Phosphate transport in Mycorrhizal Plants: Cloning and Characterisation of Genes Encoding Phosphate Transporters

by
DONNA GLASSOP
B.App.Sci., Grad.Dip.Biotech., M.App.Sc.(Life Sc.),
Queensland University of Technology

A thesis submitted for the degree of
Doctor of Philosophy
School of Earth and Environmental Sciences
The University of Adelaide

TABLE OF CONTENTS

Title
Table of Contents II
List of Tables VI
List of Figures VII
Abbreviations and Symbols VIII
Abstract X
Declaration of Originality XI
Acknowledgements XII
1 Introduction 1
2 Review of the Literature 6
2.1 Supply of soil phosphorus and its importance to plants. 6
2.1.1 Importance of P 6
2.1.2 P in soil and acquisition 8
2.1.3 The role of AM fungi in supplying P to plants 10
2.1.4 AM fungal structures 11
2.1.5 Plant/AM fungi interactions 13
2.2 The importance of phosphate transporters in P uptake 14
2.2.1 The Pht1 family of P transporters. 14
2.2.2 Regulating P uptake. 15
2.2.3 P transporter kinetics 16
2.2.4 Verification of function of P transporters and kinetics by yeast complementation 17
2.2.5 Verification of function and kinetics in plant cell suspension cultures 18
2.2.6 Split root and hydroponic experiments 18
2.2.7 P transporter kinetics in realistic growth conditions 19
2.2.8 Expression analysis and localisation of P transporters involved with P uptake from $A M$ fungi 19
2.3 Aims of the thesis 21
3 Materials and Methods 22
3.1 Soil conditions and plant propagation 22
3.1.1 Soil, soil mixes and phosphorus amendments 22
3.1.2 Plants, plant propagation, growth conditions and harvesting 23
3.2 Watering 24
3.3 Cultures of AM fungi 25
3.4 Analysis of mycorrhizal colonisation 25
3.5 Plant growth and phosphate analysis26
3.6 RNA extraction 26
3.6.1 Large scale preparations26
3.6.2 Small scale preparations 26
3.7 Genomic DNA extraction 26
3.8 Clone analysis 27
3.8.1 Vectors 27
3.8.2 Ligation 28
3.8.3 Transformation of vectors into bacteria 28
3.8.4 Miniprep analysis 29
3.8.5 Restriction enzyme digestion and analysis 29
3.8.6 Transformation of vectors into plants 29
3.9 Sequence analysis 29
3.10 In-situ hybridisation protocol 30
3.11 Phosphate transporter nomenclature. 31
3.12 Statistical analysis 32
4 Variation between barley cultivars in P uptake and rate of colonisation. 33
4.1 Variation between barley cultivars in P uptake and efficiency 33
4.1.1 Materials and Methods: Barley P efficiency 35
4.1.2 Results: Barley P efficiency 36
4.1.3 Discussion: Variation between cultivars in P uptake and efficiency 41
4.2 Rate of colonisation by two mycorrhizal fungi 42
4.2.1 Materials and Methods: Mycorrhizal colonisation of barley cultivars 44
4.2.2 Results: Mycorrhizal colonisation of barley cultivars 45
4.2.3 Discussion: Mycorrhizal colonisation of barley cultivars 47

5 Barley P transporters, wheat mycorrhizal P transporter and maize mycorrhizal P transporter

 495.1 Introduction49
5.2 Methods and Materials 52
5.2.1 Production of transgenic barley Plants52
5.2.2 Reporter gene analysis of transgenic barley 53
5.2.3 Plant Propagation and growth conditions for RT-PCR, real-time RT-PCR and in-situ hybridisation analysis 53
5.2.4 RT-PCR analysis 53
5.2.5 Real-Time RT-PCR analysis 55
5.2.6 In-situ Hybridisation 55
5.2.7 Pht 1 Family Topology. 55
5.3 Results 56
5.3.1 HORvu;Pht1;1 and HORvu;Pht1;2 transgenic barey plants. 56
5.3.2 RT-PCR expression of barley P transporters 58
5.3.3 Real-Time RT-PCR of HORvu;Pht1; ;1;1, HvPT1;2 and HvPT1;8. 60
5.3.4 In-situ localisation of HORvu;Pht1;8. 62
5.3.5 RT-PCR of wheat mycorrhizal P transporter and $I n$-situ images64
5.3.6 Identifying a maize mycorrhizal P transpoter from a phylogenetic tree66
5.3.7 RT-PCR of maize mycorrhizal P transporter and $I n$-situ images 68
5.3.8 Pht1 family topology.69
5.4 Discussion 71
6 Identification and expression patterns of the PhT1 family of P transporters and a mycorrhizal P transporter in rice. 73
6.1 Introduction 73
6.2 Methods and Materials 76
6.2.1 Screening the completed rice genome. 76
6.2.2 Primers designed for RT-PCR 76
6.2.3 OsPT1 cDNA 77
6.2.4 OsPT1 promoter 78
6.2.5 In-situ hybridisation of $O R Y s a ; P h t 1 ; 11$ 78
6.3 Results 79
6.3.1 P transporters identified from the entire rice genome. 79
6.3.2 RT-PCR and gDNA PCR of putative rice P transporter genes 79
6.3.3 OsPT1 cDNA and promoter 81
6.3.4 In-situ hybridisation of ORYsa;Pht1;11 82
6.3.5 Pht1 Family Topology 83
6.4 Discussion 84
7 General discussion 86
7.1 Mycorrhizal P transporter sequence homology 86
7.2 Putative cis-regulatory elements in mycorrhizal P transporter promoters 87
7.3 The 'alternative' \mathbf{P} acquisition pathway in mycorrhizal plants 90
Appendix 1: Phosphate transporters isolated up to June 2003 97
Appendix 2: Soil Analysis 116
Appendix 3: Vectors 118
Appendix 4: Sequences 123
Barley P transporters 123
Maize P transporter 133
Rice P transporters 134
Tomoto P transporter 153
SGFP 155
Appendix 5: ANOVA's for results presented in Chapter 4 156
Bibliography 160

List of Tables

Table Title Page
2.1 Functions of major essential nutrients in plants and the concentrations as \% dry matter required for optimal growth of barley 6
3.1 Plant species and cultivars used in the work described in this thesis 23
3.2 Composition of the nutrient solution used in all experiments 24
3.3 Common names of P transporters and the correct names used in this thesis 31
4.1 Total biomass dry weight (g/plant) and root:shoot ratio of 7 barley cultivars grown in soil:sand culture 36
4.2 Root and shoot dry weight (g/plant) of 7 barley cultivars grown in soil:sand culture 37
4.3 Phosphorus concentrations (mg P/g DW) in plant tissues of 7 barley cultivars grown in soil:sand culture 38
4.4 Total P uptake ($\mathrm{mg} \mathrm{P} / \mathrm{g} \mathrm{DW}$) and allocation of P to the shoots (\%) in 7 barley cultivars grown in soil:sand culture 39
4.5 Specific P uptake in 7 barley cultivars grown in soil:sand culture 40
5.1 Primer sequences, MgCl_{2} concentration and expected product size for RT-PCR of barley, wheat and maize P transporters and wheat control 54
5.2 PCR primers used for real-time RT-PCR for HORvu;Pht1;1, 1;2 and 1;8 55
5.3 P concentration and extent of colonisation of barley cultivar Golden Promise plants used for real-time-RT-PCR 58
6.1 A list of known rice P transporters and references 74
6.2 Primers used for RT-PCR of rice P transporters identified from rice genomic sequences. 77
7.1 Percent homology between the mycorrhizal P transporter amino acid sequences. 87

List of Figures

Figure Title Page
2.1 Schematic representation of supply of phosphorus to plant roots in soil systems 8
2.2 internal AM fungal structures 11
2.3 Images of AM fungal external hyphal network 12
2.4 Schematic images of the PHT1 family phosphate transporters 14
2.5 Concentration-dependence of ion uptake by plant cells, illustrating the dual-isotherm Michaelis-Menten kinetics 16
4.1 Colonisation of barley cvs Franklin, Golden Promise and Sahara by two mycorrhizal fungi 45
4.2 The effect of soil P concentration on mycorrhizal colonisation 46
5.1 GFP images of transgenic barley roots, transformed with HORvu;Pht1;1 or HORvu;Pht1;2 promoters fused to GFP 57
5.2 RT-PCR analysis of the Hordeum vulgare Pht1 family of P transporters 59
5.3 Real time RT-PCR results for expression of HORvu;Pht1;1, HORvu;Pht1;2 and HORvu;Pht1;8 61
5.4 Detection of HORvu;Pht1;8 transcripts by in-situ hybridisation on sections of barley roots colonised by Glomus intraradices, G.sp. WFVAM23 and Scutellospora calospora 63
5.5 RT-PCR analysis of expression of TRlae;Pht1;myc. 64
5.6 Detection of TRlae;Pht1;myc transcripts by in-situ hybridisation on sections of wheat roots colonised by G. intraradices, G.sp. WFVAM23 and Sc. calospora 65
5.7 Phylogenetic tree of all P transporters listed in appendix 1 67
5.8 RT-PCR analysis of ZEAma;Pht1;6. 68
5.9 Detection of ZEAma;Pht1;6 transcripts by in-situ hybridisation on sections of maize roots colonised by G. intraradices and G.sp. WFVAM23 69
5.10 Predicted topology of P transporters HORvu;Pht1;8, TRlae;Pht1;myc and ZEAmycPHT1;6. 70
6.1 RT-PCR results for rice genes, $1,2,8,14$, OsPT1 and OsPT2. 80
6.2 Detection of ORYsa;Pht1;11 transcripts by in-situ hybridisation on sections of rice roots colonised by G. intraradices, G.sp. WFVAM23 and Sc. calospora 82
6.3 Predicted topology of P transporter $O R Y s a ; P h t 1 ; 11$ 83
7.1 Phylogenetic tree of all mycorrhizal P transporters 87
7.2 Illustration of the putative cis-regulatory motifs. 89
7.3 Schematic representation of supply of P to plant roots via two alternative pathways. 91

Abbreviations and Symbols

Abbreviation	Full title
~	Approximately
\%	Percentage
>	Greater than
\#	Catalogue number
${ }^{\circ} \mathrm{C}$	Degrees Celsius
bp	Base pair of nucleic acids
cDNA	Complementary DNA
cm	Centimetres
CV	Cultivar
DNA	Deoxy ribonucleic acid
eg.	Example
et al.	And others
g	Gram
gDNA	Genomic DNA
h	Hours
kDa	Kilodalton, molecular mass
kg	Kilogram
K ${ }_{\text {m }}$	Affinity of a substance for an enzyme - Michaelis-Menton constant
L	Litres
lb sq.in. ${ }^{-1}$	Pounds per square inch, a measure of pressure
m	Minutes
M	Molar
mg	Milligram
$\mathrm{mg} \mathrm{kg}{ }^{-1}$	Milligram per Kilogram
mL	Millilitres
mm	Millimetres
mM	milli Molar
$\mathrm{m}^{2} \mathrm{~s}^{-1}$	Metres squared per second
ng	Nanograms
nm	Nanometres
N	Normal $=1$ Molar
P	Phosphorus, phosphate

Abbreviations and Symbols continued...

