2.1 Supply of soil phosphorus and its importance to plants

2.1.1 Importance of P

Phosphorus (P) is one of the essential major nutrients required by plants. Essential nutrients have been determined by three criteria: - 1. the element is required for normal growth and reproduction in several different plants, 2. it cannot be replaced by another element, and 3. its role is direct and not involved with biochemical reactions to correct other substance imbalances (Keeton & Gould, 1986). These essential macronutrients are nitrogen (N), phosphorus (P), potassium (K), sulphur (S), magnesium (Mg) and calcium (Ca). Table 2.1 lists the optimal nutrient levels and functions associated with these major nutrients in the cereal crop, barley, the plant used in most of the experimental work described in this thesis.

Table 2.1. Functions of major essential nutrients in plants and the concentrations as % dry matter required for optimal growth of barley. Information extracted from compiled references in (Reuter *et al.*, 1997).

Element	% dry	Functions		
	matter			
N	1.75 - 5	Amino acids, proteins, nucleic acids, nucleotides, chlorophyll		
Р	0.2 - 0.68	Energy storage and transfer - ATP, membrane integrity, nucleotides		
К	1.5 - 5	Translocation, water and energy relations, cellular pH, osmoregulation, cation-anion balance		
S	0.13 – 0.4	Protein synthesis and function, amino acids, energy transfer, structure		
Са	0.25 – 1.2	Membrane maintenance, cell division and elongation, cell wall stabilisation, cation-anion balance, osmoregulation, signalling		
Mg	0.12 – 0.5	CO ₂ assimilation, cellular pH, cation-anion balance, protein synthesis, carbohydrate partitioning.		

The importance of P lies in the low concentrations in most soils worldwide, causing P to be a common growth-limiting factor in plants and crops. P deficiency results in fewer leaves, reduced leaf expansion and low leaf surface area (Marschner, 1995). P deficiencies may be recognised by tips of leaves turning yellow (as seen in barley), reddening or purpling, with symptoms affecting older leaves first (Grundon *et al.*, 1997). Symptoms of P toxicity can be seen in many plant species when P is accumulated to concentrations > 1% of the dry matter, with barley demonstrating symptoms at levels > 0.7% (Marschner, 1995; Weir & Cresswell, 1994). P toxicity is defined as interveinal chlorosis in younger leaves; necrosis and tip die back, marginal scorch, interveinal necrosis, and shedding of older leaves (Grundon *et al.*, 1997). P deficiency is more common than toxicity, as the majority of world soils are P deficient, including most Australian soils. Under low P conditions plants conserve the use of P by initiating improved and alternate acquisition strategies or pathways, and farmers apply phosphatic fertilisers to ensure profitable agricultural production. Those countries that utilise P fertilisers have the added complication that a large percentage of P applied in fertiliser is unavailable to the crops due to the soil chemistry and localisation of applied P within the soil.

The P cycle in soils involves several interacting pools (Figure 2.1). P is acquired via P transporters in the roots as inorganic orthophosphate ions (H_2PO_4) from the soil solution at an optimal pH of 4.5-5.0 (Smith & Read, 1997; Raghothama, 1999b). The amount of available Pi in soils is dependent on pH, ionic strength, concentrations of P (organic matter and fertilisers) and binding metals (Fe, AI, Ca, Mg) and anions (Vance *et al.*, 2003). As much as 50% of the P present in soils is unavailable due to it being strongly absorbed onto Fe and AI compounds and locked in organic forms, which need to be mineralised before the soluble inorganic P becomes accessible to plants (Figure 2.1) (Horst *et al.*, 2001).

Figure 2.1: Schematic representation of supply of phosphorus to plant roots in soil systems. Black arrows indicate the immobilisation of P, green arrows illustrate the mineralisation of P, pink arrows explain the diffusion of P in solution and the blue arrows depict P pools accessed via mycorrhizal fungi and transported to roots (Moody & Bolland, 1999; Bolan, 1991).

2.1.2 P in soil and acquisition

There are three ways that Pi reaches the surface of roots and AM fungal hyphae (Bolan, 1991). These are: -

- 1. Root or AM fungal hyphal interception where the root or hyphae comes into close contact with the nutrient,
- Diffusion of ions from areas of high concentrations to low accessed by roots and AM fungi hyphae, and
- Mass flow where the nutrient is brought to the "root surface in the convective flow of water during the absorption of water by the plant".

The diffusion of P in soil has been found to be more important than mass flow (Barber, 1962). Because of the low concentration of Pi in the soil solution (usually < 10 μ M, (Mimura, 1999; Schachtman *et al.*, 1998) and a low diffusion rate (D_{soil} 10⁻¹²-10⁻¹⁵ m²s⁻¹, (Jungk, 1996)) a P depletion zone of ~1.5 mm forms around actively absorbing roots within a few days. Pi uptake is greatly reduced due to the lack of

available Pi at the root surface. In order to overcome these depletion zones, and access previously inaccessible Pi supplies, plants have evolved strategies to enhance Pi acquisition by more effective exploitation of the soil. These strategies include alterations in root morphology and root hair production, effecting changes on the soil chemistry to increase bioavailability, by developing symbiotic relationships with AM fungi and regulating plant P transporters (Comerford, 1998).

Changes in root morphology are regulated by auxins, ethylene and cytokinins (Nissen, 1996) resulting in: -

- Topsoil foraging. This occurs where shallow root systems show enhanced lateral root production in the topsoil, exploiting the localised higher concentrations of Pi. This change in morphology is seen in *Arabidopsis* grown in low P conditions (0.1 mM P), resulting in a decrease in the primary root length and increased number and length of lateral roots when compared to plants grown in high P conditions (2.5 mM P) (Williamson *et al.*, 2001). Variations of this topsoil foraging morphology occurs between *Arabidopsis* accessions (Narang & Bruene, 2000). Altered root morphology has also been observed in beans and displays variation of top-soil foraging morphology between bean genotypes (Lynch & Brown, 2001; Liao *et al.*, 2001). Grass species also have top-soil foraging strategies, producing roots that are able to access Pi from treated high Pi areas (Jackson *et al.*, 1990).
- Increased root hair density and length. This results in increased exploration of the soil volume close to the roots. Increases in root hair length and/or root hair density have been observed in rape, spinach, tomato, *Medicago* and *Arabidopsis* as the plants become P deficient (Fohse & Jungk, 1983; Vance *et al.*, 2003; Ma *et al.*, 2001; Bates & Lynch, 2000). Variation in barley cultivars in root hair density and length has been associated with differences in Pi uptake by Gahoonia and Nielsen (1997).
- Formation of cluster roots (proteoid roots). These are groups of densely packed lateral roots (with abundant root hairs) formed on a parent axis, which results in an increased surface area but not always a large increase in soil volume explored. Cluster roots form in pockets of soil rich in nutrients (Vance *et al.*, 2003). They also release exudates containing organic acids, H⁺ and acid phosphatases that release bound Pi from inorganic and organic complexes (Marschner, 1995). The major groups of plants that produce cluster roots are the Proteaceae, some members of the Brassicaceae and *Lupinus*. Further information on cluster roots is contained in the recent review of Vance *et al.* (2003).
- Another adaptation which helps plants to overcome problems associated with the development of Pi depletion zones is the formation of a symbiotic relationship with AM fungi. These fungi access Pi from the soil beyond the depletion zone, translocate it considerable distances (up to 25 cm) through

external hyphae to roots and, at plant-fungus interfaces within root cortical cells, exchange it for organic carbon produced by the plant (Smith and Read, 1997).

2.1.3 The role of AM fungi in supplying P to plants

AM fungi (classified in the order Glomales of the Zygomycota) form normally beneficial associations with the plant root, based on exchange of nutrients whereby the plant receives mineral nutrients while the fungus receives organic carbon compounds (Smith and Read, 1997). The outcome of this exchange can be beneficial, mutualistic or parasitic, depending on whether the plant has an increase, no change or a decrease (respectively) in nutrient uptake or plant dry matter (Johnson *et al.*, 1997; Baon *et al.*, 1993b; Marschner, 1995). The majority of AM fungi/plant relationships are beneficial or mutualistic. Barley and indigenous mycorrhizal fungi were observed by Khaliq and Sanders (1998 & 2000) to have a mutualistic association in field and field/pot experiments that displayed no increase in yield.

When a plant is colonised by AM fungi the plant is then able to access P via the root system and/or the mycorrhizal fungi. Colonisation of plants with mycorrhizal fungi generally results in increased plant growth and health due to the supply of Pi from the fungi (Azcón-Aguilar & Barea, 1997). Pi influx in mycorrhizal plants can increase to rates of 10-11 mol-1m-1s, 3 to 5 times higher than non-mycorrhizal plants (Smith and Read, 1997). Results of Pearson and Jakobsen (1993) support the supply of P via AM fungi. Data that directly assessed the P uptake of cucumber plants determined that P acquisition via the root was reduced when colonised with mycorrhizal fungi (Pearson & Jakobsen, 1993). P transporters associated with P acquisition via roots were assumed to be down regulated, thus encouraging the acquisition of P via the mycorrhiza (Pearson & Jakobsen, 1993). It was also observed that there was a difference in the amount of Pi supplied to the plant via the mycorrhiza when colonised by different mycorrhizal fungi. This may be due to differences in the rate of growth and length of the hyphae and differences in the P transport capacity of the hyphae (Pearson & Jakobsen, 1993). Hyphal length may not always be important, with research by Smith et al. (2000) showing that, despite extensive hyphal length, different AM fungi will access P from different distances from the plant root. M. truncatula also displayed variation in the amount of P acquired via mycorrhizal fungi when colonised by various AM fungi (Burleigh, 2001). Pearson and Jakobsen (1993) observed that increased P status of colonised plants was also associated with the apparent down regulation of plant P transporters. The regulation of the Medicago P transporter MEDtr; Pht1; 2 is linked to the P status of the plant (Burleigh, 2001). MEDtr;PhT1;2 is up regulated when the plant is P deficient and is down regulated to varying degrees when colonised with AM fungi. The degree of down regulation is dependent on the species of mycorrhizal fungi colonising the roots (Burleigh, 2001).

2.1.4 AM fungal structures

AM colonisation can be classified into two main types, *Arum-* and *Paris-*AM. *Paris-*type colonisation is characterised by intracellular coils (hyphal coils) formed in cortical cells (Figure 2.2). *Arum-*type mycorrhizas are the most commonly investigated and are characterised by the formation of a well-developed mycelium of intercellular hyphae within the root cortex and branched structures (arbuscules) within the cortical cells (Figure 2.2). The arbuscules are short-lived, about 4-12 days (Cox and Tinker, 1976). The highly branched arbuscule invaginates the host cell plasma membrane (peri-arbuscular membrane), forming a symbiotic interface with a very large surface area (Schematic diagram, Figure 2.2). This is thought to be the site of nutrient transfer from fungus to plant. The coils in *Paris-*AM (which also present a very large area of interface) are being implicated in this role as well (Smith and Read, 1997).

3. Plant peri-arbuscular membrane

Figure 2.2: Internal AM fungal structures. AM fungal hyphae can penetrate the root epidermal cell or enter via intercellular spaces and subsequently penetrate the cortical cells. The point of entry into the root by the fungus is called the appressorium (pink bordered box; reproduced from Brundrett, 2000). From the appressorium internal colonisation spreads via hyphae, followed by the formation of arbuscules, hyphal coils and vesicles (yellow bordered boxes; reproduced from Brundrett, 2000). The schematic diagram of an arbuscule (blue bordered box, reproduced from Harrison, 1999) emphasises the apoplastic space between the arbuscular membrane and the plant peri-arbuscular membrane; indicating that the fungi remain separate from the plant cortical cell and transfer Pi across the arbuscular membrane into the apoplastic space, from which the plant uses P transporters within the plant peri-arbuscular membrane to absorb that Pi. (Harrison, 1999; Brundrett, 2000)

The AM fungi extend a fine network of hyphae into the soil, accessing Pi up to 25 cm from the root (Figure 2.3) (Smith and Read, 1997). Two P transporters, with a similar structure and function to plant P transporters, have been identified from two mycorrhizal fungi, *G. versiforme* (Harrison & van Buuren, 1995) and *G. intraradices* (Maldonado-Mendoza *et al.*, 2001). These fungal transporters are not expressed in the plant, suggesting that they are involved with the acquisition of Pi from the soil. Once taken up, the Pi is translocated along the hyphae to the mycorrhiza/plant interface.

Root in soil with external mycorrhizal hyphae

Figure 2.3: Images of AM fungal external hyphal network. Spores (arrowed) of AM fungi in the soil initiate hyphal (H) growth towards the plant root. (Images reproduced from Brundrett, 2000)

The fungus and plant remain separated by an apoplastic space, with the fungus topologically outside the plant. It is probable that the apoplastic space is the site of nutrient transfer, with a high activity of ATPase present at the peri-arbuscular membrane (thereby providing protons for coupled transport, discussed in section 2.3.1, (Gianinazzi-Pearson et al., 2000)). This is further supported by research performed by Ayling et al. (2001) which showed that the root membrane electric potential was ~10 mV higher in non-mycorrhizal leeks than in leeks colonised by Scutellospora calospora and forming intracellular coils. The reduced electric potential difference is due to Pi being supplied by the fungal hyphae (Ayling et al., 2001). There is supporting research that measured the amount of P (via cryoanalytical scanning electron microscopy) revealing a higher concentration of P in colonised cells than non-colonised cells (Ryan et al., 2003). While these measurements account for total P (poly-P, Pi and all other forms) present at the site of examination, there was a higher concentration of P in fungal structures than in plant cells, and plant cells containing arbuscules had a higher concentration of P than those cells with no fungal structures. This provides further circumstantial evidence that arbuscules are a site of exchange with the plant. Some root intercellular spaces contained a liquid that was observed to include P when associated with fungal hyphae (Ryan et al. 2003). There is no reported evidence that any plant P transporters are specifically expressed around these intercellular spaces to acquire P from these pools. It is unclear as to whether this is a site of active P exchange (i.e. Are the AM fungi exporting Pi at this site?) or diffusion (movement from high to low concentrations). Either way the plant would be able to scavenge this source of Pi with alternative P transporters located within the cortical cell membranes. The model of Pi acquisition via AM fungi may be more complex than initially thought.

2.1.5 Plant/AM fungi interactions

The involvement of AM fungi with plants is further complicated by the fact that major effects of AM fungi on plant P uptake may not be reflected in benefits at the whole plant level. Recently, work done by Smith *et al.* (2003b & 2004) demonstrated that *G. intraradices* supplied flax, *Medicago truncatula* and tomato with all of the Pi measured in plant tissues, with noticeable increases in plant dry weight only in flax and *M. truncatula*. Tomato showed decreased dry weight when colonised by AM fungi compared to non-colonised plants, which may be due to the amount of carbon supplied to the AM fungi. This research also demonstrated that different mycorrhizal fungi supplied different percentages of Pi to plants. For example tomato plants received 100% of their total P from *G. intraradices*, ~77% from *G. caledonium* and ~7% from *Gigaspora rosea*. The outcome of the interaction was also plant dependent. *Gigaspora rosea* provided flax with ~13% of its P, *Medicago truncatula* with ~44% and tomato with ~7%. These findings are particularly important to agricultural practices since, based on our earlier understanding, the role of AM fungi is likely to have been dismissed in non-responsive crops such as many cereals. Regardless of growth response this symbiosis can be the major pathway of Pi acquisition for the plant, depending on plant-fungus combination.

2.2 The importance of phosphate transporters in P uptake

2.2.1 The Pht1 family of P transporters

In response to growth requirements, various membrane associated P transporter proteins are involved in the acquisition of Pi from the soil and movement of Pi between tissues. The genes encoding these transporters have been classified into gene families depending upon their topology. The majority of P transporters isolated to date are found within the Pht1 family. These proteins consist of 12 hydrophobic membrane-spanning regions that are separated into two groups of six by a large intracellular hydrophilic, charged domain (Figure 2.4-A). They are approximately 58 KDa in size and contain 520 – 550 amino acids (Smith, 2001; Pao *et al.*, 1998; Raghothama, 2000; Smith *et al.*, 2003a). This topology is similar to other solute transporters that are members of the major facilitator super-family (Marger & Saier, 1993; Smith *et al.*, 1999).

Figure 2.4: Schematic images of the PhT1 family phosphate transporters demonstrating: A. The 12 membrane spanning regions (composed of 17 - 25 amino acids) and the central intracellular hydrophilic loop, with the N and C termini intracellular; and B. The processes involved in co-transport of H₂PO₄⁻ ions across the cell membrane, with H⁺ ions supplied by a proton pump. (Figure A reproduced from Smith *et al.*, 2003a; figure B reproduced from Smith 1999)

Another group of P transporters, the Pht2 family, is found in mammalian, bacterial and algal systems where they are usually associated with Na⁺ co-transport. Two plant P transporters with Pht2-like topology have been isolated from *Arabidopsis* (Daram *et al.*, 1999) and *Medicago* (Zhao *et al.*, 2003). Unlike the Na⁺ coupled transport that is typical of animal systems, the plant members of the Pht2 family are H⁺ coupled (Daram *et al.*, 1999; Zhao *et al.*, 2003). Topology of the Pht2 transporters differs from the Pht1 family by having a long extracellular hydrophilic N terminus and a hydrophilic loop between trans-membrane regions 8 and 9 (Daram *et al.*, 1999). Chloroplast transit peptides are featured in the

N terminus of the *Arabidopsis Pht2;1* transporter and when the *Pht2;1* gene was fused with green fluorescent protein the resulting Pht2;1 protein was localised to the chloroplast envelope. While other P transporter families have been identified from plants (eg. mitochondrial P transporters) the research described in this thesis concentrates on the Pht1 family of P transporters because these proteins are likely to be more significant in strategies aimed at enhancing plant Pi uptake and mobilisation efficiencies.

Pi acquisition is an energy requiring process, because of the large electrochemical gradient between the soil solution and the cytoplasm of plant root cells. Uptake therefore requires both a transporter and an energy source. ATPases are needed to generate proton motive force. Pi uptake is achieved by an energy-mediated co-transport process, whereby protons (H⁺) are coupled with the H₂PO_{4⁻} ions to move into the cell (Figure 2.4-B) (Clarkson & Grignon, 1991; Muchhal & Raghothama, 1999). The requirement for co-transport is evidenced by the depolarisation of the plasma membrane associated with the influx of positively charged protons (Poole, 1978). If H₂PO_{4⁻} ions alone crossed the membrane a hyperpolarization would be observed. Further support for co-transport with H⁺ is the restricted uptake seen when H⁺ inhibitors/uncouplers are present (Lin, 1979). Cations other than H⁺ have not been successfully associated with plant Pi transport.

2.2.2 Regulating P uptake

The strategies that enhance Pi acquisition include regulation of P transporters to access available Pi from soil and facilitate transport within the plant. P transporters located in root epidermal cells are involved in acquisition of Pi directly from the soil and P transporters located in the cortex acquire Pi from the apoplast and move it symplastically through cell plasmodesmata connections to the xylem parenchyma for distribution. The use of active transporters to acquire and distribute Pi is essential because intracellular Pi can be measured in concentrations of 5 - 17 mM (Mimura *et al.*, 1996; Mimura, 1999), compared to external concentrations that are in the range of $1 - 8 \mu$ M (Barber, 1962; Reisenauer, 1966). There can be as much as 1,000- 10,000 fold difference between internal and external Pi concentrations (Bieleski & Ferguson, 1983; Schachtman *et al.*, 1998). The Pi status of plants and their rate of growth determine the requirement for influx and net absorption of Pi by the roots (Clarkson & Grignon, 1991). Due to the uneven distribution of Pi in the soil, plants have the ability to increase rates of acquisition in those areas with high Pi via those methods discussed in section 2.1.2, thus compensating for Pi deficient areas. It is thought that overcoming uneven Pi supply is done by Pi cycling in the phoem between shoots and roots via P transporters (Clarkson & Grignon, 1991).

2.2.3 P transporter kinetics

Kinetic studies of P transporters have yielded results that indicate differences in K_m between species, cell types and growth conditions, demonstrating the control of the Pi transport systems, see Appendix 1. Studies involving excised barley roots identified that there were two systems of uptake in plants, dependent upon the external concentration of the ion (Figure 2.5) (Epstein & Hagen, 1952; Fried & Noggle, 1958). P transporters are active depending on the Pi nutritional status of the plants and level of Pi supply (Zhu *et al.*, 2001). The K_m for high-affinity transporters ranges from 3 - 30 μ M, whereas for low-affinity transporters the range is 50 - 668 μ M, see Appendix 1.

Figure 2.5. Concentration-dependence of ion uptake by plant cells, illustrating the dual-isotherm Michaelis-Menten kinetics. High affinity has a low Michaelis constant, high affinity for the substrate and a low maximal rate. Low affinity has a high Michaelis constant, low affinity for the substrate and a high maximal rate. Reproduced from Lüttge and Higinbotham 1979.

When *Lemna gibba* is P-deficient the V_{max} of P transporters involved in high and low affinity systems has been reported to increase (Ullrich-Eberius *et al.*, 1984), while experiments with *Catharanthus roseus* only exhibited an increase in V_{max} for the high affinity system (Furihata *et al.*, 1992). The increased activity (V_{max}) observed by both laboratories was not associated with a change in K_m. Increases in the rate of Pi uptake associated with Pi starvation is a result of increased transcription of P transporter genes, resulting in increased translation, increased density of transporters in the membrane in question and enhanced Pi uptake (increase in V_{max}) (Muchhal & Raghothama, 1999; Raghothama, 1999a; Furihata *et al.*, 1992). The transcription rate of P transporter genes increases soon after a change in cellular Pi concentration and long before the appearance of any visible Pi-deficiency symptoms (Liu *et al.*, 1998a; Yao *et al.*, 2001; Dong *et al.*, 1998). This finding suggests that signals that

16

induce gene expression are initiated by internal concentrations of Pi. This will be discussed later in this chapter.

2.2.4 Verification of function of P transporters and kinetics by yeast complementation

There is controversy about the determination of the affinities of P transporters. Most data has been obtained using heterologous expression in yeast, which has yielded higher Km values than expected from physiological studies (Smith et al., 2003a). Initial studies utilised Saccharomyces cerevisiae yeast mutants defective in the high-affinity P transporter pho84 gene (Bun-ya et al., 1991). The introduced plant P transporter genes complemented the mutations and restoration of Pi uptake was taken as evidence for Pi transport via the plant transporter. The Km's determined with pho84 yeast mutants were of the order of 110 - 493 µM. For example ARAth;Pht1;1 complemented the yeast mutant NS219 grown on 110 µM P medium (Muchhal et al., 1996), and could therefore be interpreted as being a lowaffinity transporter, while plant cell suspension cultures determine that it is a high-affinity transporter (discussed in further detail in the following section). Another yeast P transporter, pho89, is involved with Na⁺ coupled P transport in yeast. The development of a second yeast mutant, PAM2, defective in both pho84 and pho89 P transporters, (Martinez & Persson, 1998), yielded lower Km values for the same genes that were expressed in the pho84 mutants. The plant P transporters tested in the PAM2 yeast mutant were not Na+/H2PO-4 symporters yet provide Km values that came closer to expectations of high and low -affinity P transporters. This is seen with SOLtu;Pht1;3 Km 64 µM - high affinity (Rausch et al., 2001) and MEDtr;Pht1;4 Km 668 µM - low affinity (Harrison et al., 2002). Interestingly Harrison et al. (2002) measured the Km of MEDtr;Pht1;4 in both single and double yeast mutants, and obtained values of 493 µM and 668 µM respectively, which confirms low-affinity kinetics but further demonstrates the variability of the yeast mutant system.

The K_m's of plant P transporters when measured in mutant yeast strains may not accurately represent K_m's in the plants for several reasons. Firstly, analysis of the plant P transporter genes suggests that putative phosphorylation sites in the sequence may require activation and may prevent the plant P transporters from fully complementing the yeast mutants. Secondly, N-glycosylation and associations with other proteins with the plant P transporters may be required prior to the P transporter being able to function. In yeast, the *pho84* gene has been functionally associated with other genes, suggesting a more complicated model for Pi transport (Bun-ya *et al.*, 1992; Bun-ya *et al.*, 1996; Yompakdee *et al.*, 1996; Leggewie *et al.*, 1997). Plant P transporters may not complement the complicated model for Pi transporters may not complement the complicated model for Pi transporters may not complement the complicated model for Pi transporters may not complement the complicated model for Pi transporters may not complement the complicated model for Pi transporters may not complement the complicated model for Pi transporters may not complement the complicated model for Pi transport (Bun-ya *et al.*, 1992; Bun-ya *et al.*, 1996; Yompakdee *et al.*, 1996; Leggewie *et al.*, 1997). Plant P transporters may not complement the complicated model for Pi transport in these yeast mutants, thereby yielding K_m values higher than those obtained with root

17

systems (Smith et al., 2003a). Hence, it is important to measure the kinetics of transporters in homologous systems.

2.2.5 Verification of function and kinetics in plant cell suspension cultures

The use of transgenic plant cells as expression systems may overcome the putative post-translational problems of the yeast systems and should provide kinetic information more closely related to the expression of the genes in plants. This plant system involves the production of transgenic cells transformed with the P transporter of interest under the control of a constitutively expressed promoter. Use of tobacco cells transformed with ARAth;Pht1;1 indicate a K_m of 3.1 μ M for this gene (Mitsukawa et al., 1997b), which is indicative of a high-affinity P transporter and considerably lower than the value of 110 µM previously obtained by Muchhal et al. (1996) using yeast. Rice cells transformed with HORvu;Pht1;1 or HORvu;Pht1;6 yielded Km's of 8 µM and 320 µM, respectively (Rae et al., 2003) indicating their roles as high affinity and low affinity transporters, respectively. The use of transgenic plant cells to determine P transporter kinetics yields results consistent with those observed in uptake experiments with excised barley roots that exhibited both high affinity of the range 1 - 10 μ M and low affinity in the range of 0.2 - 0.5 mM kinetics (Barber, 1972). These high affinity Km values are also consistent with the low concentrations of Pi found in most soil solutions. This plant-based protocol has the advantage of providing results that may be more reliable than those obtained with yeast mutants. The kinetic values of P transporters provided from yeast systems should be used with care until they are tested in plant-based systems.

2.2.6 Split root and hydroponic experiments

2 2 2 Split-root experiments with potatoes demonstrated that it is the overall P status of the plant that determines the rate of P uptake and not the portion of root system growing in solution lacking P (Cogliatti & Clarkson, 1983). Experiments by Clarkson and Scattergood (1982) in barley and tomato demonstrated that there was an immediate increase in rate of P absorption when plants were moved from hydroponic solutions containing 150 μ M P to those with no P. In barley this increase in rate of P absorption continued for several days after the re-application of P, before decreasing to those levels observed prior to P starvation (Clarkson & Scattergood, 1982). The increased rate of P absorption is associated with the increase in transcription of P transporters, as shown by the dramatic increase in transcription of *ARAth;Pht1;1* and *ARAth;Pht1;2* when plants were transferred from 250 μ M P to zero P hydroponic solutions (Smith *et al.*, 1997). A similarly high transcription rate was seen for tobacco P transporter genes, *NICta;Pht1;1 – 1;4*, when grown without P. When P was re-supplied transcription levels returned to those levels observed prior to P starvation (Kai *et al.*, 2002). The levels of

transcription can also be reflected in the level of protein as seen in the decreased accumulation of MEDtr;Pht1;1 protein when P deprived *Medicago* plants were re-supplied with P (Chiou *et al.*, 2001).

2.2.7 P transporter kinetics in realistic growth conditions

Much research has used plants grown in hydroponic or sand cultures, with 'low P' supplies of zero and 'high P' concentrations as high as 250 μ M. None of these conditions effectively reflect the true growing conditions of plants in soil systems. Uptake in hydroponic growth systems, which are usually aerated, does not involve the formation of depletion zones around actively absorbing roots, so that Pi supply to the epidermal P transporters is maintained. Hydroponic cultures also produce a root architecture that is not identical to that found in soil. Sand culture systems are slightly more realistic, but in these the adsorption of Pi to sand particles does not occur and may result in solution P concentrations atypical of soil. Experiments on potato (Rausch et al., 2001), tomato (Rosewarne et al., 1999), rice (Paszkowski et al., 2002), Medicago (Harrison et al., 2002) and Arabidopsis (Mudge et al., 2002) have used soil:sand mixes to grow plants for expression studies. These soil:sand systems are likely to deliver data on gene expression that are more closely related to the situation likely to occur in natural conditions. In order to get a realistic view of P acquisition and translocation plants should be grown in conditions that closely mimic the soil environment, where P is usually in low concentrations and soil microflora influence the availability and acquisition of P (Schachtman et al., 1998). This is particularly important in investigations of the potential roles of AM fungi in P uptake. The work described in this thesis utilises a soil:sand system in order to achieve results that are relevant to plants growing in near-natural conditions.

2.2.8 Expression analysis and localisation of P transporters involved with P uptake from AM fungi

The use of soil:sand mixes for detection and analysis of the expression of *LYCes;Pht1;1* (Rosewarne *et al.*, 1999), *MEDtr;Pht1;4* (Harrison *et al.*, 2002), *ORYsa;Pht1;11* (Paszkowski *et al.*, 2002) and *SOLtu;Pht1;3* (Rausch *et al.*, 2001) was necessary because these P transporters are involved in acquisition of P at the peri-arbuscular membrane, delivered by AM fungi. The establishment of AM symbioses can only be realistically achieved in soil-based systems; hydroponic culture is not practicable and, in common with agar-based systems, suffers from the disadvantages outlined above. As previously mentioned AM fungi provide an alternative pathway for P acquisition. At the start of the work discussed in this thesis only *LYCes;Pht1;1* had been identified as showing an expression pattern consistent with the ability to access P via AM fungi. *LYCes;Pht1;1* was shown to be expressed in both roots and shoots of mycorrhizal (*G. intraradices*) and non-mycorrhizal tomato (Rosewarne *et al.*, 1999). The expression studies of *LYCes;Pht1;1* utilised *in-situ* hybridisation protocols (Rosewarne *et al.*, 1999). Rosewarne's *et*

al. (1999) results would be enhanced by using localisation expression protocols similar to those used to determine the localisation of MEDtr; Pht1; 4, ORYsa; Pht1; 11 and SOLtu; Pht1; 3. The expression studies in MEDtr;Pht1;4 utilised a specific antibody for immuno-localisation (protein detection) and Medicago plants transformed with the promoter of MEDtr; Pht1; 4 driving the expression of a reporter gene (GUS). Results using both approaches showed localisation of MEDtr;Pht1;4 to the peri-arbuscular membrane in G. intraradices colonised cortical cells (Harrison et al., 2002). Analysis of SOLtu; Pht1;3 used in-situ hybridisation to detect mRNA and SOLtu;Pht1;3 promoter-GUS transgenic potato plants to determine localisation to the peri-arbuscular membrane of roots again colonised by G. intraradices (Rausch et al., 2001). RT-PCR has been used to show expression of ORYsa; Pht1;11 in mycorrhizal roots of rice, with expression positively correlated to % colonisation by G. intraradices (Paszkowski et al., 2002). These results support the model of AM fungi supplying Pi to the plant via the arbuscule/peri-arbuscular membrane. Of the P transporters associated with P acquisition via AM fungi LYCes; Pht1;1 had displayed expression in other plant tissue besides colonised cells, but the remaining three P transporters (MEDtr;Pht1;4, ORYsa;Pht1;11 and SOLtu;Pht1;3) were only expressed in mycorrhizal roots. Further research has revealed low levels of expression of SOLtu;Pht1;3 in non-mycorrhizal roots and shoots of potato, while MEDtr; Pht1; 4 is only expressed in mycorrhizal roots (Karandashov et al., 2003). The low levels of expression does not negate the possibility that the main role of these P transporters is in acquiring Pi from AM fungi

While the mycorrhiza-specific or mycorrhizal-related P transporters appear likely to be involved with acquisition of Pi delivered to root cortical cells via AM fungi, the colonisation of plants can also be associated with down-regulation of other P transporters, similar to the down-regulation observed when plants are grown in high Pi conditions (see above). Research on Medicago truncatula (Liu et al., 1998b) investigated the expression of the plant P transporters (MEDtr;Pht1;1 and MEDtr;Pht1;2) which had been identified as being expressed in roots colonised by mycorrhizal fungi. There was an increase in transcription and protein levels in epidermal and root hair cells during P starvation, which was opposite to the down regulation of both P transporters during the development of symbiosis with AM fungi (Liu et al.; 1998b). This suggests that the plant may not require MEDtr;Pht1;1 and MEDtr;Pht1;2 when it is able to obtain Pi from the mycorrhizal fungi. The role of MEDtr;Pht1;1 is associated with acquiring Pi directly from the soil. The down regulation of root P transporters not involved with Pi acquisition via AM fungi is not uniform across AM fungi. As demonstrated by Burleigh (2001) with expression studies on MEDtr;Pht1;2 the reduced expression of MEDtr;Pht1;2 was observed in northern blots and ranged from 60 % reduction to no effect when colonised by Glomus mosseae and Gigaspora rosea respectively. Colonisation of Medicago by other AM fungi produced varying degrees of reduced expression (Burleigh, 2001). Variation in the down-regulation of MEDtr;Pht1;2 needs to be further examined in order to determine if the various AM fungi are providing an alternative supply of P and whether the amount of P supplied by the AM fungi is sufficient for the plant to rely solely on that source. Research by Smith *et al.* (2003b & 2004) indicates that P acquired by *Medicago* colonised by *G. intraradices* and *G. caledonium* was provided only via the AM fungi. With 100% of the acquired P being supplied by the AM fungi it would be expected that the *Medicago* plant would not need to expend resources to acquire P directly from the soil, consequently down-regulating the expression of *MEDtr;Pht1;1* and *1;2*. However, experiments to investigate concurrently P uptake via the AM fungi and expression of relevant P transporter genes need to be researched in the future.

Barley has not demonstrated improved P concentration or biomass when colonised by AM fungi, thus suggesting that AM fungi colonisation is not beneficial. The research by Smith *et al.* (2003b & 2004) and Ryan and Angus (2003) indicates that the benefits of AM fungi colonisation should not be dismissed in cereal crops that have shown parasitisation or no plant beneficial improvements. The alternative P pathway via AM fungi may prove to be highly beneficial to cereal crops grown in P deficient soils.

2.3 Aims of the thesis

Research to date highlights the complex nature of the plant-mycorrhizal fungus interaction in Pi acquisition. The process of acquiring Pi depends on the plant species and cultivar, AM fungi colonising the roots and growth conditions. The research covered by this thesis started in March 2000 and investigated the variation in Pi acquisition and colonisation between barley cultivars with three mycorrhizal fungi. P transporters associated with acquiring Pi delivered by the AM fungi in rice, barley, wheat and maize were identified. The colonisation by AM fungi regulating other plant P transporters in barley was also studied. The results from this research adds to the knowledge of Pi acquisition and regulation of P transporters in cereal crops that form symbiotic relationships with AM fungi. Regardless of the complex process of Pi acquisition, the interaction and benefits of mycorrhizal fungi in Pi acquisition should not be ignored if successful advances in Pi acquisition are to be made.

3 Materials and Methods

3.1 Soil conditions and plant propagation

3.1.1 Soil, soil mixes and phosphorus amendments

Two soil types, Millmerran and Ashland, were used for this research. Both contained low levels of plantavailable P.

Soil from Millmerran, Queensland, Australia ~ 28°S 151°E (collected from Gaythorne Farm, where no fertilisers had been used) has a pH of 8.5 (H₂O) and bicarbonate extractable phosphorus (P) content of 10 mg kg⁻¹ (Colwell, 1963). This soil was used to culture *Glomus intraradices* and *Glomus* sp. WFVAM23 (formerly called *Glomus versiforme*) because both these fungi require neutral to alkaline pH soil for successful colonisation. The Millmerran soil was also used in experiments to investigate P efficiency of different barley cultivars and effects of mycorrhizal colonisation on their growth (Section 3.3).

Soil from Ashland, Withcott, Queensland, Australia ~ 28°S 153°E was collected from uncultivated land on a farm on Ashland Drive. It has a pH of 5.6 (H₂0) and bicarbonate extractable P content of 3 mg kg⁻¹ (Colwell, 1963) and was used to culture *Scutellospora calospora*, as successful colonisation by this fungus occurs in low pH soils (Dickson *et al.*, 1999).

The analysis of the soils was carried out by Incitec Ltd (Morningside, Queensland, Australia) using methods listed in Appendix 2. Concentrations of organic carbon, nitrate nitrogen, potassium, calcium, magnesium, sodium, chloride, copper, zinc, manganese, iron, boron and sulphur, and electrical conductivity are listed in Appendix 2.

Washed fine quartz sand, supplied by Stone Merchants (Dara, Queensland), was mixed with the soil in the ratio of 1 part soil to 9 parts sand. The soil:sand mix was then sterilised by autoclaving at 121 °C for 90 m twice with an interval of 72 h between autoclavings. Non-draining pots were filled with 2 kg of the soil-sand mix. 200g of soil/root inoculum (Section 3.3) were included in mycorrhizal pots. Pots containing soil from Millmerran had an bicarbonate extractable P content of 1 mg P kg⁻¹ soil:sand mix while soil from Ashland had a P content of 0.3 mg P kg⁻¹ soil:sand mix. Phosphate in the form of CaH₄(PO₄)₂.H₂O was added to pots following sterilisation to increase the levels of P available to the plants. The CaH₄(PO₄)₂.H₂O was added as a dry fine powder to dry soil:sand and mixed for 10mins. Low P and mycorrhizal pots had 81.3 mg CaH₄(PO₄)₂.H₂O kg⁻¹ soil:sand added to give a final P

concentration of 20 mg P kg⁻¹ soil:sand. High P pots had 406.5 mg CaH₄(PO₄)₂.H₂O kg⁻¹ soil:sand added to give a final P concentration of 100 mg P kg⁻¹ soil:sand.

3.1.2 Plants, plant propagation, growth conditions and harvesting

Table 3.1 lists the plant species that were used in the work described in this thesis, together with cultivars and origins.

Plant Species	Cultivar	Source of material
Barley	Golden Promise	Dr. Minesh Patel – CSIRO Plant Industry, Brisbane,
(Hordeum vulgare L.)		Queensland
	Arapiles	Dr. Yongguan Zhu – Adelaide University, Adelaide,
	Skiff	South Australia
	Forrest	
	Franklin	
	Sahara	Prof. Andrew Barr – Adelaide University, Adelaide,
	Clipper	South Australia
Wheat	Grebe	Dr. Gangping Zhu - CSIRO Plant Industry, Brisbane,
(Triticum aestivum L.)		Queensland
Rice	Jarrah	Yanco Agricultural Institute, New South Wales
(Oryza sativa L.)		
Tobacco	Wisconsin 38	Dr Frank Smith - CSIRO Plant Industry, Brisbane,
(Nicotiana tabacum L.)		Queensland
Maize	Gold Queen	J.C. & A.T. Searle Pty Ltd, Kilcoy, Queensland
(Zea mays L.)		
Leek	Vertina	Novartis, Dandonong South, Victoria
(Allium porrum L.)		

Table 3.1. Plant species and cultivars used in the work described in this thesis

Seeds were sterilised by immersion in a bleach solution containing ~5.7% available chlorine for 10 minutes, followed by three washes in sterile H₂O. Seeds were then laid out across the top of a sheet of 3MM paper (30 x30 cm) soaked in 0.5mM CaSO₄. The bottom edge of the paper was brought up to the top edge so that the seeds where covered by the paper, allowing the shoots to grow from the open edge and the roots to grow towards the folded edged. The paper and seeds were rolled from one side to the other to form a cylinder and the cylinder was held in place by a rubber band and propped in a beaker (folded edge down) containing 0.5 mM CaSO₄. The units were incubated at 4°C for 24 h, then moved to ~26°C under growth lights until germination. Seeds usually germinated in five days and were then transplanted into pots.

All plants were grown under conditions conforming to PC2 guidelines (http://www.ogtr.gov.au) in the Controlled Environment Facility at CSIRO, St Lucia, Queensland, Australia. Growth room conditions were a constant temperature of 25°C with a 16 h photoperiod (500 µmol m²s⁻¹ photon flux density) and 65% humidity.

Plants were harvested at times specific to individual experiments and details are given in the relevant chapters. Harvesting involved carefully washing soil away from roots over a 1 mm gauge sieve. Plants were then blotted dry and shoots cut away from roots. Samples were processed to determine fresh and dry weights, concentration of P in samples, extent of mycorrhizal colonisation, and RNA and DNA extractions depending on analysis required, as described in the following sections.

3.2 Watering

State Barry

Pots were watered to weight with distilled water twice per week to maintain soil moisture at 0.1 g g⁻¹ dry soil. Pots received 10 mL nutrient solution minus P once per week (Table 3.2).

Macro nutrients	Final concentration
K ₂ SO ₄	0.4 mM
MgSO ₄ .7H ₂ O	0.3 mM
Ca(NO ₃) ₂	0.6 mM
Fe EDTA	0.02 mM
(NH4)2SO4	0.8 mM
NaNO ₃	0.4 mM
H ₃ BO ₃ – 2.8 mg L ⁻¹	1 mL L ⁻¹
MnCl ₂ .4H ₂ O – 1.81 mg L ⁻¹	1 mL L ⁻¹
ZnSO ₄ .7H ₂ O – 0.22 mg L ⁻¹	1 mL L ⁻¹
CuSO ₄ .5H ₂ O – 0.08 mg L ⁻¹	1 mL L ⁻¹
NaMoO ₄ .2H ₂ O - 0.025 mg L ⁻¹	1 mL L ⁻¹

Table 3.2. Composition of the nutrient solution used in all experiments.
3.3 Cultures of AM fungi

Three cultures of AM fungi, were obtained from Prof. S.E. Smith, University of Adelaide, South Australia, Australia.

Glomus sp. WFVAM 23 (formerly called *G. versiforme*). This fungus was obtained as *Glomus versiforme* (Karsten) Berch from Dr P. Bonfante, University of Torino, Italy. It was described as *G. versiforme* in a paper by Gao *et al.* (2001) but it should be noted that the identification of this fungus has been questioned and re-identification and molecular comparison of this fungus with other cultures of *G. versiforme* and *G. intraradices* is currently in progress.

Glomus intraradices Schenck & Smith (DAOM 181602). This fungus was subcultured from an axenic culture on transformed roots obtained from Professor J.A. Fortin, University of Montreal, Canada and subsequently maintained in pot-culture conditions.

Scutellospora calospora (Nicolson & Gerdemann) Walker & Sanders (WUM 12(2)) was originally obtained from Mr Chris Gazey, University of Western Australia, Australia.

Inoculum of the fungi was produced in pot cultures maintained on *Allium porrum* L. cv Vertina (leek) in appropriate soil, section 3.1.1. The pot cultures were grown for at least 6 weeks before the soil, containing root fragments and spores, was used to inoculate experimental plants.

Test plants were transplanted into nurse pots that had been established according to Rosewarne et al. (1997).

3.4 Analysis of mycorrhizal colonisation

Root samples requiring assessment of mycorrhizal colonisation were cleared and stained by a modification of the method of Phillips and Hayman (1970). Roots were immersed in 10% KOH immediately after harvest and cleared by incubation at 65°C overnight. The roots were then rinsed with water twice and once with 0.1 N HCI, before staining with trypan blue. Trypan blue is a non-vital stain, which stains fungal structures that are both living and dead. The trypan blue stain was prepared as described by Phillips and Hayman (1970) with the omission of phenol. Fungal structures were visualised with bright field microscopy. Assessment of colonisation was done by the line intersect method (McGonigle, 2001) to provide detailed information on the percentage of individual fungal structures present within the roots, as well as total percent colonisation (presence of fungi regardless of structure).

3.5 Plant growth and phosphate analysis

Fresh weights of roots and shoots were recorded at harvest. The roots and shoots were cut into ~4 cm sections and thoroughly mixed before subsampling. Weighed subsamples were then dried at 80°C for ~72 h and dry weights recorded. The dry weights of whole roots or shoots were calculated from the fresh weight: dry weight ratios to correct for weighed subsamples taken for other analyses. Weighed subsamples of the dried material were ashed at 220 °C for ~20 h. Ashed samples were resuspended in 20 mL 0.1N HCI. P concentrations in ashed plant samples were determined by the molybdenum blue method of Watanabe and Olsen (1965), with absorbances read at 650 nm on a GBC 911 UV-Visible Spectrophotometer (GBC Scientific Equipment, Dandenong, Victoria, Australia).

3.6 RNA extraction

3.6.1 Large scale preparations

Subsamples of fresh plant material for extraction of RNA were rapidly frozen in liquid nitrogen immediately after harvest and stored at -80 °C. Total RNA was extracted from plant material through a caesium chloride pad by the method of Chirgwin *et al.* (1979) modified as follows: Plant material that had been frozen was ground to a powder in liquid nitrogen with mortar and pestle. Following centrifugation through the caesium chloride pad the RNA was resuspended in H₂O (treated with 0.1% Diethylpyrocarbonate, DEPC) and immediately precipitated with NaOAc and ethanol to concentrate the RNA. If the RNA pellet was not clear or white, a pheonl:chloroform:isoamlyalcohol extraction was performed and the RNA precipitated again. The precipitated RNA was collected by centrifugation (14000 rpm,15 m, 4 °C) and RNA pellets were air dried on ice before dissolving in H₂O (DEPC) for immediate usage or stored at -80°C in a NaOAc and ethanol precipitation mix.

3.6.2 Small scale preparations

A QIAGEN RNeasy Plant Mini kit #74103, supplied by QIAGEN Pty Ltd, Clifton Hill, Victoria, Australia, was used for small scale RNA preparations. The protocol listed in the handbook was used to extract RNA from samples of ~100 mg plant tissue ground in liquid nitrogen with mortar and pestle. The extraction included the QIAGEN #79254 'on the column' RNase-Free DNase in order to remove any remaining genomic DNA.

3.7 Genomic DNA extraction

Small-scale genomic DNA extractions used the BIO101 FastDNA® Kit (#6540-400) with the FastPrep® Instrument, both supplied by Qbiogene Inc., Carlsbad, California, United States of America. The

FastPrep® System eliminates the need for manual grinding by using a highly energetic mechanical motion with garnet combined with cell lysing reagents. The protocol listed in the handbook was used to extract a maximum of 200 mg of fresh plant tissue with lysing matrix: sphere + garnet + sphere. Genomic DNA was stored at 4°C.

3.8 Clone analysis

The following section details the techniques used to isolate and manipulate the P transporter genes and corresponding promoters used in the work described in this thesis. Detailed explanations are given in each section.

3.8.1 Vectors

Vectors are generally circular pieces of DNA that are able to utilise the bacterial, yeast, plant or animal cell that it resides in to replicate themselves. Cloning vectors are able to have foreign pieces of DNA inserted into them and maintain their capacity to replicate. This enables a gene of interest to be replicated and studied independently of other genes. The following three vectors were used in the work discussed in this thesis and vector maps and associated components are listed in Appendix 3.

pGemT-easy (#1360) – supplied by Promega Corporation, Annandale, New South Wales, Australia. This plasmid is used to clone PCR products and allows selection of cloned products by transforming *E. coli* strains, followed by growth on LB with ampicillin and blue/white screening. Blue/white screening is achieved by the insertional inactivation of the LacZ α -peptide. The inserted gene of interest disrupts the coding region of the α -peptide, which can then be identified by colour screening on indicator plates. Details of vector and related products can be found in Appendix 3.

pZERO1 (#K2500-01) – supplied by Invitrogen Australia Pty Ltd, Mount Waverly, Victoria, Australia. This plasmid is used to clone PCR products and allows selection of cloned products by transforming *E. coli strains* and growth on LSLB with zeocin selection. Details of vector and related products can be found in Appendix 3.

pWBvec8 – supplied by CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia. This plasmid is used to clone the promoters of the genes of interest so that they control the expression of green fluorescent protein (GFP) or β -glucuronidase (GUS) genes for plant transformation and expression studies. pWBvec8 is transformed into *Agrobacterium* strains and grows in LB with spectinomycin resistance selection. Details of vector and related products can be found in Appendix 3.

3.8.2 Ligation

Ligation reactions involve the joining of any two pieces of DNA. In this research ligations involved the insertion of the gene of interest into a linearised vector, which then created a circularised product that was transformed into bacterial, fungi or plant cells for replication.

All ligations were set up with a 3:1 insert:vector ratio.

Ligations into pGemT-easy followed the protocol supplied by the supplier, with ligations run at 4°C overnight.

Ligations into pZERO1 and pWBvec8 used T4 DNA ligase (#M1801) supplied by Promega Corporation, Annandale, New South Wales, Australia. Ligations followed the supplier's protocol, with ligations run at 4°C overnight.

3.8.3 Transformation of vectors into bacteria.

Transformation is the introduction of DNA into a bacterial, yeast, plant or animal cell. There are two methods for transformation into bacteria and fungi, heat-shock and electroporation. Electroporation was used during the work described in this thesis to introduce cloned genes into bacterial cells. This was achieved by mixing the ligated cloned genes with highly purified *E. coli* cells and subjecting the mix to high electrical pulses, that disrupt the membrane of the *E. coli* cells sufficiently to enable the cloned genes to be introduced. Following electroporation the cells were recovered in 1 mL SOC medium (Appendix 3) for 1 h at 37°C, before being spread onto appropriate antibiotic selection plates (Appendix 3.).

pGemT-easy and pZERO1 vector based plasmids were transformed into *E. coli* DH10B by electroporation in 0.1 cm cuvettes with a Bio-rad Gene Pulser supplied by Bio-rad Laboratories Pty Ltd, North Ryde, New South Wales, Australia. The electroporation conditions outlined in the Bacterial Electrotransformation and Pulse Controller Instruction Manual V2-89 #165-2098 were used. Following recovery *E. coli* DH10B cells were grown at 37°C overnight.

pWBvec8 vector based plasmids were transformed into Agrobacterium tumefaciens AGL1 by electroporation in 0.2 cm cuvettes with the Bio-rad Gene Pulser using procedures outlined in the Bacterial Electrotransformation and Pulse Controller Instruction Manual V2-89 #165-2098. Agrobacterium cells were grown at 28°C for 36 - 48 h.

3.8.4 Miniprep analysis

Following transformation, individual colonies were selected from plates and used to inoculate 5 mL liquid broth containing the appropriate antibiotic for the vector used. Plasmid DNA was extracted from 1.5 mL of culture by the alkaline lysis method proposed by Birnboim (1983), with variations according Sambrook at al. (1989).

3.8.5 Restriction enzyme digestion and analysis

Restriction enzymes were used to digest the DNA for ligation and clone analysis. Three companies supplied the restriction enzymes used in the work described in this thesis: New England Biolab enzymes supplied by Genesearch Pty Ltd, Arundel, Queensland, Australia; MBI Fermentas enzymes supplied by Progen Industries Ltd, Darra, Queensland, Australia; Promega enzymes supplied by Promega Corporation, Annandale, New South Wales, Australia.

Digests were set up according to manufacturers' instructions and assessed using 1.2% TAE (Appendix 3) gels run at 60 V for approximately 1 h in a submerged horizontal electrophoresis cell (Bio-rad, Regents Park, New South Wales, Australia). Nucleic acid bands were visualised with ethidium bromide and viewed on a UV luminator (excitation at 312 nm; supplied by Sigma, Castle Hill, New South Wales, Australia). The molecular weight markers used were 1kbplus (#10787-018, Gibco Life Technologies), supplied by Invitrogen Life Technologies, Mulgrave, Victoria, Australia.

3.8.6 Transformation of vectors into plants

Rice, barley and tobacco plants were transformed with *Agrobacterium* vectors prepared as described above. The details of the plant transformations are given in the relevant chapters.

3.9 Sequence analysis

ABI PRISM® Big Dye[™] Terminator Ready Reaction Cycle Sequencing Kit supplied by Applied Biosystems (Quantum Scientific, Milton, Queensland, Australia) was used to determine the DNA sequences of isolated clones and confirm cloning reactions. Versions 1 – 3 of the sequencing kit updated by Applied Biosystems have been used during the research. Sequencing reactions were set up according to manufacturers recommendations. Purification of the extension products was done with ethanol/sodium acetate precipitation method as outlined in the manufacturers protocols. Sequencing was done by the Australian Genome Research Facility (Brisbane, Queensland, Australia). Sequences

were analysed with programs on the Australian National Genomic Information Service (www.angis.org.au).

3.10 In-situ hybridisation protocol

Barley (*Hordeum vulgare* L. cv Golden Promise), wheat (*Triticum aestivum* cv Grebe), rice (*Oryza sativa* cv Jarrah) and maize (*Zea mays* cv Gold Queen) were grown in mycorrhizal nurse pots (*G. intraradices, G.sp. WFVAM23* or *Sc. calospora*) as detailed in chapter 3.1, 3.2 and 3.3. Roots were harvested and immediately cut into 1 cm lengths under fixation buffer (2% formaldehyde and 0.5% glutaraldehyde in 50 mM Na-PIPES buffer pH 7.2). Root segments were incubated in fixation buffer for 2 h at room temperature. Tissue was dehydrated in a graded series of ethanol and ethanol/Histoclear (National Diagnostics, Atlanta, Georgia) and embedded in paraffin wax. Sections (20 μm) of tissue embedded in paraffin wax were sliced using a Biocut 2030 Reichert-Jung (Leica, Australia). Sections were mounted on Superfrost Plus slides (HD Scientific, Brisbane, Australia). Prior to hybridisation, paraffin was removed from sections by immersing the slides in containers with Histoclear, and tissue was rehydrated in a graded series of ethanol and ethanol series.

Sense and anti-sense RNA probes were generated by in vitro transcription (Promega Riboprobe System, Madison, Wisconsin) incorporating fluorescein-12-UTP (Roche Diagnostics, Basel, Switzerland) as the label. Probes were synthesised from full-length cDNA (sequences in Appendix 4) encoding HORvu; Pht1;8, ORYsa; Pht1;11, TRIae; Pht1; myc and ZEAma; Pht1;6 and used to screen tissue of appropriate plant species. Probes were hydrolysed to ca. 300 nucleotides by incubating the probe in 60 mM Na₂CO₃, 40 mM NaCO₃ (pH 10.2) for 20 m at 60°C followed by the addition of neutralisation buffer (final concentration: 0.2 M NaOAc, 1% acetic acid, pH 6). The probe was precipitated with 1/8 volume LiCl and 3.75 volume ethanol and pelleted by centrifugation at 12000 rpm, 4°C, 20 m. The hydrolysed RNA probe was dissolved in 50 μ L H₂O (DEPC) and 1 μ L RNasin (Promega, Australia) and mixed with 450 µL hybridisation buffer (50% formamide, 300 mM NaCl, 10 mM Tris-HCI pH 7.5, 1mM EDTA, 5% dextran sulphate, 150 µg mL-1 tRNA). Dry sections were hybridised with 1:25 dilution of labelled RNA probe and hybridisation buffer at 47°C overnight. After hybridisation, slides were washed in 2 x SSC (Sambrook et al. 1989) for 60 m at 60°C, 1 x SSC for 30 m at 60°C and 0.1 x SSC for 30 m at 60°C. Hybridised probe was detected with anti-fluorescein antibody-alkaline phosphatase (Roche Diagnostics Australia, Castle Hill, New South Wales, Australia) and the substrates nitroblue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

Slides were examined using a Zeiss Axioskop microscope (Carl Zeiss Microscopy, Jena, Germany). Images were collected with an Olympus DP70 Microscope digital camera and supporting computer software (Olympus Australia Pty Ltd, Victoria, Australia).

3.11 Phosphate transporter nomenclature

The Commission for Plant Gene Nomenclature (appointed by the International Society for Plant Molecular Biology) has recently suggested the formal naming of genes (Bucher *et al.*, 2001). Genes are named according to their gene family eg.:

Tomato (*Lycopersicon esculentum*) phosphate transporters confirmed to be in the Pht1 gene family would be named: *LYCes;Pht1;1*, *LYCes;Pht1;2*, *LYCes;Pht1;3* etc. The Pht2 gene family would be named: *LYCes;PHT2;1*, *LYCes;PHT2;2*, *LYCes;PHT2;3* etc.

Appendix 1 contains details of correct names and the common names used in publications and Table 3.3 contains the P transporters most commonly used in this thesis.

Common name	Correct name	Plant
PHT1;1, APT2, PHT1, AtPT1	ARAth;Pht1;1	Arabidopsis thaliana
PHT1;2, APT1, PHT2	ARAth;Pht1;2	Arabidopsis thaliana
PHT2;1	ARAth;Pht2;1	Aradidopsis thaliana
HvPT1	HORvu;Pht1;1	Hordeum vulgare
HvPT2	HORvu;Pht1;2	Hordeum vulgare
HvPT8	HORvu;Pht1;8	Hordeum vulgare
LePT1	LYCes;Pht1;1	Lycopersicon esculentum
MtPT1	MEDtr;Pht1;1	Medicago truncatula
MtPT2	MEDtr;Pht1;2	Medicago truncatula
MtPT4	MEDtr;Pht1;4	Medicago truncatula
OsPT11	ORYsa;Pht1;11	Oryza sativa
StPT3	SOLtu;Pht1;3	Solanum tuberosum
TaPTmyc	TRIae;Pht1;myc	Triticum aestivum
ZmPT6	ZEAma;Pht1;6	Zea mays

Table 3.3: Common names of P transporters and the correct names used in this thesis.

3.12 Statistical analysis

Statistics packages R and Ministat were used for analysis.

R: Copyright 2001, The R Development Core Team Version 1.3.0 (2001-06-22). R is free software and can be distributed under the licence details.

Ministat, FW Smith, CSIRO Plant Industry, Australia.

4 Variation between barley cultivars in P uptake and rate of colonisation.

Introduction

This chapter covers two subjects. The first examines the P efficiency of seven barley cultivars. The second is involved with the rate of colonisation in three barley cultivars by two mycorrhizal fungi. These subjects will be presented separately, all P efficiency sections followed by all rate of colonisation sections.

4.1 Variation between barley cultivars in P uptake and efficiency

The aim of the work described in this chapter was to identify barley cultivars of different P efficiency for Despite uniform environmental conditions, differences in growth use in future experiments. characteristics and nutritional composition of crop species and cultivars have been regularly observed (Lyness, 1936). Plant breeders utilise these genetic differences by crossing cultivars with desired characteristics to produce a single progeny containing both parental characteristics. A characteristic of interest for this research is the ability of a cultivar to maintain productivity when grown on low P soils (agronomic P efficiency). Much research has been done into the variation of P efficiency in cereal crops to determine if there is potential for improvement (Clark, 1991). Scientists define nutrient efficiency differently, depending on the objectives of their research. Many of these definitions are listed in the chapter written by Clark (1991) on mineral nutrient efficiency. I have defined P efficiency (agronomic P efficiency) as the total amount of P accumulated by a plant, so a plant that is highly P efficient is one that accumulates significantly higher amounts of P from low P soils, and low P efficiency is the reverse. The variation of P uptake in several barley cultivars was examined to identify cultivars that may be classified as having high or low P efficiency for the growth environment utilised throughout this research. Having identified cultivars with high or low P efficiency they were then examined to determine if their ability to acquire P interacts with the rate and extent of mycorrhizal colonisation.