Pi	Inorganic phosphate
rpm	Revolutions per minute
RNA	Ribonucleic acid
s	Seconds
$\mu \mathrm{g}$	Microgram
$\mu \mathrm{L}$	Microlitres
$\mu \mathrm{m}$	Micrometres
$\mu \mathrm{M}$	micro Molar
UV	Ulitra violet light
V	Volts
Vmax	Maximum velocity of a reaction

Abstract

Many Australian soils are phosphate deficient. This has encouraged the use of fertilisers for profitable agricultural production. However, the inefficiencies, expense and environmental issues associated with high fertiliser use have led to a search for technologies that improve phosphate (P) uptake and utilisation.

Most crop plants are adapted to low soil P through symbiotic relationships with mycorrhizal fungi that enhance P acquisition. Mycorrhizal plants have two possible routes for P uptake from soil a) the direct uptake pathway via the root epidermis and root hairs, and b) a mycorrhizal pathway. In the latter mycorrhizal fungi deliver P from the soil to the interfacial zone between the symbionts, where plant P transporters in the cortical cell membranes acquire the P provided.

This project has successfully identified four plant P transporters that are expressed in mycorrhizal roots of the major cereal crop species barley (HORvu;Pht1;8), wheat (TRlae;Pht1;myc), maize (ZEAma;Pht1;6) and rice (ORYsa;Pht1;11) and are implicated in the mycorrhizal uptake pathway. The information on barley, maize and wheat is new; ORYsa;Pht1;11 from rice was reported in 2002 with further information presented here. In baney the expression of HORvu;Pht1;8 and two other barley P transporters, that appear to be involved in the direct uptake pathway, has been compared in plants grown in high and low P soil and in the presence and absence of mycorrhizal colonization. The expression pattern of these genes is indicative of the mycorrhizal P uptake pathway being utilised by the plant.

It is known that cereals are not highly responsive to mycorrhizal colonization in terms of either growth or P uptake and it might be expected that the mycorrhizal P uptake pathway is relatively unimportant. However, it has been recently shown that other non-responsive plants can receive 100% of their P via the mycorrhizal pathway, implying that P transporters in the direct pathway (epidermis and root hairs) are switched off. This hypothesis can now be tested with cereals. The finding that field grown (and hence mycorrhizal) barley and other cereals may acquire P via mycorrhizal fungi and not directly via the epidermis and root hairs would have significant implications for improvement of P efficiency.

DECLARATION OF ORIGINALITY

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

D.Glassop

ACKNOWLEDGEMENTS

CRC Molecular Plant Breeding, The University of Adelaide and CSIRO Plant Industry supported this thesis.

I would like to thank my supervisors Prof. Sally Smith, The University of Adelaide, and Dr Frank Smith, CSIRO Plant Industry. Their advice and guidance has been invaluable. Prof. Sally Smith has introduced me to the wonderful world of mycorrhizal fungi where her expertise is immense and personality generous. Dr Frank Smith has been leading the research in P transport, sharing this knowledge with me, and providing me with laboratory expertise that will be constantly called on in my career. Thank you both for accepting my application and giving me the opportunities I desired.

Thank you to May-Ling Goode, Janine Jarmey, Dr Stephen Mudge and Dr Anne Rae for providing a great working environment in the laboratory and their helpful advice and encouragement. Thanks also to Dr Chris Lambrides and Dr Ky Matthews for assistance with statistical analysis.

Special thanks to Debbie Miller, Dr Sandy Dickson and the staff at Adelaide University who provided assistance from afar and always made me welcome on visits to Adelaide.

Thank you to Louise Burton for her expertise with Microsoft Word and formatting of the thesis.

Finally, thank you to my parents, Mark and Shirley Glassop, fiancé, Ron Thyen, and family who have supported my studies, and all that I choose to do, with great enthusiasm.

1 Introduction

Plants must have access to the macronutrients nitrogen (N), phosphorus (P), potassium (K), magnesium chloride (Mg), calcium (Ca) and sulphate (S), as well as micronutrients, for optimal plant growth. P is involved in many plant biochemical processes as a primary energy source, adenosine triphosphate - ATP; as an essential structural component in cell membranes and nucleic acids, as well as buffering cell solutions. \mathbf{P} is often the limiting factor in plant growth because of the low concentrations or poor availability in soils wordwide. In order to overcome this limitation the use of P fertilisers has become common practice.

Crops do not access applied P fertilisers effectively. Only $5-30 \%$ of soluble P applied is recovered in the first crop and the remainder of the $\mathrm{P}(70-95 \%)$ accumulates in the soil as inorganic and organic P compounds (Bolland \& Gilkes R.J., 1998). This inefficiency has been managed by increasing the application of fertilisers, a wasteful practice which is further magnified by the diminishing stock of high grade rock P and the increasing cost of fertilisers (Trolove et al., 2003). Because soils worldwide are often either P deficient or contain P in inaccessible forms, research into the processes of P acquisition by plants is required in order to improve P uptake and increase P acquisition from less available sources.

Improved P acquisition is achieved by plants using one or more of the following mechanisms (Comerford, 1998; Trolove et al., 2003; Hedley et al., 1994; Lynch \& Brown, 1998):

- Alterations in root morphology (development of long, fine, hairy roots; increased root growth in regions of high P ; cluster roots)
- Changes in the soil chemistry, which increases P availability (e.g. release of inorganic P by changing pH or releasing chelating agents; accessing organic P by releasing hydrolytic enzymes). These mechanisms will increase the solution concentration of \mathbf{P} in the rhizosphere and expose P transporters expressed in epidermal cells of the root to higher concentrations of P.
- Formation of associations with arbuscular mycorrhizal fungi (AM fungi) that provide the plant with an alternative avenue of P uptake by accessing P beyond the range of the plant root system and delivering the P past the root epidermis to the cortical cells.
- Altering the expression of P transporters so that they are present at sites of available P. The expression of P transporters in root epidermal cells, associated with acquiring P from the soil, is reduced when the plant is colonised by AM fungi. AM fungi deliver P to root cortical cells where P transporters (different from root epidermal P transporters) are able to acquire the P (Liu et al., 1998b).

The genetic manipulation of P transporters to alter their regulation may increase the P acquired by plants. Before this approach can be taken it is important to identify which P transporters are associated with P acquisition at the interfaces between roots, AM fungi and soil, particularly those that are activated when plants are grown in the field. Field experiments or at least experiments in soil-based systems are particularly important as soil has many complexities (physical, chemical and biological) that will influence the way in which a plant acquires P .

Plants acquire P against a steep electrochemical gradient (Mimura, 1999). P concentration in cytoplasm and soil have been measured at 10 mM and $1 \mu \mathrm{M}$ respectively, which together with the negative potential difference across the membrane equate to energy demanding conditions for uptake of negatively charged $\mathrm{H}_{2} \mathrm{PO}_{4}$ ions (Mimura, 1999). In order to accumulate negatively charged $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$ ions in higher concentrations than the external environment the plant utilises active $\mathrm{H}_{2} \mathrm{PO}_{4}^{-1} \mathrm{H}^{+}$ symporters (referred to as P transporters throughout this thesis). Many plant P transporters have now been identified/cloned (mainly from various crop species). P transporters are membrane-associated proteins involved in P acquisition from soil or from the AM fungal interface and in mobilisation and redistribution of P within the plant. The P transporters work by an energy-mediated co-transport process, whereby protons $\left(\mathrm{H}^{+}\right)$and $\mathrm{H}_{2} \mathrm{PO}_{4}$ - ions move through the membrane together into the cell (Clarkson \& Grignon, 1991; Muchhal \& Raghothama, 1999). The proton motive force for H^{+}transfer is supplied by a membrane bound H^{+}-ATPase pump that pumps H^{+}ions to the outside of the membrane (Smith et al., 2003a). Once P is acquired by the plant from the soil or from AM fungi it is translocated throughout the plant where it may be found in various chemical forms, inorganic ion or as organic derivatives, depending on function and location (Mimura et al., 1996).
P uptake and translocation are regulated by the concentration of P available for uptake and the P concentration within plant cells, particularly the vacuolar concentration (Schachtman et al., 1998). An example of loss of this regulation occurs in the Arabidopsis mutant pho2 that is unable to down-regulate the P uptake system and thus continues to accumulate P within leaves to a point of toxicity (Delhaize \& Randall, 1995). Regulation of P uptake and mobilisation is reflected in the transcription levels of P transporters; eg the barley P transporters (HORvu;Pht1;1 and 1;2) have reduced transcription levels when plants have a sufficient supply of P compared to when P is limiting. Understanding the regulation of P transporters and P content within plants, as well as the mechanisms of P acquisition, is important if these systems are to be manipulated in order to overcome low concentrations of available P in soils.

The research presented within this thesis investigated the effects of the symbiosis between plants and AM fungi on P acquisition, with particular emphasis on the expression of P transporters and their
regulation in response to mycorrhizal colonisation and P nutrition. Mycorrhizas form in the roots of most plant species, with associations being found in fossils dating back 500 million years (Redecker et al., 2000). It is the interaction with AM fungi that is of particular interest in this project as these fungi have been shown to increase the uptake of P by plants, including many crops (Howeler et al., 1987; Smith \& Read, 1997). The symbiotic relationship involves the exchange of nutrients. The plant provides a source of reduced carbon to the AM fungi while receiving P and other nutrients from the fungi (Marschner, 1995). The external hyphal networks of AM fungi acquire P from the soil. P transporters expressed in external mycelium have been identified from two AM fungi (Harrison \& van Buuren, 1995; Maldonado-Mendoza et al., 2001). The P is then translocated along the hyphae to the internal AM fungal structures (Smith et al., 2001). Within the root cortical cells, AM fungi form finely branched intracellular structures known as arbuscules. The fungi are also able to form hyphal coils and arbusculate coils within cortical cells, dependent on fungal species (Cavagnaro et al, 2001). Generally plants benefit from increased P uptake and plant growth is increased when associated with AM fungi, although considerable variations in P uptake and growth responses have been reported (Smith \& Read, 1997). This variation is associated with factors such as plant species, plant cultivar, AM fungal species and growth conditions (Johnson et al., 1997). AM fungi are able to enhance P uptake in plants by accessing P supplies not accessible by plant roots due to soil conditions, distribution of soil P and by delivering the P directly to colonised root cortical cells, bypassing the P depletion zone formed around the plant roots.

There are several lines of evidence implicating arbuscules as the main site of P transfer to the plant:

- The arbuscule/peri-arbuscular membranes have a large surface area (Dickson \& Kolesik, 1999),
- There is no evidence of fungal P transporters expressed within colonised roots. Consequently the $A M$ fungi cannot take up P that it has originally made available for plant uptake at the arbuscule/peri-arbuscular membranes. (Harrison \& van Buuren, 1995),
- H^{+}-ATP-ase activity is high in cortical cells containing arbuscules. This would provide the proton motive force necessary for plant $\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{PO}_{4}$ symporters to acquire P . (Gianinazzi-Pearson et al., 2000) and,
- Prior to the start of this research a P transporter cloned by Rosewarne et al. (1999) from tomato (LePT1/LYCes;Pht1;1) was found to be expressed in cortical cells containing arbuscules and at the root apex and root hairs of non-colonised roots (Rosewarne et al., 1999; Liu et al., 1998a).

While initial evidence points to the arbuscule as being a site of P delivery to the plant other mycorrhizal associations such as internal hyphae (intra- and inter-cellular), arbuscular coils and hyphal coils could also be involved with P delivery.

I investigated how cereal crops access phosphate (P) from the soil. Plants are able to acquire P via two pathways. One pathway (the direct pathway) utilises the root system in contact with the soil, while a second pathway is via AM fungi. The main focus of this research was on the P transporters used by the plant to acquire P via both pathways, and how the colonisation of the plant with AM fungi influences the expression of plant P transporters. Chapter 2 reviews the current literature to explain in detail the importance of P for plant growth, strategies for accessing P from the soil, how mycorrhizas are one of these strategies and how P transporters are involved in P uptake. This is followed by Chapter 3, which details the methods and materials that are common to more than one experimental chapter.

Chapter 4 describes two experiments that identify barley cultivars that may acquire P with different efficiencies and secondly determines if they vary in colonisation by AM fungi. Prior to determining pathways of P acquisition an experiment was designed to establish if there was any variation in P efficiency between barley cultivars. Barley cultivars of low and high P efficiency were then assessed to determine if their ability to acquire P caused any variation in colonisation by different AM fungal species. Within the literature the interaction between plant species or plant cultivar with AM fungal species is highlighted with respect to the overall benefits to the plant.

Chapter 5 reports on several experiments looking at P transporters in barley, wheat and maize. My research had access to several P transporters that had been identified in barley. Three of these transporters had been identified as being expressed within roots cells, one was expressed in shoots and the others had unidentified tissue expression patterns. This suite of transporters allowed further research into how these P transporters interacted when barley plants were colonised by AM fungi and which pathway of P acquisition they may be involved in. As well as identifying barley P transporters involved in acquiring P from AM fungi, other cereal crops including maize and wheat have been assessed for analogous P transporters.

During the time I was identifying cereal P transporters involved with P acquisition from AM fungi the rice genome was published. Screening of the rice genome with a rice P transporter (Godwin, 2002) revealed 13 putative P transporters. Chapter 6 reports the expression pattern of these putative P transporters in AM colonised and un-colonised rice roots.

A general discussion of the results and future work that could be continued is presented in the final chapter.

The CRC for Molecular Plant Breeding supported the research presented in this thesis.

2 Review of the Literature

2.1 Supply of soil phosphorus and its importance to plants

2.1.1 Importance of P

Phosphorus (P) is one of the essential major nutrients required by plants. Essential nutrients have been determined by three criteria: -1 . the element is required for normal growth and reproduction in several different plants, 2 . it cannot be replaced by another element, and 3. its role is direct and not involved with biochemical reactions to correct other substance imbalances (Keeton \& Gould, 1986). These essential macronutrients are nitrogen (N), phosphorus (P), potassium (K), sulphur (S), magnesium (Mg) and calcium (Ca). Table 2.1 lists the optimal nutrient levels and functions associated with these major nutrients in the cereal crop, barley, the plant used in most of the experimental work described in this thesis.

Table 2.1. Functions of major essential nutrients in plants and the concentrations as \% dry matter required for optimal growth of barley. Information extracted from compiled references in (Reuter et al., 1997).

Element	$\%$ dry matter	Functions
N	$1.75-5$	Amino acids, proteins, nucleic acids, nucleotides, chlorophyll
P	$0.2-0.68$	Energy storage and transfer - ATP, membrane integrity, nucleotides
K	$1.5-5$	Translocation, water and energy relations, cellular pH, osmoregulation, cation-anion balance
S	$0.13-0.4$	Protein synthesis and function, amino acids, energy transfer, structure
Ca	$0.25-1.2$	Membrane maintenance, cell division and elongation, cell wall stabilisation, cation-anion balance, osmoregulation, signalling
Mg	$0.12-0.5$	CO 2
carbohydrate partitioning.		

The importance of P lies in the low concentrations in most soils worldwide, causing P to be a common growth-limiting factor in plants and crops. P deficiency results in fewer leaves, reduced leaf expansion and low leaf surface area (Marschner, 1995). P deficiencies may be recognised by tips of leaves turning yellow (as seen in barley), reddening or purpling, with symptoms affecting older leaves first (Grundon et al., 1997). Symptoms of P toxicity can be seen in many plant species when P is accumulated to concentrations $>1 \%$ of the dry matter, with barley demonstrating symptoms at levels > 0.7% (Marschner, 1995; Weir \& Cresswell, 1994). P toxicity is defined as interveinal chlorosis in younger leaves; necrosis and tip die back, marginal scorch, interveinal necrosis, and shedding of older leaves (Grundon et al, 1997). P deficiency is more common than toxicity, as the majority of world soils are P deficient, including most Australian soils. Under low P conditions plants conserve the use of P by initiating improved and alternate acquisition strategies or pathways, and farmers apply phosphatic fertilisers to ensure profitable agricultural production. Those countries that utilise P fertilisers have the added complication that a large percentage of P applied in fertiliser is unavailable to the crops due to the soil chemistry and localisation of applied P within the soil.

The P cycle in soils involves several interacting pools (Figure 2.1). P is acquired via P transporters in the roots as inorganic orthophosphate ions $\left(\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right)$from the soil solution at an optimal pH of 4.5-5.0 (Smith \& Read, 1997; Raghothama, 1999b). The amount of available Pi in soils is dependent on pH , ionic strength, concentrations of P (organic matter and fertilisers) and binding metals ($\mathrm{Fe}, \mathrm{Al}, \mathrm{Ca}, \mathrm{Mg}$) and anions (Vance et al., 2003). As much as 50% of the P present in soils is unavailable due to it being strongly absorbed onto Fe and Al compounds and locked in organic forms, which need to be mineralised before the soluble inorganic P becomes accessible to plants (Figure 2.1) (Horst et al., 2001).

Figure 2.1: Schematic representation of supply of phosphorus to plant roots in soil systems. Black arrows indicate the immobilisation of P, green arrows illustrate the mineralisation of P, pink arrows explain the diffusion of P in solution and the blue arrows depict P pools accessed via mycorrhizal fungi and transported to roots (Moody \& Bolland, 1999; Bolan, 1991).

2.1.2 $\quad \mathbf{P}$ in soil and acquisition

There are three ways that Pi reaches the surface of roots and AM fungal hyphae (Bolan, 1991). These are: -

1. Root or AM fungal hyphal interception - where the root or hyphae comes into close contact with the nutrient,
2. Diffusion of ions from areas of high concentrations to low - accessed by roots and AM fungi hyphae, and
3. Mass flow where the nutrient is brought to the "root surface in the convective flow of water during the absorption of water by the plant".

The diffusion of P in soil has been found to be more important than mass flow (Barber, 1962). Because of the low concentration of Pi in the soil solution (usually $<10 \mu \mathrm{M}$, (Mimura, 1999; Schachtman et al., 1998) and a low diffusion rate ($\mathrm{D}_{\text {soil }} 10^{-12-10^{-15}} \mathrm{~m}^{2} \mathrm{~s}^{-1}$, (Jungk, 1996)) a P depletion zone of $\sim 1.5 \mathrm{~mm}$ forms around actively absorbing roots within a few days. Pi uptake is greatly reduced due to the lack of
available Pi at the root surface. In order to overcome these depletion zones, and access previously inaccessible Pi supplies, plants have evolved strategies to enhance Pi acquisition by more effective exploitation of the soil. These strategies include alterations in root morphology and root hair production, effecting changes on the soil chemistry to increase bioavailability, by developing symbiotic relationships with AM fungi and regulating plant P transporters (Comerford, 1998).