Variations in P uptake have been measured in many crops (Clark, 1991). My research focussed on barley. Jensen and Nittler (1971) noticed significant differences in the percentage of necrosis of leaves due to P deficiency in 24 spring barley cultivars. Nielsen and Schjorring (1983) were able to fit a formula to P uptake in barley cultivars that took into account root length (RL), net P influx per unit length of root (I_{max}), affinity of nutrient uptake (K_m) and the minimum concentration of P in solution at which net influx

appears to be zero (c_{min}). This formula, root net influx of P g⁻¹ dry matter = $I_{max} + RL + ((c - c_{min})/(c - c_{min}))$ + Km)), revealed variations among six barley varieties out of 30 analysed in both field and hydroponic culture. If a variety had high values for RL and I_{max} and low values for K_m and c_{min} then that variety was P efficient - able to accumulate high amounts of P (Nielsen & Schjorring, 1983; Schjorring & Nielsen, 1987). Differences in P uptake (Imax) due to diversity in root hair architecture and root exudates between barley cultivars have been reported (Gahoonia & Nielsen, 1997; Gahoonia et al., 2000). Barley cvs Yagan, WI2737, O'Connor and Kaniere were shown to be able to produce higher yields of dry matter when grown at low P (agronomic P efficiency), while cultivars Galleon, Shannon, WI2539 and Skiff are agronomically P inefficient (field studies by R.D. Wheeler pers.comm. cited in Baon et al., 1993a). A different set of barley cultivars used by Zhu et al. (2002) were not shown to have any significant difference in the amount of P acquired when grown in low P soils, but when grown in high P soils cultivars Clipper and Skiff were able to acquire larger amounts of P (efficient in high P soil) than cultivars Haruna Nijo, Sahara, Alexis and Galleon (inefficient in high P soil) (Zhu et al., 2002). These differences were also reflected in the specific P uptake (total P (mg) absorbed per g root dry weight), with cultivars Skiff, Clipper and Sloop having higher values for specific P uptake than Sahara (Zhu et al., 2002). The differences in P efficiency reported in cultivar Skiff in low P soil by Wheeler (Baon et al., 1993a) and Zhu et al. (2002) may be due to the differences in growth conditions, field versus pots in a glasshouse. Several cultivars examined by Zhu et al. (2002 & 2003) were included in my research. The barley cultivars Franklin, Forrest, Clipper, Skiff, Sahara and Arapiles studied in this chapter were chosen from parents of mapping populations used by the Cooperative Research Centre for Molecular Plant Breeding (Adelaide, South Australia, Australia). Cultivar Golden Promise was also included because it is commonly used in transformation studies. This was an important advantage because transgenic plants were to be produced for expression studies (see Chapter 5).

This experiment was designed to determine if there is variation in P efficiency of the chosen barley cultivars under the conditions to be used in later experiments. The results and discussion from this experiment are presented in the following sections.

4.1.1 Materials and Methods: Barley P efficiency

Barley cvs (Arapiles, Clipper, Forrest, Franklin, Golden Promise, Sahara and Skiff) were grown in 1:10 soil:sand mixes using the Millmerran soil (Chapter 3.1.1) with $CaH_4(PO_4)_2$ added to produce total soil P contents of 18, 38, 80 or 118 mg P per pot (P1, P2, P3 and P4 respectively) prepared as outlined in Chapter 3.1.1. The use of sand is to restrict the added P from becoming unavailable by interacting with soil particles. A high proportion of the P added to this low P sorbing soil:sand mix will therefore be available to plants. Following five days germination (Chapter 3.1.2), five plants were sown per pot with three replicate pots per treatment. Each replicate was set out in a block, and pots randomised within the block twice per week. Plants were grown in a glasshouse with natural light for 31 days (August – September 2000). Day length averaged at 11 h 20 m, with day to night temperatures ranging from 23 – 18°C. Pots were watered according to Chapter 3.2. Plants were harvested 32 days after germination.

Fresh and dry weights for shoots and roots, P concentration and specific uptake of P were measured as outlined in Chapter 3.1.2 and 3.5. Specific uptake of P was calculated by Equation 1 (Zhu *et al.*, 2002):

Equation 1: Specific uptake of P = Total P uptake / Root dry weight (mg P g⁻¹ root dry weight)

The proportion of acquired P allocated to shoots was calculated by Equation 2:

Equation 2: Percent P allocated to shoots = Amount P in shoot / Total amount P in plant * 100 (%)

The Ministat and R statistics packages were used for analyses of the root/shoot dry weights, P concentration in roots, shoots and whole plants, ratio of total P in shoots to roots and specific uptake of P utilised (Chapter 3.11). The I.s.d. at P = 0.05 was used to separate the means of each treatment. The ANOVA for each set of calculations is presented in Appendix 5.

4.1.2 Results: Barley P efficiency

When grown in low P soil (P1) Sahara produced the largest total biomass and Franklin was ranked the lowest with the smallest biomass, at 1/6th of that observed in Sahara (Table 4.1). Sahara was the most efficient in terms of dry weight production at P1. This was is also reflected in the root and shoot biomass at this P level (Table 4.2). Sahara is an agronomically efficient cultivar, being able to produce large biomass at low P levels. This is supported by the root:shoot ratio that indicates Sahara produced a large amount of roots in low P soil (Table 4.1). The total biomass of each cultivar increased when P was increased from P1 to P2 (Table 4.1). Increasing the concentrations of P in the soil altered the rankings of the barley cultivars between P levels. Franklin remained in the lowest ranking while Forrest (followed by Sahara) was able to produce the largest total biomass when P levels in the soil increased. The differences in total biomass between P levels P2 and P4 were not significantly different, though P4 and P2 biomasses were significantly higher than those observed at P1. Clipper was the only cultivar to increase total biomass. At P4 Arapiles (followed by Franklin) became the lowest rank cultivar and Forrest (followed by Sahara) the highest.

Table 4.1: Total biomass dry weight (g/plant) and root:shoot ratio of 7 barley cultivars grown in soil:sand culture. Superscript numbers are the ranking of the values in that P level. P1 = 18 mg P/ pot; P2 = 38 mg P/ pot; P4 = 118 mg P/ pot. Total biomass I.s.d. (P=0.05) P means = 0.140, Cultivar x P means = 0.371. Root:Shoot ratio I.s.d. (P=0.05) P means = 0.310, Cultivar x P means = 0.821.

Cultivar	Tot	al biomass	(g)	Root:Shoot Ratio		
-	P1	P2	P4	P1	P2	P4
Arapiles	0.301 5	0.793 5	0.547 7	1.556 5	1.394 5	0.929 7
Clipper	0.338 3	0.842 4	0.973 4	1.387 ₆	1.254 ₆	1.297 4
Forrest	0.419 ₂	1.596 ₁	1.356 1	2.294 ₂	1.719 ₃	1.346 2
Franklin	0.141 7	0.600 7	0.569 6	1.304 7	0.991 7	0.976 ₆
Golden Promise	0.315 4	0.750 ₆	0.746 5	1.825 3	1.409 4	1.218 5
Sahara	0.858 1	1.258 3	1.167 ₂	3.551 ₁	2.691 1	2.512 ₁
Skiff	0.260 6	1.267 ₂	0.999 3	1.695 4	2.127 ₂	1.315 3
P means	0.376	1.015	0.908	1.945	1.655	1.370

As the concentration of P in the soil increased the root:shoot ratio decreased (Table 4.1). Cultivars supporting root development in P1 changed to increased shoot development as the soil P increased. Sahara was consistently ranked the highest for root:shoot ratio at all P levels, while Franklin ranked the lowest at P levels P1 and P2. Arapiles ranked the lowest for root:shoot ratio at P4, followed by Franklin.

36

Increased production of roots (high root:shoot ratio) in response to low P concentrations is important for P efficiency (see Discussion).

The biomass of roots differed significantly between cultivars (Table 4.2). The variation between cultivars reveals that Sahara was ranked the highest (able to produce the most root biomass) and Franklin the lowest at low P. The root biomass did not increase proportionally with increasing P levels (Table 4.2). Increasing the total soil P from P1 to P2 resulted in a significant increase in root biomass. The difference in root biomass between soil P2 and P4 was not significant. Root biomass decreased slightly in all cultivars with the exception of Clipper when P levels increased from P2 to P4. Sahara and Forrest were ranked in the top two positions for all P levels and Franklin ranked the lowest at P1 and P2 with Arapiles followed by Franklin at P4.

Sahara was ranked the highest for shoot biomass at P1, though the ranking decreased with increasing soil P (Table 4.2). Forrest became the highest ranking at P2 and P4. Franklin maintained the lowest or second lowest ranking regardless of P level. Shoot biomass increased with increasing P levels from P1 to P2, but similar increases were not observed when P was increased from P2 to P4. Analysis of the shoot biomass revealed a cultivar by P interaction, in which each of the cultivars reacted differently when soil P levels were increased (Table 4.2). Forrest was able to increase shoot biomass with increasing soil P from P1 to P2 significantly more than the other cultivars. Forrest was therefore the most responsive to P application.

Table	4.2:	Root	and	shoot	dry	weight	(g/plant)	of 7	barley	cultivars	grown	in s	oil:san	d culture.
Supers	script r	numbe	rs are	e the r	ankir	ng of the	e values	in tha	t P leve	I. P1 = ′	18 mg P/	/ pot	;; P2 =	38 mg P/
pot; P4	4 = 11	8 mg F	P/ pot	. Ro	ot bio	omass I.	s.d. (P=0	.05) F	' means	5 = 0.121	, Cultiva	r x P	means	s = 0.319.
Shoot	bioma	ss Ls.o	1. (P=	0.05)	P me	ans = 0	.032, Cul	tivar >	P mea	ns = 0.08	5.			

Cultivar	Ro	ot biomass	(g)	Shoot biomass (g)		
	P1	P2	P4	P1	P2	P4
Arapiles	0.190 5	0.491 4	0.264 7	0.111 4	0.302 6	0.283 7
Clipper	0.195 4	0.469 5	0.554 4	0.143 ₂	0.373 ₃	0.419 ₃
Forrest	0.292 2	1.008 ₁	0.774 ₂	0.127 3	0.588 1	0.582 ₁
Franklin	0.079 7	0.303 7	0.282 6	0.062 7	0.297 7	0.287 ₆
Golden Promise	0.205 3	0.438 6	0.404 5	0.110 5	0.312 5	0.342 4
Sahara	0.670 1	0.917 ₂	0.830 1	0.188 1	0.341 4	0.337 5
Skiff	0.164 6	0.872 3	0.578 ₃	0.096 6	0.395 ₂	0.421 ₂
P means	0.256	0.643	0.527	0.120	0.372	0.382
						07

Phosphorus concentrations in roots and shoots varied significantly between cultivars, as did total plant P (Tables 4.3 and 4.4). Forrest and Sahara ranked in the top two positions, accumulating the highest concentrations of P in roots and shoots at all P levels; Franklin and Arapiles had the lowest rankings. The concentration of P increased with increasing P levels for all cultivars, except for Arapiles in which root P concentrations decreased at the highest P level. As seen in the shoot biomass results, there was a cultivar x P interaction arising where cultivars did not increase P concentrations at the same rate with increasing soil P levels in roots, shoots and total plant P uptake. The P concentration in the tissues accumulated from P1 for all cultivars is indicative of P deficiency and P2 and P4 sufficiency of supplied P to all cultivars as recommended by Table 2.1 (Reuter *et al.*, 1997).

Table 4.3: Phosphorus concentrations (mg P g⁻¹ DW) in plant tissues of 7 barley cultivars grown in soil:sand culture. P1 = 18 mg P/ pot; P2 = 38 mg P/ pot; P4 = 118 mg P/ pot. Root I.s.d. (P=0.05) Cultivar means = 0.260, P means = 0.170, Cultivar x P means = 0.450. Shoot I.s.d. (P=0.05) Cultivar means = 0.537, P means = 0.351, Cultivar x P means = 0.930.

Cultivar	Roo	t (mg P g ⁻¹ C)W)	Shoot (mg P g ⁻¹ DW)		
	P1	P2	P4	P1	P2	P4
Arapiles	0.368 4	1.004 6	0.8897	0.252 5	1.483 6	3.223 6
Clipper	0.377 3	1.197 4	1.827 3	0.339 ₂	1.721 4	4.254 4
Forrest	0.5102	2.251 1	2.886 1	0.3591	2.247 ₂	5.955 ₂
Franklin	0.259 7	0.754 7	1.102 ₆	0.1397	1.227 7	3.142 7
Golden Promise	0.335 5	1.091 5	1.748 5	0.261 4	1.489 ₅	4.077 5
Sahara	1.026 1	1.688 ₂	2.615 ₂	0.339 ₂	2.248 1	7.266 1
Skiff	0.3026	1.372 ₃	1.817 4	0.235 6	1.858 3	4.298 3
P means	0.454	1.337	1.841	0.275	1.754	4.602

The proportion of P allocated to shoots increased with increasing soil P levels (Table 4.4). Cultivar Sahara allocated the highest amount of P to shoots (ranked 1), while Arapiles (ranked 7) allocated the least. The cultivar x phosphate interaction for P concentration in roots, shoots and total plant P and proportion of P allocated to shoots was significant at the 5% level and demonstrated that not all cultivars accumulated P to the same degree. A cultivar x P interaction was found and indicates that not all cultivars allocate P to shoots in a similar manner with increasing soil P levels.

Table 4.4: Total P uptake (mg P g⁻¹ DW) and allocation of P to the shoots (%) in 7 barley cultivars grown in soil:sand culture. P1 = 18 mg P/ pot; P2 = 38 mg P/ pot; P4 = 118 mg P/ pot. Total P uptake I.s.d. (P=0.05) Cultivar means = 0.701, P means = 0.459, Cultivar x P means = 1.215. Proportion of P in shoot I.s.d. (P=0.05) Cultivar means = 4.10, P means = 2.68, Cultivar x P means = 7.09.

Cultivar	Total P uptake (mg P g ⁻¹ DW)		Proport	tion of P in s	' in shoot %	
	P1	P2	P4	P1	P2	P4
Arapiles	0.6204	2.488 ₆	4.111 7	42.764	61.88 ₁	78.32 ₁
Clipper	0.716 ₃	2.9184	6.0804	47.56 ₁	58.96 3	69.95 5
Forrest	0.8692	4.499 ₁	8.842 ₂	41.55 5	49.84 7	67.287
Franklin	0.3987	1.981 ₇	4.244 ₆	35.14 ₆	61.79 ₂	74.12 ₂
Golden Promise	0.596 5	2.580 5	5.825 ₅	44.40 ₂	57.73 ₅	69.58 ₆
Sahara	1.3651	3.936 ₂	9.882 ₁	26.357	56.60 ₆	73.24 ₃
Skiff	0.537 ₆	3.230 ₃	6.115 ₃	43.78 ₃	58.024	70.694
P means	0.729	3.090	6.443	40.22	57.83	71.88

The specific uptake of P increased with increasing P levels for all cultivars and there was no cultivar by phosphate interactions. The rankings for specific P uptake varied between soil P levels (Table 4.5). At P1 Franklin (followed by Arapiles) was ranked the highest and Sahara the lowest. At P2 Arapiles (followed by Franklin) was ranked the highest and Sahara, again, the lowest. At the highest P level, P4, Golden Promise was the highest ranking and Clipper (followed by Sahara) the lowest.

Table 4.5: Specific P uptake in 7 barley cultivars grown in soil:sand culture.

Specific P uptake = Total P in plant (mg) per root dry weight (g). P1 = 18 mg P/ pot; P2 = 38 mg P/ pot; P4 = 118 mg P/ pot. Specific P uptake I.s.d. (P=0.05) Cultivar means = 2.746, P means = 1.798, Cultivar x P means = 4.756.

Cultivar	Specific P uptake (mg P g ⁻¹ root DW)					
	P1	P2	P4			
Arapiles	4.091 ₂	7.638 ₁	15.838 ₂			
Clipper	3.864 ₃	6.287 ₃	11.3937			
Forrest	3.293 5	4.480 ₆	13.9324			
Franklin	5.503 ₁	6.845 ₂	15.110 ₃			
Golden Promise	3.090 ₆	5.8854	16.105 ₁			
Sahara	2.0637	4.287 7	12.029 ₆			
Skiff	3.4324	4.490 5	12.283 5			
P means	3.619	5.702	13.813			

4.1.3 Discussion: Variation between cultivars in P uptake and efficiency

Accumulation of P from low P soil was significantly different between barley cultivars (Table 4.1). This is an important result from this experiment, as a P efficient plant is one that can accumulate higher amounts of P from low P soils (as defined in the Introduction). As the soil P decreases all cultivars increased the proportion of biomass allocated to roots as indicated by increasing root:shoot ratio. This would result in a relative increase in the area of soil accessed. The total biomass decreased with decreasing soil P concentration for all cultivars. In low P soil, Sahara was able to produce double the amount of roots and total biomass than the other cultivars. This suggests that Sahara with a large root system that can access a larger volume of soil is able to deal with P deficiency better than the other cultivars.

Specific P uptake is a measure of the total P accumulated by the plant divided by the root biomass. Franklin had the lowest total plant P concentrations and the lowest root biomass, but the specific P uptake by Franklin was the highest. Conversely Sahara had the highest total plant P concentrations and root biomass, which resulted in the lowest specific P uptake. Franklin will have a higher level of P stress than Sahara and this may be the reason for the relatively higher specific P uptake observed.

Agronomic P efficiency requires the production of large biomass in P deficient conditions. Using this definition and under the growth conditions utilised in this experiment Sahara and Forrest are classified as being P efficient and Franklin and Arapiles as P inefficient. These results confirm those of Zhu *et al.* (2002), who identified barley cv Sahara as P efficient. The P efficient Sahara and P inefficient Franklin cultivars were used in further experiments involving AM fungi colonisation. The use of Sahara and Franklin will identify any differences in colonisation that may be due to the P efficiency of the barley cultivars. Cultivar Golden Promise, which has moderate efficiency, was included as a cultivar that is readily transformed.

In conclusion, barley cvs Sahara and Forrest are P efficient for the growth conditions to be used throughout the experiments reported in this thesis and cultivars Franklin and Arapiles are P inefficient.

4.2 Rate of colonisation by two mycorrhizal fungi

い パチャット マン・

- Townson

in the

十年キーと

Variations in P efficiency of barley have been identified through measurements of the ability of plants to acquire P from the soil directly. As discussed in the literature review an alternative avenue of P acquisition is via mycorrhizal fungi. Just as there is variation among cultivars for P efficiency, the percentage of root length colonised by AM fungi may also vary between cultivars with consequent effects on mycorrhizal P uptake. Baon et al. (1993a & b) used the high colonising G. etunicatum to look at the effects of colonisation on barley cultivars classified as being high or low P efficient. There was no significant difference in colonisation between the P efficient cultivars Yagan and Galleon and the P inefficient cultivars WI2539 and WI2737 (Baon et al., 1993b). When this experiment was extended to include the P efficient cultivars O'Connor and Kaniere and P inefficient cultivars Shannon and Skiff, significant differences in colonisation with G. etunicatum were recorded (8.6% for Kaniere to 28.6% for Shannon) (Baon et al., 1993a). Other variations between cultivars have also been observed. Indigenous mycorrhizal fungi were able to colonise hull-less barley cultivars (1845-10-5, 1853-6-3, 62-25-7-4-36) more than hulled cultivars (DL3, DL70, DL85, Ratna) (Tilak & Murthy, 1987). Conversely colonisation of cultivars Sahara and Clipper with G. intraradices was not significantly different (maximum colonisation recorded as 48 % and 49 % respectively), regardless of the variation in P efficiency of these two cultivars (Zhu et al., 2002 & 2003). These observations demonstrate that different cultivars do not always have different degrees of colonisation. Variation may arise as a combination of cultivar and AM fungi as well as inoculum infectivity (see below).

Beside variations between crop species there is also variation between mycorrhizal fungi with respect to colonisation and consequent crop productivity. Inoculum of *Gigaspora margarita* was able to colonise barley (cv Zephyr) grown in field plots to a higher degree than *G. tenuis* (Powell *et al.*, 1980). Varying levels of colonisation have also been observed in barley cultivar Salome colonised by *G. mosseae* (47%), *G. intraradices* (77%) and *Gigaspora rosea* (58%) (Vierheilig *et al.*, 2000), and barley (cv Galleon) grown with six mycorrhizal fungi (*G. versiforme* – 1.2%, *G. etunicatum* – 20.5%, *G. intraradices* – 9.8%, *G. fasiculatus* – 2.6%, *G. mosseae* – 0.17% and *G.sp.* 'City Beach' – 14.5%) (Baon *et al.*, 1993b). Field experiments by Clarke and Mosse (1981) identified variation in colonisation of barley cv Royal when inoculated with *G. mosseae* > *G. caledonius* > *G. fasiculatus*. Supplemented P resulted in decreased colonisation can be dependent upon the AM fungi used and the effectiveness of the inoculum. 1 utilised mycorrhizal nurse pots (similar to Rosewarne *et al.*, 1997) to ensure colonisation of barley plants studied was rapid and near synchronous.

Mycorrhizal colonisation decreases with increasing P levels in the soil. Colonisation of barley cv Vodka decreased from 97 % to 71 % when soil P levels were increased from 7.9 mg P kg⁻¹ to 317.9 mg P kg⁻¹ (Plenchette & Morel, 1996). Danish field sites under various fertilisation regimes exhibited reduced colonisation in barley by indigenous fungi with increasing soil P levels (Jensen & Jakobsen, 1980). Barley grown in low P soil with high colonisation had similar shoot P contents to that grown in high P soil with low colonisation (Jensen & Jakobsen, 1980; Baon *et al.*, 1994). These results can be explained in the light of results of Smith *et al.* (2003b & 2004). They showed that in some non-responsive plants (tormato in their experiment) total P uptake into mycorrhizal and non-mycorrhizal plants was the same, even when the mycorrhizal pathway of P uptake made a highly significant contribution.

4

1.1.1.1.1

and the second se

Temperature can also affect the extent of mycorrhizal colonisation. Inoculum of *G. intraradices* mixed through pots did not colonise barley cv Galleon when grown at 10°C and colonisation at 20°C was higher than colonisation at 15°C (Baon *et al.*, 1994). Spring sown barley cultivars was colonised faster than winter sown barley cultivars grown in fields, reaching a plateau within 15 days and 30 days respectively (Jakobsen & Nielsen, 1983). Differences in colonisation of several field-grown barley cultivars observed by Black and Tinker (1979) over two years of experimentation was attributed to the lower temperature recorded in 1976 compared to 1975. Increased temperature accounted for the increased rate of colonisation measured in barley cv Rupal with *G. mosseae* when two thirteen week experiments were run consecutively from winter into summer (Jakobsen & Andersen, 1982). I have conducted these experiments at ~ 25°C to achieve a high level of colonisation.

This experiment was designed to establish if variation in P efficiency affects mycorrhizal colonisation. The results and discussion from this experiment are discussed in the following sections.

4.2.1 Materials and Methods: Mycorrhizal colonisation of barley cultivars

ł

P1 and P3 pots (details in Section 4.1.1) were prepared for this experiment. 500 g soil:sand was used to prepare *G.sp. WFVAM23* and *G. intraradices* nurse pots for both P1 and P3 soil P levels (Chapter 3.3). Following five days germination (Chapter 3.1.2) barley cvs Franklin, Golden Promise and Sahara were sown, one plant per pot. There were three replicate pots per treatment. Plants were grown in the Controlled Environment Facility at CSIRO, St. Lucia (Chapter 3.1.2) and watered as described in Chapter 3.2. Root samples were collected from harvests at 5, 8, 11, 14, 20 and 32 days after planting (Chapter 3.1.2), and processed for analysis of mycorrhizal colonisation (Chapter 3.4). Statistical analysis of the % colonisation between barley cultivars and P treatments was done with the R statistics package (Chapter 3.11). The I.s.d. at P = 0.05 was used to compare the means of each treatment. The ANOVA is presented in Appendix 5.

4.2.2 Results: Mycorrhizal colonisation of barley cultivars

All barley cultivars were colonised by both G.sp. WFVAM23 and G. *intraradices*, although colonisation was consistently more extensive with G.sp. WFVAM23 (Figure 4.1). As well as hyphal colonisation, both arbuscules and vesicles were observed in roots colonised by G. *intraradices* and G.sp. WFVAM23. There was reduced colonisation of both mycorrhizal fungi when soil P was increased from 18 to 80 mg P per pot for all barley cultivars (Figure 4.2). Increased soil P concentrations reduced colonisation by G.sp. WFVAM23 significantly more than they did for colonisation by G. *intraradices*.

The percentage colonisation after 32 days was similar in all barley cultivars, but the rate of colonisation during the course of the experiment varied (Figure 4.1). The percentage colonisation by *G.sp.* WFVAM23 increased with increasing time, reaching a maximum in 11 days when colonising Franklin, but taking 32 days to reach a maximum for Golden Promise and Sahara. Colonisation by *G. intraradices* increased consistently throughout the experiment in all cultivars. A plateau was only reached in Golden Promise after 20 days. There was no clear evidence that colonisation had plateaued in Franklin and Sahara by the end of the experiment.. A difference in P efficiency does not appear to be associated with the final percentage colonisation by either of the mycorrhizal fungi.

Figure 4.1: Colonisation of barley cvs Franklin, Golden Promise and Sahara by two mycorrhizal fungi grown in low P soil (18 mg P per pot). Gi = *G. intraradices*, Gv = *G.sp. WFVAM23*.

Figure 4.2: The effect of soil P concentration on mycorrhizal colonisation. Statistical analysis revealed a mycorrhizal x phosphate level x day interaction. This histogram demonstrates that the level of colonisation (after 32 days) was higher in barley plants grown in low P soil than those grown in high P soil. *G.sp. WFVAM23* was able to colonise barley plants more than *G. intraradices* regardless of soil P concentrations. Gi = *G. intraradices*, Gv = *G.sp. WFVAM23*, low P = P1 (18 mgP/pot), high P = P3 (80 mgP/pot). The LSD is calculated from the complete set of data for mycorrhiza x phosphate x day interaction.

4.2.3 Discussion: Mycorrhizal colonisation of barley cultivars

All internal mycorrhizal structures, including internal hyphae, arbuscules and vesicles were counted when measuring colonisation in this experiment. Colonisation of cultivars Sahara, Franklin and Golden Promise reached a maximum for both AM fungi after 32 days at values >60% (Figure 4.1). This high level of colonisation was expected in plants grown in nurse pots, in which a high inoculum potential develops, leading to rapid earlier colonisation (between 5 and 45 % in this experiment within five days post planting) (Figure 4.1). Such high levels of colonisation after 32 days of growth have also been recorded when barley cultivar Vodka was grown in G. intraradices inoculated pots for 80 days (Plenchette & Morel, 1996). When Delp et al. (2000) used G. intraradices nurse pots to colonise barley cv Galleon, 55% of roots were colonised 10 days after transplanting, consistent with the rate of colonisation observed in my experiment (Figure 4.1). Nurse pots have the advantage of providing an active mycorrhizal network that can readily colonise plants transplanted into the network. An active mycorrhizal network was also evident with the fast colonisation of field grown spring barley (45 % colonisation after 15 day growth) (Jakobsen & Nielsen, 1983). Vierheilig et al. (2000) also observed rapid colonisation when nurse pots of G. mosseae, G. intraradices and Gigaspora rosea colonised barley cv Salome 47 %, 77%, and 58 % respectively, within 12 days (Vierheilig et al., 2000). The significant differences in colonisation between AM fungi observed by Vierheilig et al. (2000), Powell et al. (1980), Baon et al. (1993b) and Clarke and Mosse (1981), were also observed between G.sp. WFVAM23 and G. intraradices used in this research. This and the cited research demonstrate that barley can be colonised by AM fungi to a higher level than what has previously been thought. G.sp. WFVAM23 was able to colonise all three barley cultivars tested more extensively than G. intraradices.

Soil P concentrations are also important in the symbiotic relationship. The level of P in the soil affected the colonisation by G.sp. WFVAM23 more than *G. intraradices* (Figure 4.2). Reduced colonisation of barley cv Ark Royal as a result of added P was reported for all three mycorrhizal fungi assessed by Clarke and Mosse (1981), *G. intraradices* recorded by Plenchette and Morel (1996) and indigenous fungi reported by Jensen and Jakobsen (1980). While these experiments were not concerned with the P transporters involved with P acquisition, the internal P concentrations may regulate the transcription of genes encoding P transporters as well as colonisation. The level of colonisation is inversely proportional to soil P levels, with shoot P content being similar when plants are grown in high P soils with little mycorrhizal colonisation or in low P soils and highly colonised by mycorrhizal fungi (Jensen & Jakobsen, 1980). Reduced colonisation with increasing soil P concentration was also observed by Baon *et al.* (1993a) for several barley cultivars colonised by *G. etunicatum*, only colonisation in cultivar Kaniere remained unaffected by the increasing soil P level.

The rate of colonisation varied with barley cultivar and mycorrhizal fungi species in this research (Figure 4.1). Variations in the rate of colonisation between AM fungal species was reported by Powell et al. (1980) for barley cv Zephyr which was colonised faster by G. tenuis than by Gigaspora margarita. The colonisation of cultivar Ark Royal varied over time and resulted in different degrees of colonisation depending on AM fungi, with higher colonisation levels achieved by G. mosseae than G. caledonius and G. fasciculatus (Clarke & Mosse, 1981). Regardless of the rate of colonisation in my experiment, all cultivars reached a similar level of colonisation after 32 days independent of AM fungus. There was also no specific pattern for the rate of colonisation with either mycorrhizal fungi that may have been linked to the P efficiency of the cultivar or the root growth. The hypothesis that a cultivar that can effectively acquire P may not benefit from mycorrhizal colonisation and would have a lower level of colonisation is not supported by these results. This was also demonstrated by Zhu et al. (2003) and Baon et al. (1993b) who showed that there were no differences in colonisation between the P efficient cultivars Sahara, Yagan and Galleon and the P inefficient cultivars Clipper, WI2539 and WI2737. The differences in colonisation observed by Baon et al. (1993b) in the P efficient cultivar Kaniere and the P inefficient cultivar Shannon may be specific to the AM fungi or root growth pattern. Relative rates of growth of roots and AM fungi determine the final outcome in terms of percentage root length colonised (Smith & Walker, 1981; Smith et al., 1992).

In conclusion, there was no difference in colonisation between barley cultivars of different P efficiencies or root growth (Sahara, Franklin and Golden Promise). *G.sp. WFVAM23* was able to colonise all cultivars more than *G. intraradices*. With the use of *G. intraradices* and *G.sp. WFVAM23* nurse pots, barley cvs Sahara, Franklin and Golden Promise reach maximum colonisation after 32 days growth. Maximum colonisation ensures the establishment of an active symbiotic relationship, a pre-requisite for the study of P transport in mycorrhizal barley in this thesis.

5 Barley P transporters, wheat mycorrhizal P transporter and maize mycorrhizal P transporter

5.1 Introduction

Mycorrhizal plants are able to acquire P via two pathways (Chapter 2.2). Direct acquisition via the root requires P transporters to be expressed in root epidermal cells, while acquisition via the mycorrhizal fungi requires plant P transporters to be expressed in root cortical cells containing mycorrhizal structures. At the commencement of this research the P transporter *LYCes;Pht1;1* had been reported to be expressed in cortical cells containing arbuscules (presumably at the peri-arbuscular membrane), thereby facilitating P uptake from the mycorrhizal fungi (Rosewarne *et al.*, 1999). This expression pattern was visualised by *in-situ* hybridisation. Another three P transporters involved with P acquisition from mycorrhizal fungi have subsequently been identified by reverse-transcriptase PCR (RT-PCR), by using transgenic plants expressing reporter genes (Rausch *et al.*, 2001), by real-time RT-PCR (Paszkowski *et al.*, 2002), or immuno-localisation (Harrison *et al.*, 2002). These results need to be evaluated in the context of the methods used.

- RT-PCR assesses the expression of a gene, by using gene-specific primers to amplify cDNA from an RNA template. Real-time RT-PCR is a refinement of RT-PCR that provides quantitative information on the initial levels of RNA transcripts in the tissue extract. Real-time RT-PCR was used by Paszkowski *et al.* (2002) to demonstrate the expression of ORYsa;Pht1;11 in rice roots colonised by Glomus intraradices. No expression was detected in non-mycorrhizal roots or roots infected only with root pathogens Rhizoctonia solani or Fusarium moniliforme.
- Reporter genes such as GUS (β-glucuronidase,(Jefferson, 1987)) and GFP (green fluorescent protein, (Carlson *et al.*, 2001)) are useful in promoter analysis as the expression site of the gene of interest can be visualised in transgenic plants. GUS activity can be visualised in a histochemical assay and GFP can be visualised in living tissue by fluorescence microscopy. GFP has the advantage over GUS in that visualisation is non-destructive. Potato transformed with the promoter of *SORtu;Pht1;3* fused to GUS demonstrated expression of this gene in arbuscule-containing cells of potato colonised with *G. intraradices* (Rausch *et al.*, 2001).
- In-situ hybridisation is the annealing of an RNA probe to complementary RNA sequence in fixed tissue, followed by the visualisation of the location of the probe via radioactivity or immunocytochemistry where the gene transcripts accumulate. Rosewarne *et al.* (1999) localised the expression of *LYCes;Pht1;1* with an RNA probe that identified where the gene is transcribed (see above).

Immuno-localisation is the annealing of a specific antibody to a particular protein in fixed tissue, followed by the visualisation of the location of the probe via radioactivity or immunocytochemistry. Harrison *et al.* (2002) utilised an antibody probe to MEDtr;Pht1;4 that recognised where the gene product was localised. The immuno-localisation of MEDtr;Pht1;4 was to the arbuscules formed by *G. versiforme* in *Medicago*.

The success of RT-PCR, real-time RT-PCR, *in-situ* hybridisation and immuno-localisation is in the specificity of the primers, probes and antibodies to the gene of interest and ensuring that no cross-reaction occurs. RT-PCR, real-time RT-PCR, reporter genes and *in-situ* hybridisation have been used to determine the expression patterns of eight barley P transporters available to my research, with particular emphasis on identifying expression of a barley P transporter at the peri-arbuscular membrane and the effect of mycorrhizal colonisation on expression patterns.

An initial assessment of barley P transporters *HORvu;Pht1;1* and *1;2* by Smith *et al.* (1999) revealed that both genes were down regulated when barley plants were grown in high P conditions. Constructs containing the promoters for both genes linked to the GFP reporter gene were made by Schünmann *et al.* (2003). I was able to utilise these constructs to produce transgenic barley plants in order to assess the expression of these two genes when plants were colonised by mycorrhizal fungi. The expression pattern of all eight barley P transporters was then assessed with RT-PCR in mycorrhizal and non-mycorrhizal roots. Real-time RT-PCR was used to quantitate the level of expression of three of the barley P transporters (*HORvu;Pht1;1, 1;2* and *1;8*). *In-situ* hybridisation was used to localise the expression of one barley P transporter (*HORvu;Pht1;8*) in mycorrhizal roots.

Having identified a barley P transporter associated with P acquisition from mycorrhizal fungi, the sequence of this gene was used to identify the homologous genes in wheat and maize. Greater than 98% of the publicly available proteins (not only P transporters, all proteins) of maize, wheat, and barley were found to have significant homology in the draft sequence assembly and more than 95% of translated cDNAs were found in the rice draft gene predictions (Goff *et al.*, 2002). Taking advantage of the high degree of synteny between barley and wheat, primers from the barley sequence were used to amplify the homologous gene to *HORvu;Pht1;8* from wheat cDNA by PCR (*TRlae;Pht1;myc*). Similar methods with maize did not yield a result. The homologous maize gene (*ZEAma;Pht1;6*) was identified from a family of P transporter genes cloned by Zhao *et al.* (1999) when the phylogenetic tree of all identified P transporters was constructed. Utilising the sequence information from Zhao *et al.* (1999) the *ZEAma;Pht1;6* clones were used in *in-situ* hybridisation experiments. Both the *TRlae;Pht1;myc* and *ZEAma;Pht1;6* clones were used in *in-situ* hybridisation studies to identify the cell types in which these genes are expressed.

Barley and wheat roots colonised by *Sc. calospora* (along with *G. intraradices* and *G.sp.* WFVAM23) were also included in *in-situ* hybridisation studies to determine if the arbusculate coils, common to *Sc. calospora*, are involved with supplying P to plants. The inclusion of *Sc. calospora* provides an alternative site of P supply via different AM fungi structures that may be part of the indigenous soil microbial community.

This chapter identifies the expression pattern of barley P transporters (*HORvu;Pht1;1* to *1;8*) in roots grown in soil containing low P, high P and mycorrhizal conditions. The isolation of three cereal crop P transporters presumed to be involved with P acquisition via mycorrhizal fungi is outlined and their localisation is explored.

5.2 Methods and Materials

5.2.1 Production of transgenic barley Plants

5.2.1.1 Agrobacterium-mediated transformation of barley

Spring barley (*Hordeum vulgare* L. cv Golden Promise) was grown in a plant growth room at 12°C with 16 h/8 h light/ dark periods. Immature embryos were isolated from developing grains to provide material for transformation studies (Patel *et al.*, 2000). Immature embryos, 1.5 - 2.5 mm in length, were isolated from developing barley caryopses. The embryo explants were transformed by co-cultivation with *A. tumefaciens* strain AGL1 harbouring a binary expression plasmid, (Tingay *et al.*, 1997). The binary expression plasmids also carried a selectable marker gene encoding antibiotic resistance to hygromycin. Hygromycin was used for selection of *Agrobacterium*-infected embryos and resistant embryos subsequently used to generate embryonic calli. Plantlets were regenerated from hygromycin-resistant calli after selection for up to 8 weeks, transferred to soil and grown to maturity. Several plantlets regenerated from a single transformed embryonic callus (line) are classified as replicates.

5.2.1.2 Plasmids

Plasmids containing the promoter region of barley P transporters, *HORvu;Pht1;1* or *HORvu;Pht1;2*, controlling expression of green fluorescent protein gene (GFP) were provided by Dr P H D Schünmann (CSIRO Plant Industry, Canberra) (Schünmann *et al.*, 2003). These constructs were transformed into *Agrobacterium* (Chapter 3.8.3).

5.2.1.3 Plant Propagation and growth conditions

Transgenic plants were grown in 1:10 soil:sand mixes using the Millmerran soil with CaH₄(PO₄)₂ added to produce a total soil P content of 18 (P1) or 118 (P4) mg P per pot (Chapter 3.1.1) or mycorrhizal nurse pots established with *G. versiforme* and *G.sp. WFVAM23* (Chapter 3.3). *Sc. calospora* nurse pots were established with Ashland soil (Chapter 3.3) Plants were grown and watered as outlined in Chapter 3.1.2 and 3.2.

5.2.2 Reporter gene analysis of transgenic barley

Core samples of roots were taken and washed to remove soil prior to visualisation. GFP fluorescence was observed using a Leica MZ6 dissecting microscope with the GFP PLUS fluorescence module (Leica AG, Heerbrugg, Switzerland). A Bio-rad MRC 600 (Bio-rad Laboratories Pty Ltd, New South Wales, Australia) and Leica TCS SP2 Confocal System on an upright Leica DMRXE microscope was used for Laser Scanning Confocal Microscopy (LSCM).

5.2.3 Plant Propagation and growth conditions for RT-PCR, real-time RT-PCR and *in-situ* hybridisation analysis

Barley cultivar Golden Promise, wheat cultivar Grebe and maize cultivar Gold Queen were grown in the same conditions outlined in section 5.2.1.3.

5.2.4 RT-PCR analysis

RNA was extracted from root core samples as described in Chapter 3.6.2. Approximately 5 µg of total RNA was used as a template for first-strand cDNA synthesis, using a Superscript First Strand cDNA Synthesis Kit (Invitrogen, California, United States of America) according to the manufacturer's instructions. cDNA was produced from a pooled sample of the roots of three plants grown in a single pot for each treatment.

One µL of first strand cDNA was then used for PCR using gene-specific primers for each of the barley P transporters listed. Table 5.2.3-1 provides the details of primers and expected RT-PCR products. All primers were tested with barley gDNA, at various MgCl₂ concentrations, prior to RT-PCR analysis. PCR was performed with EXPAND High Fidelity polymerase (Roche Diagnostics Australia, Castle Hill, New South Wales, Australia) according to the manufacturer's instructions. Thermal cycling consisted of an initial denaturation at 94°C for 5 m, followed by 10 cycles of denaturation at 94°C for 30 s, annealing at 50°C for 30 s and extension at 72°C for 60 s, and then an additional 20 cycles during which the extension time was increased by 5 s per cycle, followed by a final extension at 72°C for 7 m. RT-PCR reactions were visualised on agarose gels (Chapter 3.8.5).

Table 5.1. Primer sequences, MgCl₂ concentration and expected product size for RT-PCR of barley, wheat and maize P transporters. No MgCl₂ concentration optimum was found for *HORvu;Pht1;6*. Sequences of the primers are indicated in gene sequences (Appendix 4). The primers for each gene were designed to areas of low homology between the P transporters listed in Appendix 1, to ensure specificity but this was not tested.

Gene	Sense primer:	Anti-sense primer:	Expected	MgCl ₂
	5' - 3'	5' – 3'	product	conc.
			size (bp)	
HORvu;Pht1;1	ggcatcgatgcttaggctgg	cgaatacagagcaccatcag	200	2.5 mM
HORvu;Pht1;2	aactggtgtctaagacatgc	aagcattacattgtcacggc	150	2.5 mM
HORvuPhT1;3	gaccaggcacgaaccgccgc	ggcatatacatgagccggcc	200	2.5 mM
HORvuPhT1;5	tgaatcgcgagaaagcaacac	ctagatgagttctaggcactc	210	4 mM
HORvuPhT1;6	ggcgagaacgacgacgag	ctagtatatctgacgtac	80	-
HORvuPhT1;7	gtagatgatcgtcggtgaatac	cgaccttgatagtttcggttgcag	269	2.5 mM
HORvu;Pht1;8	atcaacagggaggacgcg	cctaagtctaatctcgac	230	4 mM
TRIae;Pht1;myc	caccaccttcatcatacc	cctaagtctaatctcgac	500	2.5 mM
ZEAma;Pht1;6	ctcaagaacaaacacaccacgctc	ctgcttactcgatcacgcatgc	465	3 mM
1				

5.2.5 Real-Time RT-PCR analysis

Samples were prepared as above for RT-PCR analysis and a no-RT control for each sample was included. The first strand cDNA synthesis involved two reactions, one with the addition of the RT-polymerase and one without. The no-RT control is included to diagnose the presence of gDNA.

The Taqman Sequence Detection System 7700 (Applied Biosystems, Victoria, Australia) and corresponding computer programs were used for the design of primers (Table 5.2), real-time RT-PCR reaction and detection of product. The SYBR Green PCR Master Mix (#4309155), Micro-Amp 96-well reaction plate (#N801-0560) and Optical Caps (8 caps/strip, #4323032) were supplied by Applied Biosystems. The PCR reactions were set up according to the SYBR Green PCR Master Mix instructions with the template diluted to 1:10 for gene-of-interest reactions and 1:10000 for ribosomal gene reactions. Thermal cycling consisted of an initial denaturation at 95°C for 10 m, followed by 45 cycles of denaturation at 95°C for 15 s and a combined annealing/extension at 60°C for 1m, with a fluorescence reading detected 30 s into the annealing/extension.

Table 5.2: PCR primers used for real-time RT-PCR for *HORvu;Pht1;1, 1;2* and *1;8*. Sequences of the primers are indicated in gene sequences (Appendix 4.

Gene	Sense primer: 5' – 3'	Anti-sense primer: 5' – 3'
HORvu;Pht1;1	ggagaacgtcggcgatga	aaatgctgcaaggcgaaaggaa
HORvu;Pht1;2	gacgccattgccccaact	caagccgcagaattaacacaga
HORvu;Pht1;8	ttgggtgattccagggttctt	cacatcacacatggaaatgggt

5.2.6 *In-situ* Hybridisation

Roots were prepared and screened as described in Chapter 3.10.

5.2.7 Pht 1 Family Topology.

A computer program available on <u>http://www.cbs.dtu.dk/services/TMHMM-2.0/</u> was used to determine the topology of HORvu;Pht1;8, TRIae;Pht1;myc and ZEAma;Pht1;6. The amino acid sequence from each P transporter was input into the program for analysis.

5.3 Results

5.3.1 HORvu; Pht1;1 and HORvu; Pht1;2 transgenic barley plants.

Barley embryos transformed with HORvu; Pht1;1 or HORvu; Pht1;2 promoters linked to GFP were cultivated and five individual plant lines with HORvu;Pht1;1 and three lines with HORvu;Pht1;2 constructs were produced. Plantlets were transferred from tissue culture to soil when roots were well developed. GFP fluorescence was examined after 30 days of growth in soil. Barley roots do not display any autofluorescence, therefore any GFP fluorescence seen is due to the introduced promoter-GFP All transgenic plant lines expressing the HORvu;Pht1;1 promoter-GFP displayed fused genes. expression in root epidermal cells when grown in low P soil. The expression level of HORvu;Pht1;1 promoter-GFP was reduced in roots grown in high P soil or in mycorrhizal nurse pots, when compared to non-mycorrhizal roots grown in low P soil. A similar reduction in HORvu; Pht1;2 promoter-GFP expression in high P and mycorrhizal roots was seen in all transgenic lines and expression was localised to root epidermal cells and vascular tissue (results not shown). One transgenic plant line from each transformation was used for more detailed localisation studies using the confocal microscope (Figure 5.1). Mycorrhizal colonisation exceeded 50% root length for all inoculated plant roots. Mycorrhizal colonisation had the same effect of reducing expression levels of HORvu; Pht1;1 and HORvu;Pht1;2 as roots grown in the presence of high P levels (118 mg P kg-1 soil). Neither HORvu;Pht1;1 nor 1;2 was expressed in arbuscule-containing cortical cells. Hence, neither of the proteins encoded by these genes appear to be involved in P transport at the peri-arbuscular membrane, and are unlikely to be involved with P acquisition via mycorrhizal fungi. In order to identify a P transporter expressed at the mycorrhizal interface the expression of all identified barley P transporters was examined by RT-PCR as discussed in the following section.

Figure 5.1: GFP images of transgenic barley roots, transformed with *HORvu;Pht1;1* (A – D) or *HORvu;Pht1;2* (E – H) promoters fused to GFP. Transgenic barley plants were grown in low P soil: 20 mg P kg⁻¹ soil (A & E), high P soil: 100 mg P kg⁻¹ soil (B & F), *G. intraradices* nurse pots (C & G) or *G.sp. WFVAM23* nurse pots (D & H). Fluorescence was brighter in roots grown in low P soil (white arrows) than the other growth conditions. Red arrows identify cell structures, rh = root hairs, ep = epidermis, vas = vascular tissue. Figure B was collect on the Bio-rad MRC 600 Confocal Microscope in black and white; the remaining figures were collected on the Leica TCS SP2 Confocal System in colour. Bars = 84 μ M

5.3.2 RT-PCR expression of barley P transporters

Hordeum vulgare cultivar Golden Promise has eight identified genes in the PhT 1 P transporter family. Research by Smith et al. (1999) demonstrated via northern analysis that the expression of HORvu;Pht1;1, 1;2 and 1;3 genes was reduced when plants were grown in high P hydroponic solutions, compared to low P solutions. Primers specific for each of the 8 barley P transporters were designed by Dr F W Smith (personal communication), except for HORvuPhT1;3 and 1;4 that display 100% homology throughout the coding region so the primers designed will amplify both genes. These primers were used in RT-PCR analysis of barley roots (cultivar Golden Promise) grown in low P, high P and mycorrhizal nurse pots for > 30 days. All primers excluding those for HORvuPhT1;6, successfully amplified products from genomic barley DNA (results not shown), confirming that primers successfully amplified that template. The P concentration and percent mycorrhizal colonisation of the plants were measured for each growth condition (Table 5.3). The concentration of P did not vary in shoots between plants grown in low P soil and mycorrhizal nurse pots, but did increase when grown in high P soils (protocol, Chapter 3.5). In roots the P concentration was slightly elevated in mycorrhizal roots than those grown in low P soil, but not to the extent seen in roots grown in high P soil. Mycorrhizal plants acquired similar P concentrations to those grown in low P soil, suggesting that AM fungi did not increase the supply of P to the barley plant.

Table 5.3: P concentration and extent of colonisation of barley cultivar Golden Promise plants used for real-time-RT-PCR. The same plants were used to measure *HORvu;Pht1;1*, 1;2 and 1;8 expression via real time RT-PCR.

Golden Promise	P concentration	P concentration		
	mg P g ⁻¹ dry w			
	Shoots	Roots		
Low P	1.137	0.369	0	
High P	3.156	1.197	0	
G. intraradices	0.991	0.483	37.5	
G.sp. WFVAM23	1.115	0.499	79.5	

The results of the RT-PCR are displayed in figure 5.2. No PCR products were amplified in no-RT controls (not shown) indicating that the products amplified were derived from RNA transcripts. Expression of *HORvu;Pht1;1, 1;2* and *1;3* was reduced considerably when roots were grown in high P soil and slightly reduced when grown in mycorrhizal nurse pots. Barley P transporters *HORvuPhT1;5, 1;6* and *1;7* were not found to be expressed in root tissue under the conditions used. The expression of *HORvu;Pht1;8* only occurred in roots colonised by mycorrhizal fungi. The RT-PCR protocol restricts the

comparison of expression between samples because it is not sensitive to small variations in starting material, so real-time RT-PCR was used to compare RNA transcript levels of *HORvu;Pht1;1, 1;2* and *1;8* under different P levels and mycorrhizal colonisation.

HORvu;Pht1;1

Figure 5.2. RT-PCR analysis of the *Hordeum vulgare Pht1* family of P transporters (cultivar Golden Promise). Expected sizes of products from cDNA are shown in Table 5.2.3-1; all bands amplified are the expected size. LP - Low P soil (18 mg P kg⁻¹ soil), HP - high P soil (118 mg P kg⁻¹ soil), G.i. - *G. intraradices* nurse pots, G.v. – *G.sp. WFVAM23* nurse pots.

5.3.3 Real-Time RT-PCR of HORvu;Pht1;1, HORvu;Pht1;2 and HORvu;Pht1;8.

Real time RT-PCR is used to quantify the amount of template present in a sample using primers specific to the template. This technique was used to examine the expression patterns of genes encoding barley P transporters *HORvu;Pht1;1, 1;2* and *1;8*. While exact amounts of template can be calculated, using a standard curve, the most common method of analysis of real-time RT-PCR data is by the comparison of expression between samples relative to one of them. In this experiment I compared the expression of the barley P transporters in barley cultivar Golden Promise when grown in low P soil, high P soil and mycorrhizal nurse pots. I used the expression of each gene in low P soil as the reference value, as demonstrated in figure 5.3. Due to the cost of real-time RT-PCR reactions and insufficient time there are no replicates of the plants used to produce the cDNA. In a real-time RT-PCR reaction duplicates of each reaction are made and these results have been averaged for the presentation of the results in figure 5.3.

The expression of both *HORvu;Pht1;1* and *1;2* was reduced when grown in high P soils and mycorrhizal nurse pots. The reduced expression confirms the results seen in the GFP images (Section 5.3.1) and RT-PCR (Figure 5.2). Colonisation with *G.sp. WFVAM23* resulted in reduced expression levels of *HORvu;Pht1;1* and *1;2* to similar levels to those observed with the supply of high P soil, while *G. intraradices* had a lesser effect on expression levels. The difference in expression levels may reflect the differences in percentage colonisation (Table 5.3.2-1, *G.sp* WFVAM23 – 79%, *G. intraradices* – 37%). The expression of *HORvu;Pht1;8* was low in non-mycorrhizal roots and very high in mycorrhizal roots, regardless of mycorrhizal fungal species or percent colonisation. This suggests that *HORvu;Pht1;8* may be involved in P acquisition via mycorrhizal fungi. Tissue localisation is discussed in the following section.

Figure 5.3. Real time RT-PCR results for expression of HORvu;Pht1;1 (A), HORvu;Pht1;2 (B) and HORvu;Pht1;8 (C) in *H. vulgare* cv Golden Promise plants grown in LP - Low P soil (18 mg P kg⁻¹ soil), HP - high P soil (118 mg P kg⁻¹ soil), Gi - *G. intraradices* nurse pots and Gv – *G.sp. WFVAM23* nurse pots. The expression of each of the genes can only be compared to that gene in each treatment. The expression of different genes within a treatment cannot be compared. The values are means from the duplicate reactions (n = 2) and the bars are confidence intervals.

5.3.4 In-situ localisation of HORvu;Pht1;8

の日日の日の

In-situ hybridisation can be used to localise the expression of a gene (mRNA). In this experiment I used the RNA synthesised from *HORvu;Pht1;8* to localise expression in mycorrhizal barley roots. The antisense probe only hybridised to cortical cells containing arbuscules and arbusculate coils (Figure 5.4). Hybridisation to other mycorrhizal or root structures was not observed. The control sense probe showed no hybridisation. From the images it appears that the anti-sense probe is concentrated around the peri-arbuscular membrane. Expression of this gene is likely to occur in the cytoplasm of the cell and transcripts may become concentrated within the highly invaginated membrane around the arbuscule, therefore demonstrating expression closely associated with the arbuscule and arbusculate coils. The probes used did not hybridise to other plant cell tissue, indicating that the probes and experimental design (high temperature hybridisation and high wash stringencies as described in section 3.10) used were specific for the genes being assessed, and giving confidence that the results observed are correct.

Figure 5.4: Detection of *HORvu;Pht1;8* transcripts by *in-situ* hybridisation on sections of barley roots colonised by *G. intraradices* (A & B), *G.sp. WFVAM23* (C & D) and *Sc. calospora* (E & F). Sections A, C and E have been hybridised with the anti-sense probe, sections B, D and F with the control sense probe. The anti-sense probes hybridised to plant cells containing arbuscules or arbusculate coils (arrowed) and the sense probe showed no hybridisation. Bar = 7.8 μ m.

112000

the second states of the secon

5.3.5 RT-PCR of wheat mycorrhizal P transporter and In-situ images

The success in isolating a barley P transporter localised to arbuscule containing cells, and likely to be associated with P acquisition via mycorrhizal fungi, led to the screening of other cereal crops for homologous genes. Barley and wheat have a high level of synteny (as mentioned in the introduction to this chapter) and primers designed to the *HORvu;Pht1;8* gene were used to amplify a homologue from wheat cDNA. This successfully yielded a 1781 bp clone *TRlae;Pht1;myc* (Appendix 4.2.1) with 95% similarity to *HORvu;Pht1;8* at the DNA level and 79% similarity at the amino acid level. An alignment of *TRlae;Pht1;myc* with many full length and partial wheat P transporter sequences on the Genbank database did not yield an identical match. These wheat sequences are listed in Appendix 1. The topology of the wheat gene I have isolated indicates that it is a member of the *PHT1* family of P transporters. Specific primers were designed to *TRlae;Pht1;myc* and used in RT-PCR to determine whether expression primarily occurs in mycorrhizal roots, as was the case for *HORvu;Pht1;8*. The results of this RT-PCR are shown in figure 5.5.

Figure 5.5: RT-PCR analysis of expression of *TRIae;Pht1;myc*. Wheat roots were harvested from 30 day old plants grown in LP - Low P soil (20 mg P kg⁻¹ soil), HP - high P soil (100 mg P kg⁻¹ soil), Gi - *G. intraradices* nurse pots, Gv – *G.sp.* WFVAM23 nurse pots, Sc – *Sc. calospora* nurse pots and gDNA – genomic DNA. Expected size of product (arrowed) is 500 bp for *TRIae;Pht1;myc* with 1 kb Plus DNA ladder (#10787-018, Gibco Life Technologies, Melbourne, Australia).

TRIae;Pht1;myc was expressed in roots colonised by *G. intraradices* and *G.sp. WFVAM23* (% colonisation > 25%). No measurable expression of the *TRIae;Pht1;myc* gene in LP, HP and *Sc. calospora* samples was observed with RT-PCR. The level of colonisation of wheat roots by *Sc. calospora* was less than 5% and the wheat plants were not as healthy as those plants grown in LP, HP, G.i. or G.v nurse pots. Localisation of *TRIae;Pht1;myc* by *in-situ* hybridisation was carried out to determine if this gene may be involved with P acquisition via mycorrhizal fungi. RNA probes synthesised to *TRIae;Pht1;myc* transcripts were localised to wheat cortical cells containing arbuscules or arbusculate coils, in a similar manner to *HORvu;Pht1;8* expression. Despite the apparent lack of

and the second sec

expression of *TRIae;Pht1;myc* in the RT-PCR reactions with *Sc. calospora* colonised roots, *in-situ* hybridisation revealed that transcripts corresponding to this gene were present in cortical cells colonised by this fungal species. No hybridisation was observed with the sections hybridised with the sense probe.

Figure 5.6: Detection of *TRIae;Pht1;myc* transcripts by *in-situ* hybridisation on sections of wheat roots (harvested 30 days after germination) colonised by *G. intraradices* (A & B), *G.sp. WFVAM23* (C & D) and *Sc. calospora* (E & F). Sections A, C and E have been hybridised with the anti-sense probe, sections B, D and F with the control sense probe. The sense probes hybridised to plant cells containing arbuscules/arbusculate coils (arrowed) and the anti-sense probe showed no labelling. Bar = 11.5 μ m.

5.3.6 Identifying a maize mycorrhizal P transporter from a phylogenetic tree

ł

The amino acid sequences of all the P transporters tabled in Appendix 1 were processed by the computer program EPROTPARS available through the ANGIS web site (www.angis.org.au). EPROTPARS estimates the phylogenies of genes from protein sequences. The resulting phylogenetic tree (Figure 5.7) nested the maize P transporter, *ZEAma;Pht1;6*, between *MEDtr;Pht1;4* and *ORYsa;Pht1;11*, both of which are expressed in root cells colonised by mycorrhizal fungi (Harrison *et al.*, 2002; Paszkowski *et al.*, 2002). The amino acid sequence of *ZEAma;Pht1;6* is 85% similar to the *MEDtr;Pht1;4* sequence and 90% similar to *ORYsa;Pht1;11* sequence. This suggested that *ZEAma;Pht1;6* may also be involved in P acquisition via mycorrhizal fungi.

SESTOPH11120 ARA:NPH11300 ARA:NPH11300 ARA:NPH11300 ARA:NPH11200 ULPA:NPH11400 SOLUPATISM SOLUPATISM SOLUPATISM ARA:NPH11300 ARA:NPH1300 ARA:N hhhhh SOLtu;Pht1;3 HORvu;Pht1;8 hhhli μų LYCes;Pht1;1 RI RI RI MEDtr;Pht1;4 ZEAma;Pht1;6 ORYsa;Pht1;11 ለብሐብብበብሐብበ - TRIae;Pht1;myc 61 h fill

Figure 5.7: Phylogenetic tree of all P transporters listed in appendix 1. Prepared by EPROTPARS (www.angis.org.au) based on the amino acid sequences of P transporters. Arrowed P transporters are those transporters expressed in roots colonised by mycorrhizal fungi.

5.3.7 RT-PCR of maize mycorrhizal P transporter and In-situ images

In order to confirm that the gene encoding the maize P transporter ZEAma;Pht1;6 is expressed in roots colonised by mycorrhizal fungi specific primers (Table 5.1) were designed to ZEAma;Pht1;6 and used in RT-PCR (Figure 5.8). ZEAma;Pht1;6 was expressed strongly in mycorrhizal roots, and very faint level of expression was observed under low P conditions.

Figure 5.8: RT-PCR analysis of *ZEAma;Pht1;6*. Maize (*Z. mays*) roots were harvested from plants grown in LP - Low P soil (18 mg P/kg soil), HP - high P soil (118 mg P/kg soil), G.i. - *G. intraradices* nurse pots, G.v. – G.sp. WFVAM23 nurse pots and gDNA – genomic DNA. Arrowed products were the expected size (Table 5.1), MM - 1 kb Plus DNA ladder (#10787-018, Gibco Life Technologies, Melbourne, Australia).

RNA probes of *ZEAma;Pht1;6* were prepared according to section 3.10 and used for stringent *in-situ* hybridisation analysis of mycorrhizal maize roots (Figure 5.9). The anti-sense probe hybridised to those cells containing arbuscules, as observed with *HORvu;Pht1;8* and *TRIae;Pht1;myc*. No hybridisation was observed in the control sections using the sense probe.

Figure 5.9: Detection of *ZEAma;Pht1;6* transcripts by *in-situ* hybridisation on sections of maize roots colonised by *G. intraradices* (A & B) and *G.sp. WFVAM23* (C & D). Sections A and C have been hybridised with the anti-sense probe, sections B and D with the control sense probe. The anti-sense probes hybridised to plant cells containing arbuscules (arrowed) and the sense probe showed no labelling. Bar = 9 μ m.

5.3.8 Pht1 family topology

The amino acid sequence of HORvu;Pht1;8, TRIae;Pht1;myc and ZEAma;Pht1;6 can be processed to determine the 3D topology of the proteins. All three P transporters conform to the Pht1 family topology of 12 hydrophobic membrane-spanning regions divided into two groups of six by a large intracellular hydrophilic charged domain (Figure 5.10). This topology is typical of the members of the major facilitator super family (Marger & Saier, 1993), (Smith *et al.*, 1999).

TMHMM posterior probabilities for TRIAEPHTMYC 1.2 1 0.8 probability 0.6 0.4 0.2 ٥ 500 400 300 100 200 ٥ inside outside transmembrane

Figure 5.10: Predicted topology of P transporters HORvu;Pht1;8, TRIae;Pht1;myc and ZEAmaPht1;6. Red – Transmembrane, Blue – Intracellular, Pink – Extracellular.

5.4 Discussion

The expression of *HORvu;Pht1;1* in root epidermal cells and *HORvu;Pht1;2* in root epidermal cells and vascular tissue supports the suggestion that these P transporters are involved with Pi acquisition directly from the soil and mobilisation in roots (Smith *et al.*, 1999). The expression of *HORvuPhT1;3* was neither increased nor decreased by mycorrhizal colonisation, compared to expression in low Pi soils, and the expression of *HORvuPhT1;5*, *1;6* and *1;7* was not detected in roots (Figure 5.2). *HORvuPhT1;6* is expressed in phloem of vascular bundles in old and flag leaves and barley ears (Rae *et al.*, 2003). *HORvuPhT1;6* probably functions in remobilisation of stored P from leaves and is the first of the barley Pht 1 family P transporters identified that is not associated with P acquisition from soil. *Arabidopsis* Pht 1 genes, *ARAthPhT1;4*, *1;5* and *1;6*, have also been localised to shoot tissue and pollen grains (Mudge *et al.*, 2002). The publications of Rae *et al.* (2003) and Mudge *et al.* (2002) do not support earlier suggestions that regarded the Pht1 family of P transporters as only being involved with P acquisition from soil and mobilisation within the root system. The genes *HORvuPhT1;5* and *1;7* may be involved in P transport in the shoot or pollen and, if so, it is not surprising that transcripts were not found in the root mRNA tested in my experiments (Figure 5.2).

RT-PCR, real-time RT-PCR and *in-situ* hybridisation of *HORvu;Pht1;8* reveal that this gene is expressed in mycorrhizal colonised root cortical cells (Figures 5.2-5.4). Even though the mycorrhizal plants did not accumulate more P than the low P plants (Table 5.3), the P transporters *HORvu;Pht1;1* and *HORvu;Pht1;2* had been down-regulated and *HORvu;Pht1;8* up-regulated. This suggests that the plant was accessing P via the mycorrhizal fungus rather than via the direct uptake pathway through root epidermal cells. The *in-situ* hybridisations showed that expression of *HORvu;Pht1;8* is localised to cortical cells containing arbuscules and arbusculate coils of *G. intraradices*, *G.sp.* WFVAM23 and *Sc. calospora* (Figure 5.4). The expression patterns that were observed with *HORvu;Pht1;8* were similar to those seen with *ORYsa;Pht1;11* (reported in Chapter 6), *SORtu;Pht1;3*, *LYCes;Pht1;1* and *MEDtr;Pht1;4* P transporters, previously shown to be involved with Pi acquisition via mycorrhizal fungi (Rausch *et al.*, 2001; Rosewarne *et al.*, 1999; Harrison *et al.*, 2002). The expression patterns of *TRIae;Pht1;myc* and *ZEAma;Pht1;6* revealed by RT-PCR and *in-situ* hybridisations are consistent with those observed with *MEDtr;Pht1;4* and *ORYsa;Pht1;11* (Figures 5.5, 5.6, 5.8 and 5.9).

LYCes;Pht1;1, HORvu;Pht1;8, ORYsa;Pht1;11, MEDtr;Pht1;4, SORtu;Pht1;3, TRlae;Pht1;myc and ZEAma;Pht1;6 are collectively called mycorrhizal P transporters in the remainder of this thesis. Discussion about the mycorrhizal P transporters sequences and their involvement with the alternative P pathway via AM fungi is detailed in Chapter 7.

Pi acquisition via the soil in barley plants utilises the P transporters HORvu;Pht1;1 and 1;2, while Pi acquisition via mycorrhizal fungi utilises HORvu;Pht1;8. The expression patterns of these genes identify the pathways of Pi acquisition utilised by the plant, via soil or mycorrhizal fungi, or a combination of both pathways. The main aim of this chapter was to identify P transporters that are involved with Pi acquisition via mycorrhizal fungi. This was achieved with the identification of HORvu;Pht1;8, TRlae;Pht1;myc and ZEAma;Pht1;6. The expression pattern of other barley P transporters ($HORvu;Pht1;1 \rightarrow 1;7$) together with my RT-PCR results indicates that these P transporters are not involved with Pi acquisition via mycorrhizal fungi.

6 Identification and expression patterns of the PhT1 family of P transporters and a mycorrhizal P transporter in rice

6.1 Introduction

April 2002 saw the publication of the draft sequence of the rice genome (*Oryza sativa* L. ssp. *indica*; Yu *et al.*, 2002 and *Oryza sativa* L. ssp. *japonica* cv Nipponbare; Goff *et al.* 2002). The rice genome is approximately 430 Mb in size, 3.7 times larger than the genome of *Arabidopsis thaliana* and 6.7 times smaller than the human genome (Yu *et al.*, 2002). Amongst the cereal crops, the rice genome is the smallest and has a high degree of synteny with other cereals (Yu *et al.*, 2002). The completed rice genome is available to the public via the internet, <u>http://btn.genomics.org.cn/rice</u> (Yu *et al.*, 2002). This database was accessed to screen the rice genomic sequence for P transporters.

There are several rice P transporters identified in this chapter and published. Table 6.1 lists these known rice P transporters. The expression of all of these genes is discussed in this chapter.

Dr.R.Godwin has cloned two rice P transporters from the rice ssp. *indica*, called *OsPT1* (accession number AF493787, submitted April 2002) and *OsPT2* (accession number AF493788, submitted April 2002; Godwin, 2002, sequences in Appendix 4.4). When the sequence of *OsPT1* was Blasted against the GenBank database, http://www.psc.edu/general/software/packages/genbank, there was a 99% match with the partial mRNA sequence of another rice clone from *Oryza sativa* ssp. japonica cv Jingxi 17, thought to be a P transporter pseudogene (accession number AF259980, submitted September 2000; Yu *et al.*, 2000a). The gDNA sequence of *OsPT1* was used to screen the complete rice genome (ssp. *japonica* cv Nipponbare) for other P transporters. The expression of the resulting 11 rice P transporters (named *Rice gene* $A \rightarrow K$) was then assessed by RT-PCR to determine if any of the genes were up-regulated in rice roots colonised by mycorrhizal fungi.

In October 2002 Paszkowski *et al.* (2002) published a paper identifying 13 rice P transporters from the cv Nipponbare. The expression patterns of these P transporters were assessed by real-time RT-PCR for expression in rice roots colonised by *G. intraradices*. The rice P transporter *ORYsa;Pht1;11* was expressed only in mycorrhizal roots, with the level of expression positively correlated with the degree of colonisation.

(Yu <i>et al.</i> , 2000a)	(Godwin, 2002)	(Paszkowski <i>et al.</i> ,	Genes identified by myself.	
		2002)		
P transporter	OsPT1	ORYsa;Pht1;11	Rice gene C	
pseudogene				
	OsPT2	ORYsa;Pht1;4	Rice gene H	
		ORYsa;Pht1;1	Rice gene A	
		ORYsa;Pht1;2	Rice gene B	
		ORYsa;Pht1;3	Rice gene D	
		ORYsa;Pht1;5	Rice gene I	
		ORYsa;Pht1;6	Rice gene E	
		ORYsa;Pht1;7	Rice gene G	
		ORYsa;Pht1;8	Rice gene K	
		ORYsa;Pht1;9		
		ORYsa;Pht1;10		
		ORYsa;Pht1;12	Rice gene F	
		ORYsa;Pht1;13	Rice gene J	

 Table 6.1: A list of known rice P transporters and references. The names of the genes in this table are those allocated by the authors. Genes in the same row are considered to be identical.

The sequences of the 11 rice P transporters identified by myself have been aligned and matched with those published by Paszkowski *et al.* (2002). The *OsPT1/ORYsa;Pht1;11/Rice gene C* gene is of particular interest to myself because the expression of this gene is linked to colonisation by mycorrhizal fungi. The sequence of the *ORYsa;Pht1;11* gene is 100% identical to *OsPT1* previously isolated by Godwin (2002) and the sequence of which I used to screen the rice genome. Although the sequence of *OsPT1* was identified prior to *ORYsa;Pht1;11* it will be referred to as *ORYsa;Pht1;11* in other thesis chapters. In this chapter *OsPT1* will be used to report results found by myself and Godwin, and *ORYsa;Pht1;11* when discussing results by Paszkowski *et al.* (2002) and discussing the gene in general. Prior to the publication of the paper by Paszkowski *et al.* (2002), RT-PCR results with gene specific primers for *OsPT1*, performed by myself, showed expression in rice roots colonised by *G. intraradices* and *G.sp. WFVAM23*. No expression was observed in roots not colonised by mycorrhizal fungi (Figure 6.1). This was consistent with the results subsequently published by Paszkowski *et al.* (2002) in rice roots colonised with *G. intraradices*. I have also performed *in-situ* hybridisations to demonstrate the localisation of expression of *OsPT1* in cortical cells colonised by mycorrhizal fungi. Thus my work proceeded in parallel with and supplemented the work of Paszkowski *et al.* (2002).

This chapter identifies the expression pattern of rice P transporters (identified in *Oryza sativa* ssp. *indica*) in roots subjected to low P soil, high P soil and mycorrhizal conditions. The chapter also presents the results of *in-situ* hybridisation studies aimed at identifying the site of expression of a P transporter presumed to be involved with P acquisition via AM fungi.

6.2 Methods and Materials

6.2.1 Screening the completed rice genome.

The rice genome (*Oryza sativa* L. ssp. *indica*) was sequenced by Yu *et al.* (2002) and is available on the web site <u>http://btn.genomics.org.cn/rice</u>. The putative rice P transporter genes identified were initially named rice gene A \rightarrow rice gene K, correct nomenclature for these genes is clarified in the discussion, and identified from Table 6.1.1 in the Introduction.

6.2.2 Primers designed for RT-PCR

Specific sense and anti-sense primers for 11 of the rice P transporter genes identified from the rice genome were designed with the aid of the Primer3 program (Rozen & Skaletsky, 2000) (Table 6.2). The pair of primers for each rice P transporter gene were checked against the sequence of the other rice P transporter genes, to ensure that primers were specific to only one P transporter, with the computer program Amplify (Engels, 1993). This ensures that a positive result is specific for individual rice P transporters and not a group of known P transporters. Rice P transporter gene D was not a full-length sequence and identifying primers that would not amplify other rice P transporters was not successful. Therefore no RT-PCR reactions were processed for this gene.

Table 6.2: Primers used for RT-PCR of rice P transporters identified from rice genomic sequences. Sequences read 5' \rightarrow 3'. The size of the PCR product indicated in the table is the correct product for that primer combination, though some PCR reactions yielded other products as well. Rice genes A \rightarrow K are putative P transporters identified from the rice genome. n.a. = no MgCl₂ concentration resulted in the expected product size.

Gene	Sense primer	Anti-sense primer	MgCl ₂	Length of
			conc.	PCR
			mM	product,
				base pairs
Rice A	GTCATGTACGGATTCACCTT	ACCTCCTGCGAGATAACC	2.2	326
Rice B	GTTCGGGTTCCTGTACGC	CCACAAATCCACAACTGTAA	3	351
Rice C	GCTGTCGATCGAGATAGAGG	GCTGTCGATCGAGATAGAGG	2.5	498
Rice E	GATGACCCTCTTCATGCTC	GGCACGAGCATCATGTCA	n.a.	383
Rice F	GAGCATTCGGTTTCCTCTA	ACAAGGAGACATTCCACAAA	3	527
Rice G	CTTCTTCTTCGCCAACTT	TATTTCATCATCCAGCCTCT	2	495
Rice H	GTACGCCTTCACCTTCTTC	TTCGGTACACTACCAGAACC	2.5	493
Rice I	AAACTCCACGACCTTCATC	AATCCTAGTCATGGGCAGTA	3	493
Rice J	AGGACACAGCTGTACCATTT	TTCAGGCTGGATTCAATTAC	3	500
Rice K	TTCATCTGCACGTTCCTC	TCAACACAGCCATAATTGAA	n.a.	470

6.2.3 OsPT1 cDNA

Following the identification that *OsPT1* was only expressed in rice ssp. *japonica* cv Jarrah roots colonised by *G. intraradices* or *G.sp. WFVAM23*, I extracted the cDNA clone of this gene from mycorrhizal colonised rice roots (rice ssp. *japonica* cv Jarrah). Previous attempts by Godwin (2002) to extract the cDNA sequence of *OsPT1* had been unsuccessful because mycorrhizal colonised roots had not been used for the cDNA production in her studies. I produced cDNA from rice cv Jarrah roots colonised by *G. intraradices* as described in Chapter 5.2.3. One µL of first strand cDNA was then used for PCR using gene-specific primers for *OsPT1*. The gene-specific primers for *OsPT1* were 5' atggcggacgcggac 3' for the sense primer and 5' agtacgcacgtacctaca 3' for the anti-sense primer (see Appendix 4 for the position of the primers on the sequence). The PCR reaction was performed with EXPAND High Fidelity polymerase (#1732650 Roche Diagnostics Australia, Castle Hill, NSW) according to the manufacturer's instructions, with a final MgCl₂ concentration of 2.5 mM. Thermal cycling consisted of an initial denaturation at 94°C for 5 m, followed by 10 cycles of denaturation at 94°C for 15 s, annealing at 45°C for 30 s and extension at 72°C for 4 m, and then an additional 20 cycles during 77

which the extension time was increased by 5 s per cycle, followed by a final extension at 72°C for 7 m. The PCR reaction was visualised on an agarose gel according to Chapter 3.8.5. The PCR product was 1668 nucleotides in length and was purified from the agarose gel with the Ultra Clean DNA Purification Kit (#12100-300, Gene Works, South Australia, Australia) according to the manufacturers instructions. Following purification, the PCR product was processed with the QIAGEN A-addition Kit (#231994, QIAGEN, Victoria, Australia) which adds an A residue to a blunt-ended PCR product for easy cloning into pGemT-easy. The A-addition was performed according to the manufacturers instructions resulting in the PCR product then being cloned into pGemT-easy as described in Chapter 3.8. The pGemT-easy-OsPT1cDNA clone was sequenced according to Chapter 3.9 and found not to contain any errors introduced by PCR.

6.2.4 OsPT1 promoter

The genomic clone of OsPT1 identified by Godwin (2002) consisted of a 3393 nucleotide 5' untranslated region, 1759 nucleotide gene (including one intron) and 390 nucleotide 3' untranslated region (accession number AF493787). Using the gDNA clone of OsPT1 isolated by Godwin (2002) as a template in a PCR reaction the 5' untranslated region was amplified. Plasmid DNA (750 ng) containing the gDNA clone of OsPT1 was used as a template in a PCR reaction using EXPAND Long polymerase (#1732650 Roche Diagnostics Australia, Castle Hill, New South Wales, Australia) according to the manufacturers instructions. The sense and anti-sense primers were designed with restriction enzyme sites in order to allow easy cloning into the pWBvec8 vector. The sense primer was 5' gccgccttaattaactcttgattggcttcttagc 3' (site for restriction enzyme Pacl is underlined) and the anti-sense primer was 5' gccgaggcgcgcccctccgatgatgccgtcgatcgtcc 3' (site for restriction enzyme Ascl is underlined). The thermo-cycling conditions were the same as those used in section 6.2.3. The resulting PCR product was 3069 nucleotides in length and was processed as in section 6.2.3, cloned into pGemT-easy and pWBvec8-GFP and transformed into E. coli (Chapter 3.8). The pWBvec8-OsPT1prom-GFP clones were then transformed into Agrobacterium tumefaciens AGL1 as per chapter 3.8.3.

6.2.5 *In-situ* hybridisation of ORYsa;Pht1;11

In-situ hybridisations of sense and anti-sense probes of *ORYsa;Pht1;11* were performed according to Chapter 3.10. Rice roots (rice ssp. *japonica* cv Jarrah) were collected and prepared from nurse pots colonised with *G. intraradices*, *G.sp.* WFVAM23 and *Sc. calospora*.

6.3 Results

6.3.1 P transporters identified from the entire rice genome.

The sequence of OsPT1 successfully aligned to 11 different genes in the rice genome (*Rice genes* $A \rightarrow J$, Table 6.1). There was 100% similarity between *Rice gene* C and OsPT1. *Rice gene* C was then referred to as OsPT1. The percentage of similarity between OsPT1 and the other 10 rice clones varied from 95% - 50%. Nine of the rice putative P transporter gDNA genes contained full-length sequences (*Rice genes* A, B; E, F, G, H, I, K and OsPT1); the remaining two clones only comprised partial sequences (*Rice genes* D and J).

6.3.2 RT-PCR and gDNA PCR of putative rice P transporter genes

RT-PCR reactions were performed only on root tissue from rice plants (ssp. *japonica* cv Jarrah) grown in low and high P soil and nurse pots of *G. intraradices* and *G.sp. WFVAM23*. RT-PCR reactions for putative rice P transporter genes E and K did not yield any amplified products (results not shown). Primers for rice P transporter genes E and K were tested on rice gDNA to ensure that primer design was correct; these PCR reactions did not yield any amplified products (results not shown). The primers for rice P transporter genes E and K need to be redesigned and RT-PCR reactions repeated. RT-PCR reactions for genes F, G and I did not yield any amplified products from rice root cDNA, but did successfully amplify gDNA (results not shown). Successful amplification of gDNA ensured that the primers designed for clones F, G and I were acceptable, but that the genes are not expressed in rice roots grown in low P or high P soils or when colonised by *G. intraradices* or *G.sp. WFVAM23*.

Rice putative P transporter genes A, B, J and H/OsPT2 (Godwin, 2002) were expressed in rice roots grown in low P or high P soils and when colonised by *G. intraradices* or *G.sp. WFVAM23* (Figure 6.1). While putative P transporter genes A, B and H/OsPT2 displayed similar levels of expression in each of the root growth conditions, clone J was expressed more in roots colonised by mycorrhizal fungi than those that were not.

OsPT1 was only amplified from rice roots colonised by *G. intraradices* or *G.sp. WFVAM23* (Figure 6.1). The localisation of this expression was further clarified by *in-situ* hybridisations (Section 6.3.4).

Figure 6.1: RT-PCR results for *rice genes A*, *B*, *C*, *J* and *H*. PCR product sizes are given in Table 6.2-1. LP – low P soil, HP – high P soil, G.I. – colonised by *G. intraradices*, G.V. – colonised by *G.sp. WFVAM23*, gDNA – genomic DNA.

6.3.3 OsPT1 cDNA and promoter

The cDNA (ssp. *japonica* cv Jarrah) of *OsPT1* was successfully cloned from rice roots colonised with *G. intraradices*. The resulting DNA sequence was a 100% match with the gDNA (ssp. *indica*) sequence obtained by Godwin (2002) and the gDNA (ssp. *japonica* cv Nipponbare) sequence obtained by Paszkowski *et al.* (2002). The sequence of OsPT1/ORYsa;Pht1;11 displayed no differences between rice cultivars and subspecies.

The promoter of *OsPT1* was successfully cloned into pGemT-easy and from this into the barley transformation-reporter gene vector, pWBvec8-GFP. The pWBvec8-OsPT1 promoter-GFP clones were transformed into *E. coli* DH10B and cultured, but in spite of several attempts the vector was never successfully transformed into *A. tumefaciens* AGL1. Without a successful *A. tumefaciens* transformation, transgenic rice plants could not be produced for localised expression studies of *OsPT1* via GFP confocal microscopy methods. The production of transgenic rice plants for reporter gene analysis of the expression of OsPT1 would be a useful experiment to complete by future researchers.

6.3.4 In-situ hybridisation of ORYsa;Pht1;11

RNA probes synthesised to the ORYsa;Pht1;11 gene were used for *in-situ* hybridisation analysis of mycorrhizal rice roots (Figure 6.2). The anti-sense probe localised to cortical cells containing arbuscules; also confirming specificity of the probe. No hybridisation was observed in the control sections using the sense probe.

Figure 6.2: Detection of *ORYsa;Pht1;11* transcripts by *in-situ* hybridisation on sections of rice roots colonised by *G. intraradices* (A & B), *G.sp. WFVAM23* (C & D) and *Sc. calospora* (E & F). Sections A, C and E have been hybridised with the anti-sense probe, sections B, D and F with the control sense probe. The anti-sense probes hybridised to plant cells containing arbuscules and arbusculate coils (arrowed) and the sense probes showed no labelling. Bar = $6.7\mu m$.

6.3.5 Pht1 Family Topology

The topology of the OsPT1/ORYsa;Pht1;11 protein can be ascertained from its amino acid sequence. The sequence indicated 11 well-defined hydrophobic membrane-spanning domains (MSD) plus another less well defined MSD (#7) (Figure 6.3). These MSD's are arranged in two groups of 6, separated by a large central loop on the cytoplasmic side of this membrane. Both the N-terminal and C-terminal tails are also orientated toward the cytoplasmic side of the membrane. This topology is typical of the Major Facilitator Superfamily of membrane transporters (Marger & Saier, 1993; Pao *et al.*, 1998). All members of the Pht1 family of P transporters have been shown to have this topology and belong to the Major Facilitator Superfamily (Smith *et al.*, 2003).

6.4 Discussion

The sequencing of complete genomes has allowed researchers to identify whole gene families and study the roles and functions of those genes within the plant. An example of this is the study of nine P transporters identified by Mudge et al. (2002) in the Arabidopsis thaliana genome. All nine P transporters are of the Pht1 family and it was previously thought that this family of genes were only involved with P acquisition by the roots. Mudge and colleagues demonstrated that this gene family is not only involved with P uptake, but also remobilisation throughout the plant and supplying P to floral organs (Mudge et al., 2002). The studies of gene families give an overall view of how the genes function and interact within the plant. As mentioned in the Introduction, the sequencing of the rice genome will allow gene families to be identified and analysed. This was done by myself and Paszkowski et al. (2002) in the identification of rice P transporters from rice ssp. japonica cv Jarrah and cv Nipponbare, respectively. Of the 13 full-length sequences identified by Paszkowski et al. (2002), 11 sequences (full-length and partial) identified by myself, two full-length sequences identified by Godwin (2002) and the partial sequence identified by Yu et al. (2000a), the rice genome may have 13 members of the Pht1 P transporter gene family, significantly more than Arabidopsis thaliana which only has 9 members. The RT-PCR and real-time RT-PCR results by myself and Paszkowski et al. (2002) reveal that, under the conditions used, all genes are transcribed except ORYsa;Pht1;12. ORYsa;Pht1;12 may be expressed in tissues that have not been studied in these experiments or in developmental stages or under environmental conditions not yet studied. Alternatively, it may be a pseudogene. Pseudogenes are genes with a high degree of similarity to normal genes but they are not transcribed or translated. Further examination of the transcription and translation of this gene within the rice Pht1 family needs to be done before the exact number of functional gene members can be clarified and their roles determined.

The expression of the rice P transporter family has been assessed with RT-PCR (myself) and real-time RT-PCR (Paszkowski *et al.* 2002). Real-time RT-PCR demonstrated that all but clones *ORYsa;Pht1;12* and *1;13* were expressed in rice roots (expression in shoots was not examined). The expression of *ORYsa;Pht1;4, 1;5* and *1;7* was unchanged when rice roots were colonised by *G. intraradices*, while colonisation reduced the expression of *ORYsa;Pht1;1, 1;2, 1;3, 1;6, 1;9* and *1;10* by >25% of that observed in un-colonised roots (Paszkowski *et al.,* 2002). These results confirm and clarify the results with RT-PCR performed by myself for all clones except *ORYsa;Pht1;13*. RT-PCR of *ORYsa;Pht1;13* (*Rice gene J*) resulted in higher levels of expression in rice roots colonised by *G. intraradices* and *G.sp.* WFVAM23 than non-mycorrhizal rice roots, though no expression was observed in real-time RT-PCR reactions performed by Paszkowski *et al.* (2002) on *G. intraradices* colonised roots. This conflict in

results may be due to use of inappropriate primers by either myself or Paszkowski *et al.* (2002). Sequencing or restriction enzyme digest of the amplified PCR product would confirm that the product is the gene of interest. The primers may cross react with other P transporters – as with *Rice gene D*, or the primers designed do not pick up the desired gene – as with *Rice genes E* and *K*, or different mycorrhizal fungi have different effects on expression. While the RT-PCR results with *ORYsa;Pht1;13* are interesting with respect to enhanced expression in mycorrhizal roots compared to non-mycorrhizal roots, this gene needs to be further examined to confirm this expression pattern. This is discussed further in Chapter 7. Expression of *ORYsa;Pht1;11* only in mycorrhizal roots is confirmed by results from by both RT-PCR and real-time RT-PCR reactions.

The roles of genes $ORYsa;Pht1;1 \rightarrow 1;10$ may be in P acquisition directly from the soil or mobilisation of P through the roots to the shoots. The role of ORYsa;Pht1;12 may be in shoot mobilisation of P; this would explain the lack of transcripts in root mRNA tested. ORYsa;Pht1;13 requires further work to clarify expression patterns before its roles can be determined. ORYsa;Pht1;11 is involved with P acquisition via mycorrhizal fungi.

The gene of particular interest in this chapter is *ORYsa;Pht1;11* that was only expressed in rice roots colonised by mycorrhizal fungi. The *in-situ* hybridisation of *ORYsa;Pht1;11* localises the expression of this gene to rice cortical cells containing arbuscules and arbusculate coils of *G. intraradices*, *G.sp.* WFVAM 23 and *Sc. calospora*. This expression pattern is consistent with that observed for mycorrhizal P transporters *HORvu;Pht1;8*, *TRlae;Pht1;myc*, *ZEAma;Pht1;6*, *SORtu;Pht1;3*, *LYCes;Pht1;1* and *MEDtr;Pht1;4* (see Chapter 8 for the discussion) (Rausch *et al.*, 2001; Rosewarne *et al.*, 1999; Harrison *et al.*, 2002). The production of plants transformed with the *ORYsa;Pht1;11* promoter linked to GFP would have been another reliable method to confirm the localisation pattern of this gene but unfortunately difficulties were encountered during transformation of this construct into *Agrobacterium* and the time available did not permit this problem to be solved.

いのであるが

ľ,

As with the other plant species it seems highly likely that rice is able to access P supplied via the mycorrhizal fungi, as well as via root epidermal cells.

7 General discussion

ł.

- 2 G - 6 82" - 54 man

11 - 12 -

The second se

The results from this thesis determined that barley cultivars varied in the way they acquire and utilise P and that colonisation by AM fungi is dependent on several factors including soil P concentrations, AM fungal species and type of inoculum. These results highlight the complex nature of P acquisition and led to the detailed study of the plant-mycorrhizal fungus interactions associated with P acquisition. P transporters (mycorrhizal P transporters) in four plants belonging to the cereal family (barley, wheat, rice and maize) were identified as being involved with acquisition of P via the alternative P pathway provided by the colonisation of these plants by AM fungi. This alternative P pathway is discussed after first analysing the sequences of the mycorrhizal P transporters to determine if there are any regions of homology.

7.1 Mycorrhizal P transporter sequence homology

Analysis of the homology between the mycorrhizal P transporters was carried out in order to determine if there were any areas that are unique to the mycorrhizal P transporters. Unique regions of sequence may reveal motifs that localise the expression of these genes to the peri-arbuscular membrane and not the remaining plasma membrane in colonised cells. The initial step is to align all of the sequences and create a phylogenetic tree to determine if the mycorrhizal P transporters are closely related. The phylogenetic tree displayed in Chapter 5.3.6 contains all of the P transporters reported to date. In the phylogenetic tree the mycorrhizal P transporters are not grouped together. Analysis of the coding sequence alignment of the mycorrhizal P transporters (not shown) does not yield any regions that are unique to the mycorrhizal transporters. This suggests that regions of sequence in the coding region do not control the specific role of the mycorrhizal P transporters in P transporters is likely to be controlled by sequence in the 5' untranslated regions.

Analysis of the mycorrhizal P transporters only (Table 7.1 and the phylogenetic tree Figure 7.1) reveals that the lowest percentage of homology is 72% between *HORvu;Pht1;8* and the three P transporters *ZEAma;Pht1;6*, *ORYsa;Pht1;11* and *MEDtr;Pht1;4*. The cereal crop P transporters do not group together (Figure 7.1). The genes from cereals wheat, maize and rice are grouped together, but the barley gene remains quite separate. Further studies on cereal evolution may reveal the reason for the divergence in the phylogenetic tree between barley and the other cereal crops studied.

able 7.1: Percent homology between the	mycorrhizal P transpor	er amino acid sequences.
--	------------------------	--------------------------

	TRIae; Pht1;myc	ZEAma; c Pht1;6	ORYsa; Pht1;11	MEDtr; Pht1;4	SOLtu; Pht1;3	LYCes; Pht1;1	HORvu; Pht1;8
TRIae;Pht1;myc	100	75	75	78	87	89	79
ZEAma;Pht1;6		100	90	83	78	76	72
ORYsa;Pht1;11			100	83	78	76	72
MEDtr;Pht1;4				100	79	77	72
SOLtu;Pht1;3					199	91	78
LYCes;Pht1;1				_		100	77
HORvu;Pht1;8							100

Figure 7.1: Phylogenetic tree of all mycorrhizal P transporters. Prepared by EPROTPARS program (www.angis.org.au) based on the amino acid sequences of the P transporters.

7.2 Putative cis-regulatory elements in mycorrhizal P transporter promoters

Gene regulation is controlled by varied and complex mechanisms (Blancheete & Tompa, 2003). The 5' untranslated region of *SOLtu;Pht1;3* has been analysed for regulatory domains by Rausch *et al.* (2001) and Karandashov *et al.* (2004); and possible domains in *MEDtr;Pht1;4* have been analysed by Harrison *et al.* (2002). Eight putative regulatory motifs have been identified in *SOLtu;Pht1;3*, *MEDtr;Pht1;4*, *LYCesPht1;h* (A.A. Levy, personal communication in Karandashov *et al.* 2004) and *ORYsa;Pht1;11* (Karandashov *et al.* 2004) (Figure 7.2). The promoter region of *HORvu;Pht1;8* contains six of these regulatory domains and *LYCes;Pht1;1* contains seven (Figure 7.2). There is no obvious pattern of these motifs that appears likely to be associated with spatial and temporal expression of these

mycorrhizal P transporters in colonised roots. Gene regulation involves activators, repressors, and positive and negative feedback loops; and more detailed research needs to be done in order to understand the intricate regulatory network that is initiated when plants are colonised by mycorrhizal fungi and P acquired via the alternative pathway provided by AM fungi. The production of transgenic plants, transformed with promoter/reporter gene vectors where the promoter has undergone mutation or deletion of the motif to be analysed, will aid in identifying the role of that motif in localisation and expression of the mycorrhizal P transporters.

Figure 7.2: Illustration of the putative cis-regulatory motifs identified by Rausch *et al.* (2001), Karandashov *et al.* (2004) and Harrison *et al.* (2002) on P transporters described in this thesis. Motifs have been aligned on individual sequences with Vector NTI desktop sequence analysis software (Invitrogen Life Science Software). The 5' untranslated region analysed is ~1000 bp from the start codon (ATG). Motif sequences and icons are listed below the figure. Precise motif location and sequences are identified on the actual sequences in Appendix 4.

- TGCATTCTAT motif
- TAACAACTAT
- CTTCTTGTTCTA motif
- A TAATATAT motif
- MRR1 TACATAAATATGTTCTTTAACTTG motif
- MRR2 GCACAAGTAGACCCTTAAACT motif
- 89

7.3 The 'alternative' P acquisition pathway in mycorrhizal plants

Four mycorrhizal P transporters were identified and characterised in the work described in this thesis. The barley gene HORvu;Pht1;8 was cloned by Dr Frank Smith (CSIRO Plant Industry, Brisbane), but no expression patterns had been ascertained at the start of my work. Through RT-PCR, real-time RT-PCR and in-situ hybridisation experiments it was determined that HORvu;Pht1;8 is expressed in root cortical cells containing AM fungal structures (arbuscules and arbusculate coils). Similar experimental procedures were also used to identify and determine the expression of TRIae; Pht1; myc (wheat), ORYsa;Pht1,11 (rice) and ZEAma;Pht1;6 (maize) in respective colonised root cells. The expression of the rice gene ORYsa; Pht1; 11 published by Paszkowski et al. (2002) had been found to occur in root samples that had been colonised by G. intraradices; I further demonstrated localisation in arbusculecontaining cortical cells via in-situ hybridisation experiments. The identification of these four P transporters with expression patterns associated with mycorrhizal colonisation increases both the number of 'mycorrhizal-related' P transporters and the range of plant species in which they have been found. Tomato, potato and Medicago genes were published during the course of my work (Rosewarne et al., 1999, LYCes;Pht1;1; Rausch et al., 2001, SORtu;Pht1;3; Harrison et al., 2002, MEDtr;Pht1;4). The expression patterns of these mycorrhizal P transporters support their potential role in acquisition of P via an alternative pathway for plants that form mycorrhizal associations (Figure 7.3). A second P transporter identified in tomato (LYCes; Pht1; h) has also been shown to be induced in plants colonised by AM fungi (A.A. Levy, personal communication, in Karandashov et al. 2004). LYCes; Pht1; has not been mentioned prior to this discussion as no publications confirming the expression pattern have appeared in the literature.

Figure 7.3: Schematic representation of supply of P to plant roots via two alternative pathways. P transporters (black circles) located in the root epidermis and root hairs access P directly from the soil solution in the direct uptake pathway. In the mycorrhizal uptake pathway mycorrhizal P transporters (blue circles) in external hyphae take up P and translocate it to fungus-plant interfaces in the root cortex where plant P transporters (arrowed) access the supply of P via the mycorrhizal fungi. The yellow zones represent the area of accessible P. There is a narrow area of available P along the root in the direct uptake pathway, while the mycorrhizal uptake pathway can access P up to 30 cm away from the root. This figure is modified from Smith *et al.* 2003b.

The expression of the mycorrhizal P transporters is not always limited to cells containing mycorrhizal fungal structures; i.e. they are apparently not completely 'mycorrhiza specific'. The expression of LYCes; Pht1;1 was detected with in-situ hybridisation experiments in the stele and cortex of roots of nonmycorrhizal plants (Rosewarne et al., 1999) and in epidermal cells and root hairs (Daram et al., 1998; Bucher et al., 2001). Low levels of expression of both SORtu;Pht1;3 (Rausch et al., 2001) and HORvu;Pht1;8 (this thesis) were detected by real-time RT-PCR in non-mycorrhizal roots. Real-time RT-PCR experiments on MEDtr; Pht1;4 (Harrison et al., 2002; Karandashov et al., 2003) and ORYsa;Pht1;11 (Paszkowski et al., 2002) demonstrate that these two genes are the only mycorrhizal P transporters associated with Pi acquisition via mycorrhizal fungi that, to date, have not been observed to be expressed in other plant cells of colonised or non-colonised plants. Expression in cell types other than mycorrhizal colonised cells needs to be examined carefully. In-situ hybridisation methods of detecting expression must be performed under very strict stringencies to ensure that expression of groups of P transporters, rather than single genes, are not detected. In order to overcome any problems associated with in-situ hybridisation specificity the production of transgenic plants containing promoter-reporter gene fusions and immuno-localisation experiments would be beneficial for future work. While the expression pattern varies between the mycorrhizal P transporters the results strongly suggest that they are involved with P acquisition at the peri-arbuscular membrane, accessing P supplied 91 by the mycorrhizal fungi. With the up regulation of mycorrhizal P transporters and down regulation of epidermal and root hair P transporters, eg. *HORvu;Pht1;1, 1;2* and *1;8* expression, it appears that the plant is able to switch from the direct uptake pathway to the mycorrhizal uptake pathway.

Research to date, including that described in this thesis, indicates that the acquisition of P via mycorrhizal fungi does not only involve apparently 'mycorrhizal-specific' P transporters. There is also the redeployment of P transporters from non-mycorrhizal root cells to cells containing mycorrhizal structures when the roots are colonised (Harrison et al., 2002). This supports the theory that a plant colonised by mycorrhizal fungi can change its pathway of P uptake from direct to that via the mycorrhizal fungi. Support for the activity of the 'alternative' P pathway of P acquisition via mycorrhizal fungi in a wide range of mycorrhiza-responsive and un-responsive plants is strengthening. Some plants, such as barley, apparently do not respond to AM colonisation in terms of growth or P uptake (Jensen & Jakobsen, 1980; Baon et al., 1994). The assumption has been that AM fungi make no contribution to P uptake and hence the 'alternative' mycorrhizal pathway is inactive. However, Smith et al. (2003 & 2004), Zhu et al. (2003) and Schweiger and Jakobsen (1999) were able to demonstrate that the mycorrhizal network can supply up to 100% of the P acquired by flax, Medicago and tomato when colonised by G. intraradices. Smith et al. (2003b) used vials of radioactive P that were only accessible to mycorrhizal fungi hyphae (not plant roots) to determine how much P was being supplied to the plant via the mycorrhizal fungi. Depending on the combination of plant species and mycorrhizal fungal species, the percentage of P supplied by the mycorrhizal fungi varied. For example G. caledonium was able to supply flax and Medicago with 100% of the acquired P, but supplied tomato with approximately 75% of the acquired P and Gi. rosea only contributed a small proportion of the total P - (Smith et al., 2003b).

Plants that are not acquiring 100% of the P via mycorrhizal fungi must employ both the direct and mycorrhizal P pathways to achieve plant P uptake. P transporters involved with P acquisition in epidermal cells and roots hairs and at fungi-plant interfaces would all be active if the plant was utilising both pathways. P acquisition from mycorrhizal fungi has been localised to cortical cells containing arbuscules and arbusculate coils. The concentration of P in arbuscule containing cells has been measured via cryo-analytcal scanning electron microscopy to be as high as 25 mM, while cells containing no mycorrhizal structures have a concentration of 10 mM P (Ryan *et al.*, 2003). This illustrates that arbuscule containing cells accumulate P. Accumulated P acquired via plant P transporters in the peri-arbuscular membrane requires protons (H⁺-ATPase). The presence of H⁺-ATPase activity at the peri-arbuscular membrane in colonised cells has been demonstrated and this would provide a source of protons for P transporters (Gianinazzi-Pearson *et al.*, 1991 & 2000). All of

this research and the localisation of several P transporters to colonised cells substantiates the likely importance of the alternative P pathway via mycorrhizal fungi that produce arbuscules. The expression of *HORvu;Pht1;8*, *TRIae;Pht1;myc* and *ORYsa;Pht1;11* in cortical cells colonised by *Sc. calospora* suggests that the arbusculate coils produced by this fungus may also be a site of P transfer (this thesis), though it does not have the same detailed experimental support as for arbuscules. The inclusion of mycorrhizal fungi that form arbusculate coils will be important in future work, if these results are to be used to enhance our understanding of P uptake in field situations that may contain many indigenous mycorrhizal fungi forming different structures in the roots. Understanding the two pathways of P acquisition that work in combination will help determine how soil P and P fertilisers are used by plants and how to take advantage of indigenous mycorrhizal fungi.

Research on P transporters involved with P acquisition via mycorrhizal fungi has revolved around the identification and localisation studies with mycorrhizal P transporters. Paszkowski et al. (2002) were able to demonstrate that the expression of the mycorrhizal transporter ORYsa; Pht1;11 was related to the presence of internal mycorrhizal structures presumed to be involved with delivering P to the plant. Transcripts of ORYsa; Pht1;11 were only detected when intraradical fungal structures were observed, 25 days post inoculation with 1000 mycorrhizal spores. This expression pattern for ORYsa;Pht1;11 and all of the other mycorrhizal P transporters needs to be further assessed to determine if the expression is initiated when the root is initially colonised (appressorium formation), or if expression is related to the presence of those mycorrhizal structures that transfer the P into the plant cortical cells such as arbuscules and arbusculate coils. This would determine if the plant immediately identifies the colonisation by the mycorrhizal fungi as being beneficial or whether this recognition occurs at a later stage of development. An alternative avenue of research would involve the use of plant mutants. Plant mutants that are able to inhibit mycorrhizal colonisation at various stages would be useful in examining when the mycorrhizal P transporters are expressed in relation to the stage of colonisation. An example of the usefulness of mutants for assessment of colonisation and mycorrhizal fungi/plant interactions is the tomato mutant mc. When challenged with 8 different mycorrhizal species, three were unable to colonise further than the root epidermal cells, four were able to penetrate past the root epidermis but not into cortical cells and one mycorrhizal species achieved normal colonisation (Gao et al. 2001). While mutant plants definitely have a role in the study of colonisation, the research published by Gao et al. (2001) emphasises the differences in colonisation depending on the plant and mycorrhizal fungi species that must also be considered.

The coordinate observation of various stages of colonisation by the AM fungi and P transporter expression would also elucidate the timing of the down-regulation of those P transporters involved with

P acquisition via the root/soil interface. The barley P transporters *HORvu;Pht1;1* and *1;2* are involved with P acquisition when the plant is grown in a P deficient environment. When P is supplied via increased fertiliser or via AM fungi the expression of these two genes is significantly reduced. Further investigations, both physiological and molecular, would reveal the processes involved in determining whether one pathway or both pathways are utilised for P acquisition.

The main aim of this thesis was to research the alternative P acquisition pathway via AM fungi. The P transporters involved with P acquisition from AM fungi have already been discussed. The expression pattern of these mycorrhizal P transporters varies depending on the plant species (i.e. whether the P transporter is expressed exclusively at the peri-arbuscular membrane or also expressed at other cellular locations) and the AM fungi colonising the plant. This research has also suggested that there may be more than one mycorrhizal P transporter within a PhT1 family of P transporters. The expression of both ORYsa;Pht1;11 (Paszkowski et al., 2002) and ORYsa;Pht1;13 (this thesis) have been shown to be induced in roots colonised by AM fungi, compared with uncolonised roots, section 6.3.2. Similarly, LYCesPhT1;h is reported to be induced in AM colonised plants (A.A. Levy, personal communication, in Karandashov et al. 2004) in addition to the expression of LYCes; Pht1;1 in mycorrhizal roots (Rosewarne et al., 1999). The expression patterns of these genes may indicate that in rice and tomato two P transporters are involved with P acquisition via the alternative pathway provided by AM fungi colonisation. Analysis of the two genes suspected to be involved with P acquisition via mycorrhizal fungi in each plant species needs to be done in order to confirm their role in P uptake in the plant. Optimally the assessment of both genes would be conducted in the same tissue to ensure that the same conditions are achieved. The use of real-time RT-PCR, in-situ hybridisation and immunolocalisation using different fluorescent labels for identification would be useful to determine the localisation of gene expression relative to the other. Further experiments researching the expression pattern of LYCes; Pht1;1 and ORYsa; Pht1;13 would clairify the results of these two genes that are regarded with caution due to the possibility of cross reactions within the Pht 1 gene family. Rice contains a PhT1 gene family that includes 13 genes. Other plant species may contain this number of PhT1 genes and may contain more than one PhT1 gene involved with P acquisition via AM fungi. The presence of more than one mycorrhizal P transporter in a plant species would require further investigation to determine if both transporters are up regulated in the same manner when colonisation occurs or if different expression patterns are observed. Different mycorrhizal P transporters within one plant species may be expressed differently depending on the AM fungi colonising the plant. This would be of particular interest in field applications, where there are many AM fungal species present, if optimal P acquisition is to be achieved.

Given the likelihood that AM symbioses evolved in primitive land plants, before the diversification of present day angiosperm families, it is possible that Arabidopsis thaliana (and other non-host plants) contains a PhT1 gene whose expression pattern is potentially influenced by AM fungi, although the nonhost status of the plant prevents direct testing of the possible induction of P transporter genes by AM Arabidopsis thaliana is a widely used plant model system in molecular, developmental, fungi. physiological and cell biology (Pigliucci, 2002). Nine members of the PhT1 family have been identified in this plant (Mudge et al., 2002). A preliminary attempt was made in this project to analyse the expression of some of these genes by introducing promoter-GFP constructs into the host plant Nicotiana tabacum. The assessment of the transgenic tobacco plants was unsuccessful due to masking of GFP fluorescence by autofluorescence of tobacco roots under the conditions used (results not presented). However, the recent identification of 5 Arabidopsis ecotypes and 2 mutants that do form mycorrhizal associations (Horii & Ishii, 2003) will now permit further analysis of the expression patterns of the Arabidopsis P transporter family. A future experiment could use these Arabidopsis accessions to examine the expression patterns of all nine identified Arabidopsis P transporters in relation to the effect of mycorrhizal colonisation. If an Arabidopsis P transporter was identified as being involved with P acquisition via mycorrhizal fungi, it would stongly suggest that Arabidopsis had evolved from once being a host of AM fungi into a non-host plant. This would expand the value of Arabidopsis as a model plant for future mycorrhizal research.

The identification of more than one mycorrhizal P transporter per plant species highlights the need for high standards and quality control when researching P transporters to ensure that those results reported are correct for an individual gene and are not from cross-reactions between several P transporters. There is a high degree of similarity between P transporters and primers/probes/antibodies need to be designed in regions that are unique to the P transporter of interest. For example the genes *HORvu;Pht1;1* and *1;2* are identical except for eight amino acids at the 3' end of *HORvu;Pht1;2*. The primers designed for both *HORvu;Pht1;1* and *1;2* for real-time RT-PCR required the anti-sense primer to be developed in the 3' untranslated region of the genes in order to guarantee that the specific gene of interest was being amplified. The specificity of the primers ensured that the different expression patterns seen for these genes are accurate. Nevertheless, the existence of more than one P transporter induced by AM fungi might be expected. Plants evolved alternative pathways to accommodate adaptations to different environmental conditions. Additionally, there is increasing evidence for some degree of specificity in the interactions between different plant and AM fungal species (Helgason et al. 2002) which is likely to involve expression of different genes in signalling and metabolic pathways.

Studies of gene expression will be able to be linked to physiological studies of the quantity of P reaching the plant via the mycorrhizal pathway (i.e. the % contribution of this pathway to total plant uptake) should the project continue. Determining the predominant pathway of P uptake would be useful in field situations when assessing the need to apply fertiliser and the amount required. The identification of P transporters in barley, wheat, maize and rice involved with P acquisition via AM fungi can be used in further research to understand P acquisition of field grown cereals and how they can be used to improve P efficiency when grown in P deficient soils.
APPENDIX 1

PHOSPHATE TRANSPORTERS ISOLATED UP TO June 2003 (plant and AM fungi only).

Those transporters highlighted in yellow in the Affinity K_m – details column are classified as high-affinity transporters and those highlighted in blue classified as low affinity transporters (according to the authors).

Those transporters highlighted in the Sites of Expression column in pink are classified as being specifically involved with P acquisition via mycorrhizal fungi and those highlighted in purple are classified as being down regulated when P is supplied to the plant as increased P levels or AM colonisation.

References listed in Affinity K_m – details and Sites of Expression are specific for the results reported in those columns, those references listed in References are other researchers involved with identification and reporting of that gene. NA means that no information about affinity or expression was available.

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names,		number	K _m – details		
abbrevlated and					
correct					
nomenclature					
(section 3.11)				Deste	(Muchhal et al. 1996)
PHT1;1	Arabidopsis thaliana	AAB17265 - GB	High affinity	ROOTS,	
APT2			$K_m = 3.1 \ \mu M$ in cultured	Hydathodes of cotyledons and leaves,	(Smith <i>et al.</i> , 1997)
PHT1			tobacco cells (Mitsukawa	Axillary buds,	
AtPT1			<i>et al.</i> , 1997b)	Peripheral endosperm of germinating seeds.	
ARAth;Pht1;1			Complements yeast strain	P deficiency increased expression in root hairs and	
			NS219* when grown on	root cap. (Mudge <i>et al.</i> , 2002)	
			media containing 110 µM		
			P. (Muchhal et al., 1996)		

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names, abbreviated and correct nomenclature		number	K _m – details		
(section 3.11)	A title stations	DAAQ4292 DDI	Complements veget strain	Roots only	(Mitsukawa et al.,
PHT1;2	Arabidopsis thaliana	BAAZ4Z0Z - DDJ	NO240t when grown on	R deficiency increased expression in root epidermal	, 1997a)
APT1			NS219" when grown on		(Smith <i>et al</i> 1997)
PHT2			media containing 110 µM	cells and root hairs,	
ARAth;Pht1;2			P. (Muchhal et al., 1996)	Near hypocotyl junction expressed in cortical cells,	(Muchnal et al., 1990)
				Aged root systems expressed in young lateral roots	
				(Mudge <i>et al.</i> , 2002)	
PHT1'3	Arabidopsis thaliana	BAA24281 - DBJ	NA	Roots only.	(Mitsukawa et al.,
PHT3				P deficiency increased expression in stele of the	1997a)
ARAth:Pht1:3				primary roots (pericycle layer) and root hairs	
				Weak expression noted in vascular tissue of young	
				leaves and hydathodes (Mudge et al., 2002)	
PHT1;4	Arabidopsis thaliana	U62331 - NCBI	NA	Roots, hydathodes, axillary buds cotyledons,	(Muchhal <i>et al.</i> , 1996)
PHT4				senescing anther filaments and abscission zone at	(Okumura et al.,
AtPT2				the base of siliques.	1998)
ARAth:Pht1:4				P deficiency increased expression in root epidermis,	(Lu <i>et al.</i> , 1997)
				root tips and cells interior to pericycle. (Mudge et al.,	
				2002)	

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
abbreviated and correct nomenclature		number	K _m – details		
PHT1;5	Arabidopsis thaliana	AC003033 - NCBI	NA	Vascular tissue of cotyledons, senescing leaves	(Lin <i>et al.</i> , 1999a)
PHT5				strongest in the phloem, young floral buds and	(Okumura et al.,
ARAth:Pht1:5				sepals later in floral development, weak expression	1998)
, , ,				in stele of P deficient roots (Mudge et al., 2002)	
PHT1;6 PHT6 <i>ARAth;Pht1;6</i> PHT1;7	Arabidopsis thaliana Arabidopsis thaliana	BAA34390 - DBJ AL138650 - EMBL	NA	Anthers, tapetum of flowers, dry mature pollen grains (Mudge <i>et al.</i> , 2002) Mature pollen grains, P deficient roots (Mudge <i>et al.</i> ,	(Okumura et al., 1998) (Obermaier et al.,
ARAth;Pht1;7				2002)	2000)
PHT1;8	Arabidopsis thaliana	AC007369 -	NA	P-deficient roots (Mudge et al., 2002)	(Federspiel et al.,
ARAth;Pht1;8		EMBL			1999)
PHT1;9	Arabidopsis thaliana	AC015450 -	NA	P-deficient roots (Mudge et al., 2002)	(Lin <i>et al.</i> , 1999b)
ARAth;Pht1;9		EMBL			

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names,		number	K _m – details		
abbreviated and					
correct					
nomenciature					
(section 3.11)	Archidonois thaliana	AB028611 - EMBI	Low affinity	eaves	(Daram et al., 1999)
	Alabiuopsis irialiaria	AD020011-CMDE	Complemente veget strain	Chloronlast envelope	Versaw & Harrison,
ARAth;Pht2;1			Complements yeast strain		2002)
			PAM2 [†] when grown on	Arabidopsis PH12;1 null mutant (pht2;1-1) reveals	2002)
			media containing 394 µM	that PHT2;1 is involved with P allocation, P	
			Ρ.	deficiency responses and translocation of P within	
				leaves.	
CrPT1 = PIT1	Catharanthus roseus	AB004809 - GB	Transformed yeast mutant	Roots, stems and young shoots	(Kai <i>et al.</i> , 1997)
CATro:Pht1:1			DpU [‡] able to grow on low		
			phosphate (55 µM)		
			medium		
HvPT1	Hordeum vuldare	AF543197	High affinity	Expressed in roots, induced by P deficiency.	(Smith et al., 1999)
			$K_{\rm m} = 8 \mu M$ in barley roots		(Rae et al., 2003)
ΠΟΚνά,ΡΠΕΙ,Τ			ttm = ο μινι πι balley rooto.	_	(Smith of al. 1000)
HvPT2	Hordeum vulgare	AY187019	NA	Roots	(Smith et al., 1999)
HORvu:Pht1:2					

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names,		number	K _m – details		
abbreviated and					
correct					
nomenclature					
(section 3.11)		11/107000		Poeta	(Smith et al., 1999)
HvPT3	Hordeum vulgare	AY187026	NA	Roois	(onnarior and root)
HORvu;Pht1;3					
	Llasdaura undagare	AV197024	ΝΔ	ΝΑ	Dr Frank Smith
HVP14	Hordeum vulgare	AT 10/024			nersonal
HORvu;Pht1;4					personal
					communication
	Hordeum vulgare	AY187021	NA	NA	Dr Frank Smith
					personal
HORVU;Pht1;5					communication
					COmmunication
	Hordeum vulgare	AF543198	Low affinity	Expressed in old leaves and flag leaves. Expressed	(Rae et al., 2003)
	Tordeam valgare		K = 200 mM in horizon	in phoem of vascular bundles in leaves and ears.	
HORvu;Pht1;6			$K_m = 320 \mu m$ in Daney		
			roots		
HvPT7	Hordeum vulgare	AY187022	NA	NA	Dr Frank Smith
					personal
					communication

Sites of Expression References Affinity Phosphate Plant Accession transporter names, number K_m – details abbreviated and nomenclature (section 3.11) D. Glassop and Dr Expressed in mycorrhizal roots. Hordeum vulgare AY187023 NA HvPT8 Frank Smith personal HORvu;Pht1;8 communication (Shoemaker et al., NA NA BG791142 - GB Glycine max 1999) GLYma;Pht1;1 (Liu et al., 2001) Strong expression P deficient roots - normal and AF305623 - GB NA LaPT1 Lupinus albus proteoid LUPal;Pht1;1 Weak expression stems and leaves (Liu et al., 2001) Strong expression in roots - normal and proteoid AF305624 - GB NA Lupinus albus

LaPT2 LUPal;Pht1;2 (Daram et al., 1998) P deficient roots (rhizodermal and root cap cells) **High affinity** LePT1 AF022873 - GB Lycopersicon and shoots, stele of root, cortical cells, phloem (Rosewarne et al., LYCes;Pht1;1 esculentum Complements yeast strain 1999) tissue and cells containing arbuscules PAM971[†] when grown on media containing 31 µM Ρ.

14-12 E

correct

GmPT

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names,		number	K _m – details		
abbreviated and					
correct					
nomenclature					
(section 3.11)					(Lin of al. 1998a)
LePT2	Lycopersicon	AF022874 - GB	NA	Roots	(Liu el al., 1990a)
LYCes;Pht1;2	esculentum				
, .					
		45000054 05	Law officials	Everygened in mote and up regulated when P	(Liu <i>et al.</i> 1998b)
MtPT1	Medicago truncatula	AF000354 - GB		Expressed in roots and up regulated when r	
MEDtr;Pht1;1			Complements yeast strain	deficient, down regulated when mycorrhizal.	(Chiou et al., 2001)
			NS219* when grown on	Localised to epidermal cells and root hairs.	(Versaw <i>et al.</i> , 2002)
			modio containing 102 uM		
				나는 다 물건에 다른 다 다 물건이 했다.	
			P.	양이니다. 아파는 바람을 넣었는 것을 많았다.	
MADTO	Medieogo truncatula	AE000355 - GB	ΝΔ	Roots and up regulated when P deficient, down	(Liu <i>et al.</i> , 1998b)
	weukayo truncatula	A 000000-00			`
MEDtr;Pht1;2				regulated when mycormizal	
				A share a share a share a share a	
MtPT3	Medicado truncatula		NA	NA	(Harrison et al., 2002)
	modiougo d'anoutata				
MEDtr;Pht1;3					
1					

the second se

Phosphate transporter names	Plant	Accession	Affinity	Sites of Expression	References
abbreviated and		number	K _m – details		
nomenclature					
MtPT4	Medicago truncatula	AY116210 -	Low affinity	Expressed in mycorrhizal (G. versiforme) roots only	(Harrison <i>et al.</i> , 2002)
MEDtr;Pht1;4		cDNA	Complements yeast strain	with RNA transcripts being detected 14 days post	
		AY116211 - gene	NS219* when grown on	inoculation with increased expression positively	
			media containing 493 µM	correlated to colonisation. No expression detected	
			P and PAM2 [†] when grown	at day 7. Expression also noted in roots colonised by	
			on media containing 668	Gigaspora gigantea. Expression localised to the	
			μM P.	peri-arbuscular membrane and coordinated with the	
				life of the arbuscule.	
MtPHT2;1	Medicago truncatula	AF533081	Low affinity	Expressed in all photosynthetic tissues, dependent	(Zhao <i>et al.</i> , 2003)
MEDtr;Pht2;1			Complements yeast strain	upon light (light > dark), development (young > old)	
			PAM2 [†] when grown on	and Pi status of the plant (high P slightly > low P).	
			media containing 600 µM	Localised to the chloroplast envelope.	
			Ρ.		
NtPT1	Nicotiana tabacum	AF156696 - GB	NA	Weak expression in immature leaves, mature	(Kai <i>et al.</i> , 2002)
NICta;Pht1;1				leaves, old leaves, stems and roots. All expression	(Baek <i>et al.</i> , 2001)
				increased when P deficient. NtPT1/2 detected	
				together.	