Changes in root morphology are regulated by auxins, ethylene and cytokinins (Nissen, 1996) resulting in: -

- Topsoil foraging. This occurs where shallow root systems show enhanced lateral root production in the topsoil, exploiting the localised higher concentrations of Pi. This change in morphology is seen in Arabidopsis grown in low P conditions (0.1 mM P), resulting in a decrease in the primary root length and increased number and length of lateral roots when compared to plants grown in high P conditions (2.5 mM P) (Williamson et al., 2001). Variations of this topsoil foraging morphology occurs between Arabidopsis accessions (Narang \& Bruene, 2000). Altered root morphology has also been observed in beans and displays variation of top-soil foraging morphology between bean genotypes (Lynch \& Brown, 2001; Liao et al., 2001). Grass species also have top-soil foraging strategies, producing roots that are able to access Pi from treated high Pi areas (Jackson et al., 1990).
- Increased root hair density and length. This results in increased exploration of the soil volume close to the roots. Increases in root hair length and/or root hair density have been observed in rape, spinach, tomato, Medicago and Arabidopsis as the plants become P deficient (Fohse \& Jungk, 1983; Vance et al., 2003; Ma et al., 2001; Bates \& Lynch, 2000). Variation in barley cultivars in root hair density and length has been associated with differences in Pi uptake by Gahoonia and Nielsen (1997).
- Formation of cluster roots (proteoid roots). These are groups of densely packed lateral roots (with abundant root hairs) formed on a parent axis, which results in an increased surface area but not always a large increase in soil volume explored. Cluster roots form in pockets of soil rich in nutrients (Vance et al., 2003). They also release exudates containing organic acids, H^{+}and acid phosphatases that release bound Pi from inorganic and organic complexes (Marschner, 1995). The major groups of plants that produce cluster roots are the Proteaceae, some members of the Brassicaceae and Lupinus. Further information on cluster roots is contained in the recent review of Vance et al. (2003).
- Another adaptation which helps plants to overcome problems associated with the development of Pi depletion zones is the formation of a symbiotic relationship with AM fungi. These fungi access Pi from the soil beyond the depletion zone, translocate it considerable distances (up to 25 cm) through
external hyphae to roots and, at plant-fungus interfaces within root cortical cells, exchange it for organic carbon produced by the plant (Smith and Read, 1997).

2.1.3 The role of $A M$ fungi in supplying P to plants

AM fungi (classified in the order Glomales of the Zygomycota) form normally beneficial associations with the plant root, based on exchange of nutrients whereby the plant receives mineral nutrients while the fungus receives organic carbon compounds (Smith and Read, 1997). The outcome of this exchange can be beneficial, mutualistic or parasitic, depending on whether the plant has an increase, no change or a decrease (respectively) in nutrient uptake or plant dry matter (Johnson et al., 1997; Baon et al., 1993b; Marschner, 1995). The majority of AM fungi/plant relationships are beneficial or mutualistic. Barley and indigenous mycorrhizal fungi were observed by Khaliq and Sanders (1998 \& 2000) to have a mutualistic association in field and field/pot experiments that displayed no increase in yield.

When a plant is colonised by AM fungi the plant is then able to access P via the root system and/or the mycorrhizal fungi. Colonisation of plants with mycorrhizal fungi generally results in increased plant growth and health due to the supply of Pi from the fungi (Azcón-Aguilar \& Barea, 1997). Pi influx in mycorrhizal plants can increase to rates of $10^{-11} \mathrm{~mol}^{-1} \mathrm{~m}^{-1} \mathrm{~s}$, 3 to 5 times higher than non-mycorrhizal plants (Smith and Read, 1997). Results of Pearson and Jakobsen (1993) support the supply of P via AM fungi. Data that directly assessed the P uptake of cucumber plants determined that P acquisition via the root was reduced when colonised with mycorrhizal fungi (Pearson \& Jakobsen, 1993). P transporters associated with P acquisition via roots were assumed to be down regulated, thus encouraging the acquisition of P via the mycorrhiza (Pearson \& Jakobsen, 1993). It was also observed that there was a difference in the amount of Pi supplied to the plant via the mycorrhiza when colonised by different mycorrhizal fungi. This may be due to differences in the rate of growth and length of the hyphae and differences in the P transport capacity of the hyphae (Pearson \& Jakobsen, 1993). Hyphal length may not always be important, with research by Smith et al. (2000) showing that, despite extensive hyphal length, different AM fungi will access P from different distances from the plant root. M. truncatula also displayed variation in the amount of P acquired via mycorrhizal fungi when colonised by various AM fungi (Burleigh, 2001). Pearson and Jakobsen (1993) observed that increased P status of colonised plants was also associated with the apparent down regulation of plant P transporters. The regulation of the Medicago P transporter MEDtr;Pht1;2 is linked to the P status of the plant (Burleigh, 2001). MEDtr;PhT1;2 is up regulated when the plant is P deficient and is down regulated to varying degrees when colonised with AM fungi. The degree of down regulation is dependent on the species of mycorrhizal fungi colonising the roots (Burleigh, 2001).

2.1.4 AM fungal structures

AM colonisation can be classified into two main types, Arum- and Paris-AM. Paris-type colonisation is characterised by intracellular coils (hyphal coils) formed in cortical cells (Figure 2.2). Arum-type mycorrhizas are the most commonly investigated and are characterised by the formation of a welldeveloped mycelium of intercellular hyphae within the root cortex and branched structures (arbuscules) within the cortical cells (Figure 2.2). The arbuscules are short-lived, about 4-12 days (Cox and Tinker, 1976). The highly branched arbuscule invaginates the host cell plasma membrane (peri-arbuscular membrane), forming a symbiotic interface with a very large surface area (Schematic diagram, Figure 2.2). This is thought to be the site of nutrient transfer from fungus to plant. The coils in Paris-AM (which also present a very large area of interface) are being implicated in this role as well (Smith and Read, 1997).

Figure 2.2: Internal AM fungal structures. AM fungal hyphae can penetrate the root epidermal cell or enter via intercellular spaces and subsequently penetrate the cortical cells. The point of entry into the root by the fungus is called the appressorium (pink bordered box; reproduced from Brundrett, 2000). From the appressorium internal colonisation spreads via hyphae, followed by the formation of arbuscules, hyphal coils and vesicles (yellow bordered boxes; reproduced from Brundrett, 2000). The schematic diagram of an arbuscule (blue bordered box, reproduced from Harrison, 1999) emphasises the apoplastic space between the arbuscular membrane and the plant peri-arbuscular membrane; indicating that the fungi remain separate from the plant cortical cell and transfer Pi across the arbuscular membrane into the apoplastic space, from which the plant uses P transporters within the plant periarbuscular membrane to absorb that Pi. (Harrison, 1999; Brundrett, 2000)

The AM fungi extend a fine network of hyphae into the soil, accessing Pi up to 25 cm from the root (Figure 2.3) (Smith and Read, 1997). Two P transporters, with a similar structure and function to plant P transporters, have been identified from two mycorrhizal fungi, G. versiforme (Harrison \& van Buuren, 1995) and G. intraradices (Maldonado-Mendoza et al., 2001). These fungal transporters are not expressed in the plant, suggesting that they are involved with the acquisition of Pi from the soil. Once taken up, the Pi is translocated along the hyphae to the mycorrhiza/plant interface.

Figure 2.3: Images of AM fungal external hyphal network. Spores (arrowed) of AM fungi in the soil initiate hyphal (H) growth towards the plant root. (Images reproduced from Brundrett, 2000)

The fungus and plant remain separated by an apoplastic space, with the fungus topologically outside the plant. It is probable that the apoplastic space is the site of nutrient transfer, with a high activity of ATPase present at the peri-arbuscular membrane (thereby providing protons for coupled transport, discussed in section 2.3.1, (Gianinazzi-Pearson et al., 2000)). This is further supported by research performed by Ayling et al. (2001) which showed that the root membrane electric potential was $\sim 10 \mathrm{mV}$ higher in non-mycorrhizal leeks than in leeks colonised by Scutellospora calospora and forming intracellular coils. The reduced electric potential difference is due to Pi being supplied by the fungal hyphae (Ayling et al., 2001). There is supporting research that measured the amount of P (via cryoanalytical scanning electron microscopy) revealing a higher concentration of P in colonised cells than non-colonised cells (Ryan et al., 2003). While these measurements account for total P (poly-P, Pi and all other forms) present at the site of examination, there was a higher concentration of P in fungal structures than in plant cells, and plant cells containing arbuscules had a higher concentration of P than those cells with no fungal structures. This provides further circumstantial evidence that arbuscules are a site of exchange with the plant. Some root intercellular spaces contained a liquid that was observed to include P when associated with fungal hyphae (Ryan et al. 2003). There is no reported evidence that any plant P transporters are specifically expressed around these intercellular spaces to acquire P from these pools. It is unclear as to whether this is a site of active P exchange (i.e. Are the AM fungi exporting Pi at this site?) or diffusion (movement from high to low concentrations). Either way the plant
would be able to scavenge this source of Pi with alternative P transporters located within the cortical cell membranes. The model of Pi acquisition via AM fungi may be more complex than initially thought.

2.1.5 Plant/AM fungi interactions

The involvement of AM fungi with plants is further complicated by the fact that major effects of AM fungi on plant P uptake may not be reflected in benefits at the whole plant level. Recently, work done by Smith et al. (2003b \& 2004) demonstrated that G. intraradices supplied flax, Medicago truncatula and tomato with all of the Pi measured in plant tissues, with noticeable increases in plant dry weight only in flax and M. truncatula. Tomato showed decreased dry weight when colonised by AM fungi compared to non-colonised plants, which may be due to the amount of carbon supplied to the AM fungi. This research also demonstrated that different mycorrhizal fungi supplied different percentages of Pi to plants. For example tomato plants received 100% of their total P from G. intraradices, $\sim 77 \%$ from G. caledonium and $\sim 7 \%$ from Gigaspora rosea. The outcome of the interaction was also plant dependent. Gigaspora rosea provided flax with $\sim 13 \%$ of its P, Medicago truncatula with $\sim 44 \%$ and tomato with $\sim 7 \%$. These findings are particularly important to agricultural practices since, based on our earlier understanding, the role of AM fungi is likely to have been dismissed in non-responsive crops such as many cereals. Regardless of growth response this symbiosis can be the major pathway of Pi acquisition for the plant, depending on plant-fungus combination.