 $\overline{\gamma}$

104

the second second second second

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names, abbreviated and		number	K _m – details		
соптест					
nomenclature					
(section 3.11)	Niestiana tabasum	AB042950 - CB	NΔ	Immature leaves, mature leaves, old leaves, stems	(Kai et al., 2002)
NTP12		AD042330 - OD		and roots All expression increased when P	
NICta;Pht1;2				deficient. NtPT1/2 detected together.	
		AD042054 CB	NA	No expression when P sufficient Expressed in old	(Kai et al., 2002)
NtPT3	Nicotiana tabacum	AB042951 - GB		Logues and roots when P deficient NtPT3/4	(,, , , , , , , , , , , , , , , , ,
NICta;Pht1;3				leaves and loois when r dendend. No lore	
				detected together.	(1. 0000)
NtPT4	Nicotiana tabacum	AB042956 - GB	NA	No expression when P sufficient. Expressed in old	(Kai <i>et al.</i> , 2002)
NICta;Pht1;4				leaves and roots when P deficient. NtPT3/4	
				detected together.	
OrPT	Oryza rufipogon	AF337531 - EMBL	NA	NA	(Ming et al., 2001)
ORYru;Pht1;1					
OsPT	Oryza sativa	AF239619 - GB	NA	NA	(Yu <i>et al.</i> , 2000a)
ORYsa					
OsPT1169	Oryza sativa	AF271893 - EMBL	NA	NA	(Yu <i>et al.</i> , 2000b)
ORYsa;PhT1169					

Ω.

105

the farmer man

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names, abbreviated and correct nomenclature		number	K _m – details		
OsPT796 ORYsa;Pht;796	Oryza sativa	AF229169 - GB	NA	NA	(Yu <i>et al.</i> , 2000b)
OsPT970 ORYsa;Pht;970	Oryza sativa	AF335588 - GB	NA	NA	(Ming & Shen, 2001)
OsPT1 ORYsa;Pht1;1	Oryza sativa	AF536961 - GB	NA	Low expression in roots, transcription reduced when colonised with <i>G. intraradices</i> .	(Paszkowski e <i>t al.</i> , 2002)
OsPT2 ORYsa;Pht1;2	Oryza sativa	AF536962 - GB	NA	Expressed in roots, transcription reduced when colonised with <i>G. intraradices</i> . Transcription reduced with increasing P content.	(Paszkowski <i>et al.</i> , 2002)
OsPT3 ORYsa;Pht1;3	Oryza sativa	AF536963 - GB	NA	Low expression in roots, transcription reduced when colonised with <i>G. intraradices</i> .	(Paszkowski et al., 2002)
OsPT4 ORYsa;Pht1;4	Oryza sativa	AF536964 - GB	NA	Low expression in roots, transcription unaltered when colonised with <i>G. intraradices</i> .	(Paszkowski <i>et al.</i> , 2002)

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names,		number	K _m – details		
abbreviated and					
(section 3.11)					
OsPT5	Orvza sativa	AF536965 - GB	NA	Low expression in roots, transcription unaltered	(Paszkowski et al.,
ORVee:Pht1:5				when colonised with G. intraradices.	2002)
OK rsd, Flict, J					
		45500000 05		Everyoped in roots transcription reduced when	(Paszkowski et al.,
OsPT6	Oryza sativa	AF536966 - GB	NA	Expressed in roots, transcription reduced when	2002)
ORYsa;Pht1;6				colonised with G. Intraradices.	2002)
OsPT7	Oryza sativa	AF536967 - GB	NA	Very low expression in mycorrhizal or non-	(Paszkowski et al.,
ORVsa:Pht1:7				mycorrhizal roots.	2002)
0.070		AE526069 CB	ΝΔ	Low expression in roots, transcription unaltered	(Paszkowski et al.,
USP18	Oryza sativa	AF330900 - GD		when extended with C introvations	2002)
ORYsa;Pht1;8				when colonised with G. Intraradices.	2002)
OsPT9	Oryza sativa	AF536969 - GB	NA	Low expression in roots, transcription reduced when	(Paszkowski et al.,
ORYsa;Pht1;9				colonised with G. intraradices.	2002)
OsPT10	Orvza sativa	AF536970 - GB	NA	Low expression in roots, transcription reduced when	(Paszkowski et al.,
				colonised with G. intraradices.	2002)
URISA, FILL, TU					

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names,		number	K _m – details		
abbreviated and					
correct					
nomenciature					
	Onza sativa	AE536071 _ CB	Low affinity	Expressed in mycorrhizal (G intraradices) roots with	(Paszkowski et al
057111	Oryza Saliva	AF3509/1 - GD	Low dimity	Expressed in hijvonnizar (d. maradoloca) roots with	(1 432.1011311 01 4.1.1
OsPT1		(OsPT11)	Complements yeast	RNA transcripts being detected 25 days post	2002)
ORYsa;Pht1;11		AF493787 – GB	pho84 mutant when	inoculation at 2% colonisation with increased	
		(OsPT1)	grown on media	expression positively correlated to colonisation. No	
			containing 200 µM P	expression detected at day 15 (0% colonised). No	
				expression when roots infected with other soil	
				microbes.	
				OsPT1 (Godwin, 2002)	
OsPT12	Oryza sativa	AF536972 - GB	NA	Not detected in roots.	(Paszkowski et al.,
ORYsa;Pht1;12					2002)
OsPT13	Oryza sativa	AF536973 - GB	NA	Not detected in roots.	(Paszkowski et al.,
ORYsa;Pht1;13					2002)
OsPT2	Oryza sativa	AF493788 - GB	NA	NA	(Godwin, 2002)

Plant	Accession	Affinity	Sites of Expression	References
	number	K _m – details		
Solanum tuberosum	X98890 - GB	Low affinity	Roots, tubers, source leaves, floral organs and P	(Leggewie et al.,
Golanam taboroodm	,	Complements yeast strain	deficient roots	1997)
		MR102 (DHO84 mutant)		
		WID 192 (F11004 middaily		
		when grown on media		
		containing 280 μ M P		
Solanum tuberosum	X98891 - GB	Low affinity	P-deficient roots	(Leggewie et al.,
		Complements yeast strain		1997)
		MB192 (PHO84 mutant)		
		when grown on media		
		containing 130 µM P		
Solanum tuberosum	AJ318822 - GB	High affinity	Root sectors where mycorrhizal structures are	(Rausch et al., 2001)
-		Complements yeast strain	formed, most prominent in arbuscule containing	(Harrison et al., 2002)
		PAM2 [†] when grown on	cells, presumably located in the peri-arbuscular	
		media containing 64 µM	membrane	
		P		
				_
	'lant Solanum tuberosum Solanum tuberosum	'lantAccession numberSolanum tuberosumX98890 - GBSolanum tuberosumX98891 - GBSolanum tuberosumX98891 - GB	IantAccession numberAffinity Km – detailsSolanum tuberosumX98890 - GBLow affinity Complements yeast strain 	ItantAccession numberAffinity Km - detailsSites of ExpressionSolanum tuberosumX98890 - GBLow affinity Complements yeast strain MB192 (PH084 mutant) when grown on media containing 280 μM PRoots, tubers, source leaves, floral organs and P deficient rootsSolanum tuberosumX98891 - GBLow affinity Complements yeast strain MB192 (PH084 mutant) when grown on media containing 180 μM PP-deficient rootsSolanum tuberosumX98891 - GBLow affinity Complements yeast strain MB192 (PH084 mutant) when grown on media containing 130 μM PP-deficient rootsSolanum tuberosumAJ318822 - GBHigh affinity Complements yeast strain PAM2t when grown on media containing 64 μM P.Root sectors where mycorrhizal structures are formed, most prominent in arbuscule containing cells, presumably located in the peri-arbuscular membrane

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names,		number	K _m – details		
abbreviated and					
correct					
nomenciature					
(section 3.11)	Titing		ΝΔ	ΝΑ	
CSWP11	Inticum aesuvuri	QAVELO			
	Chinese spring				
	wheat				
TaPT1	Triticum aestivum	AF110180 -	NA	NA	(Li <i>et al.</i> , 1999)
TPI20-Dht1-1		EMBL			
		QAVELO			(Davias of al. 2002)
TaPT2	Triticum aestivum	AJ344240	NA	Expression mainly seen in roots, weakly in leaves.	
TRIae;Pht1;2	Xiaoyan 54			All expression dependent on cultivar, P content.	
				Cultivar Jing411 expressed only in -P roots.	
TRIae:Pht1:2-1	Triticum aestivum	AJ344241	NA	NA	(Davies et al., 2002)
friddy, ficty_	(91(95) 5-3-3-3)				
	(01(00)-0-0-0)		N14		(Davies et al. 2002)
TRIae;Pht1;2-5	Triticum aestivum	AJ344242	NA	NA	
	(81(85)-5-3-3-3)				
TaPT3	Triticum aestivum	AJ344243	NA	Expression mainly seen in roots, weakly in leaves.	(Davies et al., 2002)
TRIae;Pht1;3	Chinese spring			All expression dependent on cultivar, P content.	
	wheat				
1					

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names,		number	K _m – details		
abbreviated and					
correct					
nomenclature					
(section 3.11)		A 1044044	ΝΔ	NA	(Davies et al., 2002)
TaPT4	Triticum aestivum	AJ344244			
TRIae;Pht1;4	Chinese spring				
	wheat				
	Triticum aestivum	AJ344245	NA	Cultivar 81(85)-5-3-3-3 expressed in roots and	(Davies et al., 2002)
	(04/05) 5 2 2 2)			leaves (not P dependent)	
TRiae;Pht1;5-1	(01(00)-0-0-0-0)			Culturar 81/851-5-3-3-3 expressed in low P roots	(Davies et al., 2002)
TaPT5.2	Triticum aestivum	AJ344246	NA	Guillivar Gritos-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G-G	(, , , ,
TRIae;Pht1;5-2	(81(85)-5-3-3-3)			only	
TaPT6	Triticum aestivum	AJ433247	NA	Expression mainly seen in roots, weakly in leaves.	(Davies et al., 2002)
TDiavaDht116	Chinese spring			All expression dependent on cultivar, P content.	
TRIA;ePTILT,0	Chillese spring			Strong expression -P leaves of 81(85)-5-3-3-3.	
	wheat			No service in T classoft or T informadium	
				No expression in T. elongatum of T. Intermediam.	
TaPT7	Triticum aestivum	AJ344248	NA	No expression noted in roots or shoots of	(Davies et al., 2002)
TPI20.Pht1.7	Xiaovan 54			hydroponically grown varieties.	
				No expression noted in roots or shoots of	(Davies et al., 2002)
TaPT8	Triticum aestivum	AJ344249	NA		(
TRIae;Pht1;8	Xiaoyan 54			hydroponically grown varieties.	

ant	ACCESSION	Affinity	Sites of Expression	VEIELEILES
	number	K _m – details		
hinoputrum	A 1/13055	ΝΔ	NA	(Davies et al., 2002)
ninopyrum	AJ4 13533			
longatum wheat				
rass				
hinopyrum	AJ413956	NA	NA	(Davies et al., 2002)
<i>longatum</i> wheat				
rass				
hinopyrum	AJ413957	NA	NA	(Davies et al., 2002)
longatum wheat				
rass				
hinopyrum	AJ413958	NA	NA	(Davies et al., 2002)
ntermedium wheat				
irass				
F(A 1412050	ΝΛ	ΝΔ	(Davies et al., 2002)
ninopyrum	AJ4 13909			
ntermedium wheat				
jrass				
The rank of the range of the ra	inopyrum ongatum wheat ass inopyrum ongatum wheat ass ninopyrum ongatum wheat ass hinopyrum termedium wheat rass	IntAccessioninopyrumnumberinopyrumAJ413955ongatumwheatassAJ413956ongatumwheatassAJ413957ongatumwheatassAJ413957ongatumwheatassAJ413957ongatumwheatassAJ413958termediumwheatrassAJ413958termediumwheatrassAJ413959	IntAccessionAnnuynumberKm - detailsinopyrum ongatumAJ413955NAinopyrum ongatumAJ413956NAongatumwheat assAJ413957NAinopyrum ongatumAJ413957NAinopyrum ongatumAJ413958NAinopyrum termediumAJ413958NAinopyrum termediumAJ413959NA	IntAccessionAnnyConstraintnumberKm - detailsConstraintinopyrum ongatum wheat assAJ413955NANAinopyrum ongatum wheat assAJ413956NANAAJ413957NANAinopyrum ongatum wheat assAJ413957NANAinopyrum ongatum wheat assAJ413957NANAinopyrum

÷.,

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names,		number	K _m – details		
abbreviated and					
correct					
nomenciature					
	Thipopyrum	A.I413960	NA	NA	(Davies et al., 2002)
I NI-3		/ 0410000			
THlin;Pht1;3	intermedium Wheat				
	grass				(D. 1
Thi-4	Thinopyrum	AJ413961	NA	NA	(Davies et al., 2002)
THlin·Pht1·4	intermedium wheat				
11 1111,1 1121,1	G1000				
	grass		NIA	ΝΔ	(Davies et al., 2002)
Thi-7	Thinopyrum	AJ413962	NA		<u> </u>
THlin;Pht1;7	intermedium wheat				
	grass				
ТЫ-О	Thinopyrum	AJ413963	NA	NA	(Davies et al., 2002)
	i-to-modium whoat				
THIIN;Pht1;9	Intermedium wheat				
	grass				(Davias at al. 2002)
Thi-91	Thinopyrum	AJ413964	NA	NA	
THIin:Pht1:91	intermedium wheat				
	2225				
	91000				

Phosphate	Plant	Accession	Affinity	Sites of Expression	References
transporter names,		number	K _m – details		
abbreviated and					
correct					
nomenciature					
(section 3.11)	Conhania reatrata	A 1286743 - GB	NA	NA	(Aono & Oyaizu,
SrP11	Sespania rostrata	AJ200143 - OD			2001)
SESro;Pht1;1					
SrPT2	Sesbania rostrata	AJ286744 - GB	NA	NA	(Aono & Oyaizu,
SESro;Pht1;2					2001)
ZmPT1	Zea mays	Patent	NA	NA	(Zhao <i>et al.</i> , 1999)
ZEAma;Pht1;1		WO9958657			
ZmPT2	Zea mays	Patent	NA	NA	(Zhao <i>et al.</i> , 1999)
ZEAma;Pht1;2		WO9958657			
ZmPT3	Zea mays	Patent	NA	NA	(Zhao et al., 1999)
ZEAma;Pht1;3		WO9958657			
ZmPT4	Zea mays	Patent	NA	NA	(Zhao <i>et al.</i> , 1999)
ZEAma;Pht1;4		WO9958657			
ZmPT5	Zea mays	Patent	NA	NA	(Zhao <i>et al.</i> , 1999)
ZEAma;Pht1;5		WO9958657			
ZmPT6	Zea mays	Patent	NA	Mycorthizal roots.	(Zhao <i>et al.</i> , 1999)
ZEAma;Pht1;6		WO9958657			

Phosphate	Mycorrhizal fungi	Accession	Affinity	Sites of Expression	References
transporter names,	name	number	K _m – details		
abbreviated and					
correct					
nomenclature					
(section 3.11)					(Herrison 9 yor
GvPT	Glomus versiforme	U38650 – GB	High affinity	Expressed in external hyphae.	(Hamson α van
		Q00908	Complements yeast		Buuren, 1995)
			pho84 yeast mutant when		(Versaw et al., 2002)
			grown on media		
			containing 18 µM P.		
CIPT	Glomus intraradices	AF359112	NA	Expressed in external hyphae.	(Maldonado-Mendoza
					<i>et al.</i> , 2001)
					(Versaw et al., 2002)

Databases: GB (Genbank), DBJ (data base), NCBI (National Centre Biotechnology Information), EMBL (European Molecular Biology Laboratory), GenPept

Gene names of Arabidopsis clones from http://www.mips.gsf.de/

† PAM2, PM971 – Saccharomyces cerevisiae yeast mutant defective in two high-affinity Pi-transporter genes PH084 and PH089 (Martinez & Persson, 1998)

[‡]DpU - Saccharomyces cerevisiae yeast mutant defective in high-affinity Pi-transporter gene PH084 (Kai et al., 1997)

* NS219 - Saccharomyces cerevisiae yeast mutant defective in high-affinity Pi-transporter gene PH084 (Bun-ya et al., 1991)

Appendix 2: Soil Analysis

other Relevant Comments

Thin Ho BM (Rev⁴)

3

				10	the second s
		SOIL ANALYSIS R	EPORT	Besults of Anal	vsis
			No.	PADDOCK NAME	, -···
Incited LIG	u 267 262			ORDER HUMBER	155532
Ratinga Road, Gibson Ist	land, Murarrie	N DA	2.00	PRODUCT SQ GE00/049	
P.O. Box 140, Morningsid	ie, Old 4170		Q UALLY MASIMUMEET	SAMPLE BAG NUMBER SURFACE	10403
Tel. (07) 3867 9300		NUTDIENT	1 1 2 1 1 10	CORRESPONDING DEEP SOIL BAG	No
		ADVANTAGE		DATE OF SAMPLING	
r				DATE RECEIVED	13/07/00
Millmerran	soil sample	e	16	DATE OF REPORT.	19/07/00
	•••• ••••••				
				pH(1:5 Water)	8.5
				*pH(1:5 CeCL2)	<i>[.</i>]
	CSIRG TAG			Organic Corbon %G	1.1
			1	Witrate Nitrogen mg/kg	7-1 10
				Phosphorus(Louwell) my/kg	0 18
			<i>k</i>	POEBSSIUM(ANNIAC: Medy 100g	9-31
Phone		Fax		Normanium (America Stars) 1000	8.01
Nearest Town		Postcoce		Sortium (Anna Ac.) med/1004	2.54
Distance to Town		Ulrection to lown	of all into	Ehloride #4/kg	115
Australian Nap Grid Re	RT I.	 Average Annual Kan 		Electrical Conduct. dS/m	0.20
PALS PANELP ALIX PLAF	INCOMATION.			Copper (DTPA) mg/kg	0.7
SULL SAMPLE AND SILE I	. \$urfac∞	Nonths of Fallow		Zinc (DIPA) Mg/kg	0.4
sampting dependent	- Dees	Age of cultivation	¥76	Kanganese (DTPA) mg/kg	48
28mbring Cebrurcay	week.	Drainage		Iron (DIPA) mg/kg	28
Paridock nr.ea	hạ	stubble/Trash		Boron (Hot CaCl2) mg/kg	1.1
Soil type		Tillage		Sulfur (NCP) mg/kg	17
SLope		Irrigation			
Soil profile depth	A				
Reasons for sampling	1.				
	2.			1	

PRODUCTION INFORMATEO	Nz		ម្ភាភ ពាក់ព័ន្ធ	1	
Nain species to be fe	rtilized	Age establishe	u -	Calculations	
Variety		NOOT SCOCK(HOP	AZ ba	Ention Exch. Cap. meg/100g	20,03
Previous best yield		fann populari	Konth m	Calcium/Nagnesium Ratio	1.16
Yield Last year		Grain protein	and the pro-	SodiumX of cations(ESP)	12.65
Vigour of growth	<u>س</u>	= Leaune content			
Rewrite spacing fort	ion)	Stock type		1	
Interrou transment	a eest f	Stock number		1	
Stage in grop Cvclefs	ugar Cane)			1	
Method of fertilizer	placement:			1	
1.	2.	3.		Methods, Calculations outlin	ned overpage.
**********************				****	
FERTILIZER HISTORY:	Fertilizers	Application Units	Date Applied	FOR INTERPRETATION OF THE	SE RESULTS,
		Rate	Year Nonth	PLEASE CONTACT YOUR DEALER:	
Nost Recent Crop				BACCOUNT CARCOLLECTING LAD	
				PISON ISTARD FVD	
*				1	
				OR YOUR INCITES AREA MA	NAGER
				NARFILE JAGER	
Previous Crop				REAL CLE CHUCK	
				This laboratory is accredited by the N Testing Authorities, Australia, The testing	ational Association of a reported heroin hove
				been performed in accordance with it	s terms of registration except in full
Desvious from				INAL AL	
susainnas reals				NTA 1	d
					laran Ciganteru
				() isodis	HINE SELLEDING
				The Laboratory is not associated with the	w samawa at 2010

The Laboration of the descelated with the samples of the second after drying at 40°C. Report # g0041700

(17.1°2	SOI	ANALYSI	S REPOR	r	Results of Analy	y8i8
Incited Ltd Australian Company Number 019 767 263				Ö	PADDOCK NAME ORDER NUMBER BRODUNT SO G100/049	155532
Paringa Road, Gibson Island, Mu RO Roy 140 Morningside, Old 4			9.0	ALITY	CANDLE BAG NUMBER SURFACE	10402
Tel: (07) 3867 9300		DIENT	51	1113	CORRESPONDING DEEP SOIL BAG N	0
	NU	ANTAGE			DATE OF SANPLING	
r	ADV	MUASE			DATE RECEIVED	13/07/00
Ashland soil sam	ple				DATE OF REPORT	19/07/00
					pH(1:5 Water)	5.6
				1 0	*pK(1:5 CBCl2)	4.0
				_	Organic Carbon 70	(8.2
				ard.	Nitrate Nitrogen mg/kg	3
1					Photphorus(Cotwerty may va	0.37
L		-			Calcium (Amm.Ac.) mmc/100g	0.32
Phone		Fax			Magnesium(Ann.Ag.)mcg/1009	4.36
Nearest Town		Postcoue Direction to '	Toyn		Aluminium (KCL) meg/100g	2,72
Distance to Town		Average Annus	Rainfall		Sodium (Ann Ac.) mag/100g	1,4B
Australian Map Grid Ref	• •	MAEL 0910 1011000			Chloride mg/kg	35
TON PARTIE AND PITE IMERIMAN	101:				Electrical Conduct. dS/m	0.05
Sun Sumple and Sile information	Surface Mon	ths of Fallow			Copper (DIPA) mg/kg	0.3
Sampling depth(cm)	Deep Age	of cultivation	Åı.e		Zinc (DTPA) mg/kg	8.0
anishe said mala siy anis	Ūra	inege			Monganese (DTPA) mg/kg	2
Paddock area	ha Stu	bble/Trash			Iron (DIPA) mg/kg	10
Soft type	Til	lage			Boroh (Hot CaGL2) mg/kg	V.9 10
\$\ope	1.0	igation			Sulfur (MCP) mg/Kg	TV.
Soil profile depth m					1	
Reasons for sampling 1. 2.						
PRODUCTION INFORMATION:			yrs m	ths		
Main species to be fertilize	d	Age estab	linhed			
Variety		Ruot stop	k(Hort)		Calculations	0.24
Previous best yield		Plant pop	ulation	ha	Cation Exch. Cap. Red/100g	7.24
Yield lest year		Canopy re	dius(Hort)	lini.	Calcium/Magnesium Katto	29.6
Vigour of growth		Grain pro	otein		Autimum saturations(ESP)	15.97
Row/tree spacing(Hort)	HL M	m Legume.co	mtent		auture of cartonates /	
Row specing(Grain/Cotton)		SLOCK LY				
Interrow treatment		Stock mut				
Stage in Grop Cycle(Sugar Ch	ine)				1	
Method of fertilizer placeme	N1C:	3			Nethods, Calculations outlin	ned overpage.
1. 2.						
FERTILIZER HISTORY: Fertil	(zers	Application W Rote	nits Date Ap Year M	pìled Ionth	FOR INTERPRETATION OF THES PLEASE CONTACT YOUR DEALER:	E RESULTS,
Most Recent Crop	e에보님인라도 416 프로드램				GIBSON ISLAND LAB	
-						
					OR YOUR INCITED AREA MAN	MAGER
Previous Crop					NARELLE JAGER	
er-Alinga ar Ab,					This laboratory is accredited by the N Testing Authorities, Australia. The testio been partitioned in accordance with its This document shall not be reproduced	ational Association of) reported termin have i terms of registration. except in full.
Previous Crop					Real David	A
				Repo	The Laboratory is not associated with life Samples are analyzed as received after o rt. # g0041776	i sampling pitcess. irying at 40°C.
Other Relevant Comments				·	-	

Form No. 804 (Rev 5)

Appendix 3: Vectors

pGemT-easy (#1360) - supplied by Promega Corporation, Annandale, New South Wales, Australia.

This vector can be transformed into *E. coli* DH10 β and grown on LB Ampicillin/XIA plates or LB Ampicillin broth.

LB (Luria-Bertani) broth per L: To 950 mL distilled H₂O add: 10 g bacto-tryptone

5 g bacto-yeast extract

10 g NaCl

Adjust the pH to 7 with 5 N NaOH, adjust the volume to 1 L with distilled H₂O and sterilise by autoclaving for 20 m at 15 lb sq.in.⁻¹ on liquid cycle.

LB plates per L:

Add 15 g bacto-agar prior to autoclaving.

LB Ampicillin/XIA plates:

Prepare LB plates and cool media to 50°C before adding:

Reagent	method of preparation	final concentration in
		media
Ampicillin	dissolved in H ₂ O and filter sterilised	100 μg mL-1
Isopropylthio-β-D-galactoside	dissolved in H ₂ O and filter sterilised	0.2 mM
(IPTG)		
5-Bromo-4-chloro-3-indolyl-β-D-	dissolved in dimethylformamide, no need	40 μg mL ⁻¹
galactoside (X-gal)	to filter sterilise	

Mix gently and thoroughly before pouring plates in sterile laminar flow.

LB Ampicillin broth:

Prepare LB broth and cool media to 50°C before adding Ampicillin, as above.

pZERO1 (#K2500-01) - supplied by invitrogen Australia Pty Ltd, Mount Waverly, Victoria, Australia.

pZERO1 can be transformed into *E. coli* DH10β and grown on LSLB Zeocin plates or LSLB Zeocin broth.

LSLB (Low Salt Luria-Bertani) broth per L:

To 950 mL distilled H₂O add: 10 g bacto-tryptone 5 g bacto-yeast extract 5 g NaCl Adjust the pH to 7 with 5 N NaOH, adjust the volume to 1 L with distilled H₂O and sterilise by

autoclaving for 20 min at 15 lb sq.in.⁻¹ on liquid cycle.

LSLB plates per L:

As for broth, add 15 g bacto-agar prior to autoclaving.

LSLB Zeocin plates/broth:

Prepare LSLB plates and cool media to 50°C before adding Zeocin to a final concentration of 25 µg mL⁻ 1. Zeocin (#R250-01) is supplied by Invitrogen Australia Pty Ltd, Mount Waverly, Victoria, Australia.

pWBVec8 is transformed into *Agrobacterium tumefaciens* strain AGL1 and grown on YEP/Rifampicillin/Spectinomycin broth or plates.

YEP broth media per L:

To 950 mL distilled H₂O add 10 g Bacto peptone 10 g yeast extract 5 g NaCl Mix and adjust volume to 1 L, autoclave.

YEP medium per L:

As for broth, add 15 g bacto-agar prior to autoclaving.

YEP Rifampicillin/Spectinomycin:

Prepare YEP and cool media to 50°C before adding:

Reagent	Method of preparation	Final concentration in media
Spectinomycin	dissolved in H ₂ O and filter sterilised	100 μg mL-1
Rifampicillin	dissolved in Dimethyl Sulfoxide	50 μg mL ⁻¹

Other Reagents:

SOC Medium per L:

To 950 mL distilled H₂O add:

20 g bacto-tryptone

5 g bacto-yeast extract

0.5 g NaCl

A State Stat

10 mL 250 mM KCl

Adjust the pH to 7 with 5 N NaOH, adjust the volume to 1 L with distilled H_2O and sterilise by autoclaving for 20 min at 15 lb sq.in.⁻¹ on liquid cycle.

Before use allow media to cool and add:

5 mL MgCl₂ [2 M, sterilised by autoclaving]

20 mL 1 M Glucose (filter sterilised through a 0.22- μm filter)

TAE 1 x buffer:0.04 M Tris-acetate0.001 M Ethylenediaminetetraacetic Acid (EDTA)

Appendix 4: Sequences

The origin of the sequences is from Genbank: accession numbers or patent numbers for each sequence is given in the introduction of that sequence. Coloured bases highlight the sequence of the primer named underneath. Promoter regions = plain text Start codon = ATG Coding region = Bold Stop codon = TAA or TAG or TGA 3' untranslated region = <u>underlined</u>.

Barley Phosphate Transporters

HvPT1

5

10

it A II

- All and a second

111111

The second secon

Accession number = AF543197 HvPT1 total gene = 3202 bp Promoter = 1403 bp cDNA = 1563 bp = 521 amino acids 3' untranslated region = 236 bp

*	1	GAGCTCCGAC	TACCCCCGCG	ATATCAAGCA	AGACCCATGG	AGGGCAGGCG
	51	GCGGCCTACA	AAGTTCCAGG	ACCTAACCTA	CGGCCGGTGG	CGTGGCCTCA
	101	CCTCGTTCAA	CGAGTCCGGC	GGCGAGGCGT	GGGCAGGCAT	CGGCGTAGAA
	151	AGCGATGGAT	CAACGGGGGGC	CATCTACAAC	TGCCTACGTG	GACTGTTTGA
	201	CTCCGCCACG	TTGGCACTGA	CACTGGGTCC	TGTTTGTTAG	GTTTTCTGTC
	251	AAAATGCAAT	CAACCGACTA	TTTAGTGCTT	GAATTTTTTA	CTGAATAACG
	301	TGTTTTGGGC	AAACTTTTTT	GAAAACGATT	GTTTTCGGCA	CTGAGCGACG
	351	CAATTTCGGT	GGTTTTTGAC	AATTTACTCT	AAACATCAGC	AGACCAATGC
	401	CTCAGTTACA	GACCCAACTC	AAAAACACCT	CAATTACAGT	CAGGCATGTT
	451	GCCAATGGGT	TCTTCGTTGT	TCTCACACCT	GGGTGGGTGT	TTATTCGAAA
	501	GCATGTTGAT	ATTGCTACGG	TCCATGAGGT	ATAGGCCAGA	GACTCTCGTA
	551	AACTGATAGC	ACGTTTACTT	GCTGGTTGCT	GCATATCGTA	CACAATAAAC
	601	AAACACGATG	AACTCCAACT	TGGTATAAAC	TACAGCCGTC	ACAACTCATA
	651	CCTCATCCCT	AACGAATTGT	GGTGCCCATC	CGGGAAAATA	TCGGTCACTC
	701	TAATGCAATC	AATTTTTCGT	TACCTTTCTA	ACTATGGAAG	ATTTGGGACG
	751	TGTAAACAAC	ACCATGTCAT	GGTCATATAT	ACATAAAACT	GCCAACTTGC
	801	TAATTAAGTT	TCTCAGGCAT	ATTCGGATCT	TCTCATTATT	TTCTCTCGTT
	851	TACAGTTGCT	AAGTTTGACA	TAGCTACTAG	TGGTAGTATA	GTCTACTACT
	901	ATTCGAAGCT	GTGATCCGCT	TGATGTACTT	CAGCAGTTCG	AGATCCATCT
	951	TATATGTTCA	TATATATGTC	ATGTATATTC	CTAGCATAAC	AATTATGTGG
	1001	GTTCCAGTTT	TATGTATATG	AAACTTCAAA	GTCAAATCTC	ACATAGACCT
	1051	TATATAAGAA	ATCCCTAGCT	CAATCCTTGC	GATAACTAAA	ATGCATCCCA
	1101	ACTTAGCAAG	CTGCAGCTTA	AATTAAGGGA	CGACATTTTA	CATTCTTGTG
	1151	TGTCTATTTT	ATAAGAGTAT	CATGCCAAAA	TCTTGCTGTC	TTGATAATGT
	1201	ACGGCTGTAC	GTACGTGCAA	TGCCGTACAT	GGAGATTTTA	ATATTTACAA
	1251	GTAGCGAGGA	AATGTCCCTT	TGGCATATCC	GCCGAACCTG	CATTATGCCT
	1301	ATATATACGT	ACTAGAAGAA	CGGAACAAAT	CACACAACAA	GAGAAAACCA
	1351	GAAGAAAGAT	AGAAGGGGGC	AGGAGTTAAG	CTGAGAGATC	GCCGGCGACC
	1401	ATG GCGACTG	AACAGCTCAA	CGTGTTGAAA	GCGCTCGATG	TTGCCAAGAC
	1451	GCAACTGTAC	CATTTCAAGG	CCGTGGTGAT	CGCCGGCATG	GGCTTCTTCA
	1501	CCGACGCCTA	CGACCTCTTC	TGCATCGCGC	TTGTCACCAA	GCTGCTGGGG
	1551	CGCATCTACT	ACACCGATCC	TGCTCTCAAC	GAGCCCGGCC	ACCTCCCGGC
	1601	AAACGTGTCG	GCCGCCGTGA	ACGGCGTGGC	CCTATGCGGC	ACACTTGCCG
	1651	GCCAGCTCTT	CTTCGGCTGG	CTCGGTGACA	AGCTCGGCCG	CAAGAGCGTC
	1701	TACGGCTTCA	CGCTCATCCT	CATGGTCCTC	TGCTCCATCG	CGTCGGGGGCT
	1751	CTCGTTTGGA	CACGAGGCCA	AGGGCGTAAT	GGGGACTCTA	TGTTTCTTCC
	1801	GCTTCTGGCT	CGGCTTCGGC	GTCGGCGGCG	ACTACCCTCT	GAGCGCCACC
	1851	ATCATGTCCG	AGTATGCTAA	CAAGAAGACC	CGCGGCACCT	TTATCGCCGC
	1901	CGTGTTTGCC	ATGCAGGGGT	TTGGCATCCT	ATTTGGTACT	ATTGTTACCA
	1951	TCATCGTCTC	GTCCGCATTC	CGACATGCAT	TCCCTGCACC	GCCATTCTAC
	2001	ATTGACGCCG	CGGCATCCAT	TGGTCCGGAG	GCCGACTACG	TGTGGCGCAT

2051	CATCGTCATG	TTCGGCACCA	TCCCGGCCGC	CCTGACCTAC	TACTGGCGCA
2101	TGAAGATGCC	CGAAACTGCA	CGGTACACAG	CACTCATCGC	CGGCAACACG
2151	AAGCAAGCCA	CATCAGACAT	GTCCAAGGTG	CTCAACAAGG	AGATCTCAGA
2201	GGAGGCTGGG	CAGGGTGAGC	GGGCCACTGG	TGATACCTGG	GGCCTCTTCT
2251	CCAGGCAGTT	CATGAAGCGC	CATGGGGTGC	ACTTGCTAGC	GACCACAAGC
2301	ACTTGGTTCC	TGCTCGATGT	GGCCTTCTAC	AGCCAGAACC	TGTTCCAGAA
2351	GGACATCTTC	ACCAAGATCG	GGTGGATCCC	GCCGGCCAAG	ACCATGAATG
2401	CATTGGAGGA	ATTGTACCGC	ATCGCCCGTG	CCCAAGCGCT	CATCGCGCTC
2451	TGCGGCACGG	TGCCGGGCTA	CTGGTTCACC	GTCGCCTTCA	TCGACATCAT
2501	CGGGAGGTTC	TGGATCCAGC	TCATGGGATT	CACCATGATG	ACCATTTTCA
2551	TGCTTGCAAT	CGCGATACCG	TATGACTACT	TGGTGAAACC	AGGGAACCAC
2601	ACCGGCTTCG	TCGTGCTTTA	TGGGCTCACT	TTCTTCTTCG	CCAACTTCGG
2651	CCCCAACAGC	ACAACCTTCA	TCGTACCGGC	AGAGATCTTC	CCGGCGAGGC
2701	TCCGGTCAAC	ATGCCACGGT	ATATCGGCCG	CAACCGGTAA	GGCGGGCGCG
2751	ATCATCGGCG	CATTCGGGTT	CTTGTATGCG	TCGCAGGACC	AGAAGAAGCC
2801	TGAGACAGGG	TATTCACGGG	GAATCGGCAT	GCGCAACGCC	CTCTTCGTGC
2851	TCGCTGGCAC	AAACTTTCTG	GGCCTGCTCT	TTTCCCTGCT	GGTGCCGGAG
2901	TCCAAGGGCA	AGTCGCTCGA	GGAGCTCTCC	AAGGAGAACG	TCGGCGATGA
				Sense prime	$r \rightarrow RT-PCR$
2951	TGGCATCGAT	GCTTAG GCTG	GTGCACATCT	GGAGACACAG	AGTCATGCAC
	Sense pri	mer 🗲 real	time RT-PCH	ર	
3001	AAGTGTTTCC	TTTCTCCTTG	CAGCATTTCT	TTCCTTCTGT	GTGGCCACTT
	← Ar	nti sense pi	rimer real-t	ime RT-PCR	
3051	CCTGAATTTG	TGGTGTCGCT	TACCGTTCGT	GTGTTGCTGT	TTCTGGCTGG
3101	ATTTTGCCTA	AACCCAGCGA	GATTGCAATT	TTCTGATGGT	GCTCTGTATT
_			← Ant	i sense pr	imer RT-PCR
3151	CGTTTGTGAA	GAATTGCCAA	TAAAATATCC	CCTTCATTTG	ATTTGATTCC
3201	AA 3'				

HvPT2

٤

the second states of the secon

Accession number = AY187019 HvPT2 total gene = 3063 bp Promoter = 1295 bp cDNA = 1578 bp = 525 amino acids <u>3' untranslated region</u> = 190 bp

51	1	GAGCTCAATT	AACCCTCACT	AAAGGGAGTC	GACTCGATCC	TTTTTTTAGA
	51	AAATGAGGAT	TATCCACCGC	CTCTCTTCAT	TTTTTTTAAC	TGAGTCAAAA
	101	GCTTTGTCTC	ATCCATTAAA	TAAAAGAGAA	TAGAGTTTTT	TACATCCCGC
	151	CTCTCTTCAT	ATGCAGTCAT	AATAACTGCA	AGACCTACCA	CTGCATATCC
	201	ATTTATCATT	GATGTTTTGT	TTTCTACTTT	TGCTTTCCTT	CTTATTCTCG
	251	AGCAACCGGC	TAGAGCTTTG	CCTTTTCATA	CTATAAAACA	AGATAATTGT
	301	CCAATTAATA	TGAAAGACTG	GCCGAAAACC	GATATAACGA	GCCATACAAA
	351	CGACATCCCC	GTGGCCACAC	CCCCAATGGC	CCGACTACTC	TATCACCCAA
	401	GAAATCCTAG	TCGACACCCT	ACCTAATGAT	ACAGAGTCGT	CACTCCGGCT
	451	TACAAACATC	AGAAACACAC	CACACTGGCC	TCGAGGCCGC	GCTCACCCAA
	501	CAGGTCGACG	ACTCAACTAC	GCGAATAGAT	TCTCAAACCA	CACCAAGGTG
	551	ATCTCCGGAG	CCGCCACTCC	GCTTCCTCAC	CAGCCCCGAG	GCTACACACC
	601	CGATGATTTG	TTGAGAGCAC	CACCCAAGCG	ACAGAACAAA	CATCTTTCAT
	651	TACAAAAGCA	ATCTCCGGAG	CCGCCGCTCC	GGCTTTGACA	CTGGCCCCAA
	701	GGAGACACAC	ATGCCTAGTC	GATAGCGACA	CGCCATGAGA	ACACGAGCCA
	751	CAAGTGCCTA	CCTCTTTCTG	CCATACCATG	TAGTTATAGA	GGAGCGACCA
	801	AATTAACCCC	ATCTCTGAAC	AAAGGTCACC	AAATCCATGT	TTGTAGTGAG
	851	AACATAAGAT	ACAACTCATC	GTATAATCTT	GACCTTTTTC	TCACAAAGCT
	901	TGCTTGTGTC	TGTACAATCT	GTTCCTTTGA	GGTATATTCC	AAGCATAACC
	951	ATGATTTGAC	TTCAGTATTT	TTATTTCCCA	AATTCTATAG	TACTGAAATT
	1001	TGAAGGTCAA	ACCTGATAAA	TTAAAGTTTA	GCATTCCTTA	ATCCTTCTAA
	1051	GAACCATCCT	GATATGTACA	ATTCGTTGTA	CTTACAAGCG	ATGCCGTACA
	1101	TATCATATTT	TATACTTGCA	ACTAGCAGTG	TTAGATTGGC	ATACCACAAC
	1151	ATATGTCCTT	ACCTGTATGC	CTTCACCCTG	CATTATGGCT	ATATATACGT
	1201	ACCAGATGAG	CACCGAATAA	AGCACACCAG	AAGAGAGCAA	AAAAAGAAGA
	1251	AAGATAGAAG	GGGGCAGGAG	TTAAGCTGAG	AGATCGCCGG	CGGCCATGGC

1301	GACTGAACAG	CTCAACGTGT	TGAAAGCACT	CGATGTTGCC	AAGACGCAAC
1351	TGTACCATTT	CAAGGCCGTG	GTGATCGCCG	GCATGGGCTT	CTTCACCGAC
1401	GCCTACGACC	TCTTCTGCAT	CGCGCTTGTC	ACCAAGCTGC	TGGGGCGCAT
1451	CTACTACACC	GATCCTGCTC	TCAACGAGCC	CGGCCACCTC	CCGGCAAACG
1501	TGTCGGCCGC	CGTGAACGGC	GTGGCCCTAT	GCGGCACACT	TGCCGGCCAG
1551	CTCTTCTTCG	GCTGGCTCGG	TGACAAGCTC	GGCCGCAAGA	GCGTCTACGG
1601	CTTCACGCTC	ATCCTCATGG	TCCTCTGCTC	CATCGCGTCG	GGGCTCTCGT
1651	TTGGACACGA	GGCCAAGGGC	GTAATGGGGA	CTCTATGTTT	CTTCCGCTTC
1701	TGGCTCGGCT	TCGGCGTCGG	CGGCGACTAC	CCTCTGAGCG	CCACCATCAT
1751	GTCCGAGTAT	GCTAACAAGA	AGACCCGCGG	CACCTTTATC	GCCGCCGTGT
1801	TTGCCATGCA	GGGGTTTGGC	ATCCTATTTG	GTACTATTGT	TACCATCATC
1851	GTCTCGTCCG	CATTCCGACA	TGCATTCCCT	GCACCGCCAT	TCTACATTGA
1901	CGCCGCGGCA	TCCATTGGTC	CGGAGGCCGA	CTACGTGTGG	CGCATCATCG
1951	TCATGTTCGG	CACCATCCCG	GCCGCCCTGA	CCTACTACTG	GCGCATGAAG
2001	ATGCCCGAAA	CTGCACGGTA	CACAGCACTC	ATCGCCGGCA	ACACGAAGCA
2051	AGCCACATCA	GACATGTCCA	AGGTGCTCAA	CAAGGAGATC	TCAGAGGAGG
2101	CTGGGCAGGG	TGAGCGGGGCC	ACTGGTGATA	CCTGGGGCCT	CTTCTCCAGG
2151	CAGTTCATGA	AGCGCCATGG	GGTGCACTTG	CTAGCGACCA	CAAGCACTTG
2201	GTTCCTGCTC	GATGTGGCCT	TCTACAGCCA	GAACCTGTTC	CAGAAGGACA
2251	TCTTCACCAA	GATCGGGTGG	ATCCCGCCGG	CCAAGACCAT	GAATGCATTG
2301	GAGGAATTGT	ACCGCATCGC	CCGTGCCCAA	GCGCTCATCG	CGCTCTGCGG
2351	CACGGTGCCG	GGCTACTGGT	TCACCGTCGC	CTTCATCGAC	ATCATCGGGA
2401	GGTTCTGGAT	CCAGCTCATG	GGATTCACCA	TGATGACCAT	TTTCATGCTT
2451	GCAATCGCGA	TACCGTATGA	CTACTTGGTG	AAACCAGGGA	ACCACACCGG
2501	CTTCrTCGTG	CTTTATGGGC	TCACTTTCTT	CTTCGCCAAC	TTCGGCCCCA
2551	ACAGCACAAC	CTTCATCGTA	CCGGCAGAGA	TCTTCCCGGC	GAGGCTCCGG
2601	TCAACATGCC	ACGGTATATC	GGCCGCAACC	GGTAAGGCGG	GCGCGATCAT
2651	CGGCGCATTC	GGGTTCTTGT	ATGCGTCGCA	GGACCAGAAG	AAGCCTGAGA
2701	CAGGGTATTC	ACGGGGAATC	GGCATGCGCA	ACGCCCTCTT	CGTGCTCGCT
2751	GGCACAAACT	TTCTGGGCCT	GCTCTTTTCC	CTGCTGGTGC	CGGAGTCCAA
2801	GGGCAAGTCG	CTCGAGGAGC	TCTCCAAGGA	GAACGTTGGC	GACGAT GACG
2851	CCATTGCCCC	AACTGGTGTC	TAAGACATGC	AGGTGTACTT	GCACACTCGT
		Sense prim	er 🔿 RT-PC	R	
	Sense prim	$er \rightarrow real-f$	time RT-PCR		
2901	GCATTATTGG	TGTGTTTGAT	ATGATTT TCT	GTGTTAATTC	TGCGGCTTGT
		← AJ	nti sense p	rimer real-t	time RT-PCR
2951	TTTGTTGCTG	TAATTACTCT	CTGAAATTTA	ATTGTTGTAA	TGCCGTGACA
				+	Anti sense
3001	ATGTAATGCT	TAAACTGTAA	AAGACAACGA	TTCAATTTTG	AAAGAACAAA
	primer RT-	PCR			
3051	AATATCATCT	GTA 3'			

HvPT3

Accession number = AY187026 HvPT3 total gene = 6561 bp Promoter = 4841 bp **cDNA** = 1611 bp = 537 amino acids <u>3' untranslated region</u> = 108 bp

The second second

*

and the second s

1	ACTAGTGAAT	CAAAGGTTCC	TTTAGAACTT	GTGTTTTCGG	ATGTATGGGG
51	TCCTGGCCCA	ATCTCGGTTG	GTAGACAAAA	GTATTACGTG	AGCTTTATTG
101	ATGATTTTAG	TAAATTTTCT	TGGATCTATT	TACTCAAAAA	TAAGTCTGAT
151	GTTTTTGAGA	TGTTTCATCT	GTTTCAACAG	CTTGTTGAAC	TCCTCTTTAA
201	TCGCAAGATT	TTGTCTATGC	AAACCAATTG	GGGGTGAGTA	CCAAAAGCTT
251	AACTCCTTCT	TTGAGTGCAT	TGGTATCTCC	ACCATGTTTC	CTGCCCTCAT
301	GCTCATCAAC	AGAACGAATC	TGCCGAGCGC	AAACATTGCC	ATATTGTTGA
351	GGTTGGCTTG	TCCCTGCTCG	CTCATGCCTC	TATGACATTG	AAATTTTGGG
401	ATGAAGCGTT	TCTTACAGCG	GTCTATCTTA	TCAACCGTGT	CCCTAGTCGA
451	GTCATCCACC	ACCAAACTCC	ACTAGAACGC	ATGTTTGATA	TTAAACCAAA
501	CTATAACTTT	CTTCACATTT	TTGGTTGTGC	GGTATGGCCA	AATCTACGGC
551	CTTTCAACAA	ACACAAGCTC	GAATTCCGTT	CCAAACTGTG	CGTATTCATA

601	GGATACAGCA	ATCTCCACAA	AGGGTACAAG	TGTCTTGATG	TTTCCTCTGG
651	CCGGGTTTAT	ATTTCCTGCG	ATGTTGTTTT	TGATGATCAC	ATCTTCCCTT
701	TCGCCACCTT	ACATCCAAAT	GCCGGCGCTC	AACTCCGCAA	GGAGCTCATA
751	CTTCTTCCGC	CCAACCTTCT	ACCTTTGTCC	GGTCCTTTAC	CACGGGGAGG
801	AGTAGATTTT	GATCATATGT	CTATATCTCA	TAACCCTGGT	GCAAGTGTGC
851	AGGAACATAC	GGAAGAAGAA	ATCGCCGAAA	ACGGCCTTGA	TTTTATGCAG
901	CAACCAGATC	ACAGCGGTGC	AACAAATCCT	GGTGGAGATC	CTGATGCTGA
951	TTCTGGCGCA	GAATCTGCCT	CGGAGTCACG	CGCTGCAACT	GCAGCAGACA
1001	GATCCTCCCC	GGGATCAGCG	CCATCGCCAG	GCCGGGCAGG	CGGATCCTCT
1051	CCGGGTCTCG	CGCCAGCACC	AGGTGGGTCG	GGCGGGCCCT	CGGTAGGTGG
1101	ATCTCCTTCG	GCCCCGCGCT	AGCACCAGGC	AGGACGGACG	GGCCACATGC
1151	ACTGTCCCCC	GCGTGCCCCT	CCCGACACTG	GTCACACGCA	TGCACCCACT
1201	CCGGAGCCTC	CAAGTGGCGG	CACTGCGGCT	GATCTGCATG	GCGGATCTTC
1251	TACGACTGAT	GCAACCGATG	CTTCTCCCGT	GCATCAAACT	CGcCTCCATC
1301	AACATCTcTC	TCGACCACCG	CCGCCACCAC	CTGATCGACT	CCAAACCAGG
1351	TCTCGTAGTG	GCATTATTAA	ACCTAAAGTT	TATAAAGATG	GTTGCGTACG
1401	CTGGGGTTCT	TTCTGTTCTA	CAGGTGAACC	GCAAACTCTG	GATGAGGCCC
1451	TTAGTCAGTC	ACAATGGAAG	GCTGCTATGG	ATGAGGAGTA	TTCTGCTCTT
1501	ATGGAGAACA	ACACATGGCA	ACTTGTTCCT	CCTGTCAAGG	GCAGAAATGT
1551	TATTGGCTGC	AAATGGGTCT	ATAAAGTTAA	AAGGAAGTCT	AACGGCACCA
1601	TTGACAGGTA	CAAGGCTCGG	TTGGTTGCAA	AAGGGTTTAA	GCAAAGGTAT
1651	GGACTTGACT	ATGAGGATAC	TTTCAATCAT	GTAGTTAAAG	TTGCCACTAT
1701	CAGAATTGTT	CTTTCAGTAG	CAGTATCTAG	AAGCTGGTGC	ATACGGCAAT
1751	TAGATGTGAA	GAACGCGTTT	TTGCATGGTG	TTCTGGAAGA	AGAAGTGTTT
1801	ATGAAGCAAC	CTCCTGGATA	TGAGAATCCA	CAGTTACCAC	AACATGTTTG
1851	CAGGCTTGAC	AAgGCCTTGT	ATGGTCTCAA	ACAAGCACCA	AGAGCTTGGT
1901	ACTATAGGTT	GTCTTCCAAA	TTGCAGCATT	GGGTTTTATG	CCCTCAAAGG
1951	GTGACACTTC	ATTGTTCTTT	TATCATAGGA	AAGGAGTCAC	TATTTATATG
2001	CTCATTTATG	TTGATGATAT	AATTGTCACC	AATTCATGTT	CCCAGGCTGT
2051	TGAAGCTCTT	CTCAAGGATT	TGCGCATGGA	TTTTGCTCTC	AAAGATCTTG
2101	GTGATCTCCA	CTACTTCCTT	GGCATTGAGG	TAAAACATGT	GGCAAGTGGC
2151	ATTGTGCTAT	CACGGGAGAA	ATATGTGCAG	GATATACTCC	AGAGAGCAGG
2201	AATGAAGAAT	TGTAAGCCAT	CTCCTACTCC	TTTGTCAACT	TCTCAAAAAC
2251	TGTCACTTTA	TTCTGGGAGG	GTACTTGTGC	CAGAAGATGC	TACCAAGTAC
2301	AGAAGTGTTG	TAGGAGCCCT	ACAATACTTA	ACATTGACTA	GGCCATATAT
2351	CTCATACTCA	GTGAATAAAG	GATGGTAGTT	CTTACATGCT	CCAACCAGNG
2401	GACACTTTTT	GTCACGCCCA	AGATGCGACC	CTATCCTTAA	ATTTGGCACC
2451	GAGAAGCATC	ATCGGGGATA	GAAGCGCATC	TCGTCGTGTC	GCAtGAATGG
2501	ATATCGGTTA	CAAGTACATG	gTACTGAAAG	GAAGAGATAT	ATAATAGAAT
2551	TGGGCTTACA	CTCGCCACAA	GCTACATCAG	AGTCACATCA	GTACATTACA
2601	TAATCATCAA	GGGTAAGAGC	AGGGTCCGAC	TACGGACGAA	AACAACCGAG
2651	AAAAGAAGAA	CGACGTCCAT	CCTTGCTATC	CCAGGCTGCC	GGTCTGGAAC
2701	CCATCCTAGA	TTGATGAAGA	AGAAGAAGAA	GAAGAAGAAG	AAGAAGAAGA
2751	AGAAGAAGAA	GCAACTCCAA	ATAAACAATC	CACGCGCTCG	CGTCAAGTAA
2801	CCTTTACATG	TACTTGCAAC	TGGTGTTGTA	GTAATCTGTG	AGCCATAGGG
2851	GACTCAGCAA	TCTCATTTCC	AAAGATATCA	AGACTAGCAA	AGCTTAATGG
2901	GTGAGGCATG	GTTAAGTGGT	GAGGTTGCAG	CAGCGGCTAA	GCACATATTT
2951	GGTGGCTAAA	CTTACGAGTA	CAAGGAATAA	GAGGGGATGA	TCTACGCATA
3001	ACGTAGTGAA	CTACTAATGA	TCAGATGAAT	GATCCTGAAC	GCCTACCTAC
3051	GTTAGACATA	ACCCCACCGT	GTCCTCGATC	GGAGTAAGAA	CTCACGAAAG
3101	AGACAGTCAC	GGTTACGCAC	ACAGTTGGCA	TATTTTAATT	AAGTTAACTT
3151	CAAGTTATCT	AGAACCAGTG	TTAAACAAAG	CTTCCACGTT	GCCACAATTT
3201	TAGACTATGG	TCTAAATACA	TGTAGCTAGC	GGGTTAGGTT	TAGGGACATC
3251	TGGACCCTCA	GATTTAGATC	GGGTGGTCAA	GATGATTAGG	TTAGGGAGCC
3301	CAATGGACAA	ACCGAAGACG	GCTTGCGGTA	AAACAGGGTI	GATCCGGATA
3351	CAACGGTCAC	GACCGTATGT	TTCGGGTACC	GAGAGGTTTI	CGAACTAGGC
3401	TGCGCGTAGC	GTCGATGCAC	TGTGCAGAGG	GGCTAGGCGG	AGATTAGAGG
3451	GAAAACGGGC	GACCCGGCGA	CGATTTTTAA	AACACCGACA	ACCGTCCGAC
3501	GGTAGACCGA	ATACGGTGCC	GCTACGGTCG	ACCGTTCGGG	TACCAGACGG
3551	ACTCCGATCO	CGACGAAATT	CGACAGGCAG	CCTAGCTATA	TCTAATTACG
3601	ACCGCATGC	AAGTTTCACC	TCGATCAGAG	AAAGTTTTAI	GCACACTTTT
3651	GAAAACAAGA	TTTGACGATG	TCGCGGGCGC	GTGCGAGTGC	GGTCGGGGCTC
3701	AGAACGGACA	ACGACGAGAA	CCGGCAACTA	ACAACGGATO	CAAGTTTTGA
3751	AAACTGGCGG	G CAACGGAATG	CTGATGCAAI	GCAGATGATI	CGAATGATGC

	as mas mas that	00101100	B B B B B B B B B B B B B B B B B B B	ACCACCAAAA	CCCAATAAAG
3801	GATGATGATG	CGACAAAAGA	AAATAGACAC	MCGACGAAAA	TTCCACCTCT
3851	GGGGGGATCTT	CTGGAACGTC	GGTCTTGGGC	TGTCACAACI	IIGCAGCIGI
3901	CAAAAGAATA	CTTTGGTATC	TTCAAGCAAC	CAAGGGCCAT	GGACIIAAGC
3951	TTGGTAGGTC	AGACTCAATG	CTAGTCAGTG	CCTTCTCTGA	TGCAGATTGG
4001	GCAGGATGCC	CTGATGACAG	GAGATCAACA	CGGGCAGGAT	GCAGATTGCT
4051	AAGTCTTCTT	AGGCAGCAAC	TTAGTTTCCT	GAAGTGCTCG	CAAGCAAGCT
4101	ACTGTATCCA	GGTCAAGCAC	GGAAGCTGAA	TATAAAGCAC	TAGCAAATGC
4151	TACCGCTGAA	ATCATATGGG	TGCAGAATAT	GTTGATAGAA	TTGGGTGTTT
4201	CACACCCATC	ATCAGCATCT	CTTTGGTGTG	ATAATCTTGG	TGCCACGTAC
4251	TTATCTGCTA	ATCCTATCTT	TCATGTCAGG	ACTAACACAT	ATCGAGATTG
4301	ACTATCACTT	TGTTCGTGAA	AGAGTAGCCA	GCAAACAATT	AAACATCCGG
4351	TTTGTACTCA	CTGGAGATCA	AGTGACAGAT	GGTTTTACTA	AACCATTGAC
4401	AGCACAACAA	CTAGCTTCAT	TTAGACACAA	TCTTAACTTA	GATAGTTTCG
4451	ATCGAGGAGG	AGTGTTGGAA	GTTGTAATCT	ACGGTATGTA	TAAACCGTAT
4501	AGAGATAACT	TAGACTTGGA	GATAAGTTAG	TTTAAACCAT	CTATACCGAA
4551	GAGATATGAC	TTGAAGATCA	ATCCTCGACA	TAACAAACTT	TGTATATCTT
4601	ATGCTATATA	TTAACACGCA	TCGCATCGCG	TTCGTGCAAG	CCATACGGTT
4651	AACCTAGCTT	TTCCACGCTG	CGGCCGGTCT	CCTCCTCCTC	GCCCTATTTA
4701	TACGAGCAGT	AGGCGGCCCA	TTATTTCTGC	ACCACAACAC	AACAAAGTCT
4751	TCCGGCCGGC	GGGCACCGTC	GTCTAGCTCT	CACACTCGCA	GCGTGCCGCG
4801	GCCAAACGTC	AGTCCCCTGT	GCAGCAACAG	CAGCAGCAGC	ATG GCGCGGT
4851	CGGAGCAGCA	GGGGCTGCAG	GTGCTGAGCG	CGCTGGACGC	GGCCAAGACG
4901	CAGTGGTACC	ACTTCACGGC	CATCGTCGTC	GCCGGCATGG	GCTTCTTCAC
4951	CGACGCCTAC	GACCTCTTCT	GCATCTCCCT	CGTCACCAAG	CTCCTCGGCC
5001	GCATCTACTA	CACCGACCTC	TCCAAGCCCG	ACCCCGGCTC	CCTGCCCCCC
5051	AGCGTCGCCG	CCGCCGTCAA	CGGCGTCGCC	TTCTGCGGCA	CCCTCGCCGG
5101	CCAGCTCTTC	TTCGGCTGGC	TCGGCGACAA	GATGGGCCGC	AAGAGCGTCT
5151	ACGGCATGAC	CCTCCTCCTC	ATGGTCATCT	GCTCCATCGG	CTCGGGCCTC
5201	TCCTTCGCGC	ACACACCCAA	GAGCGTCATG	GCCACGCTCT	GCTTCTTCCG
5251	CTTCTGGCTC	GGCTTCGGCA	TCGGCGGCGA	CTACCCGCTC	TCGGCCACCA
5301	TCATGTCCGA	GTACGCCAAC	AAGAAGACCC	GCGGCGCATT	CATCGCCGCC
5351	GTCTTCGCCA	TGCAGGGCTT	CGGCATCCTC	GCCGGCGGCA	TCGTCACCCT
5401	CATCATCTCA	TCCGCCTTCC	GCGCCGGGTT	CCACGAGCCG	GCCTACCAGG
5451	ACGACCGCGT	CGCGTCCACC	GGCACGGAGG	CCGACTTCGT	GTGGCGCATC
5501	ATCCTCATGC	TCGGCGCCCT	GCCGGCCCTG	CTCACCTACT	ACTGGCGGAT
5551	GAAGATGCCC	GAGACGGCGC	GCTACACCGC	CCTCGTCGCC	AAGAACGCCA
5601	AGCTGGCCGC	CGCCGACATG	TCCAAGGTGC	TGCAGGTGGA	GCTGGAGGAC
5651	GAGACGGAGA	AGATGGACGA	GATGGTGAGC	CGCGGGGGCGA	ACGACTTCGG
5701	CCTCTTCTCG	CCGCAGTTCG	CGCGGCGCCA	CGGCCTCCAC	CTCGTCGGCA
5751	CGGCGACCAC	GTGGTTCCTG	CTGGACATCG	CCTTCTACAG	CCAGAACCTG
5801	TTCCAGAAGG	ACATCTTCAC	GAGCATCAAC	TGGATCCCCA	AGGCGCGCAC
5851	CATGAGCGCG	CTTGACGAGG	TGTTCCGCAT	CTCCCGCGCG	CAGACGCTCA
5901	TCGCGCTCTG	CGGCACAGTG	CCGGGCTACT	GGTTCACGGT	CTTCCTCATC
5951	GACGTCGTCG	GCCGCTTCGC	CATCCAGCTC	ATGGGATTCT	TCATGATGAC
6001	CGTCTTCATG	CTCGGCCTCG	CCGTGCCGTA	CCACCACTGG	ACAACGCCGG
6051	GCAACCAGAT	CGGCTTCGTG	GTCATGTACG	GCTTCACCTT	CTTCTTCGCC
6101	AACTTCGGGC	CCAACGCAAC	CACCTTCGTC	GTGCCGGCGG	AGATCTTCCC
6151	GGCGAGGCTG	CGATCGACGT	GCCACGGGAT	ATCGGCGGCC	GCGGGGAAGG
6201	CCGGAGCCAT	GATCGGGGGCG	TTCGGGTTCC	TGTACGCGGC	GCAGGACCCG
6251	CACAAGCCGG	ACGCCGGGTA	CAGGCCCGGG	ATCGGGGTGC	GCAACTCCCT
6301	CTTCGTGCTC	GCCGGGGGTCA	ACCTGCTGGG	GTTCATGTTC	ACCTTCCTGG
6351	TGCCGGAAGCC	CAACGGGAAG	TCGCTGGAGG	AGATGTCCGG	CGAGGCACAG
6401	GACAACGAG	ACGAGGACCA	GGCACGAACC	GCCGCCGTGC	AGCCGTCCAT
		Sene	e primer ->		
6451	GGCCTACCAC	AACTCGTGCG	TGCTACCTAT	TGCAGCTGCA	GGCTGTTGAG
6501	TTCCTCAN		TCCTTTTTTTTT	GATACATATA	AACGCTTAAA
6501	CTACTACTAC			ACCCAATCAC	GGCCGGCTCA
6601	TATATATA	CAGGCCGGCC	CATGTCTATG	CC 3'	
0001	TUTUTUCE		. Server Orrect C		