2.2 The importance of phosphate transporters in P uptake

2.2.1 The Pht1 family of P transporters

In response to growth requirements, various membrane associated P transporter proteins are involved in the acquisition of Pi from the soil and movement of Pi between tissues. The genes encoding these transporters have been classified into gene families depending upon their topology. The majority of P transporters isolated to date are found within the Pht1 family. These proteins consist of 12 hydrophobic membrane-spanning regions that are separated into two groups of six by a large intracellular hydrophilic, charged domain (Figure 2.4-A). They are approximately 58 KDa in size and contain 520 550 amino acids (Smith, 2001; Pao et al., 1998; Raghothama, 2000; Smith et al., 2003a). This topology is similar to other solute transporters that are members of the major facilitator super-family (Marger \& Saier, 1993; Smith et al., 1999).

Figure 2.4: Schematic images of the PhT1 family phosphate transporters demonstrating: A. The 12 membrane spanning regions (composed of 17-25 amino acids) and the central intracellular hydrophilic loop, with the N and C termini intracellular; and B . The processes involved in co-transport of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }_{4}$ ions across the cell membrane, with H^{+}ions supplied by a proton pump. (Figure A reproduced from Smith et al., 2003a; figure B reproduced from Smith 1999)

Another group of P transporters, the $\mathrm{Pht2}$ family, is found in mammalian, bacterial and algal systems where they are usually associated with Na^{+}co-transport. Two plant P transporters with Pht 2 -like topology have been isolated from Arabidopsis (Daram et al., 1999) and Medicago (Zhao et al., 2003). Unlike the Na^{+}coupled transport that is typical of animal systems, the plant members of the Pht2 family are H^{+}coupled (Daram et al., 1999; Zhao et al., 2003). Topology of the Pht2 transporters differs from the Pht1 family by having a long extracellular hydrophilic N terminus and a hydrophilic loop between trans-membrane regions 8 and 9 (Daram et al., 1999). Chloroplast transit peptides are featured in the

N terminus of the Arabidopsis Pht2;1 transporter and when the Pht2;1 gene was fused with green fluorescent protein the resulting Pht2;1 protein was localised to the chloroplast envelope. While other P transporter families have been identified from plants (eg. mitochondrial P transporters) the research described in this thesis concentrates on the Pht1 family of P transporters because these proteins are likely to be more significant in strategies aimed at enhancing plant Pi uptake and mobilisation efficiencies.

Pi acquisition is an energy requiring process, because of the large electrochemical gradient between the soil solution and the cytoplasm of plant root cells. Uptake therefore requires both a transporter and an energy source. ATPases are needed to generate proton motive force. Pi uptake is achieved by an energy-mediated co-transport process, whereby protons (H^{+}) are coupled with the $\mathrm{H}_{2} \mathrm{PO}_{4}$ - ions to move into the cell (Figure 2.4-B) (Clarkson \& Grignon, 1991; Muchhal \& Raghothama, 1999). The requirement for co-transport is evidenced by the depolarisation of the plasma membrane associated with the influx of positively charged protons (Poole, 1978). If $\mathrm{H}_{2} \mathrm{PO}_{4}$ - ions alone crossed the membrane a hyperpolarization would be observed. Further support for co-transport with H^{+}is the restricted uptake seen when H^{+}inhibitors/uncouplers are present (Lin, 1979). Cations other than H^{+}have not been successfully associated with plant Pi transport.

2.2.2 Regulating P uptake

The strategies that enhance Pi acquisition include regulation of P transporters to access available Pi from soil and facilitate transport within the plant. P transporters located in root epidermal cells are involved in acquisition of Pi directly from the soil and P transporters located in the cortex acquire Pi from the apoplast and move it symplasticaly through cell plasmodesmata connections to the xylem parenchyma for distribution. The use of active transporters to acquire and distribute Pi is essential because intracellular Pi can be measured in concentrations of 5-17 mM (Mimura et al., 1996; Mimura, 1999), compared to external concentrations that are in the range of $1-8 \mu \mathrm{M}$ (Barber, 1962; Reisenauer, 1966). There can be as much as $1,000-10,000$ fold difference between internal and external Pi concentrations (Bieleski \& Ferguson, 1983; Schachtman et al., 1998). The Pi status of plants and their rate of growth determine the requirement for influx and net absorption of Pi by the roots (Clarkson \& Grignon, 1991). Due to the uneven distribution of Pi in the soil, plants have the ability to increase rates of acquisition in those areas with high Pi via those methods discussed in section 2.1.2, thus compensating for Pi deficient areas. It is thought that overcoming uneven Pi supply is done by Pi cycling in the phloem between shoots and roots via P transporters (Clarkson \& Grignon, 1991).

2.2.3 $\quad \mathbf{P}$ transporter kinetics

Kinetic studies of P transporters have yielded results that indicate differences in K_{m} between species, cell types and growth conditions, demonstrating the control of the Pi transport systems, see Appendix 1. Studies involving excised barley roots identified that there were two systems of uptake in plants, dependent upon the external concentration of the ion (Figure 2.5) (Epstein \& Hagen, 1952; Fried \& Noggle, 1958). P transporters are active depending on the Pi nutritional status of the plants and level of Pi supply (Zhu et al, 2001). The K_{m} for high-affinity transporters ranges from 3-30 $\mu \mathrm{M}$, whereas for low-affinity transporters the range is $50-668 \mu \mathrm{M}$, see Appendix 1 .

Figure 2.5. Concentration-dependence of ion uptake by plant cells, illustrating the dual-isotherm Michaelis-Menten kinetics. High affinity has a low Michaelis constant, high affinity for the substrate and a low maximal rate. Low affinity has a high Michaelis constant, low affinity for the substrate and a high maximal rate. Reproduced from Lüttge and Higinbotham 1979.

When Lemna gibba is P -deficient the $\mathrm{V}_{\text {max }}$ of P transporters involved in high and low affinity systems has been reported to increase (Ullrich-Eberius et al., 1984), while experiments with Catharanthus roseus only exhibited an increase in $\mathrm{V}_{\text {max }}$ for the high affinity system (Furihata et al., 1992). The increased activity $\left(V_{\max }\right)$ observed by both laboratories was not associated with a change in K_{m}. Increases in the rate of Pi uptake associated with Pi starvation is a result of increased transcription of P transporter genes, resulting in increased translation, increased density of transporters in the membrane in question and enhanced Pi uptake (increase in $\mathrm{V}_{\max }$) (Muchhal \& Raghothama, 1999; Raghothama, 1999a; Furihata et al., 1992). The transcription rate of P transporter genes increases soon after a change in cellular Pi concentration and long before the appearance of any visible Pi-deficiency symptoms (Liu et al., 1998a; Yao et al., 2001; Dong et al., 1998). This finding suggests that signals that
induce gene expression are initiated by internal concentrations of Pi. This will be discussed later in this chapter.

2.2.4 Verification of function of P transporters and kinetics by yeast complementation

There is controversy about the determination of the affinities of P transporters. Most data has been obtained using heterologous expression in yeast, which has yielded higher K_{m} values than expected from physiological studies (Smith et al., 2003a). Initial studies utilised Saccharomyces cerevisiae yeast mutants defective in the high-affinity P transporter pho84 gene (Bun-ya et al., 1991). The introduced plant P transporter genes complemented the mutations and restoration of Pi uptake was taken as evidence for Pi transport via the plant transporter. The K_{m} 's determined with pho84 yeast mutants were of the order of $110-493 \mu \mathrm{M}$. For example ARAth;Pht1;1 complemented the yeast mutant NS219 grown on $110 \mu \mathrm{M} \mathrm{P}$ medium (Muchhal et al., 1996), and could therefore be interpreted as being a lowaffinity transporter, while plant cell suspension cultures determine that it is a high-affinity transporter (discussed in further detail in the following section). Another yeast P transporter, pho89, is involved with Na^{+}coupled P transport in yeast. The development of a second yeast mutant, PAM2, defective in both pho84 and pho89 P transporters, (Martinez \& Persson, 1998), yielded lower K_{m} values for the same genes that were expressed in the pho84 mutants. The plant P transporters tested in the PAM2 yeast mutant were not $\mathrm{Na}^{+} / \mathrm{H}_{2} \mathrm{PO}^{-4}$ symporters yet provide K_{m} values that came closer to expectations of high and low -affinity P transporters. This is seen with SOLtu;Pht1;3 $\mathrm{K}_{\mathrm{m}} 64 \mu \mathrm{M}$ - high affinity (Rausch et al., 2001) and MEDtr;Pht1;4 $\mathrm{K}_{\mathrm{m}} 668 \mu \mathrm{M}$ - low affinity (Harrison et al., 2002). Interestingly Harrison et al. (2002) measured the K_{m} of MEDtr;Pht1;4 in both single and double yeast mutants, and obtained values of $493 \mu \mathrm{M}$ and $668 \mu \mathrm{M}$ respectively, which confirms low-affinity kinetics but further demonstrates the variability of the yeast mutant system.

The K_{m} 's of plant P transporters when measured in mutant yeast strains may not accurately represent K_{m} 's in the plants for several reasons. Firstly, analysis of the plant P transporter genes suggests that putative phosphorylation sites in the sequence may require activation and may prevent the plant P transporters from fully complementing the yeast mutants. Secondly, N-glycosylation and associations with other proteins with the plant P transporters may be required prior to the P transporter being able to function. In yeast, the pho84 gene has been functionally associated with other genes, suggesting a more complicated model for Pi transport (Bun-ya et al., 1992; Bun-ya et al., 1996; Yompakdee et al., 1996; Leggewie et al., 1997). Plant P transporters may not complement the complicated model for Pi transport in these yeast mutants, thereby yielding K_{m} values higher than those obtained with root
systems (Smith et al., 2003a). Hence, it is important to measure the kinetics of transporters in homologous systems.