← Anti sense primer

HvPT5

Accession number = AY187021 HvPT5 total gene = 3224 bp Promoter = 1318 bp cDNA = 1620 bp = 540 amino acids <u>3' untranslated region</u> = 286 bp

51	1	AAACGTATGC	TTTACCAGCA	CGGACGTATG	CGTGTTATAT	AGGGCATAAA
	51	GCCAACCGAA	TACAAAGATT	ACATGAGATA	GAAGTGGTTA	GGATTGATCT
	101	TTATCTATAC	AAGATCTATC	TACAAGATCA	ATCCTAATAT	TCTATCTCTA
	151	AATTAAACAC	ACGCACCCCT	AAGATAATTA	CAATGTCTAA	CAATAATCTT
	201	ATCTTACCTA	CTAATAAAGC	AAATATTGCT	TCCGTCGTAC	GTCATTTAAA
	251	TTGTTCTTAA	AGTTGGCTAA	AATTACCCAC	CAATGCCACT	CATAGAAAAC
	301	GTTTCAAACA	GGAAAATCTC	CGGACTGGGC	CGGCCCATGT	AGGCGTCTCC
	351	TATATTACGC	TCTGGGAATT	AGAAAAAGAT	GCAGCACCCA	AATGCGCCCA
	401	TGTGAGTGCC	TGTTTTTTTT	AGTTTAGTTT	TTTTTTTAAT	TCTTTTCAGT
	451	TCCATTTTGT	TTTTCTACTT	TAAATAATTT	AGAACTTCAA	ATAACTTTTC
	501	TTAATTTTAA	GAAACTAGGA	ATTTCGAACT	AAAATATTCA	AAAAAAACAT
	551	AATTTTTTTTG	AGAATTCAAA	AAGTACTCAG	GAGTTTTGAA	AAATGTTTGC
	601	ΑΤΑΤΟΑΑΑΑΑ	ATGTTTAAAT	TTTGGGAAAT	TGTCCATAAA	ΑΤΑΑΑΑΑΑΑΑ
	651	GTCAATGATT	ТТАААСАААА	GTCTGTGTAA	AAATCTTAAA	AACAGTTCGT
	701	GCCTCTGTTT	TTAGTCTCGT	TTTTTTATTTT	CATTTTTTGT	CCCATTTTCT
	751	ΔΑΤΤΤΆΑΑΤΑ	ATTTAGAACT	TTGAAAAACT	TTTGCAATTT	ATAAAACTTA
	801	GAATTTGAAA	TAAAATTTTG	AAGAAAACAT	AAAATGTTTG	TGAGTTTAAA
	851	AAATGCTCGG	GATTTTTGTA	AAAATATTCG	CATATTCAGA	AAAATGTTCA
	901	TAATTTTGAG	AACAATGTTG	СТАААААТАА	TAAAATTCTA	TGATTTTGAA
	951	AAACAACTTT	GTGTATTATT	TTTGAGCGC	AATTAAAAAA	TGTTTGCTAA
	1001	TTCAAAAAAT	GTTCATGCAT	TTCAAGAAAG	GTCTTAAAAT	TTAAAAGACA
	1051	TAATATCATC	AGCACGATTG	GAGATTATAA	TTGTTTTTCT	TCCGTTGCAA
	1101	CCACACCCTT	TTCCTACTAA	AACGAATTAC	CAAATCGTGA	TCTGTCCGGT
	1151	TTTCCCTACC	TGTATCCGAG	CAAGTCTTCC	AACTCCATGC	CGGACTCGGT
	1201	TTTCCCIACCA	ΔΔΤΓΤΔΤΔΤΑ	AACATTCCGC	TCTATCGCCG	GGGCACAGCA
	1251	COTTOCCACCA	GACAGATCAA	AGCAGCAACA	CGAGCTTTGG	CACGAGACAT
	1201	CCAACACCCA	GCGGCGCGAT	GGCGAGCCGG	CAGCAGCAGC	AGCTGCAGGT
	1351	CCARCACCCCA	CTGGACGGCG	CCAAGACGCA	GTTGTACCAC	TTCAGGGCGG
	1401	TCGTCGTCGC	CAGCATGAGC	TTCTTCACCG	ACGCCTACGA	CCTCTTCTGC
	1451	ATCTCGCTCG	TCACCAAGCT	CCTCGGCCGC	ATCTACTACG	CCGACCCCTC
	1501	CACCCCCAAC	CCTCGATCGC	TGCCGCCCAA	CGTGGCCGCG	GCCGTCAACG
	1551	CAGCCCCARC	CTGCGGCACC	CTCGCCGGCC	AGCTCTTCTT	CGGCTGGCTC
	1601	GCGACAGC	TCCCCCCCCAN	GAGCGTCTAC	GGCATGACGC	TCATCCTCAT
	1651	GGCGACAGGC	TCCGTCGCCT	CCGGGCTCTC	GTTCGGGCAC	ACCCCGGCCA
	1701	GGICGICIGC	CACCCTCTCT	TTCTTCCGCT	TCTGGCTCGG	CTTCGGCATC
	1751	GCGICAIGGC	ACCOTCTOT	CCCCACCATC	ATGTCCGAGT	ACGCCAACAA
	1001	GREGGEGACI	GGACCCTTCA	TCCCCCCCCCC	CTTCGCAATG	CAGGGCTTCG
	1951	GCATCCTCCC	CCCCCCCCCCC	GTCACGCTAG	TCCTCTCCAC	GGTTTTCCGT
	1001	ACCCCCTTCC	Caececceec	GTACCAGACC	GACGCCGCAG	CGTCCACCGT
	1051	ACCCCA	COGCOCCOGC	GACGCATCAT	CCTCATGCTC	GGCGCGCTGC
	2001	CTCCCCCCCC	CACCTACTAC	TCCCCAACCA	AGATGCCGGA	GACGGCGCGG
	2001	TACACGGCGCC	TCCTCCCAAA	GAACGCGAAG	AAGGCCTCGC	TGGACATGTC
	2101	CARCECCEC	CAGTCGGAGG	TCGAGGCGGA	GCCGGAGAAG	CTGGACGAGA
	2151	TCATCCCCAC	ACCCCACCAC	TACGGCCTCT	TGACGTCGCG	GTTCGCCAAG
	2201	CCCCACCCC	TCCACCTCCT	CGGCLCGGCCICI	ACCCCCCTCCT	TCCTGGTCGA
	2201	CGTCGCGTAC	TACACCIOCI	ACCTGTTCCA	GAAGGACATC	TTCGGCAGCA
	2201	TTCCCTCCA	CCCCARGCCAGA	CCCACANTCO	ACCCCCTCCA	GGAGGTGTTC
	2301	IIGGCIGGAI	CCCCARGGCG	CCTCATCCC	CTCTCCCCC	CCGTGCCGGG
	2351	CULAICICCC	ACCOTOTO	TCATCGACGT	CATCGCAACC	TTCTGGATCC
	2401	ACTACIGGIIC	ACCGIGIICC	ATCCCTCTTT	TCATCOTCCC	CCTCGCGGTG
	2431	AGCICGIGGG	ACTCGCCAIG	AIGGCIGIII	CACGTCGGCT	TCGTCGTCAT
	23U1 2551		ACIGGACGAC		CACGICOGCI	CCCACCACCT
	2001	GTAIGGGCTC	ACCITCITCI	TUGULAAUTI		CACCTGCCAC
	2001	CATCGTGCC	GUCGAGATC	ANAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	GCC2CCGGIC	CCCCCCCCC
	2001	GGCATCTCCG		GANGGCCGGI	GCCAICAICG	GACGCCGGG
	2/01	GTTCCTCTAC			TOTATOTO	COCTOCOTOC
	2/51	ACAAGCCTGG	GATCGGCGTG		IGINIGIGUT	CGUIGCGIGC
	2801	AACCTCCTGG	GGTTCTTGGT	CAUGITUCIU	GIGCCGGAGI	CONNAGGGAA

HvPT6

Accession number = AF543198 HvPT6 total gene = 2876 bp Promoter = 916 bp cDNA = 1608 bp = 536 amino acids <u>3' untranslated region</u> = 352 bp

5′	1	ACTAGTTATA	CAGGTAGTCT	ATTCCCTATG	GGATTTTACC	ATGATGAttc
	51	GTCAAAATTT	ATAGATGATT	ATCAATATTG	CATTTTTACT	GTCGCAACTG
	101	TCCGCTGATG	ATTGATTTAT	TTGATACTGT	TTATGCATAG	GTATTATTGG
	151	CGTTATGAAA	ACAAATTTAG	TTCGGCGACA	AGCTGATAGT	CGCAAAGGAG
	201	GAATTAAACG	AGAGGCTTTA	CATACCAAAG	CAAGTAATCA	TGGGCATTTA
	251	AATCATCTAC	GATTCCGGCC	GGTGTTTTAT	CACCTGCTTG	AACTGCTGCA
	301	GCGCATCACT	TCTTGCTACC	ACCTTAAACT	GCTAGCTCTT	CAAAAGGAGG
	351	TTTCTAGCAA	ACTCTGCTGA	CACACATAGC	CATCCAAACC	ATCTTTGTGC
	401	ACACAAGAAA	CATGAGTAGG	TCGAGAGAAG	CCAAAGGGAT	CTTCCAAATT
	451	TCGTCTTTCG	AACTAGCAAG	TTATGGTGAG	TGGAGGCGGT	ATCCGAAACT
	501	GAAAAAATGC	GGATCAACCA	AATCCCACAG	TAACTGCCTG	CAGGAGTCAC
	551	CTTTTGATGG	GATGTCACGT	CACCTTATTA	CTTGCCTCCA	TTTTTTTTGT
	601	TTTTCATGCC	TCCTTGATCG	TGACAGCCTT	CATTTATTTC	CTCTTTTCCA
	651	TCCTCACCTT	ACCAAGATAC	CACAAAATAA	ATTATAGTTT	TCATTTACTA
	701	GAAAATAAAA	AAAATAGTTA	GATTTTCCTT	TTCACCAACA	AAATCGGAAC
	751	AAGATAACTT	ATTAGGGTGC	GAATATTCCC	CTTCAGGAGG	AGGAGCCGCA
	801	GTATTTATCT	TGTCCAACCC	TCGCGGCTCG	TCCCACCCTA	AAATCTCTGA
	851	TCTTGTCTAT	CTCTCAGCAC	AACCAACAGC	GATCCCCGGC	GGCGGCGAGA
	901	GATAAGGCTC	GTGGCCATG G	CGCGCGAGCA	GCTGGAGGTG	CTGTCGGCGC
	951	TGGACACGGC	CAAGACGCAG	TGGTACCACT	TCACGGCGAT	CGTCATCGCC
	1001	GGCATGGGCT	TCTTCACCGA	CGCGTATGAT	CTCTTCTGCA	TCTCGCTCGT
	1051	CACCAAGCTG	CTCGGCCGCA	TCTACTACTA	CCGCGAGGGT	GCCGACGCCC
	1101	CCGGCTCGCT	GCCGCCCAAC	GTCGCCGCCG	CCGTCAACGG	CGTCGCCTTC
	1151	TGCGGCACGC	TCTCGGGGCCA	GCTCTTCTTC	GGCTGGCTCG	GCGACCGCAT
	1201	GGGCCGCAAG	CGCGTCTACG	GCATGACCCT	CATGTGCATG	GTGCTCTGCT
	1251	CCATCGCCTC	GGGCCTCTCC	TTCGGCTCCA	CCCCCGGCTC	CGTCATGGCC
	1301	ACGCTCTGCT	TCTTCCGCTT	CTGGCTCGGG	TTTGGGATCG	GCGGCGACTA
	1351	CCCGCTCTCC	GCCACCATCA	TGTCCGAGTA	CGCCAACAAG	AAGACGAGGG
	1401	GCGCCTTCAT	CGCCGCCGTA	TTCGCCATGC	AGGGCTTCGG	CATCCTCACC
	1451	GGCGGCGTCG	TCACGCTCAT	CGTGTCCGCC	GCGTTCCGCG	CCGCCTTCCA
	1501	CGCGCCCGCC	TACGAGAAGG	GCGCCGTCGC	ATCCACGCCC	CCGCAGGCCG
	1551	ACTTCGTGTG	GCGCTTCATC	CTCATGTTCG	GCGCCGTCCC	GGCCCTGCTC
	1601	ACCTACTACT	GGCGGATGAA	GATGCCCGAG	ACGGCGCGCT	ACACGGCGCT
	1651	CGTCGCCAAG	AACGCCAAGC	AGGCCGCGGC	CGACATGTCC	AAGGTGCTCC
	1701	AGGTGGAGAT	CGCCGCCGAG	GACGAAACCA	AGGACAACGA	CGGGGCCGGC
	1751	GAAGACCGCA	ACTCGTTCGG	GCTCTTCTCC	GGCGAGTTCC	TTCGGCGGCA
	1801	CGGGCTCCAC	CTCCTCGGCA	CGGCCACCTG	CTGGTTCCTC	CTCGACATCG
	1851	CCTTCTACTC	GCAGAACCTG	TTCCAGAAGG	ACATCTTCAC	GGCGATCAAC
	1901	TGGATCCCCA	AGGCCAAGAC	GATGAGCGCC	CTCGAAGAAG	TGCACCGCAT
	1951	CGCGCGCGCG	CAGACGCTCA	TCGCGCTCTG	CGGCACGGTG	CCGGGCTACT
	2001	GGTTCACCGT	GGCCCTCATC	GACCGGATCG	GGCGGTTCTG	GATCCAGCTC
	2051	GGCGGATTCT	TCTTCATGGC	GGTGTTCATG	CTGGGGCTGG	CCTTCCCGTA
	2101	CCACCACTGG	ACGACCCCGG	GCAACCACAT	CGGGTTCGTG	GTGCTGTACG
	2151	CGCTCACCTT	CTTCTTCGCC	AACTTCGGGC	CAAACTCCAC	CACATTCATC
	2201	GTGCCGGCGG	AGATCTTCCC	GGCCAGGCTC	CGGTCGACGT	GCCACGGCAT

2251 2301 2351 2401 2451	CTCCGCCGCC TGTACCTGGC GCCGGCATCG CCTCGGCATG TCGAGGAGCT	GCCGGGAAGC GCAGAACCAG GGGTCAAGAA GCCTTCACCT CTCCGGCGAG	TGGGCGCCAT GACCCCAGCA CTCGCTATTC TCTGCGCGCC AACGACGACG	CGTGGGGTCG AGGTGGACCA ATCCTCGCCG CGAGTCCAAC AGGCGCCGGC	TTCGGGTTCC CGGGTACAAG CCTGCAACTT GGCATCTCGC GCCGGCGACG
		Sense	primer 🔿		
2501	CACGCCAGGA	CGGTGCCCGT	GTGAGACGTC	GCCGTACGTC	AGATATACTA
				← Anti s	ense primer
2551	G TATATGCTA	CCGGTGGTAT	ACTCTGCAGG	TTTGGATGGA	TGTATGGGTG
2601	TTTTCTTTTT	CTTGGTTGGG	ACGTTCAACT	CAGGAGTGAG	TACAACAACA
2651	ATACTACTAT	TGTCATGTGT	CAGAGTTCTC	CATGTTATAA	TTAATTAATT
2701	AGAGTTTATG	GTCGAGTTAA	TTATTATTAG	TAATATATAT	ACTACGTAGG
2751	TAATACCAGG	GACGGAGCTA	GCATTCATGC	ATAGAGGAGG	CAAGTTTGTT
2801	TATTTAAAGG	GCAGAATTCA	TATGAAGTGA	ATTTTTTTA	CTACAATTAC
2851	TACAATCATA	ATAGAAGAAC	CAATTT 3'		

HvPT7

Accession number = AY187022 HvPT7 total gene = 3700 bp Promoter = 1347 bp cDNA = 1584 bp = 528 amino acids 3' untranslated region = 769 bp

5'	1	AAGTTTTTCT	TGGATGGTTT	TTTATGNAAG	GTTTTTAATG	AGGCAATAGT
	51	AATGCAGACA	TTGTGATATG	TCAGTTTCTC	CTTATTTTCC	CACTGGGTTC
	101	TTGGAAGGAG	TTCTTGATGG	CATATTGTAT	GTATCTCATC	ATATTCTTCC
	151	TACATGGTTT	TTGGAGGAGA	CTAATCAAGT	TGATGATGAT	GATGGTGATG
	201	ATGATGTTAC	AAGAATGATT	GAAGCAGAGA	TTAGGGAGAG	TGTTAGGATT
	251	TAATTAATTA	GTTTAATTAA	AGGGAATCTC	TGCCCGTGGA	ACAGATAGGT
	301	AGTTTGGCTC	CCGAACGATC	ACATCCGAAT	GTAACGGATG	CGTCATTTTG
	351	ATCGTGGCTG	TTGTAACCAT	CGTGTCTGTG	TGATGCGCCT	CTTCAGGAGG
	401	TATATATATG	TACATCATCG	GTATCAATAA	TTATCTATTG	TTACTGTTCA
	451	TTAACAATTT	TCTGAAAGAA	TTGGTAATGA	GTTGTTATGT	GGTAACAATC
	501	CTCCATGTTA	AACTTGCGGT	AATAAAGTAT	TGGGAAAGTT	GTGAATGAGC
	551	CGGGATGTAT	TTATACACAT	TAACTTTAGA	CATGATTTTG	CCAAAAAAAT
	601	TACAAGGGGA	TTCATGATAT	TATAATATTT	TTTGGAAAAT	AGAAAACCAT
	651	GGTTACAGTA	CAAGACAATA	AAATGTTACA	CATAAAACAT	CAGGAAAACC
	701	CGATGGTGTC	TGGTACAGAC	AAGATGACGA	TTGGTAACCT	ATAAATATAA
	751	ATTCATAGAA	ATGCCTATTT	TTACCCTCAA	ATGGCACAAC	ATGTCACCAT
	801	GAAACTTTTC	AAATCAAAGC	AACTTTAATC	AACTACTAGA	AAAAAGCAAG
	851	TTTATCATCA	GGGTGTATAC	AATTTTATTC	GGAATCCTGG	TACACTGGTA
	901	GGTTACCCGC	GAGCCCCTCT	CAGGAGCTAA	GACTGGCATG	TTTTGGTTCA
	951	TGTTGTGACA	AGTTTCATCA	TGCGTGGCTA	CAAACACAAC	AAATATATGT
	1001	ACATTTTGTT	TCGATATACT	TGCTGCAGAC	AAAACAAGAA	TATGCCCATC
	1051	CATTATTCCT	AGAATATGCT	CGCAAAACAA	AAGAGCTTCG	CTATGCATGG
	1101	GAAACTCTGA	GCCCATCCAT	GTTTTCCTCT	ACAAATTAAG	AAGAGAACTG
	1151	TTAAACAGGG	AGAAGAAGTT	GGGCTCCAAG	TAACGAAGGA	CCAGGATCCC
	1201	GGAATATTCT	CACCTCTCCG	TCCGTATATA	CATGGCTAAG	TGACACCTGT
	1251	GCCTTCTCCC	TCAGTTCACT	CCCATCTTAA	ACCTCAACAA	CCTACCATCG
	1301	CGGCTGATCG	CACGAGCAAT	CTCGCCGCCG	GCAGGTCGGA	GCTGGCAATG
	1351	GCGGGGCGACC	AGGTACACGT	GCTCGCGGCG	CTGGACGGGG	CCAAGACGCA
	1401	GTGGTACCAC	TTCACGGCCA	TCGTCGTCGC	CGGCATGGGC	TTCTTCACCG
	1451	ACGCCTACGA	CCTCTTCTGC	ATCTCCCTCG	TCACCAAGCT	CATCGGCCGC
	1501	ATCTACTACA	CCGTCCCGGG	CTCTCCCAGC	CCAGGCAGCC	TCCCGCCGAC
	1551	CGTCTCCGCG	GTCGTCAACG	GCGTGGCGTT	CGTCGGCACG	CTCTCAGGCC
	1601	AGCTCTTCTT	CGGCTGGCTC	GGCGACAAGG	TCGGCCGGAA	GAGCGTGTAC
	1651	GGCATGACGC	TGATGCTGAT	GATCATCTGC	TCCGTCGCGT	CGGGGGCTCTC
	1701	GTTCGGCCGC	ACGCCCACCA	GCGTCATGGC	CACGCTCTGC	TTCTTCAGAT
	1751	TCTGGCTGGG	CTTCGGGATC	GGCGGCGACT	ACCCGCTCTC	CGCCACCATC
	1801	ATGTCCGAGT	ACGCCAACAA	GCGGACGCGC	GGGGCGTTCA	TCGCCGCCGT
	1851	CTTCGCGATG	CAGGGGTTCG	GCATCCTCGC	CGGCGGCGGC	GTGGCGATCG
	1901	GGATCACGGC	GCTGTTCAGG	GCCCTCTTCC	CGGCGCCGCC	GTACGCGGCG
	1951	GACCCGGTGG	CATCCACCCC	GGACCAGGCG	GACTATGTGT	GGCGCATCGT

2001	GCTCATGCTC	GGCGCGCTCC	CCGCCGCGCT	CACCTTCTAC	TGGCGGATGA
2051	AGATGCCGGA	GACGCCGCGG	TACACGGCGC	TCATCGCCAA	GAACGCCGAG
2101	CGCGCCGCGG	CCGACATGTC	CAAGGTGCTC	AACGTGGAGA	TCACCAAGGA
2151	GCAGGCCGGC	GACCTGGAGA	CCGCGATCTC	CATCAAGTCC	CACACGTCGC
2201	CGTCGTTCGG	CCTCTTCTCC	AGGGAGTTCA	TGCGGCGTCA	CGGGCTCCAT
2251	CTCTTGGGCA	CGGCGTCGAC	CTGGCTCCTC	CTGGACATCG	CCTACTACTC
2301	GCAGAACCTG	TTCCAGAAGG	ACATCTTCAG	CGCCATCGGG	TGGATCCCTC
2351	CGGCGCCGAC	GATGAGCGCG	CTGGATGAGC	TCTACCACAT	CGCGCGCGCC
2401	CAGATCCTGA	TCGCGCTGTG	CGGCACCGTG	CCGGGGCTACT	GGTTCACCGT
2451	CGCCTTCATC	GACTCCGTCG	GCCGCTTCAA	GATCCAGCTC	ATGGGTTTCT
2501	TCATGATGAC	GGCATTCATG	CTCGGCCTCG	CCGGGCCGTA	CGACTACTGG
2551	ACGGGCCAGG	GCCACCAGGT	CGGGTTCGTC	GTCATGTACG	CGCTGACCTT
2601	CTTCTTCGCC	AACTTCGGGC	CCAACGCGAC	CACCTTCATC	GTCCCCGCCG
2651	AGATCTACCC	GGcCAGGTTC	CGCGCGACGT	GCCACGGGAT	ATCGGCCGCG
2701	TCGGGGAAGG	TGGGCGCCAT	CATCGGCTCC	TTCGGGTTCT	TGTACCTGGC
2751	CCAAAGCCCC	GACCCGGCCA	AGACAGCCCA	TGGATACCAC	CCCGGCATCG
2801	GCGTGCGCTA	CTCCCTCTTC	GTGCTCGCCT	TGTGTAGCTT	GCTGGGGGTTC
2851	ATGCTCACGT	TCCTCGTTCC	CGAGCCCAAG	GGCAAGTCGC	TGGAGGAGAT
2901	GTCGCGCGAG	ACCGAGCCCG	ATCATTGCTA	ACTAGTCTAC	TCGTTGCTGC
2951	ATGAAGATCC	GCTAGTCTAC	TTGTAGATGA	TCGTCGGTGA	ATACTGCATT
			Sense p	rimer 🗲	
3001	AAGTTTTGGC	AATTAGGGGG	CGACGATATG	ATGAAATAAT	CCTCAGAATT
3051	GTTTCTCGAA	GTAGATCAAG	AAGGTTCTTC	ATTTGAAAAT	TCCTTTCATT
3101	TGAATGTGTA	TCTTAGCGAG	TTTATGTCTC	AAAACGCTCG	TTATGTGTCA
3151	CAAGACTACA	CTTATGAGGA	TACGATTTGA	GCACATCAAG	GATAAAACGA
3200	ACATGCAAAC	CGCGTGATCT	GCAACCGAAA	CTATCAAGGT	CGGGCCGGCA
		+	- Anti sense	e primer	
3251	AAATCTAGGG	ACATGTGCAA	AACTAAAACA	TGAATCCTAT	TTCAATAAAA
3301	AAACTAACGA	TTAGTTTTTT	TTAACACGGT	ACAGAAACAA	ACGCTGATAC
3351	ATACACATAC	ACTCACTCCT	ATGAACGCAA	ACACGCATAC	TCTACCCTAT
3401	GAACATCTCC	GTGAGACTTA	GACGGCATAG	CATCTTAAGA	TTTACGAAGT
3451	CACCATAGAA	TCATAGATGC	CTCCTCGTCG	ATGAAAACGT	CTCCTCCCAT
3501	TGAATGTGCA	TCGTCAAAAA	ТССТААААТА	ACTCCAGGAA	TTATGCGAGC
3551	ACCGGGATTI	GAAACCTGTT	GGGCTGCGGA	TACCACATTT	TATTTAACCA
3601	TCCAACCACA	GGTTGGTTCG	CACTAACGAT	CAGTTATAAT	GCATATATAT
3651	CTCACATAAT	TGNTTATAGT	GNATACATCT	CGCAATTGGT	TTTTATAATG
	3'				

HvPT8

Accession number = AY187023 HvPT8 total gene = 3163 bp Promoter = 1371 bp cDNA = 1602 bp = 534 amino acids <u>3' untranslated region</u> = 190 bp Putative cis-regulating motifs (referenced in section 7.2) have the motif aligned under the sequence with the percentage of similarity.

51	1	GCGTTAAGAG	CAACACGGTT	TTCTCTATAT	TCTGTCGCAA	ATGGTAATAT	
	51	GGCATAGCCA	CGCCAGTCGG	TATGAATTCA	GGAAAAATGT	TTGAAAAACG	
	101	AATATTTTTT	ATATTTGTAA	CATTTTTGAA	AAGCAAGGAC	ATTTTTTGAA	
	151	ATTAAAGAAC	AATTTTGGAA	CACAAACTTG	GTTTAATAAT	TGAATAATAT	
	201	TTAAATATTT	CGAACATTTT	TTAAAGTACC	AAACATTATT	TGAAAATATC	
	251	AAACATTTTT	TAAAACCACA	AATTTAAGGA	AATCGCACAC	CTTTTTTTAG	
	301	TTATGAATAT	TTTTAAAAAA	CGGAAACTAT	TTTGAAATTT	AGAGAAAAAA	
	351	TAGAAACTAA	AATTATTTTC	CAAATTTAAA	GAACAGTTTT	TGAACATGAG	
	401	CTTATTTGAA	AAAAGATAAA	ATAACCTTAG	AACAAAGAAA	AAAAGAAACG	
				AAAACTTAG-1	Notif 78%		
	451	GAAAACAAAA	АСАТАААААА	AAGCAAAAAC	ATAAAAAGGA	AAAAGAAAAA	
		AAA	ACTTAG-Mot	if 78%AAAAC	TTAG-Motif	78%	
	501	CAGATAAAAA	AAAGGTTCAG	GAACCTACCA	GAAGGTTCCC	AAAACTGGTG	
	551	GACTGGGCCA	GCCCAAGTAT	CGCCTGGGGA	GCCTCGACTA	CTTGTTACAA	
					CTT	CTTGTTCTA-Motif	758

601	AATACGTCAA	ATAAGATATT	CCGGATTTAG	AGTCTGTTTT	TCTTTTAAAA
		TAATATAT-M	lotif 88%		AAA
651	AATCAGCTAA	AATATGTTAT	TACTTTAAAA	AAATACTGAA	GAAAACCAGG
	ACTTAG-Moti	f 78 ነ			
	TAATA	ATAT-Motif 8	38%		
701	TTAGAAATCG	GCTGACAACG	CATGTAAAAC	CGGTCAACCC	CATAAGCACG
751	AATCACAAAG	CAATAAATGG	ACGGTAGCAG	ATTTGACCGA	AAGCTAAAAA
801	AAACAATTGC	CGACAAATAG	CAAACCGATT	ATTGACACAA	TAATGCTACT
851	CCTACAAAGA	CTTATAAAGG	GTTACTTAAC	CTTTCAAACT	AGTTCTCCCC
	AAAA	CTTAG-Motif	E 78%		
901	CCTCCTCCGA	TTTTCAGTGG	AGGTGGGGGT	CCTCATCTTC	AATTACCAAT
951	CATAATTATA	CACATGAGTT	TATACGTAAA	ATTGTAGACG	TAGCATTACT
		TACATAAATA	TGTTCTTTAA	CTTG-MRR1 M	Notif 638
		TGTT	TATAAGT-Mot	tif 82%	
1001	CTCATTCACA	CCTGCACCCA	ACGACACAAT	CATTCCCGTG	CGTATATTGC
1051	GTATTGCACC	GGCCCTGCGA	TGCCCACCGG	CGCCTTGGAG	TTTCCACCCC
1101	CTTTGTTCCT	TCTCCCCGCT	TTCAGCAAGT	TCATTGTCTG	GTACATGCAC
			Т	GCATTCTAT-I	Motif 70%
1151	ACGCTACAAG	ATAACCACAT	GCAGCTATAC	CATCCTCGTA	TCTTGCTATT
1201	GTTTCCATTT	GGCACATCTA	AACAAACCAA	AGCAATAAGC	CGGCTTACAT
1251	AACCCCCTTG	CTCGCCTATG	CTTACTTGGC	TCCCATTCCC	TGTAAACACA
1301	CGATCGAGGA	CCGTCTTGAA	TCTTGCTTTG	CACCGGCCAA	GAAGTGCGGA
1351	CGGGCAGACG	TACGTCCGGC	GATG GCACGG	CAGCAGCTGC	AGGTGCTTCA
1401	CGCGCTGGAC	GTGGCCAGGA	CACAGAGGTA	CCACGCGTGG	GCGGTGGTGA
1451	TCGCCGGCAT	GGGCTTCTTC	GCCGACGCGT	ACGACATCTT	CTGCATCACC
1501	CTGGTCACCA	AGCTCCTGGG	ACGCATCTAT	TACCACGTCC	CTGGCCAACC
1551	AGACCCCGGA	ATGCTCCCCC	GGCGGATCGA	GGCGGCCATC	AACGGCGTCA
1601	CCTTCTGCGG	CATGATCGTG	GGGCAGCTCT	TGTTTGGCTG	GCTCGGCGAC
1651	AAGGTCGGCC	GGAAGATGTT	CTACGGCAAG	ACCATCATGC	TCATGATCAT
1701	GGGCTCCTTT	CTCTCGGGGCT	TGTCATTCGG	GAACACGGCC	GACGGCGTTA
1751	TGGCCACGCT	GTGCTTCTTC	CGGTTCTGGC	TCGGCGTCGG	TATCGGCGGA
1801	GACTATCCGC	TCTCCGCGAC	CATCATTTCC	GAGTACTCTA	ACAAGAGATC
1851	GCGCGGGGAGC	CTCATCGCGG	CCGTGTTTGC	CATGGAAGGG	TTTGGCATTC
1901	TTGCAGGCTG	CATTGTCACC	TTGGTCGTGT	CGGCCACGTT	CCAGGCCCGC
1951	TTCAACCCGC	CGGCGTATGA	GGAAGACCCC	ATGGCCTCGG	TCCCGCCGCA
2001	GGCTGACTAC	GTGTGGCGCA	TCATCCTCAT	GGTGGGTGCC	ATCCCAGCCG
2051	TCTTCACCTA	CCGCTGGAGG	GTGATGATGC	CGGAGACGGC	GCGCTATACG
2101	GCGCTGGTGG	CCCGCGACGC	CGAGAAGGCC	GCGCGCGACA	TGTCCAAGGT
2151	GCTCAAGGTG	GAATTCACCG	GCGAGCAGGA	CAAGATCGAG	AGCTTCACCA
2201	GGGACAGGGA	CTACGGCGTC	TTCTCCCGCC	GTTTCGCCCG	CCGCCATGGC
2251	TGGCATCTCG	TCGGCGCCGT	TGCGTCCTGG	TTCGTGCTCG	ACATCGTCTT
2301	CTACTCCCAG	ATCATTCTCC	AGGAGGAGAT	ATTCAGGGAC	GTCAAGTGGA
2351	TCCCCGAGGC	ACGCACCATG	AGCGCGCTCG	AGGAAGCGTA	CCGCGTCGCC
2401	CGTGGACAGG	CGATCATCGC	GCTCTGCGGC	ACACTACCTG	GCTACTGGTT
2451	CACCGTCGCC	TTTGTGGATG	TCGTCGGGCG	GAAGGCCATC	CAGTTCCTCG
2501	GGTTCACCAT	GATGAAGGGT	CTCATGCTCG	TCGTCGCCGC	CTTCTACCAC
2551	CACCTGACGC	AGCCTGGCCG	GCGAATATGG	CTGGTGGTCA	TGTACGCCTT
2601	CACCTTCTTC	TTTGCCAACT	TTGGGCCCAA	CAGCACCACC	TTCATCATAC
2651	CGGCCGAGAT	TTTTCCGGCA	CACGTCCGGA	CGACCTGCCA	TGGGATATCA
2701	TCGGCGGCAG	GCAAGGTAGG	CGCCATTGTC	GGGACGTTTG	GCTTCCTGTA
2751	CGCCTCGCAG	AGGGCGGACG	GCAGCAACGA	GGTGAAAAGI	GGGTACCCGT
2801	CGGGCATCGG	GTGCGTGCC	TCACTGTTCG	TGCTGGCCGC	GTGCAATGTG
2851	TTGGGCATAA	TTTTCACCTO	TCTCCTGCCT	GAGCCGAATG	GGAGGTCGCT
2901	GGAGGAGGTG	TCCGGCGAGC	CCATCAACAG	GGAGGACGCG	GATTTGGGTG
		Sense pri	mer → RT-P	CR	
2951	ATTCCAGGGI	TCTTCCCTTC	TAGAACCTGT	TTGAACGTAG	GCTGTGCGCA
	Senge prim	er -> real-	time RT-PCR		
3001		ADADAGAACC	CATTTCCATC	TGTGATGTG	TGGGAACCCG
200T	ICACITORIC	Anti geng	e primer re	al-time RT-	PCR
3051	<u>്റ്റു</u> നനുഹാനം		C PLTWET IS	CACCTTTCC	AACTATTGCG
2101	CACCACAAA		ACACCAACCA	ATTGTCGACA	TTAGACTTAG
2TOT	GAGGAGAAA		Inti conce	nrimer DT.D	CP
2452			WICT Sellse	brrugt KI-b	
3151	GATTTCACA'	L TTT 5'			
Wheat Phosphate Transporter

TRlae;Pht1;myc Accession#AJ830009
TRlaePHT1;myc total gene = 1781 bp
cDNA = 1602 bp = 534 amino acids
3' untranslated region = 179 bp

51	1	ATGGCACGGC	AGCAGCTGCA	GGTGCTTCAC	GCGCTGGACG	TGGCGAGGAC
	51	GCAGAGGTAC	CACGCGTGGG	CGGTGGTGAT	CGCCGGCATG	GGCTTCTTCG
	101	CCGACGCCTA	CGACATCTTC	TGCATCACCC	TAGTCACCAA	GCTCCTCGGA
	151	CGCATCTATT	ACCAAGTCCC	GGGCCAACGA	GAGCCCGGGA	TGCTCCCCCG
	201	GCGGATCGAG	GCGGCCATCA	ACGGCGTCAC	CTTCTGCGGC	ATGATCGTGG
	251	GCCAGCTCTT	GTTTGGCTGG	CTCGGCGACA	AGGTCGGCCG	GAAGATGTTC
	301	TACGGCAAGA	CCATCATGCT	CATGATCATG	GGCTCCTTCC	TCTCCGGCTT
	351	GTCGTTCGGG	AACACGGCCG	ACGGCGTCAT	GGCCACGCTA	TGCTTCTTCA
	401	GGTTCTGGCT	CGGCGTCGGC	ATCGGCGGAG	ACTATCCGCT	CTCCGCGACC
	451	ATCATTTCCG	AGTACTCCAA	CAAGAGGTCG	CGCGGGAGCC	TCATCGCGGC
	501	CGTGTTTGCC	ATGGAAGGGT	TTGGCATCCT	TGCAGGTTGC	ATTGTCACCT
	551	TGGTCGTGTC	GGCCACGTTC	CAGGCGCGCT	TCAACCCGCC	GGCGTATGAC
	601	GAAGACCACA	TGGCCTCGGT	CCCGCCGCAG	GCTGACTACG	TGTGGCGCAT
	651	CATCCTCATG	GTGGGTGCCA	TCCCAGCCGT	CTTCACCTAT	CGCTGGAGGG
	701	TGATGATGCC	GGAGACGGCG	CGCTATACGG	CGCTGGTCGC	GCGCGACGCC
	751	GAGAAGGCCG	CGCGCGACAT	GTCCAAGGTG	CTCAAGGTGG	AACTCAGCGG
	801	CGAGCAGGAC	AAGATCGAGA	GCTTCACCAG	GGACAGGGAC	TACGGCGTCT
	851	TCTCCCGCCG	TTTCGCCCGC	CGCCACGGCT	GGCATCTCGT	CGGCGCCGTT
	901	GCATCCTGGT	TCGTGCTCGA	CATCGTCTTC	TACTCCCAGA	TCATTCTCCA
	951	GGAGGAGATC	TTCAGGGACA	TCAAGTGGAT	CCCCGAGGCA	AACAGCATGA
	1001	GCGCGCTCGA	GGAAGCGTAC	CGCGTCGCCC	GTGCACAGGC	GATTATCGCG
	1051	CTATGCGGCA	CACTACCTGG	CTACTGGTTC	ACCATCGCCT	TTGTGGACGT
	1101	CGTCGGGCGG	AAGGCCATCC	AGTTCCTCGG	GTTCACCATG	ATGAAGGGAC
	1151	TCATGCTCGT	CGTGGCCGGC	TTCTACCACC	AACTGACGCA	GCCTGGCCGG
	1201	CGAATCTGGC	TGGTGGTCAT	GTACGCCTTC	ACCTTCTTCT	TTGCCAACTT
	1251	TGGGCCCAAC	AGCACCACCT	TCATCATACC	GGCCGAGGTT	TTTCCGGCGC
			Sense p	rimer 🗲		
	1301	ACGTCCGGAC	GACCTGCCAC	GGGATATCAT	CAGCGGCAGG	CAAGGTCGGT
	1351	GCCATTGTCG	GGACGTTTGG	CTTCCTGTAC	GCCTCGCAGA	GGGCGGACGG
	1401	CAGCAATGAG	AGGGAGACCG	GGTACCCGTC	GGGCATCGGC	GTGCGTGCCT
	1451	CACTGTTCGT	GCTGGCCGCG	TGCAATGTGT	TGGGAATAAT	TTTCACCTGT
	1501	CTCCTGCCTG	AGCCGAACGG	GAGGTCGCTG	GAGGAGGTGT	CCGGCGAGCC
	1551	CATCAACGGG	GAGGACGCAG	ATCTGGGTGA	TTCCAAGGTT	CTTCCCTTGT
	1601	AGAACCTGCC	TGAACGTAGG	CTGTGCGCAC	CACTCGATGA	AAAAGAAGCT
	1651	ATTTGAATGT	GTGTTGTGCT	GGGAACCCGG	GATTAGATGC	ACTCCAAGGA
	1701	CCCTACGTAC	ACGGCGTTCG	GCAATCATCG	CGGAGGGGAA	ATGTGAATTA
	1751	AGAGGAAGGA	ATTGTCGAGA	TTAGACTTAG	<u>G 3'</u>	
			1 3	I wanted as a second of		

← Anti sense primer

Maize Phosphate Transporter

ZEAma;Pht1;6

Patent number = W09958657. Accession # AJ830010
ZEAma;Pht1;6 total gene = 1726 bp
Promoter = 49 bp
cDNA = 1665 bp = 555 amino acids
3' untranslated region = 12 bp

5'	1	GACACCTGCC	TTACATTGCC	GGCGCGCTTG	CGTGACTGGG	CGCGGCGAGA
	51	TGGCGGCGCC	GGGCGGGTCG	AACCTGGCGG	TGCTGGACGC	GCTGGACTCG
	101	GCGCGCACCC	AGATGTACCA	CATGAAGGCC	ATAGTCATCG	CCGGCATGGG
	151	CTTCTTCACC	GACGCCTACG	ACCTCTTCTG	CATCTCCACC	GTGTCCAAGC
	201	TGCTCGGCCG	CATCTACTAC	CCGGACGACA	ACCTGTACAT	AGACAAGCCC
	251	AAGCCCGGCA	CTCTGCCCGT	GTCCGTCAAC	AACATGGTGA	CAGGCGTCGC

301	GCTCGTCGGC	ACGCTCATGG	GCCAGCTCGT	CTTCGGCTAC	TTCGGCGACA
351	AGCTCGGGCG	GAAGCGCGTG	TACGGCATCA	CGCTCGTGCT	GATGGCCGCC
401	TGCGCCATCG	GCTCGGGCCT	CTCGTTCGGC	AGCTCGGCGC	ACGCCGTCAT
451	CGGCACGCTC	TGCTTCTTCC	GCTTCTGGCT	CGGCTTCGGC	ATCGGCGGGG
501	ACTACCCGCT	GTCCGCGACC	ATCATGTCCG	AGTACTCCAA	CAAGAAGACG
551	CGGGGCGCGT	TCATCGCCGC	GGTGTTCGCG	ATGCAGGGCG	TCGGCATCAT
601	CTTCGCGGGG	CTCGTGTCCA	TGATCGTCTC	GGGCATCCTC	CTGCACTACC
651	ACCCGGCGCC	GGCGTGGAAG	GAGAACCACG	ACCGGTCGTG	GCAGGACCAG
701	ATGCCGGCGG	CGGACTACAT	GTGGCGCATC	GTCCTGATGA	TCGGCGCGTT
751	CCCGGCGCTG	GCCACGTTCT	ACTGGCGGAT	GAAGATGCCC	GAGACGGCAA
801	GGTACACCGC	GCTCATCGAG	GGCAACGCCA	AGCAGGCGGC	CAACGACATG
851	CAGAAGGTGA	TGGACGTCGA	GATCCAGGCC	GAGCAGGACA	AGCTCGCGAG
901	GTACAAGGCG	GCGAACGACT	ACCCGCTGCT	GTCGAGGGAG	TTCGCCCGGC
951	GCCACGGCCT	GCACCTCATC	GGCACGGCCA	CCACGTGGTT	CCTTCTCGAC
1001	ATAGCCTTCT	ACAGCCAGAA	CCTGACCCAG	AAAGACATCT	TCCCGGCGAT
1051	CAAACTGACG	AGCCCCGTCG	ACGACATAAA	CGCCCTCAAG	GAGGTGTTCG
1101	AGATTTCCAA	GGCCATGTTC	CTCGTCGCAC	TCCTCGGCAC	CTTCCCCGGC
1151	TACTGGGTCA	CCGTCGCGCT	CATCGACAAA	ATGGGCAGGT	ACCTGATCCA
1201	GCTCATCGGT	TTCTTCATGA	TGTCTGTCTT	CATGCTACTG	ATGGGCGTCA
1251	TGTACAACGA	C CTCAAGAAC	AAACACACCA	CGCTCTTCGC	CCTCTTCTAC
		Sense pr	imer 🔿		
1301	GCGCTCACCT	TCTTCTTCGC	CAACTTCGGC	CCCAACAGCA	CCACCTTCGT
1351	GCTGCCGGCC	GAGCTATTCC	CGACGCGCGT	GCGCTCCACC	TGCCACGCCA
1401	TCAGCGCCGC	GTCAGGCAAG	GCCGGCGCCA	TCGTCGCGGC	CTTCGGGGTG
1451	CAGAGCCTCA	CGCTCAAGGG	AGACGTGGGC	CACATCAAGA	AGGCGCTCAT
1501	CATCCTCTCC	GTCACCAACA	TCCTCGGCTT	CTTCTTCACC	TTCCTCGTCC
1551	CGGAGACCAT	GGGCCGCTCG	CTCGAGGAGA	TCTCCGGGGA	GGACGGCAAC
1601	GTCGAAAACG	GTCCCGGTGC	TCCCGCCGGC	GTGGCCATGG	GCGTCGCGGA
1651	CGTGAGCAAG	GATGACAAGA	TGCCTGTTTC	CAGTACTGAG	TGGCAGAGCT
1701	CCATGCATGC	GTGA TCGAGT	AAGCAG 3'		

← Anti sense primer

Rice Phosphate Transporters

OsPT1, Rice C, ORYsa; Pht1;11

The sequence of OsPT1 (personal communication Godwin) was used to screen the rice genome. There was a 100% match with a gene designated *rice C*. Upon publication of a paper by Paszkowski (2003)it was revealed that all three genes have 100% similarity. The name *ORYsa;Pht1;11* will be used when referring to any of these genes.

```
Accession number = AF493787 (OsPT1), AF536971 (ORYsa; Pht1; 11)
ORYsaPhT1;1 total gene = 5451 bp
Promoter = 3393 bp
cDNA = 1668 bp = 556 amino acids
3' untranslated region = 390 bp
Putative cis-regulating motifs (referenced in section 7.2) have the motif
aligned under the sequence with the percentage of similarity.
      1 AAGCGAGGTG CCTCTGGGGC CAAATGCTCG ATCTACCGGA GCGGCGGAGT
51
      51 CATTTTCTAG GATCCGCAAG CGGCGTCGAG GAAAACCGTG ACCATACTGA
     101 CCAACCACGC AAGACATCGC TGGCGCTCGG CCACTCCGCC CCTCCACCAT
     151 TTCTCCTTGC TGAAGCTGCT GCTTCTCCCC ATGCCTATCA TCTCCGGTCT
     201 ACGCCCCCTC TTCAAGCTTC TCCGCGCCAC TCTCCTTGAT TCTTGCATAT
     251 CCTTCTCGCA CAATTGATTT TCTGGACAAG TTTGGTACAT CGATTGATTT
     301 GAGAACACAT CTAGTAGCGA GAAATTCTCT TGATTGGCTT CTTAGCAACA
          Sense primer \rightarrow with Pac1 at 5' GCCGCCTTAATTAA
     351 TGCATTACTA GAGTATTAGT CAGGTAGGCA GCTTAATTTG CTGGCTAAAT
     401 AGTACCAACG AAGGCCCACA ACACCAGCAA GTGGATGTTG GCATTATCGT
     451 ATTAGACCGG AATAAGTCTG TTGTTCCTCC CTCATTTGTT GCTCCCGATT
     501 AAATCGTCTT CCTCAACCAC AAAACCAGTT ATAACGTACT ACCCATCTCC
```

551	GAAACTCGGT	GCAAATAAAC	TCCTTCAGTG	ATTTAAGTAG	CGGTTTCTGC		
601	TGACGTGGCA	AGTTGACCAC	GTTGACTCGC	TGAGTCAGTA	GGTGGGTCCC		
651	ACATGTTAGC	GATTTCTTCC	TCATCTCATC	TCCTTCCTCA	CCTATCCTCT		
701	CTCTCTCCCC	CCCCCCCCTCT	CCCTCTCTCT	CTCTCTCTCT	TCTCTTCCCT		
701	CTCTCTCCTC		CAGCAGCAGT	AGAGCCCGGG	ATGGTGGTGG		
101	TCCTCCTC	CTCAACCCGA	ACAACCCACC	TAAGTAACCG	AGGAAGCCCG		
801	TGGTTGTGAG	CIGAAGCCGA	AGAAGGCAGC	CGTCCCCCCA	AGGGTGATGG		
851	ATGGGAGGAG	GCGACTAGIG	AGAAGGGCCC	CGICCCCCA	CACCACCACA		
901	ATGTGGAGAA	GTTTTGGATGG	AGTAGGAAGA	GGCCCCAAGC	CTACCACCACCA		
951	GCTTAGCGAG	GCTGAGGCGG	CTAGAAACAT	GAGGCCAAAI	CIAGICATIG		
1001	TCGACATGCT	GTCAAGGAGC	GTGCACGTGG	TGGTGCTCGA	GGTAGCGGCA		
1051	GGCGGCACTC	GAGGCTGCAA	CTTCATGGAT	GTCGCAGTCC	ACGTCGTATG		
1101	CGCTCGTGGC	CTCCTCCGGC	CCGGCCCCTT	GCCCCCTCCC	AAGATGGTGT		
1151	CGTAGCGGCA	AACGGCCGGA	AGGAAGGGCT	CGATGTTGGC	GGCTCCTCTC		
1201	CCGAGTGGGG	TTGGGGTTCG	CGAGGGTGCT	CACCAGCTAG	CACCGTCTTC		
1251	ACCTGGCTCC	GGGGATGCGT	GCACCTAACA	CTACAGACTA	ATAGGGGAGT		
1301	GATGGGAGAG	GGTGGAGCTT	TGGTGTCGTC	ATCGATGTCT	TCTCGTCTTC		
1351	AGCTGTCGTT	GCTAGTGAAG	ATCTTCCAAG	TTCCAAGTCT	CACTTGGCAC		
1401	AUCICICOTA	GTCACGTCCT	CCTTCCCTGA	ATGCTCCGAG	GTGGCCACCA		
1401	MICCUIACCG	GICACGICCI	CCACCATCCC	CCTGTCGGGG	CCATCTCGCC		
1451	TUCIUGGUIU	CGGGICACCA	CURCURICOU	CTTCCAACGT	CACACACGAA		
1501	ACTACCGCTA	CUCILUCGAG	ACACACIGIT	A A C C C C A C C	CCCACCTCAC		
1551	GAAGAGGGAA	GAGAGAAAAG	AGAGAGGIGG		CORCETANT		
1601	GAGGAAGATG	AGACAAGGAA	ATCACCAATA	TGTGAATCCC	ACAIGCIAAI		
1651	ATAGTAAGTC	AACTGCAGTA	AACCTGGCAT	CTCAGGAGAT	ACCGCTTCCC		
1701	AAATTCTCGA	AGTAGTTGAT	TTACATCGGT	TTTTGAAGTT	AGGGAAGGCA		
1751	TTATACCCGG	TTTTGCGGCT	GAGGGAGCGA	TTCATTCAGG	AGCAATAGAC		
1801	GAGGGATGCC	AAATAGACTT	GTTCCTATTA	GACCGTAAGA	TTATTGATGG		
1851	GACGAAAGGC	CTTGCATAGA	TAGTGATATC	TGAGCCCATG	CAGGGGCTAT		
1901	CACCAATGCA	GTGTTGCTAG	AAAGTGCAGT	ATCACTACTA	GCAAAATAAA		
1951	AAGTTTGTCT	GCTAAGAGAA	AAAAAAGGGA	CCCATTTAAC	ACAATTCTAG		
2001	CTCTAGATAA	GTGGGACTGT	ACAAATTCTT	CATTTTTTTT	AGCGAAGTTA		
2051	GAAGTTAGTA	GAGTTGCTCC	ACAAAATTGT	ACTATGGGGG	TGGAGATGGG		
2101	TTTTTGCTAC	TTCACCGCTC	CACTCCATCC	AAAAAAGCTA	ACTAACTTTT		
2151	AATTTTTCAT	GTATTTACCG	AATATGCCAC	TGAACTACCC	ATTCATACCC		
2201	TCTCTCATCC	CGTTCTTCCT	CCCAACTAGG	CGGCTGGGTG	GCGACCGGCC		
2251	GCTGGGACTG	GTGGCGGCGA	GCGGGTTGCA	CAGCTGCTAG	GCGGCTTGGT		
2301	GGTGTGCGAG	GGCAGCAAGG	GAGAGGGCGG	TGGCACGCGG	GCTGAGCATC		
2351	GATCGGCAGG	GTCAGCAGGA	CAACGTGTGG	GTGACGGGGT	GTGGGATGAG		
2401	CGACAACGGT	GTCGGTTGGT	TGGGTGGCAT	GCATAGGCCG	TAACCAGTCG		
2451	TGGGGACCAN	CGGCTATTGG	GTGTCTTGGT	GGCGCACAAG	CGCAACAGGG		
2501	CCCCCCACGT	GTGGGCAGCA	GTGCACAGGC	TGAGCGGTGA	CGCGCAACGG		
2501	CGGCGCACGI	ANGCCGCGGA	CCCCAACCAA	GTATTCGATG	AAATGAGATG		
2001	CGGIGGIGGC	AAGCCGCGGA	т т	CCATTCTAT-	Motif 70%		
0.001			- • እእሮሮእእእጥሮቸ	ACCCABACAT	TTTTACAACT		
2001	GGAIGIGGIA	GCGIGGAGCI	AACCAAAICI	TAGECAMACAI T	CTTTATAACT_N	(ot i f	738
				1	TAACAACT	IOCIL	, 2 0
			CTA COTTON		ACTITA A A AT		
2651	ACCITCAGCO	TCTATAAGAG		I I AGAGIIGG	AGIIIAAAAI		
	AT-Motif 8	108	TGCAATTCI	AT-MOLIE /			
	CTTCTTGI	TCTA-Motif	67%		TGTTTATAAG		
					AAAAC		
					TACATAAA		
2701	TAGGAGTTGA	AATTTGGAGG	CTTAACAAAI	GGGGCCGAAA	TATCTGCTTT		
	T-Motif 73	18	TAATATAI	-Motif 75%			
	TTAG-Motif	78%		TAA	. TATAT-Motif	75%	
	TATGTTCTTT	AACTTG-MRR	1 Motif 54%	TACATAAA	TATGTTCTTT		
2751	TAGGCAGACO	GCGTAGCGGT	AAATCGATGA	A TGTAGACAGT	TGGCCGCAAC		
	TAACTTG-ME	R1 Motif 54	8				
2801	TGCAAGGAAZ	CAACACTCTC	TCACACAGG	TCCGCCGTAT	GGTAGGAATC		
2951	CCCAATCATC		GAATATCCTZ	CCAAAAACGA	CGCATTTCCG		
2001	TCCTACTTA			ATCCTCCAGG	TAAAGTAAAA		
2201	TCCINGTIM	, criconigei	т <u>с</u> (ATTCTAT-MO	tif 70%		
			190		таат [.]		
2051	mamma a va			ቦ ሮሞሮሮሮልሞልሞሮ	CATCAGCTGC		
2321	TCIIGCAAG	F 758		CICCOAINIC			
2007	AIAI-MOULI	L / J70 7 (7) TTC 7 (7) (7) (7) (7) (7) (7) (7) (7) (7) (፣ ምምርአአምምአርን		CCCABCCCAC		
2001	CCAALIGACO	- CALCACIGAC	1 TIGWATTACK	- COCOCOCAAO			

CATGATTGAT TTCGTCATTC TCCTCTCGAG ACAAAGAATC CGATCTCATC 3051 TCCGCACGAG GGACGGCCAA CTGCTTCCAC CCTTCACAAT GCCGCCTAGA 3101 3151 CGCCTAGTGT ACGCGCCGAA TATGCTGCCA AACCAACACG GGACAATCTC 3201 CCGCGCTTGG CGACAGCTTC TCCTCGGTGC AGACGCCCTC TCGTTCATCG CTTC TTGTTCTA-Motif 67% 3251 ACCTAGCTTG AGGGTGAAAT CCCAGCTATA AGATCGGGCA AGGCAGCGAG 3301 CAGTTTGGTG ATCAGAGGTA GCTAGCTAGC CTCGTAGCAG TGTTCCCCGG 3351 CGGCGAGAGC GGCAGGAGAG GACGATCGAC GGCATCATCG GAGATGGCGG ← Anti-sense primer with AscI site at 3' GGCGCGCCTCGGC 3401 ACGCGGACGG GGGCTCGAAC CTGGCGGTGC TGGACGCGCT GGACTCGGCG 3451 CGCACGCAGA TGTACCACAT GAAGGCGATC GTGATCGCCG GCATGGGCTT CTTCACCGAC GCCTACGACC TGTTCTGCAT CTCCACGGTG TCCAAGCTGC 3501 TCGGCCGTCT CTACTACCAA CCCGATGGCT TGACGGACAG TAAGCCAGGC 3551 3601 GCTCTGTCCA AGACCGCCAA CAACATGGTC ATCGGCGTCG CGCTCGTCGG 3651 CACGCTCATG GGCCAGCTTG TCTTCGGCTA CTTCGGCGAC AAGCTCGGCC 3701 GGAAGCGCGT TTACGGCGTC ACCCTCATCC TGATGGCCGC CTGCGCCATC 3751 GGGTTCGGCC TGTCGTTCGG CAGCTCGCGC AAGGCAGTCA TCGGCACGCT 3801 GTGCTTCTTC CGCTTCTGGC TCGGCTTCGG CATCGGCGGG GACTACCCGC 3901 TTCATCGCCG CGGTGTTCGC CATGCAGGGC GTCGGCATCA TCTTCGCGGG 3951 GCTCGTGTCC ATGATCGTCT CTAGCATCTT CCTCACCTAC AACAAGGCGC 4001 CGTCGTACAA GGGGAACCAT GACCTCTCGA GGCAGATGCC CGCGGCTGAC 4051 TACGTGTGGC GCATCGTCCT GATGATCGGC GCGTTCCCGG CGTTGGCGAC 4101 CTTCTACTGG CGGATGAAGA TGCCGGAGAC GGCGAGGTAC ACGGCGATCA 4151 TCGATGGCAA CGCGAAGCAG GCGGCGAACG ACATGCAGAA GGTGCTGTCG 4201 ATCGAGATAG AGGCCGAGCA GGAGAAGCTG GCCAAGTTCA ACGCGGCCAA Sense primer → RT-PCR 4251 CAACTACCCG CTCCTGTCGA TGGAGTTCGC CCGGCGCCAC GGCCTGCACC 4301 TCATCGGCAC GACGACCACG TGGTTCCTCC TTGACATCGC CTTCTACAGC 4351 CAGAACCTGA CCCAGAAGGA CATCTTCCCA GCTATGGGCC TGATCAGCGG 4401 CGCTGCCGAA GTCAACGCTC TCACGGAGAT GTTCCAGATA TCCAAGGCCT 4451 CGTTCCTCGT CGCTCTCCTC GGCACCTTCC CCGGCTACTG GGTCACCGTC 4501 GCTCTCATCG ACAAGATGGG CAGGTACGTA CGAACCGTAT AAACATGGAC 4551 ACTTGATGCA AATGCAATCG ATGCGAACAT ACACGAAATG AATGAATTCA 4601 TGGTCACATA TGCAGGTACA TGATCCAGCT GATCGGTTTC TTCATGATGT 4651 CCATGTTCAT GCTGGCGATG GGCATCCTGT ACGACTACCT CAAAACCCCAT 4701 CACTTCCTGT TCGGGCTCCT GTACGCGCTC ACTTTCTTCT TCGCCAACTT 4751 CGGGCCGAAC AGCACCACCT TCGTGCTGCC GGCCGAGCTG TTCCCGACGC 4801 GCGTGCGCTC CACCTGCCAC GCCATCAGTG CCGCGGCGGG CAAGGCCGGC 4851 GCCATCGTCG CGGCCTTCGG CATTCAGAAG CTCACGTACA ACTCTCAAGT 4901 CAMARGCATC AAGAAGGCGC TCATCATCCT CTCCATCACC AACATGCTCG 4951 GCTTCTTCTT CACGTTCCTC GTCCCGGAGA CCATGGGTCG GTCGCTCGAG 5001 GAGATCTCCG GCGAGGACGG CAACACCGGC GCCGGTGGCG GCGGCGCCCC 5051 TGCCGCTGCC AATGCCGGCG TTGGCGTGAG CGCTTCGGAT GTGAGCAGGG 5101 ACGAGAAGTT CCCTGCTTCA AGCACCGAAT GGCAGACATC CATGCACGCA 5151 TGATACGCTC ATCTGGGATA TGCATACCTA CACAATACCA GTACGTATAC 5201 CTACGCAATA ATAGTACTAT ATTGATATAT CTGTATTATG AGAGTGGAAA 5251 TGGACCAAAA TAATGGCAAT AACTTGAATT GCCAGATGCT AGCTTGGGAA 5301 TTTGATATAC AAGTATATAT CTCCATTACC ATGTTAGAGT AATATATATG 5351TTGAGTGTGTGCACTCATGCAACAATAGTATATATCGTGACCATTCACA5401ATGTTGAGAACTACTAGCTAGCAAGAAACTGAGAATGAGAGGGACAATGC5451AACTATGCTCCTTTTACTACTTCGTATTGGTGTATGCGTATTGCAAGCAG5501CTAATCAATCATTCTGTTAGTTCTTTCTCTATATGACGAGCTC3'

OsPT2

Accession number = AF493788 ORYsaPhT1;2 total gene = 2510 bp Promoter = 781 bp cDNA = 1617 bp = 539 amino acids 3' untranslated region = 112 bp

51

1 ACTAGTCTCC CTCCTCGTCA TACTTCAGCA ACCACAAGAT TTCTTTTCTG

51	ዾዾርጥጥጥጥዋልር	TAATGAACAT	TCAGAAATTT	CTGTGCAATA	TTATCTCATG
101	ACCTGAACCA	AACGATGCTT	GAGCCACGAA	ATAGTAGAGG	AGACAAAGAT
151	ATAGTTTCGT	CAATTCGAGA	AGTTTGTCCG	GATACTACGG	ATGATAGCGG
201	CACATTTCCA	CTGGTTCCAT	GAAAGTTGTA	CAGTAAGGTG	CGAATCTTGA
201	CTTCCACACA	TGCACCTGGA	TCCGGCTATC	TAGCTTCACG	AGAATCCCAT
201	CTCTA CTCTC	CTAATTGCC	CACGAAACTG	AATTTATGTA	GGGATTTTTA
201	CICIACICIC	CACATTTTTC	ACGGGGATGG	GTCGGGGGATT	GTTGACTGAT
301 401	AAACCTCCAT	TTCAACAAAC	ΔΔΓΔΔΔΔΤΤΤ	TGATATATGA	TACCTTGAAT
401	AAAGCIGGAI	TIGAAGAAAC	AGTGGCATGG	TCTGTTCCAG	ATGTCTCTCT
401	AAACGAGGAG	TTCLCTCLCT	GTCCACCATA	TTGTTGGTGA	ACTGAAACGA
501	ATATTATC	CTCCTACCCA	CGTGCATTCT	GTAGATTTTC	TTTTGCTCAG
201	MINIAICII TTCCACACAT	ACACATCTCA	CCCTAATTAG	CTCTGTTAAT	CGCGCGGTTT
601		CACAAATCIGA	TACTTTCTCG	TTCATTGCAA	ATTGCAGCGA
651	GIGIAAIICI		CTTCCTCTCTC	AGTTATTCTC	TGCAAAAAAT
701	GATTTGTCG	AAAIAAIAAA	ACATTCCCCC	CATGGCCGGC	GAGCTCAAGG
751	TGCATATTGC	AGAGIAGCIG	AGAIIGGCGC	AGTGGTACCA	TTTCACGGCG
801	TGCTGAACGC	GCICGACICG	GCGARGRCGC	GACGCCTACG	ACCTCTTCTC
851	ATCGTGATCG	CCGGCATGGG	GITCIICACC	CATCTACTAC	TTCAACCCGG
901	CATCTCCCTC	GTCACCAAGC	TGCTCGGCCG	ACGTOTOCOC	CGCCGTCAAT
951	CGTCCAAGAG	CCCTGGCTCC	CTUCCGUUCA	ACGICICCGC	TCGCCGTCART
1001	GGCGTCGCCT	TCTGCGGCAC	CCTCGCCGGC	CAGCICITCI	
1051	CGGCGACAAG	ATGGGGGCGCA	AGAAGGTGTA	CGGCAIGACG	CICRIGCICA
1101	TGGTCATCTG	CTGCCTCGCT	TCCGGCCTCT	CGTTCGGGTC	GICGGCGAAA
1151	GGCGTCATGG	CCACGCTCTG	CTTCTTCCGC	TTCTGGCTCG	GCTTCGGCAI
1201	CGGCGGCGAC	TACCCGCTCT	CGGCGACCAT	CATGTCGGAG	TACGCTAATA
1251	AGCGCACCCG	TGGAGCGTTC	ATCGCCGCCG	TGTTCGCCAT	GCAGGGCTTC
1301	GGCAACCTCA	CCGGCGGCAT	CGTGGCCATC	ATCGTGTCCG	CCGCGTTCAA
1351	GTCGCGGTTC	GACGCGCCGG	CGTACAGGGA	CGACCGGACC	GGCTCCACCG
1401	TGCCGCAGGC	CGACTACGCG	TGGCGCATCG	TGCTCATGTT	CGGCGCCATC
1451	CCGGCGCTGC	TCACCTACTA	CTGGCGGATG	AAGATGCCGG	AGACGGCGCG
1501	CTACACCGCG	CTGGTCGCCA	AGAACGCGAA	GCAGGCCGCC	GCGGACATGA
1551	CGCAGGTGCT	CAACGTCGAG	ATCGTGGAGG	AGCAGGAGAA	GGCTGACGAG
1601	GTCGCGCGGC	GCGAGCAGTT	CGGGCTCTTC	TCCCGCCAGT	TTTTGAGACG
1651	CCATGGGCGC	CACCTGCTGG	GCACGACGGT	GTGCTGGTTC	GTGCTGGACA
1701	TCGCCTTCTA	CTCGTCGAAC	CTGTTCCAGA	AGGACATCTA	CACGGCGGTG
1751	CAGTGGCTGC	CCAAGGCGGA	CACCATGAGC	GCCCTGGAGG	AGATGTTCAA
1801	GATCTCCCGG	GCACAGACGC	TCGTGGCGCT	GTGCGGCACC	ATCCCGGGCT
1851	ACTGGTTCAC	CGTCTTCTTC	ATCGACATCA	TCGGCCGCTT	CGTCATCCAG
1901	CTCGGCGGCT	TCTTCTTCAT	GACGGCGTTC	ATGCTCGGCC	TCGCCGTGCC
1951	GTACCACCAC	TGGACGACGC	CGGGGAACCA	CATCGGCTTC	GTGGTCATGT
2001	ACGCCTTCAC	CTTCTTCTTC	GCCAACTTCG	GGCCCAACTC	CACGACCTTC
2051	ATCGTGCCGG	CGGAGATCTT	CCCGGCGAGG	CTGCGTTCCA	CCTGCCACGG
2101	CATCTCGGCG	GCGGCGGGGA	AGGCCGGCGC	CATCGTCGGG	TCGTTCGGGT
2151	TCCTGTACGC	GGCGCAGAGC	ACGGACGCGA	GCAAGACGGA	CGCCGGCTAC
2201	CCGCCGGGCA	TCGGCGTGCG	CAACTCGCTC	TTCTTCCTCG	CCGGATGCAA
2251	CGTCATCGGG	TTCTTCTTCA	CGTTCCTGGI	GCCGGAGTCG	AAGGGGAAGT
2301	CGCTGGAGGA	GCTCTCCGGC	GAGAACGAGG	ACGATGACGA	TGTGCCGGAA
2351	GCGCCCGCGA	CGGCCGATCA	CCGGACTGCG		CAGCTTGATA
2401	CCCCGCGGCA	AAACCCAAAT	GGTCAATCAT	CAGTGTTTTC	TTGTAATATA
2451	TGTGCAATCC	ATGATTATTC	TGGTTCTGCT	AGTGTACCA	ACAAAATTAC
2501	AAATACTACT	3'			
		-			

Rice A, ORYsaPhT1;1

The contig (5095) containing the rice A sequence has a total length = 12280 bp

```
RiceA total gene = 4248 bp
Promoter = 2406 bp
cDNA = 1587 bp = 529 amino acids
3' untranslated region = 255 bp
```

51	1	CAGTTTCTAA	ATTCTTCATT	TTCTGGATTG	TACTTCTTCT	TCAAATATTG
	51	AGAAAAGCTG	GACTCGGCTG	GTGATAACAT	GTAGATGTTG	GAAAAATAAC
	101	TTTTTCCATC	TAGGGTGTAT	TTAGTTCACG	CTAAAATTGA	AAGTTCGGTT

151	GAAATTGGAA	CGATGCGACG	AAAAAGTTGA	AAGTTTGTGT	GTAGAAAAGT
201	TTTAATGGGA	TGGAAAAGTT	GAAAGTTTGA	AAAAAATTA	CAACTAAACA
251	TGGATCAAGT	TCATTTTTTT	TTATATTCTA	TAACAATAGT	TTCTTATAAT
301	ATGAAAAGTA	GTAGCTTTGC	TATTAGACCT	TTGCTATTAG	TAGTAGCTTG
351	TTTGGCGCCA	TCCTCTTGTT	GAGCAATCAT	TCTTCAGAAT	TCATCTGAAG
401	TAGCGAATGG	CAACAAAGGG	GTAAATCGTT	TTGTTTGTTT	AGCTCGAAGG
451	AGTAAACTTT	GATGTAACCA	CCCATACTCA	GGATGGGTGT	AGGCAGTGCA
501	GATGGCCTAA	CGCATTCCGA	CGGCAACGGA	GTTCTGGCGA	AGGAGAGGGC
551	TCCGTGACGA	GGACGAGGAA	GGAGCCATCA	GAGGAGGAAG	TCGGGGTGGC
601	CAAGACCGAG	GTGGAGCAAG	GAGGGATGTG	CCCCTGGCAG	CGGCGAAAGG
651	CAGAAGTTCG	GAGTAGGTCG	GCACAGGCAG	GAGGAGGTTG	GGGAAGTCCG
701	GCGAAAGTAT	CGGCCGTGGA	GCTATACGCC	GGAGAAGGGA	AGGTGGCCAT
751	GGGGCCACCA	TTAGCAAGTG	GGTATGGCTG	GTCAGATTTG	GCTACGTTTG
801	CCTGGAGCAA	CAGCAACCAA	CAAGGACACA	ACGAGGTGAA	GAGTTATCCT
851	CGAGGCGTAA	AAGGTGAAGA	TGGCAATTCG	CGGGGGAGCTA	TAGCTAGCCT
901	TCTCCAGTAC	TTCTGTAGTT	CTGTCCATAT	CCTGTTCTGC	GTCACGAGCC
951	ATGCAAACAA	AACACACACA	TCTCTGCGTC	ATTCGCGGGG	AGTAGTTTCG
1001	CTCGCTCGCT	AGGGCATGCA	TGCTTGTCAA	GTTGCTCGCA	AGAGTTCATC
1051	GTCAAGAAGC	TTCGCTGGAA	ATTTCGTCGA	CCTCTTCTCC	GATTGTTGTA
1101	GCGAAAGGGA	CATGGTTTGT	TCTCTAGCTG	AAGTTTCAGC	CCCATGTCAA
1151	TTCCATCACC	AAAACGAGAT	AGCGACAAGC	CAGATCGTAT	TAGCTAGGCA
1201	TGTGCCATGT	GGAAAACCAA	GAAACAAGAT	AATTTAAGAC	GGGAAGGCCC
1251	AAGTGTGTAC	TGCAACTACT	GTTGCGAGCT	GTGTGTCCAC	CCTACCGAAG
1301	GACGCCTATG	AACTGGACTT	CATTGAGCCA	GTAGTGCAGC	CAGCCCATGC
1351	TCTGCAAAAT	CCTACCCTCG	CATACTTCAA	CGGCGATGAC	TTCCATATCA
1401	AAGAAAGAAT	GTTCAGTCAG	AACTACTCCG	GCTAACAAGT	ACAGTAGTAA
1451	TAACCAATTG	AACAAACACG	GCATTCAGCT	GCTGATTTCC	AAGCCTATCC
1501	ATATACTCCC	TCCGTTTTTT	AATAGATGAC	GCCGTTGACT	TTTTCTTACA
1551	TGTTTGACCA	TTCGTCTTAT	TCAAAAATTT	TATGCAATTG	TATAAGATAT
1601	AAATCACACT	TAAAGTATTA	TGACTGATAT	AACAACTCAT	AATAAAATAA
1651	ATTATAATTA	CGTAAAATTT	TTGAATAAGA	CGAATGGTCA	AACATGTGAG
1701	AAAAAATCAA	CGGCATCATC	TATTAAAAAA	CGGAGTTAGT	ACTTGGTTCT
1751	TGCTCAGCTT	GTCGCTGTCT	TGTTTCAACC	TGCTAAGAGC	ACCCGCAATG
1801	GTAAAGTAAT	GTGCTATCTA	TAAAACATGT	ACACCTCAGC	AATAGACICG
1851	ATTAATAGTA	AACCACTTCA	ATGGTATGTC	TACATTGGTA	ACTINATAGETE
1901	TCTCATGCAT	TGTCTCGTTT	TTCTCTATAG	ACTATUTUIA IMMOGRACIONA	CANANTAGIAGA
1951	TAGCTTTGCT	CITTCICITC	ATTTAATATA	1 TUCAAGIAG	TOCOTOCO
2001	TGACATGGAT	CTCTTGTAGA	GAGCCIAIAG	ATAATCATIG	ACAGACTACA
2051	AATGAGAAGC	GATIGIGITA	CGTACTACAC	AGIACAGACI	ACAGACIACA
2101	AAGTATCCAT	UTCAACATGC	TICGICAGIA	ALIGATOAAG	AIGIGCCGGI
2151	TAATTACTGC		GGAAGAACGG	AGACCARAAG	CATAACAACC
2201	TIGLAGICUG	CLUCCICIAC	CTTTCACCAT	TCAACACTCC	ACCTCCCACT
2251	GCAACCATTA	TATIONCIA TATATATA	TCCACTACAC	AACACTCAGT	TCACCCCCAA
2301	GCGAGIAGIA	A A A CTTTACAT	CACICCAGIAGAG	CTCAGICAGI	A A A G A G TTGG
2351	CARCARAGERA	CCCCACCCC	CAGAGGAGAG	CTGAGCACGC	TCGACCAGGC
2401	GAAGCCAIGG	TCCTACCACT	TCATCACCAT	CGTCATCGCC	GGCATGGGCT
2501	TCTTCACCCA	CCCCTACGAC	CTCTTCTGCA	TTTCCCTCGT	CACCAAGCTG
2551	CTCGGCCGCA	TCTACTACAC	CGACGATTCC	AAGGACACCC	CCGGCGCGCT
2601	CCCGCCCAAC	GTGTCGGCCG	CCGTCACCGG	CGTCGCGCTC	TGCGGCACGC
2651	TCGCCGGCCA	GCTTTTCTTC	GGATGGCTCG	GCGACAAGCT	CGGACGCAAG
2701	AGCGTGTATG	GTTTCACGCT	GATTCTGATG	GTCGTGTGCI	CGGTCGCGTC
2751	CACACTCTCA	TTCGGGAGCT	CGGCCAAGGG	CGTCGTGTCG	ACGCTCTGCT
2801	TCTTCCGGTT	CTGGCTCGGC	TTCGGCATCG	GCGGCGACTA	CCCGCTCAGC
2851	GCCACCATCA	TGTCGGAGTA	CGCGAACAAG	AGGACGCGCG	GGGCCTTCAT
2901	CCCCCCCCC	TTCGCCATCC	AGGGGTTCGG	GATCCTCTTC	GGCGCCATCG
2951	TCGCGCCGCG	GGTGTCGGCG	GGGTTCCGGC	ACGCGTACCO	GGCGCCGTCC
3001	ТАСТССАЗСЗ	ACCACGCCGC	GTCGCTCGTC	CCGCAGGCCG	ACTACGTGTG
3051	GCGCATCATC	CTCATCTTCC	GCACCGTCCC	GGCGGCGCTC	ACCTACTACT
3101	GGCGGATGAL	GATGCCCGAG	ACGGCGCGGT	ACACGGCGCT	CATCGCCCGC
3151	AACGCGAAGG	AGGCGGCGGC	CGACATGTCC	AAGGTGCTGC	ACACCCAGAT
3201	TGAGGAGAG	GCGGACCGCG	CCGAGACGGI	GGCCGTCGGC	GGCGAGAGCT
3251	GGGGCCTCTT	CTCGCGCCAG	TTCCTGCGCC	GCCACGGCCI	CCACCTCCTC
3301	GCCACCACCA	GCACGTGGTT	CCTCCTCGAC	ATCGCCTTC	ACAGCCAGAA

3351 CCTGTTCCAG AAGGACATCT TCAGCAAGGT CGGGTGGATC CCGCCGGCGA 3401 AGACCATGAA CGCGCTCGAG GAGCTCTACC GCATCGCCCG CGCCCAGGCG 3451 CTCATCGCGC TCTGCGGCAC CATCCCGGGC TACTGGTTCA CCGTCGCATT 3501 CATCGAGATC ATGGGCAGGT TCTGGATCCA GATCATGGGC TTCGCCATGA 3551 TGACGGCGTT CATGCTCGGC CTCGCCATCC CGTACCACCA CTGGACGACG 3601 CCGGGGGCACC ACACCGGCTT CATCGTCATG TACGGATTCA CCTTCTTCTT Sense primer → RT-PCR 3651 CGCGAACTTC GGGCCAAACA GCACCACCTT CATCGTGCCG GCGGAGATAT 3701 ACCCGGCGCG GCTCCGGTCG ACGTGCCACG GCATCTCCGC CGCCGCGGG 3751 AAGGCCGGCG CCATCATCGG AGCGTTCGGA TTCCTGTACG CGGCGCAGGA 3801 CCAGCACAAG CCCGAGCCTG GGTACCCCAG GGGGATCGGC ATCAAGAACG 3851 CGCTCTTCGT GCTCGCCGGC ACAAACTTCC TCGGGACGAT CATGACGCTG 3901 CTCGTGCCGG AGTCCAAGGG CATGTCGCTC GAGGTTATCT CGCAGGAGGT ← Anti-sense primer RT-PCR 3951 CGCCGACGGC GACGACGAGG AGGCGGCCTA CCCGAAGTAA TTTGACCGCG 4001 CGCGTGATCA CGCAGGGAGT GGTTGCCGCT AACCATTGGT GTCATCTCTT TTCCCAACTG TAACAACTCT AGTCGTCGCT TCCGTACGAG TGGTAGTTTT 4051 4101 TTCTTTTTCT TGGATAAGTT TGTAGAAATT TCAATTAGTG ACTAGTTTGT 4151 AGTATATGTG AGTGAGATGT GTGTATATGT TCTTGAAGAA TTGGTGAACT TTTCCTGGAT TTGAAAGAAC CGTGTAGTTT GAAAAAAGAA TGCAATGGAT 4201 3'

Rice B, ORYsaPhT1;2

The contig (5095) containing the rice B sequence has a total length = 12280 bp

RiceB total gene = 2938 bp Promoter = 1200 bp cDNA = 1587 bp = 529 amino acids 3' untranslated region = 151 bp

	1601	GCTTCTGGCT	CGGCTTCGGC	ATCGGCGGCG	ACTACCCGCT	CAGCGCCACC
	1551	CTCGTTTGGC	CACACGCCCA	AGAGCGTGAT	TGCCACGCTC	TGCTTCTTCC
	1501	TATGGATTCA	CGCTCATCCT	CATGGTCGTG	TGCTCCATCG	CCTCCGGTCT
	1451	GCCAGCTCTT	CTTCGGATGG	CTCGGCGACA	AGCTCGGCCG	CAAGAGCGTC
	1401	CAACGTGTCG	TCCGCCGTCA	CTGGCGTCGC	GCTCTGCGGC	ACGCTTGCCG
	1351	CGCCTTTACT	ACACCGACAT	CACCAAGCCC	AACCCAGGGA	CACTCCCGCC
	1301	CAGACGCCTA	CGACCTCTTT	TGCATCGCGC	TGGTCACCAA	GCTGTTGGGT
	1251	GCAATGGTAC	CATTTCATGG	CGATCGTCAT	CGCCGGGATG	GGGTTCTTCA
	1201	ATGGCGGGAT	CGCAGCTCAA	CGTTTTGGTC	AAGCTCGACC	AGGCCAAGAC
	1151	CTGTACTAAG	CAAAGCTTAT	AACTTTGCAG	CTTGAGGAAA	AAAGATCATC
	1101	AAATGGAGAT	GCCTAGGTGA	AGAATTTTCT	GTTCTTTTGT	GATATGTTGT
	1051	AAACCTGAAA	TTTCTCTGTT	CAATTAACAT	TCAACGATCT	AGTCAGATAT
	1001	AGTTTCAATT	ACTGAGCGGT	AAATCATGAA	TTCTCAATCT	CAACAGTGCG
	951	TACTATTTAG	TACAGTACGC	ATTAAAAATG	GACACACCCC	TATCTATTGA
	901	GCGTAATATT	ATTACCCGCC	AATAAGATTA	GTTGTGCAAA	CATGTGCTTC
	851	CGGTTTAGCA	TATTCAGGAA	ACGTTCTACT	GAATATTTGT	TGAATCATAT
	801	TCCTGCATCT	GAGTTCCATG	TTAGCAGAGA	TGCTAGATTA	ATTAGTGTTG
	751	CTCTCCGGAG	TCAACCCATC	CTCAATCTTC	CCAAGGTACT	CAACCETETE
	701	GCAACAGAGA	TGAGGAAACT	AACAGAGCAC	ACAGCGATCC	COTOTGCTCT
	651	CTGTCTGTAT	CCTGTCCGGA	CTGCGCTGCG	GCTATATATA	CAGCACCATG
	601	ACGGTACATG	CAATGCAGTA	GAAAGAAAAT	CTTTTTTTTTG	CAACCATGCC
	551	GCATTTTAAA	GACAATATAT	GTCACTATCT	GCTTGCAATC	TACAGTATGT
	501	TTTCACATTC	CACGATCCTG	CAAATAGAAT	AACATTTGAC	TTCTGTACGG
	451	CTAAACAGTG	GGAGGCCATA	AGCTGATATG	CATAGATAGT	TGAAAGTTAA
	401	TTGCATGCAT	AGCTTTGTCA	CTGCCCAGCC	GATCCTGACA	CCGTAGAATT
	351	GATGGTGTAG	GACTTAACCA	AATGATCACT	GCTCAAGACC	AAGACCCTAT
	301	AGTTTAACTA	GAGAAAAGGC	TAAACGAATT	ATAATATGAA	ATCGGAAACT
	251	AGTATTTTAG	ATGTTGCTAA	TCTTTTTATA	AATTTGATCA	AACTTATCAA
	201	AAACAAACAT	ATTATGAAAA	TATAAAATGT	ATTCAATGTT	AAACTAGTTA
	151	CTTTAAGTTT	GACTAAGTTT	AAAGAAAAAT	ATAGTACTAT	TTTAAACACA
	101	CAAACTACCA	AAATTTTAAA	TTTATCTTGG	CTACAATCTG	AACAGCCCTT
	51	CAAATTTTGA	TAAATACATA	AGAAATCGTA	CCAAAATTTA	GTAATATTGT
5′	1	TACCATTTTT	TATAGAGTTG	TCAAATATGT	GTATCTATTT	AGTTTCTTAC

1651	ATCATGTCGG	AGTACGCGAG	CAAGAAGACC	CGCGGGGGCCT	TCATCGCCGC
1701	CGTGTTCGCC	ATGCAGGGGT	TCGGGATCCT	CTTCGGCGCC	ATCGTCGCGC
1751	TCGTCGTCTC	GGCCGGCTTC	CGTCACGCGT	ACCCGGCGCC	GTCGTACGCC
1801	CAGAACCCCG	CCGCGTCGCT	CGCGCCGCAG	GCTGACTACA	CGTGGCGGCT
1851	CATCCTCATG	TTCGGCACCA	TCCCGGCTGG	GCTCACCTAC	TACTGGCGCA
1901	TGAAAATGCC	CGAGACGGCG	CGGTACACGG	CGCTCGTCGC	CCGCAACGCC
1951	AAGCAGGCGG	CGGCTGACAT	GTCCAAGGTG	CTCCACGCCG	AGATCGAGGA
2001	GCGGCCGGAG	GTGGTCGAGA	GCCAGGTGGT	CGCCGGGGAG	ACCTGGGGCC
2051	TCTTCTCACG	GCAGTTCATG	AAGCGCCACG	GGATGCACCT	CCTGGCGACC
2101	ACCAGCACGT	GGTTCCTGCT	CGACATCGCC	TTCTACAGCC	AGAACCTGTT
2151	CCAGAAGGAC	ATCTTCAGCA	AGGTCGGGTG	GATACCGCCG	GCGAAGACCA
2201	TGAACGCGCT	CGAGGAACTC	TACCGCATCT	CCCGCGCCCA	GGCACTCATC
2251	GCACTCTGCG	GAACCATCCC	GGGCTACTGG	TTCACCGTCG	CCTTCATCGA
2301	CATCGTCGGC	AGGTTCTGGA	TCCAGATCAT	GGGCTTCTTC	ATGATGACCG
2351	TGTTCATGCT	CGCGCTCGGC	GTGCCCTACG	ACCACTGGAC	GCACCCGGCG
2401	CACCACACCG	GCTTCGTCGT	GCTCTACGCA	CTCACCTTCT	TCTTCGCCAA
2451	CTTCGGGCCC	AACAGCACCA	CCTTCATCGT	GCCGGCTGAG	ATCTTCCCGG
2501	CGAGGCTCCG	GTCGACGTGC	CACGGCATCT	CCGCCGCGTC	CGGCAAGGCC
2551	GGCGCGATCA	TCGGCGCGTT	CGGGTTCCTG	TACGC TGCGC	AGGACCAGCA
		Sens	se primer 🔿	RT-PCR	
2601	CAATCCCGAC	GCGGGATACT	CCCGCGGCAT	CGGCATCCGG	AACGCGCTCT
2651	TCGTGCTCGC	CGGCACAAAC	TTCCTCGGTA	TGCTCATGAC	GCTGCTGGTG
2701	CCGGAGTCCA	AGGGCTTGTC	GCTGGAGGAG	ATGTCCAAGG	ACAACGTCGT
2751	CGACGAGACC	GCCCAAGAAG	CGATCGCCCA	AGCGTGATGT	CATAAACATG
2801	CCGTCTCGAC	GTGAGTGACT	GAAAAAAATG	TATGCTTTAT	TACTCTATTG
2851	GTGTGATTAC	TTAATCTAGT	TTTGTATACT	TTTGTAGTGT	CTCTCCTTTT
2901	ACAGTTGTGG	ATTTGTGGGG	TTTCTCTTTC	TTTCTTTT	3′

← Anti-sense primer RT-PCR

Rice D, ORYsaPhT1;3

The contig (24795) containing the rice D sequence has a total length = 4083 bp

RiceD total gene = 3483 bp Promoter = 2511 bp **partial cDNA** = 972 bp = 324 amino acids

5′	1	TGTTTTATTG	TGTTCCTCAG	CTATGATTCT	ATATGTACTT	CTTTTCATGT
	51	AACGTTTAGC	TGTGTATATT	TATTTGTGGA	TATAGAGATT	GGATTTTTAT
	101	CCATTATCTT	AAAAAAGAGC	TACCATACTG	TGAAAATAAT	GGCTGAAATC
	151	ACACAAATTG	CTTAAGTACA	TCAGGACCTA	GTACGTGCTA	TCCAAAGCCA
	201	GACCGTTTTG	CTGCATTCCA	TGGACCATGC	ATGATTAACC	TCTGGCTCTA
	251	TGTCAAAAGT	TCTGGGCACA	AAAGAGTCAA	AACTTCCAAT	GTATATTTTA
	301	CAAACACCAA	ACAAGACAGA	TACAAATTAT	CCCCATATTT	TATTACAGGG
	351	TCCAGTAGGA	TGACATGGAG	TACAAATTAG	TTGGTCGCTT	ACCACACGGG
	401	TAATTAAAGC	AGGTAGGTGA	AAATGAAATC	ATGAAACAAT	CGATACTTAG
	451	CTTATTTAAC	ATCATGCGAT	GCATGCTGAT	GCTGAATACT	CCAATGTTCA
	501	AGCTTGCCCT	CTATCAGTCT	CCAAATCATG	TAGGTTCAAT	TGTAACGGTC
	551	CTTAATTAAT	TCATCAGTCA	TCACTGCCCA	AATTCATAAA	TATTTTGATA
	601	AAAAAACTCC	CAAATTTACA	CCAGGGCAAT	ATTTAATTTT	GGAGATCCAA
	651	GCTGTCATAT	TAGCATAAGA	AAGATACCTA	GGAATCTGAC	TTGGCAATGT
	701	GCAGACACGG	GTGACTTGGA	AGACCAGGCA	AAGCATCTCT	GCTTCTTGGC
	751	ATCAAATGAT	GCTCCATCGT	GGTCAATTAC	TCTATCCATT	AATGAAGGAG
	801	AGAGATGGGA	TGAAAATATG	AAATAGGCTA	AAATAGTTTA	GTTAAGCGGT
	851	TGTACCATCA	AATATATATG	TGTTCAACTT	GCAACAACTC	ATTAATGTTA
	901	GTACATTGAG	ACAGACGCCG	TGTTTAGTTC	CAAAATAATT	CTTTAAACTT
	951	CTAACTTTTT	CATCAAATTA	AAACTTTCCT	ACACACAAAC	TTTTAACTTT
	1001	TCCGTCACAT	CGTTTCAATT	TCAATCAAAC	TTCCAATTTT	AGTGTAAACT
	1051	AATCACATCC	AGAGAGATGT	GTACATTCAG	TTCAGATTGC	TCTGAACTTG
	1101	GGAGTATGCT	TCAGACCAAG	ATTAGCATGG	ATTATCACCA	CACGATGTCA
	1151	CACCAAATAG	GAACTGAAGT	TAGATTCAGC	AGATACAAAA	TTAACTACTA
	1201	CTTCTGGAGT	TAAATTTAAA	AGTTGGAGCT	CTACCAAACG	TACCCAAAGC
	1251	ATATTGTAGA	ATTTTTTTTT	TTTGACAATC	CTTAATTAGT	TAAGAGTTCT

1301	TCAGAGATAA	AGGTACCTTG	TAGCGTTAAT	CAGTAGTGCT	TGCTAATAAC
1351	TCTGAAGAAC	CTAAGACAAA	ACTATATTTT	TGGAGGGAAA	GAAACTAATT
1401	TCGCGATAGC	TTTAGCTAGT	GTGTCATCCA	CACTCCTAAG	AATTATATCC
1451	TACATATGCT	ACTTGGAGAT	ACTAAGCAGA	GCCGCTGCAA	GCTTCAAGCT
1501	TCAAGACCAG	AAGATCAAGC	TTGGATGTCT	TGGATCACAT	TCACTATGAC
1551	TTGGAATGCA	AAACACTTAC	AAGAAATGAA	AAAGAAAGAT	GCTCCCTTTC
1601	ACAAAATTGA	TAAAACTTTA	TTTTCTTGTG	AGTGTGCAAG	TAGTGCTGGG
1651	AACTAACTTG	TTAAGGTACA	TGTAACACGG	CATTGGGAAT	AGTTGACTAG
1701	GATTAAACAA	CATCCAAATG	GAGGAGACTT	CTCGAGATCA	GGTATATTCC
1751	TAGGATCAAA	CCATAGTACA	AATAACCAAA	TACTACAATT	TTAGATTATT
1801	TGGGCAGTTA	GGAATAATAA	TTTTCAGTGT	CCTTTGCAAA	ACCTTAGCTC
1851	CAAGCTCATT	AACATAATCG	TCTAACCATA	TAAATGTTTT	TAATTTGAAG
1901	AAATTCAATA	TTATCATTTA	CAATTTAGAT	CATTTGGACA	GTTAATTCCT
1951	AACATGAAAG	GGGTTAAAAA	ATATATTTTA	TTCCAAAAAA	CACAACACAA
2001	ATGTAGACAC	TCATAACGCG	TATACTCAAC	GCACACATGG	ATATCCCTCT
2051	AAAAGGATGG	ACCGGCAAAT	CATGAAATTG	ACGTGTCACC	ATGGGCGTCA
2101	CACTGTCAAT	AGGTATATAG	TCTACCACTG	AAAAATTTAA	TAGCCATAAA
2151	TACGATTACA	TATATCAAGT	CTATAACTTG	AACCTAGATG	GGTTAGTTCC
2201	ACCATATATA	ACGAATCTAA	CCAATTGAGC	TACTCTATCA	TTTGGAAGTT
2251	TTTAATTTGA	AGAAATTTAA	AATGTTCTTT	CGGAAATAGA	ATTTTAAATC
2301	GAGCCTATCT	CTCGTTGACT	CAGATCACTC	CAATCATCAT	GTCCCTAAGC
2351	CGGGAAGCAG	CATTAACCAA	TAAAATCTTA	AGCAAGTGCA	TCTAGCTCAC
2401	ACGTACTAGT	ACATTAATTC	TCTAGGGTTA	TATATATTTG	CACTGCAGCT
2451	AGTTGCCTTG	CTAGCTCGGC	GAGGAGCAAG	ACGAACAACG	AGGCTACGTA
2501	CGCCGGCGAC	AATG GCGGAC	GGGCAGCTCA	AGGTGCTGAC	GACGCTGGAC
2551	CATGCGAGGA	CGCAGTGGTA	CCATTTCATG	GCGATCGTGA	TCGCCGGAAT
2601	GGGCTTCTTC	ACCGACGCGT	ACGACCTCTT	CTGCATCTCC	CTCGTCTCCA
2651	AGCTGCTCGG	CCGCATCTAC	TACACCGACA	TCGCCAGCGA	CACCCCCGGC
2701	AGCCTGCCGC	CCAACGTGTC	GGCGGCGGTG	AACGGCGTCG	CGCTGTGCGG
2751	CACGCTCGCG	GGGCAGCTCT	TCTTCGGGTG	GCTCGGCGAC	AAGCTCGGGC
2801	GGAAGAGCGT	GTACGGCTTC	ACGCTCGTGC	TCATGGTGGT	GTGCTCCGTC
2851	GCGTCGGGCC	TCTCGTTCGG	GCGCACGGCG	AAGGGCGTCG	TCGCCACGCT
2901	CTGCTTCTTC	CGCTTCTGGC	TCGGCTTCGG	CATCGGCGGC	GACTACCCGC
2951	TGTCGGCGAC	GATCATGTCG	GAGTACGCCA	ACAAGAGGAC	GCGCGGGGCG
3001	TTCATCGCCG	CCGTGTTCGC	CATGCAGGGG	TTCGGCATCC	TGTTCGGCGC
3051	CATCGTGGCG	CTCGTCGTGT	CGGCCGGGTT	CCGGAACGCG	TACCCGGCGC
3101	CGTCGTACGC	CGACGGCCGC	GCGGCGTCGC	TGGTGCCCGA	GGCCGACTAC
3151	GTGTGGCGGA	TCATCCTCAT	GTTCGGCACC	GTCCCGGCGG	CGCTCACCTA
3201	CTACTGGCGC	ATGAAGATGC	CGGAGACGGC	GAGGTACACC	GCGCTCATCG
3251	CGCGCAACGC	CAAGCAGGCC	GCCGCCGACA	TGTCCAAGGT	GCTCGACACG
3301	GAGATCCAGG	AGGACGCGGA	CCGCGCCGAG	GCGGTCGCCG	CCGGCGGCGC
3351	CGGCAACGAG	TGGGGGCTCT	TCTCGCGTCA	CTTCGTGCGG	CGGCACGGGG
3401	TGCACCTGGT	GGCGACGACG	AGCACGTGGT	TCCTGCTCGA	CATCGCGTTC
3451	TACAGCCAGA	ACCTGTTCCA	GAAGGACATC	TTC 3'	

Rice E, ORYsaPhT1;6

The contig (19209) containing the rice E sequence has a total length = 5406 bp

RiceE total gene = 3899 bp Promoter = 2345 bp cDNA = 1521 bp = 507 amino acids <u>3' untranslated region</u> = 34 bp

5′

'	1	GGAACGAAAG	CATCTCCAAT	CTCTCATTGC	TGACCTCTTT	AAATTAACCC
	51	CCTTAATTTG	ACCACCCTAC	GTACCAGCTT	TCATTTCTTA	ATTTAATTCT
	101	CTGGCTTCTG	TATTATATTG	ACAGTGCTCC	TATATATG	TACTTTAGCG
	151	TGGTTAGTTA	TATATTATAA	CAGCACGTAA	TCACTGCTCA	GCATGTACTT
	201	AATTTGTCCC	TTGGTAGAAT	GATCAGCCGA	TGCTTTTGCA	CGATCAGTTC
	251	ACTGTGCCAT	ATAGGGGCTC	CCATGCATCA	TGAACAAATT	AACATGACCT
	301	TCGGTAAGGC	GGTACTCTCG	AAAGTCGCTA	TTGGGGTTGC	ACGAGGGATG
	351	AGTTCATCTT	CTTCTCTCTT	ATTCCTCCTC	CTCATCAACC	TGTTTCTATA
	401	GGATGACTAG	GAGTGTGGGT	AGCTAGTAGC	TTGCAGTTAT	GGTAGGACAG
	451	AGTGTCTATG	TCCCGCTGTA	GAGCTGTGGT	GACAGGCCAC	ACATAACAGT

501	GATAGGCTCG	GCGTTAGTTC	TTTTCTCAAG	TTGGTGGTTG	GGAGTCGTTA
551	GTTTCATGCT	GGTGAGTTTT	TCTTTTCTTT	CCTGATTGTA	GCCTCCTAGA
601	GTTGTAATAT	TGTATATTTT	TTCATGCTAT	ATTAATATGA	AGCCTCGCAG
651	CTATCTCATA	TGGTTTGTTC	AAAAAAATAA	CACGATCAAT	TGTTGTTTGT
701	TGTGTAGTGG	TCTCTCCGGT	GTCACTATCG	GTGATTTGAC	AAAGACGCTC
751	CCAATGTTGG	ATGGTGTAAA	GATAGTCATG	TCTCCAGTCT	TTGCACATAT
801	ATATAATACA	TAGAGTCAAA	GTTTAAGATG	AAAGGTAACC	TTAATAAGCG
851	ATTGAATGCT	CTATGTGATG	GAAATGTGCA	TGACGTCTAT	AATCCTTTCT
901	AAGACTCTAA	GAGTGAGTTA	CAAACCGCCT	TTGCTACCTG	TACGTTGATT
951	GAGTTTTAGA	AAAATCGTAG	TTGATTGATC	AATCATCAAT	CTGTTGTTGA
1001	TCTAAGGGCT	ATAGCTCTAT	CTTGTACCTC	GAGCCAAGAG	GGAGACATGA
1051	TAAGGAGAGG	GATATGTCAG	AGAGGACTCA	CGACAACGTC	CTGGTGGAGA
1101	TGGGCGGGCG	GTGGGTGGGG	GTGAGATCAT	GTGGTTAGGT	TGTAAGGGTG
1151	ACAGATCTAG	CAGCGTGAGC	CACCCCGAGA	TGAAGGAGAA	AATACATATG
1201	GATTTGTTGA	TGAAGAGGGT	GATGGCAGTG	ATGTGGAGGG	AAAGAGGACA
1251	GGGATAGGAA	AGGCTTGTCC	AACCTCGCCG	GTGTCAGCGC	TGGCAGTGCA
1301	AAGAGGAATG	CCATCACACG	CGAGTCAAAG	TTGGGACTTA	GAACGTTGGT
1351	GGCACAAGAG	AAGGGGATCA	GGAGAGGGGG	AGGCTATGTT	AAAATTAGAT
1401	TGTTACACAA	ATAACAATGT	AATCTGAGCT	GTTTAATAAA	CTATATATAA
1451	AACATCAGGC	AACTAATGAA	TGGTCAAGGC	CGTTATCAAT	TGGTCTGGAT
1501	GGTAACTCCC	TGCCTTCGAT	GCAGGACGGA	GTGTAGCGGG	GGCCCCTGTC
1551	CGACCATCCC	TTGCGATAAG	AGTTTTTTCC	TTTCTCAGTA	ACTTATATTT
1601	CCTGTATTTG	TGTTTTTTGT	TTCTTTTTTT	CCTTGACCCC	TAGCAACGGC
1651	CCTCTGACCG	TTTGCGTTGT	GTAACCAAAC	TCTGTTGTCT	TCTTTTAATA
1701	TATTGACGTG	CAATCATTTA	GCGCGTTCGC	GAGAAAAAAA	TGGTTTGGAT
1751	GGTTAAATCT	TACTAGAAAC	CAGAACGAGA	TAGGCTACGC	AATTAGCAAT
1801	GGATGGTTGG	CATTAGGTCA	TCTAAGGTCA	AACCGATGGA	GATACATTTG
1851	CTGCATAAAT	AGCAACTAGC	GTAATATGTG	ATGTGATGTA	CTTCCTACGT
1901	СТТАТААТАА	GTTTATTTT	TAGCTACTTA	TATTTGTCTA	GAAATAAGTT
1951	ΔΔͲͲͲͲͲΔGΑ	ΔΤΑΑΤΤΑΤΤΤ	GTATCGGAGT	TTGTGAAAGT	AAAAAGTAAT
2001	TGTATTTCCA	GTACATAAAG	TGAGAAAGTA	TTGAGATTTG	ATAAAGTAGA
2051	CGTATTTAG	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TGGTACGTGT	GAGATTAGTG	AAAAATAAAT
2101	TTATTCCCA	ACCCATCTAC	TACCTAGCTA	CTCTTGTACC	AGCTAGATTA
2151	ACTATABACC	AAAAACAACG	GGAGTAGTAG	TAGTAAGAAT	GTAAAACGGT
2201	тесалсатал	CGCAACAACG	GAACGGTTGG	ATATTCGGTT	GGGAGAAGAA
2201	CCCARCAIAA	GTTTGAGTAG	СТТАТАААТА	GCAAGGAATA	CATACGTAAG
2201	TTCCAAATCA	TCACAAACCA	AAGCAAAGCA	AGCAATTAAG	CTGGCATGGG
2351	CGGCGGCGGC	GCGCAGCAGC	AGCAGCTTGA	GGTGCTCCAC	GCCCTGGACG
2331	TGGCCAAGAC	GCAATGGTAC	CATTTCACGG	CCATCGTGGT	GGCCGGAATG
2451	GGGTTCTTCA	CCGACGCCTA	TGACCTCTTC	TGCATCTCCC	TCGTCACCAA
2501	COTCOTCCC	CGCATCTACT	ACCGCGTCGA	CGGGTCCCCG	TCCCCCGGCA
2551	CACTOCCCCC	GCACGTCTCC	GCCTCCGTCA	ACGGCGTGGC	CTTCGTGGGC
2601	ACCCTCTCAG	GGCAACTCTT	CTTCGGCTGG	CTGGGCGACA	AGCTCGGCCG
2651	TAACCCCCCTC	TATCCCATCA	CCCTCATGCT	CATGGTGCTC	TGCTCCCTCG
2031	COTCCACACT	CTCCTTTCCC	CACACCCCGA	CCTCCGTCAT	GGCCACCCTC
2751	TACTTCCGCGCI	CICCIIIGGC	CAGCTTCGGC	ATCGGCGGCG	ACTACCCGCT
2751		ATCATOTCCG	AGTACCCCAA	CANGANGACG	CGTGGCGCCT
2001	TOTOCOCCACC	COTOTTCOCO	ATCCACCCC	TCCCCATCAT	CACCERCERC
2001	ICAICGCCGC		COCCTCCTTC	AGGCCGCCT	TCCCGGCGCC
2901	TCGTCGCCA		TCCCCTCCIIC	AGGGCCGCCI	ACCENCETCE
2951	TCCCTACGGC	GAGGACCCCG	TGGCCTCCAC	GCCGCCGCAG	GCCGACIICG
3001	TGTGGAGGAT	CATACTCATG	CTGGGCGCGC		GOIGACCIAC
3021	TACTGGCGCA				
3101			CGGCCGACAT	GICCAAGGIG	
3151	TGGAGATGCG	TAATATTGGT	AATAATGGTG	GCAGCAGGAG	
3201	CTGTTCTCCG	GCGAGTTTGT	CCGGCGGCAC	GGGCTGCACC	TGGTGGGCAC
3251	GTCGGCGACG	TGGTTGCTGC	TGGACATTGC	GTTCTACAGC	CAGAAUCTGT
3301	TCCAGAAGGA	CATATTCAGC	GCGGTGGGGT	GGATCCCCAA	GGCGGCGACG
3351	ATGAGCGCGC	TGGAGGAGCT	GTTCCGCATC	GCGCGGGCGC	AGACGCTGAT
3401	CGCGCTGTGC	GGGACGGTGC	CCGGCTACTG	GTTCACCGTC	GCGUTCATCG
3451	ACGTGGTGGG	CCGTTTCAAG	ATCCAGGCCG	TTGGCTTCGC	CGGGATGACC
3501	CTCTTCATGO	TCGCCCTCGC	CCTGCCGTAC	CACCACTGGA	CGGCGCCGGG
_	Sense prim	er → RT-PC	R		
3551	GAAGCCATGO	CTGGCAACCA	GGTCGGCTTC	GTCTTCCTCI	ACGGCCTCAC
3601	CTTCTTCTTC	GCCAACTTCG	GGCCGAACGC	GACGACGTTC	ATCGTACCGG

ю: |

- Harris -

12.0

1 . . .

 (\mathbf{i})

E

10

142

```
3651 CCGAGATCTT CCCGGCGCGT CTCCGGTCAA CCTGCCACGG CATCTCCGCC
3701 GCGTCCGGCA AGGCCGGCGC GATCATCGGA GCATTCGGTT TCCTCTACGC
3751 GGCGCAGCCA CAGGACAAGG CGCATGTCGA CGCCGGCTAC AAACCTGGGA
3801 TTGGCGTGCG GAACGCGCTC TTCGCTGCTC GCCGGGTGCA ACCTCGTGG
3851 GTTCCTCATG ACATGATGCT CGTGCCGGAA TCGAAAGGGA AGTCGCTGGA
3' ← Anti-sense primr RT-PCR
```

Rice F, ORYsaPhT1;12

- Martinger

iii Li

A Star

The contig (17657) containing the rice F sequence has a total length = 12280 bp.

RiceF total gene = 4871 bp Promoter = 2901 bp cDNA = 1626 bp = 542 amino acids 3' untranslated region = 344 bp

51	1	TAAAACAACT	CATAACAAAA	TAAATATAAT	TACGTAAATT	TTTTGAATAA
	51	GACGAATGGT	TAAACATGTA	AGAAAAAACC	AACGGCATCA	TTTATTAAAA
	101	AACGGAGGGA	GTATATATCT	CGTGGTCTTG	TTCATGTTGG	TCAATGAAGG
	151	ACTATAATAT	ACTCTCTCCG	NTTTTTTAAT	AGATGACACC	GTTGACTTTT
	201	TTAATATGTT	TGACCATTCG	TCTTATTCAA	TAAATTTACG	TAATTATAAT
	251	TTATTTGTT	ATGAGTTATT	TTATCACTCA	TATTTAACCA	TTCGTCTTAT
	301	TCAAAAAATT	TACGTAATTA	TAATTTATTT	TGTTATAAGT	TGTTTTATCA
	351	CTCATAGTAC	TTTAAGTGTG	ATTTATATCT	TATACATTTG	CATAAAATTT
	401	TTGAATAAGA	CGAATGGTCA	AACATGTGAG	AAAAAGTCAA	TGGTGTCATC
	451	TATTAAAAAC	GAAGGTAGTA	ACATGGAAAC	GGTGAATTTT	CCATACTACT
	501	GATACTACTT	TCTCTCGTTC	GAATACTACT	TTGTTTTCCC	GTATAAAGTT
	551	TATTGACCGA	AATACGGAAT	CCATGAAAAG	ATAAAGATGC	TCTTATTATC
	601	TGATGCTACT	GTTAACTCTC	TACTTCTTGA	GAACAGTAAA	CCCTCCCTCT
	651	TTCAACTAGT	CAGCAAATTA	ACCAAAGCCG	GTGTCTATAC	CAGTCAGTCC
	701	CAAAAAAAGT	CAAACCCTAG	TTATGAACTT	AGGCACGTAT	ATGTCCGGAT
	751	TCGTAGTTAG	GATTGGACTT	TTTTTAGGGC	TGGGGTAGTC	TGGTAAAAAC
	801	CGATTCCCCA	ACAGGTAAAA	AGAAGTGGTC	CTCGGAAGTT	GCCAAACCGA
	851	ACCCACCGAT	CGAATCGAGG	CGTGTGTGCC	GCGTGCGCGC	CCGTACAGTA
	901	CGAGGAGAGC	GGGACGCGGC	CGGGTTCGCG	ACGGCGCACA	CGCAGGCTGG
	951	GCCGGTGATG	GGCTGCGTGG	GAGGTGTGCT	GCTGATGCAT	GGGCCAATGC
	1001	GCGAGATAGC	TCGGTCGCGT	GGTATGTGTC	GGGCCTCGGT	TCCCACGGGC
	1051	TTCGCACGCA	GGCCGGATAC	AGAAACAGAT	CGAATCTCGG	AACAAAAACA
	1101	GAGAGCCACA	TATCACTATA	TCAGATGTCA	CGGTGGATTT	GCCGCCGCGC
	1151	AGATCGGGAT	AGCTGGCAGG	CATTCGTACA	CCCGGATTTC	TGCTTTGATA
	1201	TTCTGTTATC	ACAGTATATC	CGAGGGCACC	GTATCTGGTG	CAAACCAGGG
	1251	TTGCTGTGCA	GCCTTGCAAA	TTTTCAATTA	AGACCATAGA	ATACCCATCC
	1301	GATGGCTAGG	TATAGAGGTG	GGTTACTTTT	GCACTTAACC	GCCCACACTC
	1351	ATCTATGCTA	ATCTGTTTTT	TATGCAAATC	CCCCCTAATC	ACAGCATCCG
	1401	TCCGCCCGCT	CTTCCCGCGT	CGTTTCGTTT	CTGCAGCACA	CGCGATTCGC
	1451	CGCCGCCCGC	TCGAGTCCCC	GCCGCCCGCC	AGCGACTCGC	CGGCGCCCCT
	1501	TCGCCACGCC	ACCACCGCCA	TGTTGCAAAC	CCTCCCGTTG	TGAGGTCACG
	1551	GGGTAGACCG	TGCCGCTGCC	GCCATGGAGT	CTGGCACGCG	CGACGTTTCG
	1601	GATTCCAACG	CGATAGACCT	TGTGCAGGAC	CAGCGGGCGG	GTGCCGTTGA
	1651	TCCTGTCGTC	GCTATTGATC	CCGTCTCCGT	TGAGGCCGCC	GCCATATATC
	1701	ATGCCGTCAT	TATCGTGGAC	GCGGGCCAAA	CAAGGTGTGA	ACTATGAACC
	1751	GTGGAAGTGT	ACTTGCTGGA	AGTTTATTCT	GAACTTGTAT	CCCTATACTT
	1801	GATGTATTCC	TGAATGAGAC	ATGCTTATTT	TCGTATTGTG	AACATTTTAA
	1851	TCTTAACCTG	TATGCTCTTG	TTATTGGTAG	ATGCTGCCAA	AATTTAGTAA
	1901	AAAGGGATAC	ATGCTACCAA	AATCTGAACT	GCATCAAGAG	TTTCTTATCT
	1951	GAGACATGTT	TATCATCAAT	ATATGACAAT	ACATGAAACT	GAACCTGTAT
	2001	CAAACCTATC	AAGCTGTTGT	GTTCTAGCAC	ATGTGCAGAA	AATGCAGAAC
	2051	AAGTAGTTTG	ACAGTTTGAC	ATATTACAAA	ATCCGTGCTG	GTTTCAGTTC
	2101	ATCTGTCATC	CGAATGCATG	AAGCTGAGCA	TATATTCAGT	TTGACAGATT
	2151	GACACAGAAA	ACAGCTGGTA	GTTCATTCAG	GCTATTATTC	AGTTACACAC
	2201	CCATAGGTTC	CACTGCCACC	ACAAGCAAGA	AAAATGTTTT	TTTATGGTTC
	2251	CACTTGACTT	GACTCAATCT	CATTATCAAA	TGACAGAACA	CAATTCCATT
	2301	GCATATTTGC	AGTCACAATC	TTTCAGAGTT	TCAGATTACA	AAATTAGTAC
	2351	ATCAGTGTCA	ATCTCAGAAC	ACGATTCCAT	TGCATATCAG	CTCGGCGGGC