2.2.5 Verification of function and kinetics in plant cell suspension cultures

The use of transgenic plant cells as expression systems may overcome the putative post-translational problems of the yeast systems and should provide kinetic information more closely related to the expression of the genes in plants. This plant system involves the production of transgenic cells transformed with the P transporter of interest under the control of a constitutively expressed promoter. Use of tobacco cells transformed with ARAth;Pht1;1 indicate a K_{m} of $3.1 \mu \mathrm{M}$ for this gene (Mitsukawa et al., 1997b), which is indicative of a high-affinity P transporter and considerably lower than the value of $110 \mu \mathrm{M}$ previously obtained by Muchhal et al. (1996) using yeast. Rice cells transformed with HORvu;Pht1;1 or HORvu;Pht1;6 yielded K_{m} 's of $8 \mu \mathrm{M}$ and $320 \mu \mathrm{M}$, respectively (Rae et al., 2003) indicating their roles as high affinity and low affinity transporters, respectively. The use of transgenic plant cells to determine P transporter kinetics yields results consistent with those observed in uptake experiments with excised barley roots that exhibited both high affinity of the range $1-10 \mu \mathrm{M}$ and low affinity in the range of $0.2-0.5 \mathrm{mM}$ kinetics (Barber, 1972). These high affinity K_{m} values are also consistent with the low concentrations of Pi found in most soil solutions. This plant-based protocol has the advantage of providing results that may be more reliable than those obtained with yeast mutants. The kinetic values of P transporters provided from yeast systems should be used with care until they are tested in plant-based systems.

2.2.6 Split root and hydroponic experiments

Split-root experiments with potatoes demonstrated that it is the overall P status of the plant that determines the rate of P uptake and not the portion of root system growing in solution lacking P (Cogliatti \& Clarkson, 1983). Experiments by Clarkson and Scattergood (1982) in barley and tomato demonstrated that there was an immediate increase in rate of P absorption when plants were moved from hydroponic solutions containing $150 \mu \mathrm{M} \mathrm{P}$ to those with no P. In barley this increase in rate of P absorption continued for several days after the re-application of P, before decreasing to those levels observed prior to P starvation (Clarkson \& Scattergood, 1982). The increased rate of P absorption is associated with the increase in transcription of P transporters, as shown by the dramatic increase in transcription of ARAth;Pht1;1 and ARAth;Pht1; 2 when plants were transferred from $250 \mu \mathrm{M}$ P to zero P hydroponic solutions (Smith et al., 1997). A similarly high transcription rate was seen for tobacco P transporter genes, NICta;Pht1;1-1;4, when grown without P . When P was re-supplied transcription levels returned to those levels observed prior to P starvation (Kai et al., 2002). The levels of
transcription can also be reflected in the level of protein as seen in the decreased accumulation of MEDtr;Pht1;1 protein when P deprived Medicago plants were re-supplied with P (Chiou et al., 2001).

2.2.7 $\quad \mathbf{P}$ transporter kinetics in realistic growth conditions

Much research has used plants grown in hydroponic or sand cultures, with 'low P ' supplies of zero and 'high P' concentrations as high as $250 \mu \mathrm{M}$. None of these conditions effectively reflect the true growing conditions of plants in soil systems. Uptake in hydroponic growth systems, which are usually aerated, does not involve the formation of depletion zones around actively absorbing roots, so that Pi supply to the epidermal P transporters is maintained. Hydroponic cultures also produce a root architecture that is not identical to that found in soil. Sand culture systems are slightly more realistic, but in these the adsorption of Pi to sand particles does not occur and may result in solution P concentrations atypical of soil. Experiments on potato (Rausch et al, 2001), tomato (Rosewarne et al., 1999), rice (Paszkowski et al., 2002), Medicago (Harrison et al., 2002) and Arabidopsis (Mudge et al., 2002) have used soil:sand mixes to grow plants for expression studies. These soil:sand systems are likely to deliver data on gene expression that are more closely related to the situation likely to occur in natural conditions. In order to get a realistic view of P acquisition and translocation plants should be grown in conditions that closely mimic the soil environment, where P is usually in low concentrations and soil microflora influence the availability and acquisition of P (Schachtman et al., 1998). This is particularly important in investigations of the potential roles of AM fungi in P uptake. The work described in this thesis utilises a soillsand system in order to achieve results that are relevant to plants growing in near-natural conditions.

2.2.8 Expression analysis and localisation of P transporters involved with P uptake from AM fungi

The use of soil:sand mixes for detection and analysis of the expression of LYCes;Pht1;1 (Rosewarne et al., 1999), MEDtr;Pht1;4 (Harrison et al., 2002), ORYsa;Pht1;11 (Paszkowski et al., 2002) and SOLtu;Pht1;3 (Rausch et al., 2001) was necessary because these P transporters are involved in acquisition of P at the peri-arbuscular membrane, delivered by AM fungi. The establishment of AM symbioses can only be realistically achieved in soil-based systems; hydroponic culture is not practicable and, in common with agar-based systems, suffers from the disadvantages outlined above. As previously mentioned AM fungi provide an alternative pathway for P acquisition. At the start of the work discussed in this thesis only LYCes;Pht1;1 had been identified as showing an expression pattern consistent with the ability to access P via AM fungi. LYCes;Pht1;1 was shown to be expressed in both roots and shoots of mycorrhizal (G. intraradices) and non-mycorrhizal tomato (Rosewarne et al., 1999). The expression studies of LYCes;Pht1;1 utilised in-situ hybridisation protocols (Rosewarne et al. 1999). Rosewarne's et
al. (1999) results would be enhanced by using localisation expression protocols similar to those used to determine the localisation of MEDtr;Pht1;4, ORYsa;Pht1;11 and SOLtu;Pht1;3. The expression studies in MEDtr;Pht1;4 utilised a specific antibody for immuno-localisation (protein detection) and Medicago plants transformed with the promoter of MEDtr;Pht1;4 driving the expression of a reporter gene (GUS). Results using both approaches showed localisation of MEDtr;Pht1;4 to the peri-arbuscular membrane in G. intraradices colonised cortical cells (Harrison et al., 2002). Analysis of SOLtu;Pht1;3 used in-situ hybridisation to detect mRNA and SOLtu;Pht1;3 promoter-GUS transgenic potato plants to determine localisation to the peri-arbuscular membrane of roots again colonised by G. intraradices (Rausch et al., 2001). RT-PCR has been used to show expression of ORYsa;Pht1;11 in mycorrhizal roots of rice, with expression positively correlated to \% colonisation by G. intraradices (Paszkowski et al., 2002). These results support the model of AM fungi supplying Pi to the plant via the arbuscule/peri-arbuscular membrane. Of the P transporters associated with P acquisition via AM fungi LYCes;Pht1;1 had displayed expression in other plant tissue besides colonised cells, but the remaining three P transporters (MEDtr;Pht1;4, ORYsa;Pht1;11 and SOLtu;Pht1;3) were only expressed in mycorrhizal roots. Further research has revealed low levels of expression of SOLtu;Pht1;3 in non-mycorrhizal roots and shoots of potato, while MEDtr;Pht1; 4 is only expressed in mycorrhizal roots (Karandashov et al., 2003). The low levels of expression does not negate the possibility that the main role of these P transporters is in acquiring Pi from AM fungi

While the mycorrhiza-specific or mycorrhizal-related P transporters appear likely to be involved with acquisition of Pi delivered to root cortical cells via AM fungi, the colonisation of plants can also be associated with down-regulation of other P transporters, similar to the down-regulation observed when plants are grown in high Pi conditions (see above). Research on Medicago truncatula (Liu et al., 1998b) investigated the expression of the plant P transporters (MEDtr;Pht1;1 and MEDtr;Pht1;2) which had been identified as being expressed in roots colonised by mycorrhizal fungi. There was an increase in transcription and protein levels in epidermal and root hair cells during P starvation, which was opposite to the down regulation of both P transporters during the development of symbiosis with AM fungi (Liu et al.; 1998b). This suggests that the plant may not require MEDtr;Pht1;1 and MEDtr;Pht $1 ; 2$ when it is able to obtain Pi from the mycorrhizal fungi. The role of MEDtr;Pht1;1 is associated with acquiring Pi directly from the soil. The down regulation of root P transporters not involved with Pi acquisition via AM fungi is not uniform across AM fungi. As demonstrated by Burleigh (2001) with expression studies on MEDtr;Pht1;2 the reduced expression of MEDtr;Pht1;2 was observed in northern blots and ranged from 60% reduction to no effect when colonised by Glomus mosseae and Gigaspora rosea respectively. Colonisation of Medicago by other AM fungi produced varying degrees of reduced expression (Burleigh, 2001). Variation in the down-regulation of MEDtr;Pht1;2 needs to be further examined in order to
determine if the various AM fungi are providing an alternative supply of P and whether the amount of P supplied by the AM fungi is sufficient for the plant to rely solely on that source. Research by Smith et al. (2003b \& 2004) indicates that P acquired by Medicago colonised by G. intraradices and G. caledonium was provided only via the AM fungi. With 100% of the acquired P being supplied by the AM fungi it would be expected that the Medicago plant would not need to expend resources to acquire P directly from the soil, consequently down-regulating the expression of MEDtr;Pht1;1 and 1;2. However, experiments to investigate concurrently P uptake via the $A M$ fungi and expression of relevant P transporter genes need to be researched in the future.

Barley has not demonstrated improved P concentration or biomass when colonised by AM fungi, thus suggesting that AM fungi colonisation is not beneficial. The research by Smith et al. (2003b \& 2004) and Ryan and Angus (2003) indicates that the benefits of AM fungi colonisation should not be dismissed in cereal crops that have shown parasitisation or no plant beneficial improvements. The alternative P pathway via AM fungi may prove to be highly beneficial to cereal crops grown in P deficient soils.