2401	CAGCGACCGC	GTCGAGCCGG	CTGGGCGGGG	ACGCGGTCGC	GGCGGCGAGC
2451	GGCGACGGCG	GGAGGGCGGA	GGACGGCGGC	CACATGAAGC	AGGGGGGGATT
2501	TGCATAAAAA	ACAGATTAGC	AGAGATGAGT	GCGGGCGGTT	AAGTGCAAAA
2551	GTAGCCTACC	TCTGTCCGTA	GCCATCGGAT	GAGCATCATG	TGGTCTTGAT
2601	TGAAAGTTTG	CAAGGTTGCA	CAGCAACTCT	GGTTTGCACG	AGATACGGTG
2651	CCGTATCCGA	GGGGGTGCTA	GTGTCTGCCA	ATGGCGTTGC	ATACGTATCT
2701	CGTTTGTATA	ACGGAATCGG	GCTCTTTGCA	CGGCACACGG	TTCATCTCGT
2751	ACTCGAACTC	CGATCTGTTA	TAACCATCGC	GTTGGATCGT	AGCAGCACAC
2801	GGTTCATCTC	GTACTCGAAC	TCCTGATCTG	TTATAACCAT	CGCGTTGGAT
2851	CGTAGCAGCA	GCCGCCGACC	CAAACGCAAA	CGCAAACGCA	AACGCGACGC
2901	CATGGGAAGG	CAGGACCAGC	AGCTGCAGGT	GCTGAACGCG	CTCGACGCGG
2951	CCAAGACGCA	ATGGTACCAC	TTCACGGCGA	TCATCGTCGC	CGGCATGGGG
3001	TTCTTCACCG	ATGCCTACGA	CCTCTTCTGC	ATCTCGCTCG	TCACCAAGCT
3051	TCTCGGCCGC	ATCTACTACA	CCGACCCCGC	CAGCCCCACC	CCCGGCTCGC
3101	TGCCGCCCAA	CATCGCCGCC	GCGGTGAATG	GCGTCGCGCT	CTGCGGCACC
3151	CTCTCCGGCC	AGCTCTTCTT	CGGATGGCTC	GGCGACAAGC	TCGGCCGCAA
3201	GAGCGTCTAC	GGGATGACGC	TGCTGCTCAT	GGTGATTTGC	TCCATCGCCT
3251	CAGGGGCTCT	CCTTCTCGCA	CACGCCGACG	AGCGTCATGG	CCACGCTCTG
3301	CTTCTTCCGC	TTCTGGCTCG	GCTTCGGCAT	CGGCGGTGAC	TACCCGCTGA
3351	GCGCCACCAT	CATGTCCGAG	TACGCCAACA	AGAAGACCCG	CGGCGCGTTC
3401	ATCGCCGCCG	TCTTCGCCAT	GCAGGGGTTC	GGCATCCTCG	CCGGCGGCGT
3451	TGTCACGCTC	GCCATGTCCG	CGGGGTTCCA	GGCCGCGTTC	CCGGCCCCAG
3501	CGTACGAGGT	CAATGCCGCT	GCGTCCACCG	TGCCGCAGGC	CGACTACGTG
3551	TGGCGCATCA	TCCTGATGCT	CGGTGCGCTG	CCGGCCATAC	TGACGTACTA
3601	CTGGCGGATG	AAGATGCCGG	AGACGGCGCG	GTACACGGCG	CTCGTCGCCA
3651	AGGACGCGAA	GCAGGCGTCG	TCGGACATGG	CCAAGGTGCT	GCAGGTGGAA
3701	ATCGAGGTGG	AGGAGGAGAA	GCTCCAGGAC	ATCACGAGGG	GCAGGGACTA
3751	CGGCCTCTTC	TCGGCGCGGT	TCGCCAAGCG	CCATGGCGCG	CACCTCCTGG
3801	GCACGGCGGC	GACGTGGTTC	CTCGTGACGT	CGCGTACTAC	AGCCAGAACC
3851	TGTTCCAGAA	GGACATCTTC	ACCAGCATCC	ACTGGATCCC	CAAGGCGCGC
3901	ACCATGAGCG	CGCTCGAGGA	GGTGTTCCGC	ATCTCCCGCG	CGCAGACGCT
3951	CATCGCGCTC	TGCGGCACCG	TGCCGGGCTA	CTGGTTCACC	GTCTTCCTCA
4001	TCGACATCAT	CGGCCGCTTC	AAGATCCAGC	TCCTCGGCTT	CGCCGGGATG
4051	ACGGCGTTCA	TGCTCGGCCT	CTCCATCCCG	TACCACCACT	GGACCATGCC
4101	TGGCAACCAG	GTCATCTTCG	TCTTCCTCTA	CGGCTTCACC	TTCTTCTTCG
4151	CCAACTTCGG	GCCGAACGCG	ACGACGTTCA	TCGTACCGGC	CGAGATCTTC
4201	CCGGCGCGTC	TCCGGTCAAC	CTGCCACGGC	ATCTCCGCCG	CGTCCGGCAA
4251	GGCCGGCGCG	ATCATCGGAG	CATTCGGTTT	CCTCTACGCG	GCGCAGCCAC
		Sen	se primer 🕇	RT-PCR	
4301	AGGACAAGGC	GCATGTCGAC	GCCGGCTACA	AACCTGGGAT	TGGCGTGCGG
4351	AACGCGCTCT	TCGTGCTCGC	CGGGTGCAAC	CTCGTTGGGT	TCCTCATGAC
4401	ATCCATCCTC	GTGCCGGAAT	CGAAAGGGAA	GTCGCTGGAG	GAGATGTCCG
4451	GCGAGGCCGA	CGACGAGGAA	GCTTCTGCCA	ACGGCGGTGC	CATCGCCGTC
4501	AACTCGTCCG	GAGTTGAGAT	GGTGTAATCC	TTCAGGACGC	AACGAGATGA
4551	CGAACACTTG	CATGCGAAGC	TCGTACTTGT	AGCGTGATAG	GAAATGTTAT
4601	ACTTATATT	ATTACATCCT	ACTCCTACTA	GTAACTATCA	TAACTATGTT
4661	ACTINITI	TTACATO	ACCACTTOTO	TTTCTACCTC	AAGTTGATCC
4701	CTATTOCI	TAGAACTTAA	TTAATTCATC	GCAACAACTT	GCTCATTACT
4751	CATTAATACA	ΑGCTATTCTA	AACTTTTGTG	GAATGTCTCC	TTGTTATTTG
4,01		noemiten	← Anti-	sense primer	RT-PCR
4801	ሮልጥረተጥል ሮጥጥ	ልልርልልጥጥልጥ	ΔΑΔΔΔΔΔΔΦΆ	GAAAAAATT	AAATAGATAG
4851	ATTACGATAT	ΑΤΓΑΤΤΑΓΑΓ	A 3'		
77 14 - 4 - 4					

Rice G, ORYsaPhT1;7

4

Ì

Contraction of the second

The contig (2059) containing the rice G sequence has a total length = 17252 bp

RiceG total gene = 4801 bp Promoter = 2852 bp **cDNA** = 1581 bp = 527 amino acids <u>3' untranslated region</u> = 368 bp

1	TCTAGAAAGA	TTAAAGAAAC	AGATGACACA	AGGAATCAGT	CTTATCCCGT
51	CCCTGGTTGC	AACAAGGACA	ACCACAATGG	CTAATAAGCA	TAGTGTTAGG
101	CTGGCTGTTG	TCTTCGGTCT	GATATCATCT	GAGATTGGAT	CCCCTATTCT
151	TGTCAAGAAG	AATGTGCGTA	TATGCAACCA	CTGTCATCAT	GCATTGAAGT
201	TGATATCAAG	ATATTCAGGA	CGGAGGATTG	TTGTCGGTGA	CTCAAAGATC
251	TATCATGAAT	TCTCTGATGG	CTCTTGTTGC	TGTGGTGACT	ACTGGTGAAT
301	GGATATCACT	GTTTCAGTAT	TTGACAATGT	TCTTCACACC	TTCGGCAACA
351	CCAATGGAAC	GCCTGAATGA	ATAGGTGTTG	TGGCAAAATA	TCATCATAAA
401	GTCACAGCTT	AGATGAACCA	TCGAGTATGA	GTCCAAATGC	TACAGCTGTA
451	TCAATTTTCG	GGGGGCACAT	AGACGAGAAA	TCAATTCCCA	GGTACTGGTA
501	CAATGTTACT	CCGGTAGCAG	CGGCTCAAAG	TGAAAGGGTG	AATATGCACA
551	CTGGACAGGA	ACCTCCTCTT	AATACTGTAA	CACATTGATA	TGATGTACAA
601	AGTCCATTCT	TTTCGAGTGA	AGATTCTGAA	TCACATAGCT	CCATGTACCA
651	CACATCATTC	AATAATGAAA	TTTAACAGAA	AACTACTTTC	ATTTGCAATT
701	CTTAACAAAA	CAGAATTTAG	AGATTTAGAA	GAACATTTGC	TTGACACAAG
751	GCCAAGTTTT	ACTCGTTTTC	ATACAAACTT	CAGAACAAAA	TTAAGCATAT
801	GAAACGCATC	GAAACGGCAT	GTAGCCGCAC	TTCAGCTATG	CTCCGCCCCG
851	GCGCTTGGCC	TCCTCGGCCT	CGACCATGCG	GCGGGGACGCC	TCGGCGAGCC
901	GGTCGAGCGC	CTGCTGCACG	GCGTCGCGGC	CGCCGATGAG	GAGCCGCGCC
951	ACCACCTCCG	GGTCGCGCTC	GCCGCGGGGCC	TCCTCGAACT	CCCGCCGCGC
1001	GTTGGCGCGC	AGCACCTCGC	GCCACGGGAC	GCCGCGGTCG	TCGGGCCACT
1051	CGAACAGCCG	CGTGACCCGG	AGGATGTCCC	GGTACAGCCC	CAGCGCCTCC
1101	CGCCGCGAGC	TCGTCAGCCG	GCGGCGCGCC	TCGGCGTCCG	CCGCGTCTCC
1151	GTCGAGCGCC	CCGGAAGAGG	AGGAGGGGGA	CTTCTTGGCG	AGGTGGCGGT
1201	CGAGCAGCTC	GTCGATGGTG	TCGGGCCCCT	CGTGGATGGA	TCGGACCGGC
1251	GGCCGCCGCC	TCAACACGGC	CACGCCGCGG	AGGAGGGAGG	AGGAGGCGCG
1301	TGCTGCGACG	GCCATGGCTG	GGTTATTCTT	CCCCTCGTCC	CGTCTATTTA
1351	CCGTTGCGTT	GCTCCTGAGT	TGGGTATTTG	GGTGAGATCC	CCAATTCTTG
1401	ACCTGGTTGG	GTCGGTATCC	AGCCGATGGG	CACCGTGCCA	CCGTGCTACT
1451	AGTATGTGGC	AAACCGGAGA	CTGGATTTAC	CAAGAAATTG	CGTTGATTTA
1501	CAAAGAAACC	ACACCATAAT	TCTCATCGGT	TTCATCATCC	CATAGTACTA
1551	CTACAATTTA	TTTATTTGCA	ACAACGGCGA	ACCAAGATCA	CAATGGAATA
1601	CGTTTTACAT	GTCCTACTTG	TAACACCGAA	CGCTACTACG	ATGTTGATGT
1651	ACAAGGTTTC	ATCTCATCTG	TACGGTGCGG	TAGCCGGAGG	ATTGGCCACG
1701	GTGACGGCCT	TGGTCTTGAT	CCGGTACCTC	GGCCGGCGAG	GGATGACCTG
1751	GCTGGGGCCC	ATCCCGAACT	GGCCGGTGCC	GTCCATGGCC	GGCGGCCCGT
1801	CGTCGTAGAC	GTAGCCGAGG	AGGCGGCCGC	AGGCGTCGCA	GCTGATGCGG
1851	GTGCGCTTCC	GCTGGATCCC	CCAGTAGTTG	AGCGTCTCGA	AGAAGGGGCG
1901	GATCTTGTCC	TCCGGCGCGA	ACCGCAGCCG	GCGACTCGTCC	ACCCACGAGA
1951	AGGAGAGCGT	CCCCTTGTTG	CCGGCCTCGA	AGTAGACCCC	CTCCGGGTAT
2001	AGCTGCGCCG	CCGTCAGGTT	CAGGTCCGCC	CCGCACTCCG	CGCACCGGTA
2051	CGTCGCCGCC	GCCGCCGATG	AGGACGCCAI	CCCGCCGCGCGC	CGCGCCGCGC
2101	CACCCGAGCA	CGGAGATCTT	CTGCGTGGCC	C GCAACGATGG	ATCTGCGTAG
2151	TTCAGTGTAA	TTTTGTCCAA	TTTAGGGAC	ATGATTTCTA	GGGAGGACAC
2201	GGCACCGGAA	GCGAAGCCGC	GTTGGACTGO	G AATTTCTTGC	TACGACCATG
2251	AGAGGGTTCI	TCTATGGTGA	GAAGTCAAAG	CCAAGACGCC	ATGTTTTTTC
2301	GAGTTTCGCA	ATGGTTTCAC	GACGGAATAC	GGTGCGGCCC	ATTCAGGCCC
2351	AGTTTGTTTI	GGATCGCCCG	GCCCATTAGO	CGTTGCTTCC	TCTCTCTCCG
2401	TTCCGTGTTC	TACGAGATTI	GTCTCAACAA	A TCAATCCGAA	TTTTGGAAGC
2451	AGAGTTGTTA	CGAATTGTAI	CGGCAAACAC	C ATATCATGTG	TATCATGTGA
2501	TCATCAGAGI	ATATACATAA	CAAGTAACAA	A AATCTGCAGG	TTTGCACGTC
2551	TCGTGTGTAG	G TACGGCGATA	AGCTAATGGO	ATATGGATCC	AAAACACGCA
2601	GAGCCATGCO	G ATTGCGATGC	GAGCCCGTCA	A AAACTTGTTG	CTGGAAAGGA
2651	GGGAGAAGGC	C GTTGCATTC1	CCCGAGAAAA	A ATGAAGGATA	TGACCTCGGA
2701	ATATTCTCGC	GTCACCCGCG	TATACATAG	C AACCAACCAC	CTGTTCCATC
2751	TCTCTGTAG	C TCACTCCCTC	GCCGCCATT	r ACGAGGCAGG	AAGGTGTTTG
2801	TGTGTGAGAG	G AGAGAGAGAG	G CCTTTGACCO	G CCGGAGCAGC	AGCGTCACCG
2851	CCATG GCGGG	CGATCAGATO	CACGTGCTC	CCGCGCTGGA	CAGCGCCAAG
2901	ACGCAGTGG	ACCACTTCAC	CGCCATCGT	ATCGCCGGCA	TGGGCTTCTT
2951	CACCGACGC	TACGACCTCI	TCTGCATCT	CCTCGTCACC	AAGCTCATCG
3001	GCCGCGTCT	CTACACCGCC	GACGGCGCG	CCAAGCCGGG	CAGCCTGCCG
3051	CCCAACGTC	CGGCGGCCG	GAACGGCGT	C GCCTTCGTCG	GCACGCTCAC
3101	GGGGCAGCT	TTCTTCGGGG	GGCTCGGCG	A CAGGGTCGGC	CGGAAGAGCG
2151	TOTACCCCA	CACCCTCCTC	TTGATGATC	A TCTGCTCCGI	CGCGTCGGGG

5'

145

3201	CTGTCGTTCG	GGGACACGCC	GACGAGCGTC	ATGGCCACGC	TCTGCTTCTT
3251	CCGCTTCTGG	CTCGGCTTCG	GCATCGGCGG	CGACTACCCG	CTCAGCGCCA
3301	CCATCATGTC	GGAGTACGCG	AACAAGCGGA	CGCGCGGGGC	GTTCATCGCC
3351	GCCGTGTTCG	CGATGCAGGG	GTTCGGGATC	CTCGCCGGCG	GCGCGGTGGC
3401	GATCGGGATC	ACCGCGATCT	TCAGGAGCCG	GTTCCCCGCG	CCGCCGTTCG
3451	CCGCCGACCC	GGCGGCGTCC	ACCCCGCCCC	AGGCCGACTA	CGTGTGGCGG
3501	CTCATCCTCA	TGTTCGGCGC	GCTTCCCGCG	GCGCTCACCT	TCTACTGGCG
3551	GATGAGGATG	CCGGAGACGG	CGCGGTACAC	CGCCATCGTC	GCCAAGAACG
3601	CGGAGCGCGC	CGCGGCCGAC	ATGTCCAAGG	TGCTCCAGGT	GAAGATCACG
3651	GCGGAGCAGG	CGGAGATGGC	CTCGCCGGTG	GACAAGCCCT	TCACCAGCAA
3701	GCCCTTCGGC	CTCTTCTCCG	GCGAGTTCGC	GCGGCGCCAC	GGGTTCCACC
3751	TCCTGGGCAC	GACGTCGACG	TGGCTCCTCC	TGGACATCGC	CTACTACTCC
3801	CAGAACCTGT	TCCAGAAGGA	CATCTTCAGC	GCCATCGGGT	GGATCCCGGA
3851	GGCGAAGACG	ATGAGCGCGC	TGGACGAGCT	GTACCACATC	GCGCGCGCGCGC
3901	AGACGCTGAT	CGCGCTGTGC	GGGACGGTGC	CGGGCTACTG	GTTCACGGTG
3951	GCGCTGATCG	ACGTGGTCGG	GCGGTTCAAG	ATCCAGGCGG	CGGGGGTTCTT
4001	CATGATGACG	GCGTTCATGC	TGGCGCTGGC	GGTGCCGTAC	GACCACTGGA
4051	CGGCGGCGGG	GAACCAGATC	GGGTTCGTGG	TGCTGTACGC	GCTCAC CTTC
4101	TTCTTCGCCA	ACTTCGGGGCC	GAACGCGACG	ACGTTCATCG	TGCCGGCGGA
	Sense prim	er 🗲 RT-PCR	2		
4151	GATATACCCG	GCGAGGCTGC	GCGCGACGTG	CCACGGGATA	TCGGCGGCGT
4201	CGGGGAAGGT	GGGCGCGATC	GTCGGGTCTT	TCGGGTTCCT	GTACCTGGCG
4251	CAGAGCCCCG	TCCCGGCCAA	GGCGGCGGCG	CACGGCTACC	CGCCGGGCAT
4301	CGGCGTCCGC	AACTCGCTCT	TCGCGCTCGC	CGGCTGCAGC	TTGCTCGGCT
4351	TCCTCCTCAC	CTTCCTTGTG	CCGGAGCCCA	AGGGCAAGTC	GCTCGAGGAG
4401	ATGTCACGGG	AGAACGAGGT	CGGCCAGCCG	TGATCCACC	CGTTAATTCC
4451	ACCGCCGTCC	GTCTGCATGC	AAGATCCATG	CGTATGCGTG	GTTAGTCCAC
4501	TAGAGATTTT	TGTTCTCTTT	TTTCTAGAAT	CCATTGGAAT	GCATATGTTC
4551	TTTTTTTTTTT	CTAGAATCCA	TTAGAGGCTG	GATGATGAAA	TAATGGCCGC
			← Anti-se	nse primer 1	RT-PCR
4601	CAATTAATTG	TTGACGACAA	TGTAGTTTAG	CATTAGGTGA	GTTTTTCATA
4651	TAATGAAACT	ATCATTAGAG	TTCATGCTGA	TTCTGTTTCG	GCACGAGGGA
4701	TCCTCGCGTC	GTTCCTTTTT	TTCTGTTGAT	TGTGATGATC	AAGAGCGATC
4751	TCTCCTCCAA	ААААСААААС	AGAATGCATC	TCTCTATAAT	CAAAAGGAAA
4801	A 3'				

Rice H, ORYsaPhT1;4

The contig (1494) containing the rice H sequence has a total length = 19078 bp

RiceH total gene = 5050 bp Promoter = 3056 bp cDNA = 1617 bp = 539 amino acids 3' untranslated region = 377 bp

51	1	AAATTTGGTA	GAATTGTTCA	GTGGATTCGG	TTATGGAAAT	AAACTAATTG
	51	GTAGATGGAA	ATGGATATGA	CTGAATTTAG	TATATCCCCT	AAATAGGTAT
	101	GATTAATTAG	TTGTCTTTTC	TTATTAGGAA	ATCTTATCTC	GTGTGTAACT
	151	TGCACTTTTA	CAAACCCGAG	GTTATAAATA	TATACATCTA	GGGTTTTTTA
	201	ATCTATCTCT	CTAGATCAAT	ATAATTACTT	TCAACGCATC	AACACATTTT
	251	AATTCTGGTG	AGTTCTTAGT	TTCGAGCGAG	GCTGCATCAT	TTCATCAGGC
	301	ATGGAAGTAA	GTTCCACCAA	CTTCAATTGT	ATTGGCTTAG	GTAGGACTTT
	351	CTAGGTTCGT	TCCGATATTC	TAATTAGTTG	CTATAATCGT	TGCATATACT
	401	AGCTTTGGCT	AAAGCTGAGT	CGTTTCAATC	TTTTGGTCTG	ATCTTATATA
	451	TCCATCACGC	TTGTATAGAT	CTCTCAACTA	AATTGTTTTT	CTTATTATCT
	501	ACAATTTTAT	AGTGTCTTGG	TTAGGTCCGA	TCTATTAGAT	TGCTGCCAAT
	551	AAGTTTAATT	CTACTAAGTC	GATAGGGTTT	TATGCAACAT	TCATAAGAAT
	601	TCTAGCCAAT	TAGTTATCTT	GCTATAATTT	CTGGGTGTTA	CATCGGCTCA
	651	TGTTTAATTG	AGTATATTCA	CTAGTTAGAT	CACTTTTTAT	TAACTTAAAT
	701	CTTATACTGT	CTTGATTTGG	TCCGATCTAC	CAAGGTTATT	TTTAATGTGA
	751	AACGATTTAT	TACTGATTAT	ACATTGCTTG	GTTCTAGCCG	ATCGAAGCAT
	801	AAGTTCTTAT	ATTAATCTAT	TCAAGTTTAC	ATTGGAACCA	TAGCCATTGA
	851	TTGAAACGCT	GTTGACATCG	GCTGGCTACG	CTATAACACA	TCGACCTATI
	901	AGCCGATCAG	CTCCTTAATC	TTATACGTTC	TATTGTTAGT	TGTAGAATTA

951	AACTAATTGA	CATGTCCTGA	ACTCGGATTT	TAGGACCTAC	ATTAGAGCTA
1001	AACAGATCTG	TCAGGTTCTG	GTGTGTTGTA	CAAATTTTGA	GGCAACAGGC
1051	TTTTTATCGA	TTTTAATAAG	TGGTGTAAAT	CATCGATATC	GCTATCTGAG
1101	TGAAGCCATT	CTTGTCTTTA	CAGTGCAGTG	TCATAAGAAA	ATCACCAGTC
1151	TTCAAACAAA	TAGGCGTACC	CACTTAACTT	AATTAAACAA	ATATAATTGT
1201	CCAATAAAAT	GAGAACGTAG	TTGAGTTTTA	CTTCTACACA	CCAGTTGCAA
1251	ATAGAATATT	TTTTTAATGA	ATATCAACCC	GACCTCTATA	TTTCGCATTG
1301	ATATGCACAA	ACAAAAATCC	CCGCTCTTAA	AAAATGATAC	AAGAAATGGT
1351	ACCAAAAGTC	ATGTTCTCTT	АААААААААА	AGAAATGTCA	CCCAGTTTGA
1401	TACTCACTTT	GTCCCAAAAT	ATGTAAGTGT	TACAGGTTTT	GGAGAACTTA
1451	TCCCATCGGA	ACACACTTTG	TTTACATTTT	ATCCGATCCT	ACCCCATGCA
1501	CCCTTACGCT	TTCCAATTAC	TCGTCGAATT	GATAATACTC	TCTCTCATTC
1551	TTGATCTCTC	TAAAAGACCA	TGAATCCCTT	GAATACGGAG	ATAGGTAACC
1601	TTGTCTTGTT	TTGACTTGAC	AAATATTGAT	TCCTCGAGCA	TCTAAATGGC
1651	ACATTGAGGA	CATGACTATT	TGTCTATCTG	GCCCCACAGT	AGAAGAATCC
1701	TGAATATAAA	CAAATGATAC	AAAACAATAA	AAAGTCAATT	CAACATCACT
1751	GGTAGTAGAT	GGATAACATA	GATAACACGT	ACGCTGCCCA	AATTTCGAAG
1801	ATATTAGTAC	GTGATTTGTT	TGACTAATCT	TATTCTTATA	GGAGTATTGC
1851	ATTAGGGAGA	AACAAATCGA	AGCGATGACG	TGGCTCTTTC	TAGCTAGTTT
1901	TGTCATTTGC	CTCCCTATAA	ATACCATCCA	TGTGTACCTT	GCCATCGGTT
1951	CTTCAGAGTT	ACAGTGCTAA	CGGCCTGCAG	CAGAGTGCAG	CGACTCCCCT
2001	GAAGAAACTG	GTATATTAAT	ATCAGGTGTG	TATATATTTC	ACATTTTATT
2051	CTAGTACTAC	TATTAATGAC	ATGTCTATAT	ATGTCAATTT	TAAGTATATA
2101	CATGTAATGG	GAAATTAAAA	TTTTCATATA	TTCACAAGTT	TCTTGCTCAT
2151	GGAACATGCG	TCAAGGCAGG	ATGTTGTGTA	GGGGTGTTAA	TTACTGATTG
2201	GTCATTAGTT	GCCCTCATGA	ATCCATGAAA	AAGTTCTTCA	TAAAGTCATC
2251	ACAAGAAGAG	ACCTTTTGTG	CCCTCTTTAC	GGCATGCTAA	GGTCACGAAC
2301	AGTTCAACAA	AAGCAACCAC	AAGATTTCTT	TTCTGAAAAC	TAATGAACAT
2351	TCAGAAATTT	CTGTGCAATT	TATCTCATGA	CCTAACCAGA	CGATGCTTGA
2401	GCCACGAAAT	AGAAGAGACA	AAGATAGTTT	CGTCAATTCG	AGAAGTTTGT
2451	CCGGACACTA	CTGATGATAG	CGGCAGATTT	GGACTGATTC	CATGAAAGTT
2501	GTACAGTAAG	GTGCGAATCT	TGAGTTGCAG	AGATGCACCT	GGATCCGGCT
2551	ATCTAGCTTC	ACGAGAATCC	CATCTCTGCT	CTCCTAAATT	GACCACGAAA
2601	CTGAATTTAT	GTAGAGATTT	TTCTCGAAAT	TCAGACATTT	TTCACTGGGA
2651	TGGATCGGGG	ATTGTTGGCT	GATAAAGCTG	GATTTGAAGA	AACAACAAAA
2701	TTTTGATATA	TGATACCTTG	AATAAACGAG	GAGTTTCTGA	AGTAGTGGCA
2751	TGGTCTGTTC	CAGATGTCTC	TCTGAACTTC	CGTTTCAGTT	TCAGTGGACC
2801	TTATTGTTGG	TGAACTGAAA	CGAATATTAT	CTTCTCGTAG	CCACGTGCAT
2851	TCTGTAGATT	TTCTTTTGCT	CAGTTCGACA	CGCATATACA	TCTGAGGCTA
2901	ATTAGCTCAA	TTAATCGCGC	GGTTTGTGTA	ATTCTCCCAA	ATAATTAGTT
2951	TCTCGTTCAT	TGCAAATTGC	AGCGAGATTT	TGTCGAAATA	ATAAACTTGG
3001	TGTTCAGTTA	TTCTCTGCAA	AAAATTGCAT	ATTGCAGAGT	AGCTGAGATT
3051	GGCGCCATG	CCGGCGAGCT	CAAGGTGCTG	AACGCGCTCG	ACTCGGCGAA
3101	GACGCAGTGG	TACCATTTCA	CGGCGATCGT	GATCGCCGGC	ATGGGGTTCT
3151	TCACCGACGC	CTACGACCTC	TTCTCCATCT	CCCTCGTCAC	CAAGCTGCTC
3201	GGCCGCATCT	ACTACTTCAA	CCCGGCGTCC	AAGAGCCCCG	GCTCTCTCCC
3251	GCCCAACGTC	TCCGCCGCCG	TCAATGGCGT	CGCCTTCTGC	GGCACCCTCG
3301	CCGGCCAGCI	CTTCTTCGGC	TGGCTCGGCG	ACAAGATGGG	GCGCAAGAAG
3351	GTGTACGGGA	TGACGCTCAI	GCTCATGGTC	ATCTGCTGCC	TCGCCTCCGG
3401	CCTCTCGTTC	GGGTCGTCGG	CGAAAGGCGT	CATGGCCACG	CTCTGCTTCT
3451	TCCGCTTCTC	GCTCGGCTTC	GGCATCGGCG	GCGACTACCO	GCTCTCGGCG
3501	ACCATCATGI	CGGAGTATGO	TAACAAGCGT	ACCCGTGGCG	GTTCATCGC
3551	CGCCGTGTTC	GCCATGCAG	GGTTCGGCAA	CCTCACCGGC	GGCATCGTGG
3601	CCATCATCGI	GTCCGCCGCG	TTCAAGGCGA	GGTTCGACGC	GCCGGCGTAC
3651	AGGGACGACC	GGGCCGGCTC	CACCGTGCCG	CAGGCCGACI	ACGCGTGGCG
3701	CATCGTGCTC	ATGTTCGGCG	CCATCCCGGC	GCTGCTCACC	TACTACTGGC
3751	GGATGAAGAI	GCCGGAGAC	GCGCGCTACA	CCGCGCTGGI	GCCAAGAAC
3801	GCGAAGCAG	CCGCCGCCG	CATGACGCAG	GTGCTCAACO	TCGAGATCGT
3851	GGAGGAGCAG	GAGAAGGCCO	ACGAGGTCGC	GCGGCGCGAG	CAGTTCGGGC
3901	TCTTCTCCCC	G CCAGTTCTTC	AGACGCCATG	GGCGCCACCI	GCTGGGCACG
3951	ACGGTGTGC	r GGTTCGTGC	GGACATCGCC	TTCTACTCG	CGAACCTGTI
4001	CCAGAAGGA	ATCTACACG	G CGGTGCAGTG	GCTGCCCAAC	GCGGACACCA
4051	TGAGCGCCC	GGAGGAGAT	J TTCAAGATCI	CCCGGGCAC	A GACGCTCGTC
4101	GCGCTGTGC	GCACCATCC	C GGGCTACTGG	G TTCACCGTC	TCTTCATCGA

4151	CATCATCGGC	CGCTTCGTCA	TCCAACTCGG	CGGCTTCTTC	TTCATGACGG
4201	CATCALCOCC	CGGCCTCGCC	GTGCCGTACC	ACCACTGGAC	GACGCCGGGGG
4201	CGITCAIGCI	aammaamaam	CATCTACCCC	TTCACCTTCT	TCTTCGCCAA
4251	AACCACATCG	GCITCGIGGI	CATGIACGCC	June A DE	DCD
			Sense pi	rimer 7 RI-	PCR
4301	CTTCGGGCCC	AACTCCACGA	CCTTCATCGT	GCCGGCGGAG	ATCTTCCCGG
4351	CGAGGCTGCG	TTCCACCTGC	CACGGCATCT	CGGCGGCGGC	GGGGAAGGCC
4401	GGCGCCATCG	TCGGGTCGTT	CGGGTTCCTG	TACGCGGCGC	AGAGCACGGA
4451	CGCGAGCAAG	ACGGACGCCG	GCTACCCGCC	GGGCATCGGC	GTGCGCAACT
4501	CGCTCTTCTT	CCTCGCCGGA	TGCAACGTCA	TCGGCTTCTT	CTTCACGTTC
4551	CTGGTGCCGG	AGTCGAAGGG	GAAGTCGCTG	GAGGAGCTCT	CCGGCGAGAA
4601	CGAGGACGAT	GACGATGTGC	CGGAGGCGCC	CTCGACGGCC	GATCACCGGA
4651	CTRCGCCGGC	GCCGCCAGCT	TGATACCCCG	CGGCAAAACC	CAAATGGTCA
4701	ATCATCAGCG	TTTTGTTGTA	ATATATGTGC	AATGGATGAT	TATTCTGGTT
4751	CTGGTAGTGT	ACCGAACAAA	ATTACAAATA	CTAGTCGTCA	ACCCGTGCGA
1,51	← Anti-ser	se primer F	T-PCR		
4801	GTGATATTAT	AAATGACACT	TAGATTATGT	ATTAAATATA	TTTTCTAAAA
4851	TTATTGTGGC	TTAAATTTTG	TAAAAAAGAA	TATTGCGGCT	TAGATTGCAT
4001	TAGAATAACA	ATAACATCGC	CCACAATTCA	CTTAGAGCCC	CTTTGATTTG
4051	CAACAAAAAC	AAAGGAATAT	TGGATGGTTT	TAATCCTATA	GGAAAATTTG
4701 E001	CTACCAACCC	ATTTCAAACA	AACCATTAAA	TCTTATCCTA	TCCTTTGGAA
DUNT	CIACGAAGGC	ALLIGNARCA	PRICONT THEFT		
	31				

Rice I, ORYsaPhT1;5

The contig (1361) containing the rice I sequence has a total length = 19355 bp

RiceI total gene = 7050 bp Promoter = 5027 bp cDNA = 1650 bp = 550 amino acids <u>3' untranslated region</u> = 373 bp

51	1	CCGGCGGCGA	AACACGGGAG	ATCGAGGCGT	TCAAGGAAGA	AATGAAGCAG
-	51	CTGTTCAAGA	TGAGCGATCT	GGGAGAGCTC	ACTTTTTACA	TGGGCATCGA
	101	GGTGCACCAG	AGCACGGCCG	CAATCACTCT	GCATCAGGGT	GGTTACGCGC
	151	GCCAGCTGCT	GACCAAGACT	AGGATGGATG	GGTGCAATGC	CTGCACCACT
	201	CCCATGGAGA	CCCGCCTACA	ACTGAGCAGA	TCAAGCTCAG	CCTCGCCGGA
	251	GGACACCACT	GAATATCACA	GCATCGTTGG	AAGGTTGTGT	TACCTGGTTC
	301	ACATGCGCCC	TGACATAGCT	TTTGCAGTTG	GGTATGTGAG	CAGGTTCATG
	351	GAGACCCCCA	CCAGTGAGCA	CATGGCGGCT	ATGAAACGAA	TTTTGAGGTA
	401	CGTCCCCAGC	ACTCTCGACT	TCGGTTGCTA	CAACAGAAGT	GTCGGGCCGG
	451	CGACATTGAC	GGGTTTTTAGC	GACTCTAACA	TGGCTGGAGA	CGTTGACACC
	501	CAGAAGAGCA	CCACGGGAGT	CCTCTTCTTC	CTTGGCACAA	ATCCGGTGAG
	551	TTGGCAATCT	CAGAAGCAAA	AAATTGTGGC	ATAGGCTACG	ACAGCAACCT
	601	GCCAAGACGT	GTGGTTGAGC	CAGCTGCTGG	GAGAGCTCAG	CGGATTCAAG
	651	CCGGGTGCCT	TCAAACTCAA	GGTTGACAAC	AAGTCAGCCA	TTGCCCTCAG
	701	TAAGAACCCT	GTGTTTCATG	AACGAAGCAA	GCACATCTCT	ACCAGATATC
	751	ACTACATTCA	CTCATGCGTG	GAAGACAGAT	GTTGATTCCA	TTAGTACTGA
	801	AGGGTAAATT	GCAGATATTC	TGACCAAGGC	TCTTGGGCGC	GTGAGGTTCC
	851	AGGAACTCCG	CACTCAGATC	GGGGTCATCG	ATATCAAGAA	TCAGCGCAAA
	901	ATTTAGGGAG	AGAAATGTTG	GCAAATAAAC	CAGCGCCGGT	CATCGCCGGT
	951	CATCCTCTGC	TTCTGCAGTT	CTTGTTCTTC	TTCGGTCAAC	TGTAGCACGT
	1001	CCTGTTTATT	TTCGATTTCT	TCAGTTTCGA	CATTTAAGCA	GAGCTGGCCA
	1051	GTCCGCCATG	CGCGTTGCGT	TGTATGCCTG	AGACGTGCGA	GTTCACGTCG
	1101	GGGCGTGGGT	GTGGTGGAGT	CATAGCATAG	TATGCGCTCT	GCGCTTATTC
	1151	GTGTGGGATG	GCACACGATC	ACGCGACCGT	GGAGCGTTTA	GTCTGGCCTA
	1201	TGGGCCACTT	CTATGTTTTT	TCAATAAAAG	GGAAAGTAAA	CGGAAAAGCA
	1251	GCAAGCAAGT	TAGCTGCGCC	AAAATCTTCG	TGTGTTCGTG	TTGTTTCTAT
	1301	TCTCGCGTGT	GTTCAAGAAT	TCTTGTTGTT	CTGGGACACT	GGGATCAAGG
	1351	ATCGTCGGTA	ACAATTGTAT	CCTACTTATC	CAGATCGTCC	GTAACAAGTG
	1401	GCATGTTCGC	ATTAGCTGCA	ATACGAACAA	GTGTCATACC	TACCTTCACT
	1451	AGACGTTTAT	GTTTTATTGC	CTCCTGAAGA	ATCCGAATGG	AAAAAAGGAG
	1501	TGACAAGTCA	ACCAAAAATC	TCTACGTGAG	GTGTGCGATT	TTTCAACGTG
	1551	GATGGCATTG	AGCCATTGAC	GGCCCAATTT	TGCACGCAAA	TGGGAAAACC

1601	DAAADTCAAAC	GAGACACATG	TACGGTGTTG	TTGCATGGTT	AAGAAGGAAT
1651	λΨΨΨΨĊΔCͲΔ	ATTGGGTCAT	AGTGCTCTTC	TGAGCACTGT	ATATATTGGA
1701	ALITIGACIA	CCCAAATGAT	ATGTACCATA	TCAACCATAA	AGATTCCCTC
1751	CATCTCCATC	CACCACCTAA	CTGCAATTTA	GACATGATAG	AAAGAAGCTG
1/51	SAIGIGCAIG	TTCCTCCTAT	CAATCTTTA	CAGTACTAAA	TAAGACGGCA
1001	AAIAAACIAI	ATCACCTCTA	AATTCCACTT	TGTGTGGTCC	TGTTTCTTAA
1821	GUTTUITUI	AICAGGIGIA	ARTIGCROIT ATTTCCTACT	TATGTTTTGT	TAGATAATGG
1901	TIGTTAAACC		TTTCGIAGI TOTTTTTT	TTTTTAACGTA	TAGAGCTAGC
1951	TATTGCTTTG	GAICAIGICI	TOTITIT	ACCATCCCTC	CTTAGCGTAG
2001	CCACACTTGG	ACACICCACA	ACCUARTA	ATTCAAAACC	TCACTGAATT
2051	ACTGAAAGAG	ATAGAGICIA	ACGIAAAIAA mmcchmchhm	CTANCTOTAC	CCGTGCACCA
2101	TCTGATAAAA	AAAAGTATAC	TTUCAIGAAI	ACAACIGIAG	ACACTAAATT
2151	GGATTTGGAT	CCTTTCCCTT		AGAAIAIACG	AGAGIATACA
2201	TTATAACACT	ACATATATAT	ATATTCATTA	AATTATCACA	
2251	TTTAAGATGA	TGTATCACAA	TAATACAGAT	TTAACACCAA	
2301	AATTAAACTA	CAATTTAAGG	TGGAGCATCA	TAAAACTACA	GATTTAATAA
2351	CACAATTATC	ACAAAACTAA	TAGCGTCAAT	T'I'AA'I''I'ACAA	AAGTAGAACG
2401	TTTATAACTT	AATCATAGCA	GTAGTACTAA	GAATTTAAAC	CTCAAAATCT
2451	GTAGTTTTGT	AATAATTTTA	TTATTAAATC	GATAGTTTTA	AGATACTTAG
2501	CCTTAAACTT	CTAGTTTTGT	GACAAATTTG	TTATTAAATT	TGTAATTCTG
2551	TGATACACCA	CCTTAAAACT	ATAGTTTTGT	GATAATTTGC	TCCAAATAGT
2601	GTAAAATTTA	CTCAATATAG	TTAATTTGTT	GTTCTAGTTC	ATCCAACATC
2651	GTTTATACTC	CCTGTATTCA	CCTGATATTA	TTTATCTTCA	CATTTTGATC
2701	ATATCTTTTT	TACCAATAAA	ΑΤΤΑΤΑΑΑΤΑ	TTTTAGAATA	TACCATATTA
2751	TGAAAATGTT	TTGCATCGTA	AATATAAACA	GACAATTTAA	CTTTCATTGA
2801	TTATAGATTA	ACCAAGTAAC	CATTTAAAAG	TTATAGATAG	TAGGAATTGA
2851	ΑΑCΑΤΤΑΑΤΑ	ATCAATGCTA	GCGATTATTC	GCATTCTTAT	TTTACTCCCT
2901	CCATCCTATA	ATATAATGCG	CGCACGCATT	TCAAGATTTA	ACTTTTAAAA
2951	CATTTGACCA	ACACTTAGTA	TAATATGAAA	TTAATTTTAT	TTATCAAAAA
3001	TTATATCATT	AGATTGTGAT	TTGAATTTAC	TTTCGTATGG	TTATAATTTT
3051	CTTCCTACAA	ACCTTACAGT	ATATGAGAAA	TTATAAGTTA	AAGATTAGTT
2101	TTACATACTA	ͲͽϹͲͽϪͲͲͲͳ	GACCGTGCCT	TATATTATAG	GATAGAGTGG
3151	CTATCTAATA	AATTGCCGTT	GTGTTTGGAT	GTGAAATTAC	CCGACCTTTT
3201	AACTAATT	ATATTTTACC	AAAAATCCAC	ATAAGGTGAG	ATGGAAATAT
3201	CCCCTTANIIG	CCATATTATT	TTTTACCADAA	ΑΤΑΤΤΑΑΤΤΑ	AACTAACAAG
3201	CCCGIIAACI	COTCOTT	TIMOCITAT	GAGTACTTAT	TATATTTTA
2201 2251	TITGATCGA	ACTACCTTCC	CATCTTTCCT	GTCTTCCGTT	GATTCATGCA
3351	TCGTTTTGAA	AGIACGIIGG			AGTCGTCGTC
3401	AGATGCCAAG		CTCATATCTIAT	CCACCTCTTA	GATGTGTCCA
3451	AAGCICAGGI	GIAGAAIAIC	TCCAACACA	GUACCIGI III	TCATTCCAGA
3501	AATCCACGCA	BOGROGODCC	TGGAAACACA	ATCCTCAAAT	ATAAAATAGT
3551	AGTTCAAACA			COTCOTTACT	
3601	ATCCCTCTCT	ATTOGRATIT	IAAIGIAAGA		
3651	ACATTTGATC	ATTGTCTT			
3701	TTATTGTGAT	' TTAATTTATC	ATCAAATGTT	TTTAAGCAIG	CALANAAIAI CANTATCATA
3751	TTTTATATTT		TGAAATGGTT		
3801	ATACAAAAGG	AGTACCTTTTT	AAAAT"I"IGAG	AGGICAGIII	IIIIIIAGAA
3851	CTCATACCCA	CAAACTTAAA	CATTTATGAG	GTACTITIAT	
3901	TCCCCCTTAT	TCACTGGACA	GGAACATTCC	ACAGTTGATG	GITTCCTICA
3951	ATTAGGGGCA	A TATCGTCCAA	AAAACTATAA	TTGTTTTGAT	TITCCTTCGT
4001	CTTAATCTCI	ATAAGAAAAT	AGAAATTTTI	ATTTTTTTTC	GIGGATCCAT
4051	ATAGTATTAT	ATATAGGTGA	TATATACATA	AGCTTCTCGI	GCGCACACAC
4101	ACTAACATAA	AAATATCATC	GAAATTTTCI	TAAAAAAATA	A TATACATGTG
4151	CCTCCTATAG	5 TAATAGAGAA	TGAAAACACC	TATATAGAAA	A GTTTCATCTT
4201	CAAATTCATC	ATTTAAAGAG	GAAAAAAAAA	A AAATTCTTGT	AGTTAATATT
4251	CATAAAACTC	AACTTTTTTT	CTCTTTTTT	GAGGTATAAI	ATAATGAACT
4301	TACAGTTGAG	ACATACATAT	GAATAATACI	T ATTGAAAATA	A TTTTTTATAAA
4351	CTTTTCTAA	A ATTTTCACTC	GAAGTTTGTC	GACCCAACA	ATGTTCTCTT
4401	ATATAACATA	A CCTGGTATGA	ATAAGCAACT	CACATTACAA	T AGAACAACAC
4451	AAGGCAAGAT	TAATATATAT	ACCCAATGA	A ATATTCCCT	C TGTTTTCTTT
4501	AATTTAACA	TGGAAAGTAT	AAAATAGAA	TAACCAACG	CAGAAAGTAA
4551	AAATAGAGG	A AACATATAAA	CCTAAAGAT	C AGCATTTAA	A ATACTTTTCG
4601	TGTATTTC	C TCCAATTTAC	AAGATAATT	C ACATAACAG	F ACAACCTACT
4651	ATTTAGTGG	A GAAAATAGTT	AATAATGAC	TATATGATC	C AGAGGTTCAA
4701	ACTGTATAT	TTCTAGACCA	TTCACAACC	I GTGCCAAAA	r accaatgaga
4751	TTATGACAT	G CATGCATATO	G CATTGCCCT	A TAGTATGAT	G GTAACCATGC

			<u>እእርሞሞሮሞሮሮ</u> እ	TCCATCAACA	AACCAGAATG
4801	ATACCAGCCA	TAACAAAIIA	CTANTACCTC	TCACTTACAC	CAAATTCCTT
4851	TTCCAGGATI	TATICICIAG	ATAATTCATC	CGTGCATGCC	ATTGCCATTG
4901	GCACTATATA	ALAGUIACA	CATALCAIC	TCACAATAAC	TTAGAGTATT
4951	ACCATATGLA	TAGACIAGIGC	CATAACAATT	GCTCAGGATC	GCAAGGTGCT
5001	ATATCAAAGA	CACACGCCGA	AGACGCAGTG	GTACCACTTC	ACGGCGGTGG
5U51		CATCCCCTTC	TTCACCGACG	CCTACGACCT	CTTCTCCATC
51U1	TGAICGCCGG	CCALGGGGGITC	CGGCCGCATC	TACTACTTCA	ACCCGGCGTC
5201	CAAGAGCCCC	GGCTCCCTCC	CGCCCAACGT	CTCCGCCGCC	GTCAATGGCG
5201 5251	TCCCCTTCTC	CGGCACCCTC	GCCGGCCAGC	TCTTCTTCGG	CTGGCTCGGC
5201	CACAAGATCC	GGCGCAAGAA	GGTGTACGGG	ATGACGCTCA	TGCTCATGGT
5301 5301	CATCTCCTCC	CTCGCCTCCG	GCCTCTCGTT	CGGGTCGTCG	GCGAAAGGCG
5351	TCATCCCAC	GCTCTGCTTC	TTCCGCTTCT	GGCTTGGGTT	CGGCATCGGT
5461	CCCCACTACC	CGCTCTCGGC	GACCATCATG	TCGGAGTATG	CTAACAAGCG
5451	TACCCGTGGC	GCGTTCATCG	CCGCCGTGTT	CGCCATGCAG	GGCTTCGGCA
5501	ACCTCACCCC	CGGCATCGTG	GCCATCATCG	TGTCCGCCGC	GTTCAAGTCG
5601	CRGTTCGACG	CGCCGGCGTA	CAGGGACGAC	CGGGCCGGCT	CCACCGTGCC
5651	GCAGGCTGAC	TACGCGTGGC	GCATCGTGCT	CATGTTCGGC	GCCATCCCGG
5701	CGCTGCTCAC	CTACTACTGG	CGGATGAAGA	TGCCGGAGAC	GGCGCGCTAC
5751	ACCGCGCTGG	TCGCCAAGAA	CGACAAGAAG	GCAGCCGCCG	ACATGGCGCG
5801	CGTTCTCAAC	GTCGAGCTCG	TCGACGAGCA	GGAGAAGGCA	GCGGCGGCGA
5851	CGGCGGCGGC	TGCGGAGGAG	GAGGCAGCAC	GGCGCGAGCA	GTACGGGCTC
5901	TTCTCCCGGG	AATTCGCACG	GCGCCATGGC	CACCACCTGC	TGGGCACGAC
5951	GGTGTGCTGG	TTCGTGCTGG	ACATCGCCTA	CTACTCGCAG	AACCTGTTCC
6001	AGAAGGACAT	CTACACGGCG	GTGCAGTGGC	TGCCCAAGGC	GGACACCATG
6051	AGCGCCCTGG	AGGAGATGTT	CAAGATCTCC	CGGGCACAGA	CGCTCGTGGC
6101	GCTGTGCGGC	ACCATCCCGG	GCTACTGGTT	CACCGTCCTC	TTCATCGACA
6151	TCGTCGGCCG	CTTCGCCATC	CAGCTCGGCG	GCTTCTTCCT	CATGACGGCG
6201	TTCATGCTCG	GCCTCGCCGT	GCCGTACCAC	CACTGGACGA	CGCCGGGGAA
6251	CCACGTCGGC	TTCGTGGTCA	TGTATGCCTT	CACCTTCTTC	TTCGCCAACT
6301	TCGGGCCAAA	CTCCACGACC	TTCATC GTGC	CGGCGGAGAT	CTTCCCGGCG
	Sen	se primer 🗄	RT-PCR		
6351	AGGCTGCGTT	CCACCTGCCA	CGGCATCTCG	TCGGCGGCCG	GGAAGATGGG
6401	CGCCATCGTC	GGGTCGTTCG	GGTTCTTGTA	CGCCGCGCAG	AGCACCGACC
6451	CGAGCAAGAC	GGACGCCGGC	TACCCGCCGG	GCATCGGCGI	GCGCAACTCG
6501	CTGTTCCTGC	TCGCCGGATG	CAACGTCGTC	GGCTTCTTGI	TCACGTTCTT
6551	GGTGCCAGAG	TCGAAGGGGA	AGTCGCTGGA	GGAGCTCTCC	GGCGAGAAACG
6601	AAATGGAGGC	TGAGCCGGCG	GCAGCAACTA	ACTCCTACAG	GCAGACCGTC
6651	CCTGACAGCO	GACAGTCCG	GTAAATAAAA	ATAAATTACC	C GCAATTACTG
6701	TATCTGATCI	TGTATACTCI	CACTAGTTGC	ATTCTGCCAT	TCTTGCCTCA
6751	GGCCGTATA	A TAATAATCTC	C GAAATCTTGC	TACTGCCCA1	GACTAGGAT"1
			← An	ti-sense pr	imer RT-PCR
6801	CTGGGAACCA	A GCAGATTTT	ACCATGTTGC	TACAGCTTCT	CTGGATCTCT
6851	TCTATGGTCT	GCAAGACCA	CTGGAATTCI	CACATGGCAC	CTTGGTGCCC
6901	TCTGAGTCTC	C ATTTCACAGA	A TTGGCAAATC	AGATAAACT	TAAACGCTCC
6951	AGAGCAATTO	ATACTGGCA	A ATGAGATAAT	GTTCCTTGAC	GGGCATTGCA
7001	TCCACGTCT	T TTTCACCCT	G ATGCTTATA	A CTCTGAGGAG	G CATGGATGTT
	3'				

Rice J, ORYsaPhT1;13

The contig (285) containing the rice J sequence has a total length = 28353 bp

RiceJ total gene = 4499 bp Promoter = 3838 bp **partial cDNA** = 661 bp = 220.3 amino acids

5′	1 51	ATAAATCCAC TTCGCAGGCT	GAGTTACTAA ATTTAATTCT	GTGCTCCTTC TAGAGTCAGC	ACTTTAAAAG ACATGGACAA	CATCGTCGAA ATTATCTTCC
	101	TCATATTGTT	CTTCTCAGCG	TATGCCTTGG	CAATACCAAT	AAATTTAAAA
	151	TATGGAGCTC	TTCCTTCAAA	ATTTTGCATG	CATAAATCCA	TCACAAATTO
	201	AGGTCTAAAA	GCTTAATAAA	TTGCATACCC	AGTGTGGAAA	TGAGTAGATO

251	TAAGCACCGT	AGAAAAATCC	CCCGAAGATT	TGAAGTTTAA	AACCTCCCCC
301	CTATATTTAA	GTTACTTTAG	GAGAGAGAAA	CTTCGGGGAG	AATGAACAGG
351	ACTCGGGGAG	GAAGAAGACT	ATATATATAG	GGGCATCTTT	GCAGGCGGGC
401	CATATAAGAG	GCACATGCAA	AAATCGATGT	TGCCCAGGCG	CACAACGTCT
451	GCCTTCTTCG	TAGGCGCCGC	TTATATGGTC	TGCCTGCAAA	GATCGATCTT
501	TGCAGGCGGA	CCGCCCCTC	CACCCCGGGT	ACATTTTGTG	CCGGTAGGGT
551	TTTGGCTCCG	AATTACATGT	CCGCCTGCGA	AAATGGAACC	CCTACGACGC
601	CGAAAATGAG	TTTTCTAGCA	GTGCCCTCCG	CCTCCACCTC	GCATCTTCTA
651	TGGGCGAAGG	AACCGAGCAG	CTCTATGCCT	CGATGGGCTG	CTGCCACTGC
701	ACCATTGGCC	AGCTCTGTCC	GAGCCATTGC	CGACGTCGCG	AGGCCCCTCC
751	CCTCCCTCCC	CCTCTCTTTG	GCTGGCTGTT	GAATAAACAA	TGGCAGATAA
901	ACCCATAGAG	AAAAATAGAG	AGGAAAAAGA	GCGAGAAGGC	TAACTATCGC
001	TCCCACCAT	CCTTTTTTTTTT	TCTTTTTTTT	TCTTTTCCTC	TTTTAGTGAG
001	TUCCAGCOAT	TAAAGTTTAC	ACATCTAAAA	TTTATCCACC	TAAAGTTTGT
901	CAACCTAATC	TTTTATAAGTC	AAAAGTTTAT	ATACCCAATT	AAAATTCAAA
1001	GAAGCIAAIG	ATATTTAT	ΔΤΤΑΑΑΑΤΑΤ	TTCTATACAT	AAAGTTTATG
1001	TICGGATICA	ARIAIIIIAI ATACCATATA	ALTERATOR	ACATGAATGA	GAGTATTAGA
1051	TGTGCAAAGI	AIAUGAIAIA	TACTATTT	TTTGAAATTT	ATGATGTAAT
1101	TTTTTTCCI	MAIIICIII	TCANACATCA	GTATTAGGGG	GGAGGGACGG
1151	AGAAAAGTAA	AAAAGAGAGA	CARCONTCA	CCCCCCCACT	AGCAACCCCC
1201	GTGATCGCTA	GGAGGAGAGG	BAAGCGAICA	CCCGACATGT	GGAGTCCACA
1251	CAAAAAGAGA	GCAGAGAAAC	ATAAAAAIGC	TCATTATACC	CAACTCGCCA
1301	TGGATATATC	CCATGCTAAC	TCAGCCGGGI	TGATIAIAGC	CGTATTCCAA
1351	CGTTAGCTGA	AACCGAGCAC	AATACCACCC	IAGIAACICA	CCCACCAACT
1401	TAATTTGTGC	ATAAGTAGAG	AGAGAGGACG	AGGAACGAAA	CUTTACCTTTT
1451	GGGCCAACGT	ATTGGCCTTG	GCCCAAGAAG	AATATATIGA	ATCAACTCAA
1501	TTCACGATTT	TTAGAGGGAA	AAATTGAATG	AGTTGGATCA	ALGAAGICAA
1551	TCAGAAGGGA	GAAGGGGAAA	ATAAGTGGGA	AAGGATCGAA	
1601	CTCGACAAGA	ATGAACAATG	TTGATGAAAA	ATATTTCGC	IAAIGAIIII MUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU
1651	CCCAAATTTG	TGGAGTATGT	TACTCTAAGC	TTGTGTATAT	ATAAGCIAII
1701	TTGTAGGTAA	TCGAAGAAAA	GTAATTTAAA	TATAGTGAGA	
1751	GTGAAGGAGG	CCATTTATAG	AAATAGCATA	CTAGGACTGT	TAAATAGITA
1801	TCTGTATATT	ATCTTTGGAT	ACCAAAGATG	CGGCCTACTA	GTCACTGCCC
1851	ATTAATTCTT	TTCAAGTTTG	TTGAATACAT	AAGCACATAA	TGATTTAATT
1901	TATTCCCTAA	ATAAATCATG	ACATTGCAGA	TGTAAACTAG	TATAATCATA
1951	TCATACGATT	TACACACGTA	AACTAGACAG	TAAAGCATGA	ACAGGTCGAA
2001	TATGCGAAAC	ATGTTGAATG	CATACCGAGG	GTTTTGAAAA	ACTGGCTGCT
2051	CAGTAGGAAG	AACTCATGGI	ACAGTGCGTT	GATGACGGCG	CGCAGCACGT
2101	GAGTGAAGAG	GAAGACGAGC	TGTTGTGGAT	GAACAGGGAG	TAGTCACGCA
2 151	AACCGCTTCC	TAAAAACCTI	AATGCCACCA	TCTCTTGGTG	CAGGACGTCG
2201	AACACGAAGG	TTCTGGAAAC	CTACTCTCCC	GATCGCCGGT	GCATGCCCGC
2251	GAGCGGGATA	AAGTAGACTA	CGAGTGATGG	CGCCGTACAG	AGGAGCAGGT
2301	AACCCTAGAI	TGATTTCGCA	A TTTTGCATGG	AGGCAGTGAC	TCTACTTATA
2351	TAGAGATATO	AGGATGCTTC	ATCAGGGCGC	CTGCACGATC	TCCACTACAG
2401	GTAACCGAAC	CGAATAAGTC	C GCTCGTAACT	TATCCAGACT	CCACGCCGTT
2451	TCACGCACCO	GATTATTCAC	AGCGTTTCCA	AAAAACAAAT	CTGAATTTTC
2501	TGCAGCAAAA	A CAAAACTGCA	AAAGGAACCA	ATTTTATCAG	ACCATTCGAC
2551	GCGTACGTC	G TGCACGTGC	CCAGCATGTC	CGGCCAGGCG	AGGCGAGCGA
2601	GCGTGCGTC	GTGTTCCTC	TGTTCTCTCCC	ACCTCACATG	CCTCAAGTGG
2651	CTAGGAGAG	ATCCTCCCT	TTAAGGAGGI	ACTAAACTAC	CCATACATGT
2701	TATCCCATGA	A GGTGTGGTT	TGTGATTTT	CAAAGAATTA	ATCTTTGATG
2751	AAGTTGTCG	A TAAAGTTTT	TGTGTACAAG	TTTGTTCATA	ATTGTTTGAA
2801	TTATATAT	A TGAAAAGCT	A TTAAAAGTAT	AACTATATGG	ATATATTCTC
2851	ATGAAAACA	TATTGATAC	ATTTTTGCAA	ATGAATTATG	AAACCTTAAA
2901	ATGTTTGTA	C ATCCATACA	CCTAAGACCA	GATCTATCTG	TAAACGGAGC
2951	AGTGTTTTC	GAACTCGCT	A GCTCTTACGO	AATCTGTATC	TTCATTAGAG
3001	AATATTACA	CCAGCAATT	C ATCGGGCACO	TCAGATGCCA	GGATGATTGA
3051	AACAGACAT	C TTTTACTTT	C TTGTTCCTG	TTGCCGTCCG	GGACTTCAAG
3101	TGGACGACT	T TGATCGAAT	A AATTGCAACO	C AGCAAGTTCC	AGCTAACTTC
3151	TGATCTGAA	G AACCAAGCA	C GTACACCAC	r AGTATTTTCC	AGTCTACATT
3201	TAATTTGCA	C TACCTAGTA	G CTATCAGTT	TTACACTAAA	TTCAAGATTT
3251	CTACAGATC	C AAGTATATC	T GATACAATA	A TAAGAATATI	CATTCAGTTC
3201	ACCATATCC	T AGTGTCTTG	T TGCACAAGT	A CAGACACATO	TTGACAATAA
3361	ACCATTTCT	G ACTCCCAGA	T GGCTGTCAG	G TTCAGCAGAT	TGTAGAAATG
3401	AAATTCATA	A AGTTCAGGG	A ACTATCTTA	A AAAAAGTGCA	GCAAGTGTTT

3451 CAAGGAAAAA CATTAAAATC TAACTATAGT ATAATTGTAA TATAATTCCA 3501 CTATAACTAT AATATAAGTT GTATATAAGT ATTAAAATAA TACCTAAAAT AATATATGCA ACTTTATATC TAACTTATAT AGAATTTACG ATGTAGTTAC 3551 AGTGCAGTTA CACTACAACT GTTGTACTAT AGTTACATTT GAAAGTTTTT 3601 3651 TTTGCCGAAA AAAACTTGTG ATAGTTTTTC AGCAATTCCA TTCAGAAATC 3701 GATTAGATGG AAAGCATAAA ACCTTTGATA TGACAGAGAC AGTTTAATTA 3751 TGCTTGGAAG CTTATATAAC TTAGCAACTT ACAATAGCAA GGACAGGATC 3801 GAAGAAATTA AGGAAGCAAG TCGGATCAGA AAGCAACAAT GGCCGGCAAC 3851 CAGCAGCTGC GGGTGCTGCA CGCCCTGGAC ATTGCAAGGA CACAGCTGTA Sense primer \rightarrow RT-PCR 3901 CCATTTCATC GCGATCGTGA TCGCCGGCAT GGGCTTCTTC ACCGACGCCT 3951 ACGACCTCTT CTCCATCTCC CTCGTCGCCG ACCTCCTCGG CCACGTCTAC 4001 TACCACGGCG AGCTCCCCCG GAACATCCAC GCCGCCGTCA CCGGCATCGC 4051 GCTTTGTGGC ACCGTCCCCG GACAGCTCGT GTTCGGCTGG CTCGGTGACA 4101 AGATGGGCCG GAAGCGTGTC TATGGAATCA CCCTCCTCCT CATGGTCGCC TCCTCTCTCG CCTCCGGACT CTCCTTCAGT AAGCGCGAGG GGAAGAACGT 4151 TATCGCTGTG CTTTGCTTCT TCCGGTTTTG GCTTGGTGTT AGCATCGGTG 4201 4251 GCGATTACCC GCTCTCCGCC ACCATCATGT CAGAGTACGC CAACAAGAGG 4301 ACTCGTGGTG CCTTCATTGC TGCTGTTTTT GCTATGCAAG TAAGTAGAAA 4351 CTATGTTTTT CTTATTGTAA TTGAATCCAG CCTGAACATG AATGATGTTT ← Anti-sense primer RT-PCR 4401 CTGCATATGA CCCACACCAT CCATTCTTTA GTTTTTAAAC ATAACATTTC 4451 GGARATTATT AATGGACARA GTTTCARRAG CTTGACARAA TCTTTTRAA 3'

Rice K, ORYsaPhT1;8

5

The contig (24425) containing the rice K sequence has a total length = 4097 bp

RiceK total gene = 2351 bp Promoter = 384 bp cDNA = 1626 bp = 542 amino acids 3' untranslated region = 341 bp

,	1	CTAAAAGCTT	TTAGGGTGAA	CTGATTGAAA	TAAATCATAC	ATACAATAAA
	51	TACATTATAT	ATCGCATATT	AATAAGTCAG	CGTGCGAAGA	GCTTCTGGGA
	101	TGAACCGATC	GGTGACCCGA	GCGCGTGCGT	TCGGGCACCT	ATCAAACCCT
	151	TGTACACAAG	CGCATGACCC	CGCGTGAGAT	TCGTGCCGTT	TTTCTTCCCT
	201	CTCCATATTA	CAGTGACAAC	CAAGCAGGCG	TGCCAAATCC	ACTGGACACG
	251	GCCAAGTCGG	CTACCATTCC	TGCGCCTACA	TATACCGCGG	CATCTCCCGC
	301	GCCATTGCTG	TGCCCAGAGA	GCTCGACACA	AATACAGGGG	GACTCGTCTT
	351	CTTCCCCGAG	CTTTGCGAGC	AGAGTCGTTC	AGCCATGGCG	CGGCAGGAGC
	401	AGCAGCAGCA	CCTACAGGTG	CTGAGCGCGC	TGGACGCGGC	GAAGACGCAG
	451	TGGTACCACT	TCACGGCGAT	CGTCGTCGCC	GGCATGGGCT	TCTTCACCGA
	501	CGCCTACGAC	CTCTTCTGCA	TCTCCCTCGT	CACCAAGCTG	CTCGGCCGCA
	551	TCTACTACAC	CGACCTCGCC	AAGGAGAACC	CCGGCAGCCT	GCCGCCCAAC
	601	GTCGCCGCGG	CGGTGAACGG	CGTCGCGTTC	TGCGGCACGC	TCGCGGGCCA
	651	GCTCTTCTTC	GGGTGGCTCG	GCGACAAGCT	CGGCCGGAAG	AGCGTGTACG
	701	GGATGACGCT	GCTGATGATG	GTCATCTGCT	CCATCGCGTC	GGGGCTCTCG
	751	TTCTCGCACA	CGCCCACCAA	CGTCATGGCG	ACGCTCTGCT	TCTTCCGGTT
	801	CTGGCTCGGC	TTCGGCATCG	GCGGCGACTA	CCCGCTGTCG	GCGACGATCA
	851	TGTCGGAGTA	CGCCAACAAG	AAGACCCGCG	GCGCGTTCAT	CGCCGCCGTG
	901	TTCGCGATGC	AGGGGTTCGG	CATCCTCGCC	GGCGGCATCG	TCACCCTCAT
	951	CATCTCCTCC	GCGTTCCGCG	CCGGGTTCCC	GGCGCCGGCG	TACCAGGACG
	1001	ACCGCGCGGG	CTCCACCGTC	CGCCAGGCCG	ACTACGTGTG	GCGGATCATC
	1051	CTCATGCTCG	GCGCCATGCC	GGCGCTGCTC	ACCTACTACT	GGCGGATGAA
	1101	GATGCCGGAG	ACGGCGCGCT	ACACCGCCCT	CGTCGCCAAG	AACGCCAAGC
	1151	AGGCCGCCGC	CGACATGTCC	AAGGTGCTCC	AGGTCGAGAT	CCAGGAGGAG
	1201	CAGGACAAGC	TGGAGCAGAT	GGTGACCCGG	AACAGCAGCA	GCTTCGGCCT
	1251	CTTCTCCCGC	CAGTTCGCGC	GCCGCCACGG	CCTCCACCTC	GTCGGCACCG
	1301	CCACGACATG	GTTCCTCCTC	GACATCGCCT	TCTACAGCCA	GAACCTGTTC
	1351	CAGAAGGACA	TCTTCACCAG	CATCAACTGG	ATCCCCAAGG	CCAAGACCAT
	1401	GTCGGCGCTG	GAGGAGGTGT	TCCGCATCGC	GCGCGCCCAG	ACGCTCATCG

1451 CGCTGTGCGG CACCGTCCCG GGCTACTGGT TCACCGTCTT CCTCATCGAC ATCGTCGGCC GCTTCGCCAT CCAGCTGCTA GGGTTTTTCA TGATGACCGT 1501 GTTCATGCTC GGCCTCGCCG TGCCGTACCA CCACTGGACG ACGAAGGGGA 1551 1601 ACCACATCGG CTTCGTCGTC ATGTACGCCT TCACCTTCTT CTTCGCCAAC 1651 TTCGGCCCCA ACTCCACCAC CTTCATCGTG CCGGCGGAGA TCTTCCCGGC 1701 GAGGCTGCGT TCCACCTGCC ACGGCATCTC GGCGGCGGCG GGGAAGGCCG 1751 GCGCCATCAT CGGATCGTTC GGGTTCCTGT ACGCGGCGCA GGACCCGCAC 1801 AAGCCCGACG CCGGGTACAA ACCCGGGATC GGGGTGAGGA ACTCGCTGTT 1851 CGTGCTCGCC GGATGCAACC TGCTCGGGTT CATCTGCACG TTCCTCGTGC Sense primer > RT-PCR 1901 CGGAGTCGAA GGGGAAGTCG CTGGAGGAGA TGTCCGGCGA GGCGGAGGAC 1951 GACGACGACG AGGTGGCCGC CGCCGGCGGT GGCGCCGCCG TGCGGCCGCA 2001GACGGCGTAGTGTATGACTGCACGTGAATATAGTGTAGGTTTTACTTAA2051TTTACTTACTGTTATTATTATTATACTCCTACTTGTGTTTGTCATGTGA2101AATTGGGAATCATGAACCCATGATCATGTTTTGTTAGGTTAAGAAGGCAA AAGAAATGTG TGTTAAATAC TTCAATTATG TAAACTCTGT TTTTAAGTAT 2151 TTGGCCACTT GAGGAATAAT TCTTGCAGAC CAGCAATTTG GCACGAATAC 2201 ATTTTATAAT TGAACTACCA CTCTACCAGA GTAGTACACT ACTAATTTGC 2251 CTTAGAGAGG ACAATGAGAT GTCTAAATTT TCAATTATGG CTGTGTTGAG 2301 ← Anti-sense primer RT-PCR 2351 T 3'

Tomato Phosphate Transporter

LYCes;Pht1;1

5

The cDNA sequence of Lycopersicon esculentum (LePT1) was submitted to the Genbank database by Daram et al. (1998). The promoter region was cloned by myself and has not been added to the database. LYCes;Pht1;1 total gene = 3269 bp Promoter = 1356 bp CDNA = 1620 bp = 540 amino acids Putative cis-regulating motifs (referenced in section 7.2) have the motif aligned under the sequence with the percentage of similarity.