2.3 Aims of the thesis

Research to date highlights the complex nature of the plant-mycorrhizal fungus interaction in Pi acquisition. The process of acquiring Pi depends on the plant species and cultivar, AM fungi colonising the roots and growth conditions. The research covered by this thesis started in March 2000 and investigated the variation in Pi acquisition and colonisation between barley cultivars with three mycorrhizal fungi. P transporters associated with acquiring Pi delivered by the AM fungi in rice, barley, wheat and maize were identified. The colonisation by AM fungi regulating other plant P transporters in barley was also studied. The results from this research adds to the knowledge of Pi acquisition and regulation of P transporters in cereal crops that form symbiotic relationships with AM fungi. Regardless of the complex process of Pi acquisition, the interaction and benefits of mycorrhizal fungi in Pi acquisition should not be ignored if successful advances in Pi acquisition are to be made.

3 Materials and Methods

3.1 Soil conditions and plant propagation

3.1.1 Soil, soil mixes and phosphorus amendments

Two soil types, Millmerran and Ashland, were used for this research. Both contained low levels of plantavailable P.

Soil from Millmerran, Queensland, Australia~ $28^{\circ} \mathrm{S} 151^{\circ} \mathrm{E}$ (collected from Gaythorne Farm, where no fertilisers had been used) has a pH of $8.5\left(\mathrm{H}_{2} \mathrm{O}\right)$ and bicarbonate extractable phosphorus (P) content of $10 \mathrm{mg} \mathrm{kg}-\mathrm{-1}$ (Colwell, 1963). This soil was used to culture Glomus intraradices and Glomus sp. WFVAM23 (formerly called Glomus versiforme) because both these fungi require neutral to alkaline pH soil for successful colonisation. The Millmerran soil was also used in experiments to investigate P efficiency of different barley cultivars and effects of mycorrhizal colonisation on their growth (Section 3.3).

Soil from Ashland, Withcott, Queensland, Australia $\sim 28^{\circ} S 153^{\circ} \mathrm{E}$ was collected from uncultivated land on a farm on Ashland Drive. It has a pH of $5.6\left(\mathrm{H}_{2} \mathrm{O}\right)$ and bicarbonate extractable P content of $3 \mathrm{mg} \mathrm{kg}^{-1}$ (Colwell, 1963) and was used to culture Scutellospora calospora, as successful colonisation by this fungus occurs in low pH soils (Dickson et al., 1999).

The analysis of the soils was carried out by Incitec Ltd (Morningside, Queensland, Australia) using methods listed in Appendix 2. Concentrations of organic carbon, nitrate nitrogen, potassium, calcium, magnesium, sodium, chloride, copper, zinc, manganese, iron, boron and sulphur, and electrical conductivity are listed in Appendix 2.

Washed fine quartz sand, supplied by Stone Merchants (Dara, Queensland), was mixed with the soil in the ratio of 1 part soil to 9 parts sand. The soil:sand mix was then sterilised by autoclaving at $121^{\circ} \mathrm{C}$ for 90 m twice with an interval of 72 h between autoclavings. Non-draining pots were filled with 2 kg of the soil-sand mix. 200 g of soilroot inoculum (Section 3.3) were included in mycorrhizal pots. Pots containing soil from Millmerran had an bicarbonate extractable P content of $1 \mathrm{mg} \mathrm{Pg}^{-1}$ soil:sand mix while soil from Ashland had a P content of $0.3 \mathrm{mg} \mathrm{P} \mathrm{kg}{ }^{-1}$ soil:sand mix. Phosphate in the form of $\mathrm{CaH}_{4}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was added to pots following sterilisation to increase the levels of P available to the plants. The $\mathrm{CaH}_{4}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was added as a dry fine powder to dry soil:sand and mixed for 10 mins . Low P and mycorrhizal pots had $81.3 \mathrm{mg} \mathrm{CaH} 4\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O} \mathrm{kg}^{-1}$ soil:sand added to give a final P
concentration of $20 \mathrm{mg} \mathrm{P} \mathrm{kg}^{-1}$ soil:sand. High P pots had $406.5 \mathrm{mg} \mathrm{CaH}_{4}\left(\mathrm{PO}_{4}\right)_{2} . \mathrm{H}_{2} \mathrm{O} \mathrm{kg}^{-1}$ soil:sand added to give a final P concentration of $100 \mathrm{mg} \mathrm{P} \mathrm{kg}^{-1}$ soil:sand.

3.1.2 Plants, plant propagation, growth conditions and harvesting

Table 3.1 lists the plant species that were used in the work described in this thesis, together with cultivars and origins.

Table 3.1. Plant species and cultivars used in the work described in this thesis

Plant Species	Cultivar	Source of material
Barley (Hordeum vulgare L.)	Golden Promise	Dr. Minesh Patel - CSIRO Plant Industry, Brisbane, Queensland
	Arapiles	Dr. Yongguan Zhu - Adelaide University, Adelaide, South Australia
	Skiff	Forrest
	Franklin	Prof. Andrew Barr - Adelaide University, Adelaide, South Australia
	Sahara	Clipper
Wheat (Tniticum aestivum L.)	Grebe	Dr. Gangping Zhu - CSIRO Plant Industry, Brisbane, Queensland
Rice (Oryza sativa L.)	Jarrah	Yanco Agricultural Institute, New South Wales
Tobacco (Nicotiana tabacum L.)	Wisconsin 38	Dr Frank Smith - CSIRO Plant Industry, Brisbane, Queensland
Maize (Zea mays L.)	Gold Queen	J.C. \& A.T. Searle Pty Ltd, Kilcoy, Queensland
Leek (Allium porrum L.)	Vertina	Novartis, Dandonong South, Victoria

Seeds were sterilised by immersion in a bleach solution containing $\sim 5.7 \%$ available chlorine for 10 minutes, followed by three washes in sterile $\mathrm{H}_{2} \mathrm{O}$. Seeds were then laid out across the top of a sheet of 3 MM paper ($30 \times 30 \mathrm{~cm}$) soaked in 0.5 mM CaSO 4 . The bottom edge of the paper was brought up to the top edge so that the seeds where covered by the paper, allowing the shoots to grow from the open edge and the roots to grow towards the folded edged. The paper and seeds were rolled from one side to the other to form a cylinder and the cylinder was held in place by a rubber band and propped in a beaker (folded edge down) containing 0.5 mM CaSO 4 . The units were incubated at $4^{\circ} \mathrm{C}$ for 24 h , then moved to $\sim 26^{\circ} \mathrm{C}$ under growth lights until germination. Seeds usually germinated in five days and were then transplanted into pots.

All plants were grown under conditions conforming to PC2 guidelines (http://www.ogtr.gov.au) in the Controlled Environment Facility at CSIRO, St Lucia, Queensland, Australia. Growth room conditions were a constant temperature of $25^{\circ} \mathrm{C}$ with a 16 h photoperiod ($500 \mu \mathrm{~mol} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ photon flux density) and 65% humidity.

Plants were harvested at times specific to individual experiments and details are given in the relevant chapters. Harvesting involved carefully washing soil away from roots over a 1 mm gauge sieve. Plants were then blotted dry and shoots cut away from roots. Samples were processed to determine fresh and dry weights, concentration of P in samples, extent of mycorrhizal colonisation, and RNA and DNA extractions depending on analysis required, as described in the following sections.

3.2 Watering

Pots were watered to weight with distilled water twice per week to maintain soil moisture at $0.1 \mathrm{~g} \mathrm{~g}^{-1} \mathrm{dry}$ soil. Pots received 10 mL nutrient solution minus P once per week (Table 3.2).

Table 3.2. Composition of the nutrient solution used in all experiments.

Macro nutrients	Final concentration
$\mathrm{K}_{2} \mathrm{SO}_{4}$	0.4 mM
$\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$	0.3 mM
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$	0.6 mM
Fe EDTA	0.02 mM
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$	0.8 mM
NaNO_{3}	0.4 mM
$\mathrm{H}_{3} \mathrm{BO}_{3}-2.8 \mathrm{mg} \mathrm{L}{ }^{-1}$	$1 \mathrm{~mL} \mathrm{~L}^{-1}$
$\mathrm{MnCl}_{2} .4 \mathrm{H}_{2} \mathrm{O}-1.81 \mathrm{mg} \mathrm{L}^{-1}$	$1 \mathrm{~mL} \mathrm{~L}^{-1}$
$\mathrm{ZnSO}_{4 .} 7 \mathrm{H}_{2} \mathrm{O}-0.22 \mathrm{mg} \mathrm{L-1}$	$1 \mathrm{~mL} \mathrm{~L}^{-1}$
$\mathrm{CuSO}_{4.5} 5 \mathrm{H}_{2} \mathrm{O}-0.08 \mathrm{mg} \mathrm{L}^{-1}$	$1 \mathrm{~mL} \mathrm{~L}^{-1}$
$\mathrm{NaMoO} 4.2 \mathrm{H}_{2} \mathrm{O}-0.025 \mathrm{mg} \mathrm{L}^{-1}$	$1 \mathrm{~mL} \mathrm{~L}^{-1}$

3.3 Cultures of AM fungi

Three cultures of AM fungi, were obtained from Prof. S.E. Smith, University of Adelaide, South Australia, Australia.

Glomus sp. WFVAM 23 (formerly called G. versiforme). This fungus was obtained as Glomus versiforme (Karsten) Berch from Dr P. Bonfante, University of Torino, Italy. It was described as G. versiforme in a paper by Gao et al. (2001) but it should be noted that the identification of this fungus has been questioned and re-identification and molecular comparison of this fungus with other cultures of G. versiforme and G. intraradices is currently in progress.

Glomus intraradices Schenck \& Smith (DAOM 181602). This fungus was subcultured from an axenic culture on transformed roots obtained from Professor J.A. Fortin, University of Montreal, Canada and subsequently maintained in pot-culture conditions.

Scutellospora calospora (Nicolson \& Gerdemann) Walker \& Sanders (WUM 12(2)) was originally obtained from Mr Chris Gazey, University of Western Australia, Australia.

Inoculum of the fungi was produced in pot cultures maintained on Allium porrum L. cv Vertina (leek) in appropriate soil, section 3.1.1. The pot cultures were grown for at least 6 weeks before the soil, containing root fragments and spores, was used to inoculate experimental plants.

Test plants were transplanted into nurse pots that had been established according to Rosewarne et al. (1997).

3.4 Analysis of mycorrhizal colonisation

Root samples requiring assessment of mycorrhizal colonisation were cleared and stained by a modification of the method of Phillips and Hayman (1970). Roots were immersed in $10 \% \mathrm{KOH}$ immediately after harvest and cleared by incubation at $65^{\circ} \mathrm{C}$ overnight. The roots were then rinsed with water twice and once with 0.1 N HCl , before staining with trypan blue. Trypan blue is a non-vital stain, which stains fungal structures that are both living and dead. The trypan blue stain was prepared as described by Phillips and Hayman (1970) with the omission of phenol. Fungal structures were visualised with bright field microscopy. Assessment of colonisation was done by the line intersect method (McGonigle, 2001) to provide detailed information on the percentage of individual fungal structures present within the roots, as well as total percent colonisation (presence of fungi regardless of structure).

3.5 Plant growth and phosphate analysis

Fresh weights of roots and shoots were recorded at harvest. The roots and shoots were cut into $\sim 4 \mathrm{~cm}$ sections and thoroughly mixed before subsampling. Weighed subsamples were then dried at $80^{\circ} \mathrm{C}$ for $\sim 72 \mathrm{~h}$ and dry weights recorded. The dry weights of whole roots or shoots were calculated from the fresh weight: dry weight ratios to correct for weighed subsamples taken for other analyses. Weighed subsamples of the dried material were ashed at $220^{\circ} \mathrm{C}$ for $\sim 20 \mathrm{~h}$. Ashed samples were resuspended in 20 mL 0.1 N HCl . P concentrations in ashed plant samples were determined by the molybdenum blue method of Watanabe and Olsen (1965), with absorbances read at 650 nm on a GBC 911 UV-Visible Spectrophotometer (GBC Scientific Equipment, Dandenong, Victoria, Australia).

3.6 RNA extraction

3.6.1 Large scale preparations

Subsamples of fresh plant material for extraction of RNA were rapidly frozen in liquid nitrogen immediately atter harvest and stored at $-80^{\circ} \mathrm{C}$. Total RNA was extracted from plant material through a caesium chloride pad by the method of Chirgwin et al. (1979) modified as follows: Plant material that had been frozen was ground to a powder in liquid nitrogen with mortar and pestle. Following centrifugation through the caesium chloride pad the RNA was resuspended in $\mathrm{H}_{2} \mathrm{O}$ (treated with 0.1% Diethylpyrocarbonate, DEPC) and immediately precipitated with NaOAC and ethanol to concentrate the RNA. If the RNA pellet was not clear or white, a pheonl:chloroform:isoamlyalcohol extraction was performed and the RNA precipitated again. The precipitated RNA was collected by centrifugation ($14000 \mathrm{rpm}, 15 \mathrm{~m}, 4^{\circ} \mathrm{C}$) and RNA pellets were air dried on ice before dissolving in $\mathrm{H}_{2} \mathrm{O}$ (DEPC) for immediate usage or stored at $-80^{\circ} \mathrm{C}$ in a NaOAc and ethanol precipitation mix.

3.6.2 Small scale preparations

A QIAGEN RNeasy Plant Mini kit \#74103, supplied by QIAGEN Pty Ltd, Clifton Hill, Victoria, Australia, was used for small scale RNA preparations. The protocol listed in the handbook was used to extract RNA from samples of $\sim 100 \mathrm{mg}$ plant tissue ground in liquid nitrogen with mortar and pestle. The extraction included the QIAGEN \#79254 'on the column' RNase-Free DNase in order to remove any remaining genomic DNA.

3.7 Genomic DNA extraction

Small-scale genomic DNA extractions used the BIO101 FastDNA® Kit (\#6540-400) with the FastPrep® Instrument, both supplied by Qbiogene Inc., Carlsbad, California, United States of America. The

FastPrep® System eliminates the need for manual grinding by using a highly energetic mechanical motion with garnet combined with cell lysing reagents. The protocol listed in the handbook was used to extract a maximum of 200 mg of fresh plant tissue with lysing matrix: sphere + garnet + sphere. Genomic DNA was stored at $4^{\circ} \mathrm{C}$.

3.8 Clone analysis

The following section details the techniques used to isolate and manipulate the P transporter genes and corresponding promoters used in the work described in this thesis. Detailed explanations are given in each section.

3.8.1 Vectors

Vectors are generally circular pieces of DNA that are able to utilise the bacterial, yeast, plant or animal cell that it resides in to replicate themselves. Cloning vectors are able to have foreign pieces of DNA inserted into them and maintain their capacity to replicate. This enables a gene of interest to be replicated and studied independently of other genes. The following three vectors were used in the work discussed in this thesis and vector maps and associated components are listed in Appendix 3.
pGemT-easy (\#1360) - supplied by Promega Corporation, Annandale, New South Wales, Australia. This plasmid is used to clone PCR products and allows selection of cloned products by transforming E. coli strains, followed by growth on LB with ampicillin and blue/white screening. Blue/white screening is achieved by the insertional inactivation of the LacZ α-peptide. The inserted gene of interest disrupts the coding region of the α-peptide, which can then be identified by colour screening on indicator plates. Details of vector and related products can be found in Appendix 3.
pZERO1 (\#K2500-01) - supplied by Invitrogen Australia Pty Ltd, Mount Waverly, Victoria, Australia. This plasmid is used to clone PCR products and allows selection of cloned products by transforming E. coli strains and growth on LSLB with zeocin selection. Details of vector and related products can be found in Appendix 3.
pWBvec8 - supplied by CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia. This plasmid is used to clone the promoters of the genes of interest so that they control the expression of green fluorescent protein (GFP) or β-glucuronidase (GUS) genes for plant transformation and expression studies. pWBvec8 is transformed into Agrobacterium strains and grows in LB with spectinomycin resistance selection. Details of vector and related products can be found in Appendix 3.

3.8.2 Ligation

Ligation reactions involve the joining of any two pieces of DNA. In this research ligations involved the insertion of the gene of interest into a linearised vector, which then created a circularised product that was transformed into bacterial, fungi or plant cells for replication.

All ligations were set up with a $3: 1$ insert:vector ratio.

Ligations into pGemTeasy followed the protocol supplied by the supplier, with ligations run at $4^{\circ} \mathrm{C}$ overnight.

Ligations into pZERO1 and pWBvec8 used T4 DNA ligase (\#M1801) supplied by Promega Corporation, Annandale, New South Wales, Australia. Ligations followed the supplier's protocol, with ligations run at $4^{\circ} \mathrm{C}$ overnight.

3.8.3 Transformation of vectors into bacteria.

Transformation is the introduction of DNA into a bacterial, yeast, plant or animal cell. There are two methods for transformation into bacteria and fungi, heat-shock and electroporation. Electroporation was used during the work described in this thesis to introduce cloned genes into bacterial cells. This was achieved by mixing the ligated cloned genes with highly purified E. coli cells and subjecting the mix to high electrical pulses, that disrupt the membrane of the E. coli cells sufficiently to enable the cloned genes to be introduced. Following electroporation the cells were recovered in 1 mL SOC medium (Appendix 3) for 1 h at $37^{\circ} \mathrm{C}$, before being spread onto appropriate antibiotic selection plates (Appendix 3.).
pGemT-easy and pZERO1 vector based plasmids were transformed into E. coli DH10B by electroporation in 0.1 cm cuvettes with a Bio-rad Gene Pulser supplied by Bio-rad Laboratories Pty Lid, North Ryde, New South Wales, Australia. The electroporation conditions outlined in the Bacterial Electrotransformation and Pulse Controller Instruction Manual V2-89 \#165-2098 were used. Following recovery E. coli DH 10 B cells were grown at $37^{\circ} \mathrm{C}$ overnight.
pWBvec8 vector based plasmids were transformed into Agrobacterium tumefaciens AGL1 by electroporation in 0.2 cm cuvettes with the Bio-rad Gene Pulser using procedures outlined in the Bacterial Electrotransformation and Pulse Controller Instruction Manual V2-89 \#165-2098. Agrobacterium cells were grown at $28^{\circ} \mathrm{C}$ for $36-48 \mathrm{~h}$.

3.8.4 Miniprep analysis

Following transformation, individual colonies were selected from plates and used to inoculate 5 mL liquid broth containing the appropriate antibiotic for the vector used. Plasmid DNA was extracted from 1.5 mL of culture by the alkaline lysis method proposed by Birnboim (1983), with variations according Sambrook at al. (1989).

3.8.5 Restriction enzyme digestion and analysis

Restriction enzymes were used to digest the DNA for ligation and clone analysis. Three companies supplied the restriction enzymes used in the work described in this thesis: New England Biolab enzymes supplied by Genesearch Pty Ltd, Arundel, Queensland, Australia; MBI Fermentas enzymes supplied by Progen Industries Ltd, Darra, Queensland, Australia; Promega enzymes supplied by Promega Corporation, Annandale, New South Wales, Australia.

Digests were set up according to manufacturers' instructions and assessed using 1.2\% TAE (Appendix 3) gels run at 60 V for approximately 1 h in a submerged horizontal electrophoresis cell (Bio-rad, Regents Park, New South Wales, Australia). Nucleic acid bands were visualised with ethidium bromide and viewed on a UV Iuminator (excitation at 312 nm ; supplied by Sigma, Castle Hill, New South Wales, Australia). The molecular weight markers used were 1 kbplus (\#10787-018, Gibco Life Technologies), supplied by Invitrogen Life Technologies, Mulgrave, Victoria, Australia.

3.8.6 Transformation of vectors into plants

Rice, barley and tobacco plants were transformed with Agrobacterium vectors prepared