1	GGCAAGCTTA	CTATAGGGCA	CGCGTGGTCG	ACGGCCCTGG	CIGGIACIAA
	LePT1promHi	ndIII 🔶			
51	CCTGTCTTCT	AGATTTATGG	ATCACATGTA	AATGTTAGGC	TGTTTCCTTT
101	ATATTTTTTT	GAAAAGTCTT	CACTTTTTTT	TCTAAGAAAA	AATAAATAAA
151	TACTATCTTT	TAATATTTAT	ATAGCTCTGC	ATGACTTCAT	AGTATGGACT
201	ATATATAAGT	AAAACAGGAG	TTTACTTGTT	TTCTTTTAAT	TATTGGTCTT
251	TGGTAGCAAC	TTTAAACCTA	ATATTTACTA	ATATCAACCA	CTCCCATATG
301	ТТААААААТ	AATATCACTT	GTTTATACTT	TTTAAGTAAA	TTATGTGTCT
351	TTGTGATGCA	ATCATGCCAC	AAATTTTTTG	AATGAAACTG	TCTCTCTATT
			LePT	lpromA 🗲	
401	TACTATTTAC	TACAAGGTAG	AGGCAAGGCT	GCGTTGATGA	TTTCGGAATT
	Lei	PT1promA1 ->	•		
451	GAGTTATGAT	TGAACGACTA	GGTCCTTATC	ATCTTTTTAG	ACTTTAGCTT
	← LePT1prc	mX			
	-	GCACAAGTA	GACCCTTAAA	CT-MRR2 Mot	:if 62%
501	TTGAGATTAC	GTTCGGTTTG	TGATGATATC	ATCAGTCAGA	ATCTCAAGGA
551	ATCTGTGTAT	CTCTATCTGG	AAATAACTGT	TGTTAGTAGT	AAGCACTGTA
					TGCAATTCT
601	TAGCTGATGT	GATTTTAAAC	CACTTTTTTT	CTCAATTTTG	ACTATTTAAA
	AT-Motif 7	08			AAA
651	GCTGAGGTTG	TTTATTGATT	TCACATATAC	ACTATAGTTT	TATAATACTA
	ACTTAG-Mot	if 78%			
	TG	TTTATAAGT-	Motif 73%		
701	TGTCACAACT	TTAGGTTACC	AGCTTTGAAA	AGTA GCACAC	ATGCTTAGCA
		LePT1p	romq →		
	таасааст	AT-Motif 8	0%		
	1 51 101 151 201 251 301 351 401 451 551 601 651 701	1 GGCAAGCTTA LePT1promHi 51 CCTGTCTTCT 101 ATATTTTTTT 151 TACTATCTTT 151 TACTATCTTT 151 TACTATCTTT 201 ATATATAAGT 251 TGGTAGCAAC 301 TTAAAAAAAT 351 TTGTGAGCAAC 401 TACTATTTAC 451 GAGTTATGAT 451 GAGTTATGAT 551 TTGAGATTAC 551 TTGAGATTAC 551 ATCTGTGTAT 601 TAGCTGAGGTTG ACTTAG-Mot. TG 701 TGTCACAACT	 GGCAAGCTTA CTATAGGGCA LePT1promHindIII → CCTGTCTTCT AGATTTATGG ATATTTTTTT GAAAAGTCTT TACTATCTTT TAATATTTAT ATATATAAGT AAAACAGGAG TGGTAGCAAC TTTAAACCTA TTAAAAAAAT AATATCACTT TTGTGATGCA ATCATGCCAC TACTATTTAC TACAAGGTAG LePT1promA1 → GAGTTATGAT TGAACGACTA LePT1promX GCACAAGTA TTGAGATTAC GTTCGGTTTG TTGAGATGT GATTTTAAAC ATCTGTGTAT CTCTATCTGG TAGCTGAGGTTG TTTATTGATT ACTTAG-Motif 78% TGTCACAACT ATGCAACT AC LePT1p 	 1 GGCAAGCTTA CTATAGGGCA CGCGTGGTCG LePT1promHindIII → 51 CCTGTCTTCT AGATTTATGG ATCACATGTA 101 ATATTTTTT GAAAAGTCTT CACTTTTTT 151 TACTATCTTT TAATATTTAT ATAGCTCTGC 201 ATATATAAGT AAAACAGGAG TTTACTTGTT 251 TGGTAGCAAC TTTAAACCTA ATATTTACTA 301 TTAAAAAAAT AATATCACTT GTTTATACTT 351 TTGTGATGCA ATCATGCCAC AAATTTTTTG 401 TACTATTTAC TACAAGGTAG AGGCAAGGCT 451 GAGTTATGAT TGAACGACTA GGTCCTTATC ✓ LePT1promX GCACAAGTA GACCCTTAAA 501 TTGAGATTAC GTTCGGTTTG TGATGATATC 551 ATCTGTGTAT CTCTATCTGG AAATAACTGT 601 TAGCTGATGT GATTTTAAAC CACTTTTTTT ATCTATG TGATGT TTATTGATT TCACATATAC ACTTAG-Motif 78% 701 TGTCACAACT ATA 	1 GGCAAGCTTA CTATAGGGCA CGCGTGGTCG ACGGCCCTGG LePT1promHindIII → 51 CCTGTCTTCT AGATTTATGG ATCACATGTA AATGTTAGGC 101 ATATTTTTT GAAAAGTCTT CACTTTTTT TCTAAGAAAA 151 TACTATCTTT TAATATTTAT ATAGCTCTGC ATGACTTCAT 201 ATATATAAGT AAAACAGGAG TTTACTTGTT TTCTTTAAT 251 TGGTAGCAAC TTTAAACCTA ATATTTACTA ATATCAACCA 301 TTAAAAAAAT AATATCACTT GTTTATACTT TTTAAGTAAA 351 TTGTGATGCA ATCATGCCAC AAATTTTTTG AATGAAACTG 201 TACTATTTAC TACAAGGTAG AGGCAAGGCT GCGTTGATGA 201 TACTATTTAC TACAAGGTAG AGGCAAGGCT GCGTTGATGA 201 TACTATTTAC TACAAGGTAG AGGCAAGGCT GCGTTGATGA 201 TACTATTTAC TACAAGGTAG GGTCCTTATC ATCTTTTAG 401 TACTATTTAC TACAAGGTAG GGTCCTTATC ATCTTTTAG 410 CACTATGAT TGAACGACTA GGTCCTTAAA CT-MRR2 MOT 301 TTGAGATTAC GTTCGGTTTG TGATGATATC ATCAGTCAGA 301 TTGAGATTAC GATCTGGATTA CACTATACA CT-MRR2 MOT 301 TAGCTGATGT GATTTTAAAC CACTTTTTTT CTCAATTTG 301 ATCTGTGTG TTTATAGAT TCACATATAC ACTATAGTTT 302 ACAACT TTAGGTTACC AGCTTTGAAA AGTAGCACAC 303 LEPT1promq → 304 TACCAACT TTAGGTTACC AGCTTTGAAA AGTAGCACAC 304 LEPT1promq → 304 TACCAACT ATAGGTTACC AGCTTTGAAA AGTAGCACAC 305 LEPT1promq → 306 TAGCAACT ATACAGTTACA ACTAGCACAC 306 AT-MOTIF AS 301 TGTCACAACT ATACACT ATCAACTTTAGAAA AGTAGCACACACACT ATACAACT ATTACAACTAAC ACTATAGTACAACTAACTAACAACTAACTAACTAACTAAC

751 TGTGTCATAT TAAAACTAAT AAAATAATAG ACAGAAAACA AGACTTTTTG AAAACTTAG-Motif 78% TGGCCCCCCT TGCTTTGTCT TTATCAAGAA GTCAATTTTC TACCCCCCTA 801 T GCATTCTAT-Motif 70% 851 CAGGACAACT TACAAATTTA TTAGTATTAA TTATTCAGAT AAGGTTTGAT LePT1promB > AAAACT TAG-Motif 78% TGTTTA TAAGT-Motif 73% TAATGCAATT CCCAAATATC TTCTTATTTT TGTAATGTTA TTTGAGTTTA 901 ← LePT1promY 951 ACTTGTGTGT ACTGACAGTG ACAATGTAAA GCAATAGTAA AAAGTGGGAT 1001 TAGTAACCTT GAACAATAAG TATGTTACTT GTTACAACAG GTTAAAATAT TAATATAT-Motif 88% TAATAT TGTTT ATAAGT-Motif 72% T AT-Motif 88% CCTTATAATT TACATAACCT CTTGTTTGAT CAGATTTGAT TTATGCAATC 1101 GTTTATAAGT-Motif 73% 1151 CTAAACTACC TTTTTGGTTT GTTCTGTTAT TTGAGTTTAA CTTGTGTATA 1201 CTGATAGTGT AACGCGGGAG TAGTAACCTT GAACACTAAG TATGTTCCTT LePT1promC → AAAACTTAG-Motif 78% 1251 GTTATAACAG GCTAAAGTTA TATATTCTTG TAAAGAATGT TTACTATGTT TGCATTC TAT-Motif 70% TGCA TAA TATAT-Motif 88% 1301 AGTTATGTAA GTTGAATTGT TATAATTTAC ACCCTCTTGT TCTGTTTTTT ← LePT1promZ ATTCTAT-Motif 70%TGTT TATAAGT-Motif 73% CTTCTTGTT CTA-Motif 84% 1351 GCAGGAAGTT TAGTCATGGC GAACGATTTG CAAGTGCTAA ATGCACTAGA ← LePT1promBamHI cctaggcggc 1401 TGTCGCGAAG ACACAACTGT ATCACTTCAC AGCGATTGTG ATTGCTGGCA 1451 TGGGTTTTTT TACTGATGCT TATGACCTTT TCTGCATTTC TATGGTCACT 1501 AAATTGCTTG GTCGTCTTTA CTACCATCAT GACGGTGCAT TGAAACCTGG 1551 CTCTCTGCCC CCTAATGTTT CAGCAGCTGT TAATGGAGTC GCCTTCTGTG 1601 GCACCCTTGC TGGACAGTTG TTCTTCGGGT GGCTTGGAGA TAAAATGGGA 1651 AGGAAGAAAG TCTATGGAAT GACCCTTATG ATTATGGTCA TTTGTTCAAT 1701 TGCCTCGGGG CTTTCATTTG GCCATACACC AAAAGGTGTT ATGACTACGC ← GWTOMATO389 1751 TITGTTTCTT CAGATTCTGG CTACGATTCG GCATTCGTGG TGATTATCCCCC IPCRTOMATO1 🔶 ← GWTOMATO452 1801 TTTCTGCCAC CATCATGTCT GAGTATGCTA ACAAAAAGAC CCGTGGAGCG 1851 TTCATTGCTG CTGTGTTTGC TATGCAAGGT TTCGGAATTC TGGCTGGTGG 1901 AATGGTGGCA ATCATTGTTT CTGCAGCATT CAAGGGCGCA TTCCCTGCAC CAGCATATGA GGTTGATGCT ATTGGTTCAA CAGTCCCTCA GGCTGATTTC 1951 2001 GTGTGGCGTA TAATTCTCAT GTTTGGTGCA ATCCCTGCTG GACTTACTTA 2051 TTACTGGCGT ATGAAGATGC CTGAAACTGC CCGTTACACT GCCTTGGTCG 2101 CCAAGAACTT GAAACAGGCA GCTAACGACA TGTCCAAGGT GTTGCAAGTC 2151 GAAATTGAAG CAGAGCCAGA GAAAGTTACA GCTATTTCTG AAGCAAAAGG 2201 AGCCAATGAC TTTGGTTTGT TCACTAAGGA GTTCCTCCGT CGCCATGGAC 2251 TTCACTTGCT TGGAACTGCT AGCACATGGT TCTTGTTGGA CATTGCTTTC 2301 TACAGTCAAA ACCTTTTCCA GAAGGACATT TTCAGTGCAA TTGGATGGAT 2351 TCCACCAGCA CAAACCATGA ACGCGTTGGA AGAAGTTTAC AAGATTGCAA 2401 GGGCACAAAC ACTTATTGCT CTTTGTAGTA CTGTTCCTGG TTACTGGTTC 2451 ACAGTTGCAT TCATCGATAA GATTGGTCGA TTTGCAATTC AGTTGATGGG 2501 ATTCTTCTTC ATGACAGTCT TCATGTTTGC CTTAGCCATT CCATACCATC 2551 ACTGGACTCT CAAGGATCAC AGAATTGGCT TCGTGGTCAT GTACTCATTC 2601 ACCTTTTTCT TCGCCAATTT TGGTCCAAAC GCCACAACAT TCGTCGTCCC 2651 TGCTGAGATT TTCCCAGCCA GGCTTAGGTC CACATGCCAT GGAATATCAG 2701 CAGCAGCAGG TAAAGCAGGA GCTATGGTTG GTGCATTTGG ATTCTTATAC 2751 GCTGCTCAGC CCACGGATCC AACAAAGACT GACGCCGGTT ACCCTCCTGG 2801 CCATTGGTGT GAGGAACTCG TTGATCGTCC TTGGTTGTGT AACTTCCTCG 2851 GTATGCTGTT CACATTCTTG GTTCCAGAAT CCAATGGGAA GTCATTGGAA

2901	GATTTGTCGA	GGGAAAACGA	AGGGGAAGAG	GAAACTGTAG	CTGAAATAAG
2951	AGCAACAAGT	GGAAGGACAG	TTCCTGTGTG	AGTTTTAGAC	AAGTTATCAG
3001	TTAGTATACA	CTACAATGCA	GTTTGAGTTA	ATTTGTGGTA	TTTGGGATTA
3051	GAAAGAGATT	GTTTGTTGGT	TTGTTATAAG	AAGATGGAAT	AAGCTCTTAT
3101	CTTTTTGTTT	GTTTGTTTGG	GTAATTAAAC	ATTATTACCT	TACTTCTGCA
3151	AATCTCAGAA	ATTCTGAGAT	TATATAAAGT	AACCAAAGGA	GGTTCTTTGG
3201	TTGTCTATCT	CTTTTTATAA	AACATTTCTT	GACTCTAAAA	АААААААААА
3251 AAA	ACTCGAG AC	TAGTTCA 3'			

sGFP – synthetic Green fluorescent protein

×

1	TCTAGAATGG	TGAGCAAGGG	CGAGGAGCTG	TTCACCGGGG	TGGTGCCCAT
51	CTGGTCGAGC	TGGACGGCGA	CGTAAACGGC	CACAAGTTCA	GCGTGTCCGG
101	CGAGGGCGAG	GGCGATGCCA	CCTACGGCAA	GCTGACCCTG	AAGTTCATCT
			Sen	se primer 🗲	GFPFOR133
151	GCACCACCGG	CAAGCTGCCC	GTGCCCTGGC	CCACCCTCGT	GACCACCTTC
201	ACCTACGGCG	TGCAGTGCTT	CAGCCGCTAC	CCCGACCACA	TGAAGCAGCA
251	CGACTTCTTC	AAGTCCGCCA	TGCCCGAAGG	CTACGTCCAG	GAGCGCACCA
301	TCTTCTTCAA	GGACGACGGC	AACTACAAGA	CCCGCGCCGA	GGTGAAGTTC
351	GAGGGCGACA	CCCTGGTGAA	CCGCATCGAG	CTGAAGGGCA	TCGACTTCAA
401	GGAGGACGGC	AACATCCTGG	GGCACAAGCT	GGAGTACAAC	TACAACAGCC
451	ACAACGTCTA	TATCATGGCC	GACAAGCAGA	AGAACGGCAT	CAAGGTGAAC
501	TTCAAGATCC	GCCACAACAT	CGAGGACGGC	AGCGTGCAGC	TCGCCGACCA
	Antisense	primer 🗲 GB	PREV511		
551	CTACCAGCAG	AACACCCCCA	TCGGCGACGG	CCCCGTGCTG	CTGCCCGACA
601	ACCACTACCT	GAGCACCCAG	TCCGCCCTGA	GCAAAGACCC	CAACGAGAAG
651	CGCGATCACA	TGGTCCTGCT	GGAGTTCGTG	ACCGCCGCCG	GGATCACTCT
701	CGGCATGGAC	GAGCTGTACA	AGTAAGATAT	С	

Appendix 5: ANOVA's for results presented in Chapter 4.

Abbreviations: Df = degrees of freedom; Sum Sq = Sum squared; Mean Sq = Mean Sum Squared

Part 1: Results from experiments analysing P efficiency between seven barley cultivars.

Trait	Df	Sum Sq	Mean Sq	F value	LSD (P=0.05)	LSD (P=0.01)
Rep	2	0.51154	0.25577	6.840		
Cultivar	6	2.43565	0.40594	10.856	0.184	0.247
Phosphate	2	1.65075	0.82537	22.072	0.121	0.161
Cultivar x Phosphate	12	0.54994	0.04583	1.226	0.319	0.427
Residuals	39	1.45839	0.03739			

ANOVA results for g Root Dry weight per plant.

ANOVA results for g Shoot Dry weight per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD (P=0.05)	LSD (P=0.01)
Rep	2	0.0644	0.0322	11.998		
Cultivar	6	0.2815	0.0469	17.496	0.049	0.066
Phosphate	2	0.9274	0.4636	172.914	0.032	0.043
Cultivar x Phosphate	12	0.1289	0.0107	4.006	0.085	0.114
Residuals	39	0.1046	0.0027			

ANOVA results for	concentration of	f P mg	in roots	per plant.
-------------------	------------------	--------	----------	------------

_	Df	Sum Sq	Mean Sq	F value	LSD	LSD
Trait	Df				(P=0.05)	(P=0.01)
Rep	2	0.7605	0.3803	5.118		
Cultivar	6	11.4060	1.9010	25.585	0.260	0.348
Phosphate	2	20.7007	10.3504	139.305	0.170	0.228
Cultivar x Phosphate	12	3.7874	0.3156	4.248	0.450	0.602
Residuals	39	2.9720	0.0743			

ANOVA results for concentration of P mg in shoots per plant.

T-cit	Df	Sum Sq	Mean Sq	F value	LSD	LSD
Trait					(P=0.05)	(P=0.01)
Rep	2	2.1864	1.0932	3.442		
Cultivar	6	22.2248	3.7041	11.664	0.537	0.718
Phosphate	2	203.184	101.5919	319.896	0.351	0.470
Cultivar x Phosphate	12	21.0074	1.7506	5.512	0.930	1.244
Residuals	39	12.7031	0.3176			

ANOVA results for Total P mg per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD (P=0.05)	LSD (P=0.01)
Rep	2	5.4672	2.7336	5.041		
Cultivar	6	64.3303	10.7217	19.773	0.701	0.939
Phosphate	2	346.2865	173.1432	319.305	0.459	0.615
Cultivar x Phosphate	12	36.6860	3.0572	5.638	1.215	1.626
Residuals	40	21.6900	0.5423			

ANOVA results for proportion of P in shoot per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD (P=0.05)	LSD (P=0.01)
Rep	2	39.6626	19.8313	1.073		
Phosphate	2	538.7776	89.7963	4.856	4.095	5.481
Cultivar	6	10571.3870	5285.6935	285.865	2.681	3.588
Cultivar x Phosphate	12	928.5291	77.3774	4.185	7.092	9.494
Residuals	38	739.6080	18.4902			

ANOVA results for specific uptake of P in root per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD (P=0.05)	LSD (P=0.01)
Rep	2	77.5223	38.7612	4.662		
Phosphate	2	77.9059	12.9843	1.562	2.746	3.676
Cultivar	6	1218.2314	609.1157	73.260	1.798	2.406
Cultivar x Phosphate	12	40.6106	3.3842	0.407	4.756	6.366
Residuals	38	324.2620	8.3144			

Trait	Df	Sum Sq	Mean Sq	F value
Cultivar	2	1758	879	7.3795
Mycorrhiza	1	41829	41829	351.0912
Phosphate	1	3962	3962	33.2553
Day	5	70316	14063	118.0405
Rep	2	468	234	1.9629
Cultivar:Mycorrhiza	2	198	99	0.8311
Cultivar:Phosphate	2	31	16	0.1311
Cultivar:Day	10	3130	313	2.6276
Mycorrhiza:Phosphate	1	2068	2068	17.3619
Mycorrhiza:Day	5	3404	681	5.715
Phosphate:Day	5	1067	213	1.7914
Cultivar:Mycorrhiza:Phosphate	2	974	487	4.0895
Cultivar:Mycorrhiza:Day	10	1871	187	1.5707
Cultivar:Phosphate:Day	10	1272	127	1.0675
Mycorrhiza:Phosphate:Day	5	3249	650	5.4542
Cultivar:Mycorrhiza:Phosphate:Day	10	775	78	0.6505
Residuals	141	16799	119	

Part 2: Results from experiments analysing the rate of colonisation of three barley cultivars by two AM fungi.

Bibliography

Aono T, Oyaizu H. 2001. The expression of phosphate transporters in response to phosphate starvation is different from that of H⁺-ATPase or PEPC in Sesbania rostrata. Direct submission of sequence to Genbank.

Ayling SM, Smith SE, Smith FA. 2001. Colonisation by arbuscular mycorrhizal fungi changes the relationship between phosphorus uptake and membrane potential in leek (*Allium porrum*) seedlings. *Australian Journal of Plant Physiology* **28:** 391-399.

Azcón-Aguilar C, Barea JM. 1997. Applying mycorrhizal biotechnology to horticulture - significance and potentials. Scientia Horticulturae 68: 1-24.

Baek SH, Shung IM, Yun SJ. 2001. Molecular cloning and characterisation of a tobacco leaf cDNA encoding a phosphate transporter. *Molecules and Cells* 11: 1-6.

Baon JB, Smith SE, Alston AM. 1993a. Mycorrhizal responses of barley cultivars differing in P efficiency. *Plant and Soil* 157: 97-105.

Baon JB, Smith SE, Alston AM. 1993b. Phosphorus allocation in P-efficient and inefficient barley cultivars as affected by mycorrhizal infection. *Plant and Soil* 155/156: 277-280.

Baon JB, Smith SE, Alston AM. 1994. Phosphorus uptake and growth of barley as affected by soil temperature and mycorrhizal infection. *Journal of Plant Nutrition* 17: 479-492.

Barber DA. **1972.** 'Dual isotherms' for the absorption of ions by plant tissues. *New Phytologist* **71:** 255-262.

Barber SA. 1962. A diffusion and mass-flow concept of soil nutrient availability. Soil Science 93: 39-49.

Bates TR, Lynch JP. 2000. The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. American Journal of Botany 87: 964-970.

Bieleski RL, Ferguson IB. 1983. Physiology and Metabolism of Phosphate and its compounds. In: Inorganic Plant Nutrition III. Springer-Verlag, 422-449.

Birnhoim HC. 1983. A rapid alkaline extraction method for the isolation of plasmid DNA. *Methods in Enzymology* **100:** 243-255.

160

Black R, Tinker PB. 1979. The development of endomycorrhizal root systems. Il Effects of agronomic factors and soil conditions on the development of vesicular-arbuscular mycorrhizal infection in barley and on the endophyte spore density. *New Phytologist* **83:** 401-413.

Bolan NS. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. *Plant and Soil* 134: 189-207.

Bolland MDA, Gilkes R.J. 1998. The chemistry and agronomic effectiveness of phosphate fertilisers. *Journal of Crop Production* **1:** 139-163.

Brundrett M. 2000. Mycorrhiza. http://www.ffp.csiro.au/research/mycorrhiza/.

Bucher M, Rausch C, Daram P. 2001. Molecular and biochemical mechanisms of phosphorus uptake into plants. *Journal of Plant Nutrition and Soil Science* 164: 209-217.

Bun-ya M, Nishimura M, Harashima S, Oshima Y . 1991. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. *Molecular Cell Biology* 11: 3229-3238.

Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y. 1996. Two new genes, *PHO86* and *PHO87*, involved in inorganic phosphate uptake in *Saccharomyces cervisiae*. *Current Genetics* 29: 344-351.

Bun-ya M, Harashima S, Oshima Y. 1992. Putative GTP-binding protein, Gtr1, associated with the function of the *Pho84* inorganic phosphate transporter in *Saccharomyces cerevisiae*. *Molecular and Cellular Biology* **12**: 2958-2966.

Burleigh SH. 2001. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas. *Plant Science* 160: 899-904.

Carlson AR, Letarte J, Chen J, Kasha KJ. 2001. Visual screening of microspore-derived transgenic barley (*Hordeum vulgare* L.) with green-fluorescent protein . *Plant Cell Reports* 20: 331-337.

Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock, CM, Manners JM. 2003. Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. *Plant Molecular Biology* **52**:371-386.

Cavagnaro TR, Gao L-L, Smith FA, Smith SE. 2001. Morphology of arbuscular mycorrhizas is influenced by fungal identity. *New Phytologist* **151:** 469-475.

Chiou T-J, Liu H, Harrison MJ. 2001. The spatial expression patterns of a phosphate transporter (MtPT1) from *Medicago truncatula* indicate a role in phosphate transport at the root/soil interface. *The Plant Journal* 25: 281-293.

Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. 1979. Isolation of Biologically Active Ribonucleic Acid from Sources Enriched in Ribonuclease. *Biochemistry* 18: 5294-5299.

Clark RB. 1991. Physiology of cereals for mineral nutrient uptake, use and efficiency. In: Crops as Enhancers of Nutrient Use. San Diego. USA: Academic Press, Inc., 131-183. (Eds Baligar, V.C. and Duncan, R.R.)

Clarke C, Mosse B. 1981. Plant growth responses to vesicular-arbuscular mycorrhiza. XII. Field inoculation responses of barley at two soil P levels. *New Phytologist* 87: 695-703.

Clarkson DT, Grignon C. 1991. The Phosphate transport system and its regulation in roots. In 'Phosphorus nutrition of grain legumes in the semi-arid tropics', p49-62. (Eds Johansen, C., Lee, K. K., and Sahrawat, K. L.) (ICRISAT- International Crops Research Institute for the Semi-Arid Tropics).

Clarkson DT, Scattergood CB. 1982. Growth and phosphate transport in barley and tomato plants during the development of, and recovery from, phosphate-stress. *Journal of Experimental Botany* **33**: 865-875.

Cogliatti DH, Clarkson DT. 1983. Physiological changes in, and phosphate uptake by potato plants during development of, and recovery from phosphate deficiency. *Physiologia Planta* **58**: 287-294.

Colwell JD. 1963. The estimation of the phosphorus fertilizer requirements of wheat in Southern New South Wales by soil analysis. *Australian Journal of Experimental Agriculture and Animal Husbandry* **3**: 100-107.

Comerford NB. 1998. Soil Phosphorus Bioavailability. In 'Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem Processes', p136-147. (Eds Lynch, J P. and Deikman, J.).

Cox G, Tinker PB. 1976. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study. *New Phytologist* **77:** 371-378.

Daram P, Brunner S, Persson B, Amrhein N, Bucher M. 1998. Functional analysis and cell-specific expression of a phosphate transporter from tomato. *Planta* 206: 225-233.

Daram P, Brunner S, Rausch C, Steiner C, Amrhein N. 1999. Pht2;1 Encodes a low-affinity phosphate transporter from Arabidopsis. The Plant Cell 11: 2153-2166.

Davies TG, YIng J, Xu Q, Li ZS, Li J, Gordon-Weeks R. 2002. Expression analysis of putative highaffinity phosphate transporters in Chinese winter wheats. *Plant, Cell and Environment* 25: 1325-1339.

Delhaize E, Randall P. 1995. Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiology **107**: 207-213.

Delp G, Smith SE, Barker SJ. 2000. Isolation by differential display of three partial cDNA's potentially coding for proteins from the VA mycorrhizal *Glomus intraradices*. *Mycorrhizal Research* **104:** 293-300.

¥

10 million (1

Dickson S, Smith SE, Smith FA. 1999. Characterisation of two arbuscular mycorrhizal fungi in symbiosis with *Allium porrum*: colonisation, plant growth and phosphate uptake. *New Phytology* **144**: 163-172.

Dickson S, Kolesik P. 1999. Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. *Mycorrhiza* 9: 205-213.

Dong B, Rengel Z, Delhaize E. 1998. Uptake and translocation of phosphate by pho2 mutant and wildtype seedlings of Arabidopsis thaliana. Planta 205: 251-256.

Engels WR. 1993. Contributing software to the Internet: the Amplify program. Trends in Biochemical Sciences 18: 448-450.

Epstein E, Hagen CE. 1952. A kinetic study of the absorption of alkali cations by barley roots. *Plant Physiology* 27: 457-474.

Federspiel NA, Palm CJ, Conway AB, Conn L, Hansen NF, Altafi H, Araujo R, Huizar L, Rowley D, Buehler E, Dunn P, Gonzalez A, Kremenetskaia I, Kim C, Lenz C, Li J, Liu S, Luros S, Schwartz J, Shinn P, Toriumi M, Vysotskaia VS, Walker M, Yu G, Ecker J, Theologis A, Davis RW. 1999. *Arabidopsis thaliana* chromosome | BAC F9H16 genomic sequence, complete sequence. direct submission of sequence to EMBL.

Fohse D, Jungk A. 1983. Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. *Plant and Soil* 74: 359-368.

Fried M, Noggle J.C. 1958. Multiple site uptake of individual ions by roots as affected by hydrogen ion. *Plant Physiology* **33:** 139-144.

163

Furihata T, Suzuki M, Sakurai H. 1992. Kinetic characterisation of two phosphate uptake systems with different affinities in suspension-cultured *Catharanthus roseus* protoplasts. *Plant Cell Physiology* 33: 1151-1157.

Gahoonia TS, Asmar F, Giese H, Gissel-Nielsen G, Nielsen NE. 2000. Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments. *European Journal of Agronomy* **12**: 281-289.

Gahoonia TS, Nielsen NE. 1997. Variation in root hairs of barley cultivars doubled soil phosphorus uptake. *Euphytica* 98: 177-182.

Gao L-L, Delp G, Smith SE. 2001. Colonisation patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. *New Phytologist* 151: 477-491.

Gianinazzi-Pearson V, Arnould C, Outattole M, Arango M, Gianinazzi S. 2000. Differential activation of H⁺-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. *Planta* 211: 609-613.

Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA. **1991.** Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H⁺-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces? *New Phytology* **117:** 61-74.

Godwin RM. 2002. Cloning and Characterisation of Genes Encoding Phosphate and Sulphate Transporters from Rice. Thesis housed at The University of Queensland.

Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W-L, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. 2002. A draft sequence of the Rice Genome (*Oryza sativa* L. ssp. japonica). *Science* 296: 92-100.

Grundon NJ, Robson AD, Lambert MJ, Snowball KA. 1997. Nutrient Deficiency and Toxicity Symptoms. In: *Plant Analysis: an Interpretation Manual*. Collingwood: CSIRO Publishing, 35-52.

Haeberli, Paul. Gap and BestFit were originally written for Version 1.0 by Paul Haeberli from a careful reading of the Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970)) and the Smith and Waterman

a creek a

164

(Adv. Appl. Math. 2; 482-489 (1981)) papers. Limited alignments were designed by Paul Haeberli and added to the Package for Version 3.0. They were united into a single program by Philip Delaquess for Version 4.0. Default gap penalties for protein alignments were modified according to the suggestions of Rechid, Vingron and Argos (CABIOS 5; 107-113 (1989)).

Harrison MJ. 1999. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Review of Plant Physiology and Plant molecular biology 50: 361-389.

Harrison MJ, Dewbre GR, Liu J. 2002. A phosphate transporter from *Medicago truncatula* involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi . *Plant Cell* 14: 2413-2429.

Harrison MJ, van Buuren ML. 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378: 626-629.

Hedley MJ, Kirk GJD, Santos MD. 1994. Phosphorus efficiency and the forms of soil phosphorus utilized by upland rice cultivars. *Plant and Soil* 158: 53-62.

Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH. 2002. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. *Journal of Ecology* **90:** 371-384.

Horii S, Ishii T. Arbuscular mycorrhizal fungi penetrate into *Arabidopsis thaliana* roots. 4th International Conference of Mycorrhiza (ICOM4), Abstract # 732.

Horst WJ, Kamh M, Jibrin JM, Chude VA. 2001. Agronomic measures for increasing P availability to crops. *Plant and Soil* 237: 211-233.

Howeler RH, Sieverding E, Saif S. 1987. Practical aspects of mycorrhizal technology in some tropical crops and pastures. *Plant and Soil* 100: 249-283.

Jackson RB, Manwaring JH, Caldwell MM. 1990. Rapid physiological adjustment of roots to localised soil enrichment. *Nature* 344: 58-60.

Jakobsen I, Andersen AJ. 1982. Vesicular-arbuscular mycorrhiza and growth in barley: effects of irradiation and heating of soil. Soil Biology and Biochemistry 14: 171-178.

Jakobsen I, Nielsen NE. 1983. Vesicular-arbuscular mycorrhiza in field-grown crops. I. Mycorrhizal infection in cereals and peas at various times and soil depths. *New Phytologist* 93: 401-413.

Jefferson RA. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. *Plant Molecular Biology Reports* 5: 387-405.

Jensen A, Jakobsen I. 1980. The occurrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertiliser treatments. *Plant and Soil* 55: 403-414.

Jensen HA, Nittler LW. 1971. Varietal differences among barley seedlings grown with various nutrient solutions. *Agronomy Journal* 63: 714-717.

Johnson NC, Graham JH, Smith FA. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. *New Phytologist* 135: 575-585.

Jungk AO. 1996. Dynamics of Nutrient Movement at the Soil-Root Interface. In: *Plant Roots: The Hidden Half*. New York, Basel, Hong Kong: Marcel Dekker Inc., 529-556.

Kai M, Masuda Y, Kisuhiro Y, Osaki M, Tadano T. 1997. Isolation and characterisation of a cDNA from *Catharanthus roseus* which is highly homologous with phosphate transporter. *Soil Science and Plant Nutrition* 43: 227-235.

Kai M, Takazumi K, Adachi H, Wasaki J, Shinano T, Osaki M. 2002. Cloning and characterisation of four phosphate transporter cDNAs in tobacco. *Plant Science* 163: 837-846.

Karandashov V, Nagy R, Amrhein N, Bucher M. 2003. Regulation of phosphate transport in arbuscular mycorrhizal symbiosis. Fourth International Conference of Mycorrhizas. Abstract #442

Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M. 2004. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. *Proceedings of the National Academy of Science* **101**: 6285-6290.

Keeton WT, Gould JL. 1986. Biological Science. 4th Edition. USA: W.W. Norton & Company, Inc.

Khaliq A, Sanders FE. 1998. Effects of vesicular-arbuscular mycorrhizal inoculation on the growth and phosphorus nutrition of barley in natural or methyl bromide treated soil. *Journal of Plant Nutrition* **21**: 2163-2177.

Khaliq A, Sanders FE. 2000. Effects of vesicular-arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley. *Soil Biology and Biochemistry* **32**: 1691-1696.

Leggewie G, Willmitzer L, Riesmeier J. 1997. Two cDNA from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. *The Plant Cell* **9**: 381-392.

Li YJ, Chen SY, Li ZS. 1999. TRlaePhT1;1, direct submission of sequence to EMBL.

Liao H, Rubio G, Yan X, Cao A, Brown KM, Lynch JP. 2001. Effect of phosphorus availability on basal root shallowness in common bean. *Plant and Soil* 232: 69-79.

Lin W. 1979. Potassium and phosphate uptake in corn roots. Plant Physiology 63: 952-955.

Lin X, Kaul S, Rounsley SD, Shea TP, Benito M-I, Town CD, Fujii CY, Mason TM, Bowman CL, Barnstead ME, Feldblyum TV, Buell CR, Ketchum KA, Lee JJ, Ronning CM, Koo H, Moffat KS, Cronin LA, Shen M, VanAken SE, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC. 1999. Sequence and analysis of chromosome 2 of the plant *Arabidopsis thaliana. Nature* 402: 761-768.

Lin X, Kaul S, Town CD, Benito M-I, Creasy TH, Haas BJ, Wu D, Maiti R, Ronning CM, Koo H, Fujii CY, Utterback TR, Barnstead ME, Bowman CL, White O, Nierman WC, Fraser CM. 1999. *Arabidopsis thaliana* chromosome 1 BAC F14G6 genomic sequence - direct submission of sequence to EMBL.

Liu C, Muchhal US, Uthappa M, Kononowicz AK, Ragothama KG. 1998a. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. *Plant Physiology* **116**: 91-99.

Liu H, Trieu AT, Blaylock LA, Harrison MJ. 1998b. Cloning and characterisation of two phosphate transporters from *Medicago truncatula* roots: regulation in response to phosphate and response to colonization by arbuscular mycorrhizal (AM) fungi. *Molecular Plant Microbe Interactions* 11: 14-22.

Liu J, Uhde-Stone C, Li A, Vance C, Allan D. 2001. A phosphate transporter with enhanced expression in proteoid roots of white lupin (*Lupinus albus* L.). *Plant and Soil* 237: 257-266.

Lu Y-P, Zhen R-G, Rea PA. 1997. AtPT4: A fourth member of the *Arabidopsis* phosphate transporter gene family (Accession No. U97546). *Plant Physiology* 114: 747-749.

Luttge U, Higinbotham N. 1979. Chapter 6: The simplified cell models of transport physiology. In: Transport in Plants. New York: Springer-Verlag, 124-128.

Lynch JP, Brown KM. 2001. Topsoil foraging - an architectural adaptation of plants to low phosphorus. *Plant and Soil* 237: 225-237.

Lynch JP, Brown KM. 1998. Regulation of root architecture by phosphorus availability. In: 'Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem Processes' (Eds Lynch, J. P. and Deikman, J.) American Society of Plant Physiologists. 148-156.

Lyness AS. 1936. Varietal differences in the phosphorus feeding capacity of plants. *Plant Physiology* 11: 665-683.

Ma Z, Bielenberg DG, Brown KM, Lynch JP. 2001. Regulation of root hair density by phosphorus availability in *Arabidopsis thaliana*. *Plant, Cell and Environment* 24: 459-467.

Maldonado-Mendoza IE, Dewbre GR, Harrison MJ. 2001. Expression of a *Glomus intraradices* phosphate transporter gene (GiPT) in the extra-radical mycelium of an arbuscular mycorrhiza: regulation in response to phosphate. *Molecular Plant-Microbe Interactions* 14: 1140-1148.

Marger MD, Saier MHJr. 1993. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. *Trends in Biochemical Sciences* **18**: 13-20.

Marschner H. 1995. Mineral Nutrition of Higher Plants. London San Diego: Academic Press.

Martinez P, Persson B. 1998. Identification, cloning and characterisation of a derepressible Na⁺coupled phosphate transporter in *Saccharomyces cerevisiae*. *Molecular and General Genetics* 258: 628-638.

McGonigle TP. 2001. On the use of non-linear regression with the logistic equation for changes with time of percentage root length colonized by arbuscular mycorrhizal fungi. *Mycorrhiza* **10:** 249-254.

Mimura T, Sakano K, Shimmen T. 1996. Studies on the distribution, re-translocation and homeostasis of inorganic phosphate in barley leaves. *Plant, Cell and Environment* 19: 311-320.

Mimura T. 1999. Regulation of phosphate transport and homeostasis in plant cells. International Review of Cytology 191: 149-200.

Ming F, Shen D. 2001. Oryza sativa P transporter - direct submission of sequence to Genbank.

Ming F, Shen D, Zhang Y. 2001. Common wild rice phosphate transporter mRNA, *Oryza rufipogon* P transporter - direct submission of sequence to EMBL.
Mitsukawa N, Okumura S, Shibata D. **1997a.** High-affinity phosphate transporter genes of *Arabidopsis thaliana*. Soil Science and Plant Nutrition **43:** 971-974.

Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D. 1997b. Over expression of an *Arabidopsis thaliana* high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. *Proceedings of National Academy of Sciences, United States of America* 94: 7098-7102.

Moody PW, Bolland MDA. 1999. Phosphorus. In: Soil Analysis: an Interpretation Manual. Collingwood: CSIRO Publishing, 187-220.

Muchhal US, Pardo JM, Raghothama KG. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of National Academy of Science, United States of America 93: 10519-10523.

Muchhal US, Raghothama KG. 1999. Transcriptional regulation of plant phosphate transporters. *Proceedings of the National Academy of Sciences, United States of America* **96:** 5868-5872.

Mudge SR, Rae AL, Diatloff E, Smith FW. 2002. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in *Arabidopsis*. *The Plant Journal* **31[3]**: 341-353.

Narang RA, Bruene AAT. 2000. Analysis of phosphate acquisition efficiency in different Arabidopsis accessions. *Plant Physiology* **124**: 1786-1799.

Nielsen NE, Schjorring JK. 1983. Efficiency and kinetics of phosphorus uptake from soil by various barley genotypes. *Plant and Soil* 72: 225-230.

Nissen P. 1996. Uptake Mechanisms. In: 'Plant Roots: The Hidden Half' New York, Basel, Hong Kong: Marcel Dekker, Inc., 511-527.

Obermaier B, Ottenwaelder B, Duchemin D, Zeitler K, Mewes HW, Lemcke K, Mayer KFX, Quetier F, Salanoubat M. 2000. *Arabidopsis thaliana* DNA chromosome 3, BAC clone T5N23. - direct submission of sequence to EMBL.

Okumura S, Mitsukawa N, Shirano Y, Shibata D. **1998.** Phosphate transporter gene family of *Arabidopsis thaliana*. *DNA Research* **5**: 261-269.

Pao SS, Paulsen IT, Saier MH. 1998. Major facilitator superfamily. *Microbiology and Molecular Biology Reviews* **62**: 1-34.

169

Paszkowski U, Kroken S, Roux C, Briggs SP. 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. *Proceedings of the National Academy of Sciences, United States of America* **99**: 13324-13329.

Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue G-P. 2000. Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. *Molecular Breeding* **6**: 113-123.

Pearson JN, Jakobsen I. 1993. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labeling with ³²P and ³³P. *New Phytologist* **124:** 489-494.

Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. *Transactions British Mycological Society* **55:** 158-161.

Pigliucci M. 2002. Ecology and Evolutionary Biology of *Arabidopsis. The Arabidopsis Book* <u>http://www.arabidopsis.com</u>.

Plenchette C, Morel C. 1996. External phosphorus requirement of mycorrhizal and non-mycorrhizal barley and soybean plants. *Biology and Fertility of Soils* **21:**303-308.

Poole RJ. 1978. Energy coupling for membrane transport. *Annual Review of Plant Physiology* **29:**437-460.

Powell CLL, Groters M, Metcalfe D. 1980. Mycorrhizal inoculation of barley crop in the field. *New Zealand Journal of Agricultural Research* 23:107-109.

Rae AL, Cybinski DH, Jarmey JM, Smith FW. 2003. Characterisation of two phosphate transporters from barley; evidence for diverse function and kinetic properties amongst members of the Pht1 family. *Plant Molecular Biology* **53:** 27-36.

Raghothama KG. **1999a.** Molecular regulation of phosphate acquisition in plants. In: Plant Nutrition -Molecular Biology and Genetics (Eds Gissel-Nielsen G and Jensen A) Kluwer Academic Publishers, Netherlands. 95-103.

Raghothama KG. 1999b. Phosphate acquisition. *Annual Review of Plant Physiology and Plant Molecular Biology* **50:** 665-693.

Raghothama KG. 2000. Phosphate transport and signaling. *Current Opinion in Plant Biology* 3: 182-187.

170

Rausch C, Daram P, Brunner S, Jansa J, Lalol M, Leggewie G, Amrheln N, Bucher M. 2001. A phosphate-transporter expressed in arbuscule-containing cells in potato. *Nature* **414**: 462-466.

Redecker D, Kodner R, Graham LE. 2000. Glomalean Fungi from the Ordovician. Science 289: 1920-1921.

Reisenauer HM. **1966.** Mineral nutrients in soil solution. In: Environmental Biology (Eds Altman PL and Dittmer DS) Federation of American Society of Experimental Biology, Bethesda. 507-508.

Reuter DJ, Robinson JB, Boardman R, Cresswell GC, Cromer RN, Edwards DG, Grundon NJ, Handreck KA, Huett DO, Lambert MJ, Lewis DC, Loneragan JF, Maier NA, Peverill KI, Piggott TJ, Pinkerton A, Price GH, Robson AD, Smith FW, Snowball KA, Sparrow LA, Stephenson RA, Treeby MT, Webb M, Wilhelm NS. 1997. Plant Analysis: an Interpretation Manual. CSIRO Publishing, Australia.

Rosewarne GM, Barker SJ, Smith SE. 1997. Production of near-synchronous fungal colonisation in tomato for developmental and molecular analyses of mycorrhiza. *Mycological Research* **101:** 966-970.

Rosewarne GM, Barker SJ, Smith SE, Smith FA, Schachtman DP. **1999**. A *Lycopersicon esculentum* phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. *New Phytology* **144**: 507-516.

Rozen S, Skaletsky HJ. **2000.** Primer3 on the WWW for general users and for biologist programmers. http://www-genome.wi.mit.edu/genome_software/other/primer3.html. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology (Eds Krawetz S and Misener S) Humana Press, Totowa. 365-386.

Ryan MH, Angus JF. **2003.** Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P-uptake or yield. *Plant and Soil* **250**: 225-239.

Ryan MH, McCully ME, Huang CX. 2003. Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study. *New Phytologist* **160**: 429-441.

Sambrook J, Fritsch EF, Maniatis T. 1989. *Molecular Cloning - A laboratory manual*. United States of America: Cold Spring Harbor Laboratory Press.

Schachtman D, Reid R, Ayling S. 1998. Phosphorus uptake by plants: From soil to cell. *Plant Physiology* 116: 447-453.

171

Schjorring JK, Nielsen NE. 1987. Root length and phosphorus uptake by four barley cultivars grown under moderate deficiency of phosphorus in field experiments. *Journal of Plant Nutrition* 10: 1289-1295.

Schünmann PHD, Richardson AE, Smith FW, Delhaize E. 2003. Characterisation of promoter expression patterns derived from the *Pht1* phosphate transporter genes of barley (*Hordeum vulgare* L.). *Journal of Experimental Botany* 55: 855-865.

Schweiger PF, Jakobsen I. 1999. Direct measurement of arbuscular mycorrhizal phosphorus uptake into field-grown winter wheat. *Agronomy Journal* 91: 998-1002.

Shoemaker R, Keim P, Vodkin L, Erpelding J, Coryell V, Khanna A, Bolla B, Marra A, Hillier L, Kucaba T, Martin J, Beck C, Whlie T, Underwood K, Steptoe M, Theising B, Allen M, Bowers Y, Person B, Swaller T, Gibbons M, Pape D, Harvey NSR, Ritter E, Kohn S, Shin T, Jackson Y, Cardenas M, McCann R, Waterston R, Wilson R. 1999. Public Soybean EST Project. *unpublished*.

Smith, F.A.; Jakobsen, I.; Smith, S.E. 2000. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with *Medicago truncatula*. *New Phytologist* 147: 357-366.

Smith FW. 1999 Molecular biology of nutrient transporters in plant membranes. In: Mineral nutrition of crops: Fundamental mechanisms and implications (Ed Rengel Z) Binghamton, Haworth Press. P67-89.

Smith FW. 2001. Sulphur and phosphorus transport systems in plants. Plant and Soil 232: 109-118.

Smith FW, Cybinski DH, Rae AL. 1999 Regulation of expression of genes encoding phosphate transporters in barley roots. In: Plant Nutrition - Molecular Biology and Genetics (Eds Gissel-Nielsen, G and Jensen, A.) Netherlands, Kluwer Academic Publishers. p145-150.

Smith FW, Ealing PM, Dong B, Delhaize E. 1997. The cloning of two *Arabidopsis* genes belonging to a phosphate transporter family. *The Plant Journal* 11: 83-92.

Smith FW, Mudge SR, Rae AL, Glassop D. 2003a. Phosphate transport in plants. *Plant and Soil* 248: 71-83.

Smith SE, Read DJ. 1997. Mycorrhizal Symbiosis. London: Academic Press.

Smith SE, Robson AD, Abbott LK. 1992. The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. *Plant and Soil* 146: 169-179.

Smith SE, Smith FA, Jakobsen I. 2003b. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. *Plant Physiology* **133**: 16-20

Smith SE, Smith FA, Jakobsen I. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. *New Phytologist* 162: 511-524

Smith SE, Walker NA. 1981. A quantitative study of mycorrhizal infection in *Trifolium*: separate determination of the rates of infection and of mycelial growth. *New Phytologist* 89: 225-240.

Smith SE, Dickson S, Smith FA. 2001. Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? *Australian Journal of Plant Physiology* 28: 685-696.

Tilak KVBR, Murthy BN. 1987. Association of vesicular-arbuscular mycorrhizal fungi with the roots of different cultivars of barley (*Hordeum vulgare*). *Current Science* **56:** 1114-1116.

Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R. 1997. Agrobacterium tumefaciens – mediated barley transformation. The Plant Journal 11: 1369-1376.

Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P. 2003. Progress in selected areas of rhizosphere research on P acquisition. *Australian Journal of Soil Research* **41:** 471-499.

Ullrich-Eberius CI, Novacky A, van Bel AJE. 1984. Phosphate uptake in Lemna gibba G1: energetics and kinetics. Planta 161: 46-52.

Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. *New Phytologist* **157**: 423-447.

Versaw WK, Chiou T-J, Harrison MJ. 2002. Phosphate transporters of Medicago truncatula and arbuscular mycorrhizal fungi. Plant and Soil 244: 239-245.

Versaw WK, Harrison MJ. 2002. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. *Plant Cell* 14: 1751-1766.

Vierheilig H, Garcia-Garrido JM, Wyss U, Piche Y. 2000. Systemic suppression of mycorrhizal colonisation of barley roots already colonised by AM fungi. *Soil Biology and Biochemistry* **32**: 589-595.

Villegas J, Fortin JA. 2002. Phosphorus solubilisation and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO₃⁻ as nitrogen source. *Canadian Journal of Botany* **80:** 571-576.

Watanabe FS, Olsen SR. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO₃ extracts from soil. *Soil Science Society of America Proceedings* **29:** 677-678.

Weir RG, Cresswell GC. 1994. Plant Nutrient Disorders. 4th Edition. Pastures and Field Crops. Melbourne: Inkata.

Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO. 2001. Phosphate availability regulates root system architecture in *Arabidopsis*. *Plant Physiology* **126**: 875-882.

Yao Q, Li X, Christie P. 2001. Factors affecting arbuscular mycorrhizal dependency of wheat genotypes with different phosphorus efficiencies. *Journal of Plant Nutrition* 24: 1409-1419.

Yompakdee C, Ogawa N, Harashima S, Oshima Y. 1996. A putative membrane protein, Pho88p, involved in inorganic phosphate transport in *Saccharomyces cerevisiae*. *Molecular and General Genetics* 251: 580-590.

Yu F, Zhang A, Zhang F, Chen S. 2000a. direct submission of sequence to Genbank.

Yu F, Zhang A, Zhang F, Chen S. 2000b. Rice shoot phosphate transporter - direct submission of sequence to Genbank.

Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wand X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu J, Zhang K, He S, Zhang J, Xu J, Zhang J, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li X, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L. 2002. A draft sequence of the rice genome (*Oryza sativa* L. ssp. *indica*). *Science* 296: 79-92.

Zhao L, Versaw WK, Liu J, Harrison MJ. 2003. A phosphate transporter from *Medicago truncatula* is expressed in the photosynthetic tissues of the plant and located in the chloroplast envelope. *New Phytologist* **157**: 291-302.

Zhao S, McElver JA, Wang X, Bowen BA. 1999. Zea mays phosphate transporter genes and uses thereof. Pioneer Hi Bred Int., Zhao, S., McElver, J. A., Wang, X., and Bowen, B. A. Patent number: WO1999US10374, 19990511.

Zhu Y-G, Smith FA, Smith SE. 2002. Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (*Hordeum vulgare*) cultivars grown in sand culture. *Australian Journal of Agricultural Research* 53: 211-216.

Zhu Y-G, Smith SE, Barritt AR, Smith FA. 2001. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars . *Plant and Soil* 237: 249-255.

Zhu Y-G, Smith FA, Smith SE. 2003. Phosphorus efficiencies and responses of barley (*Hordeum vulgare* L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. *Mycorrhiza* 13: 93-100.

. •: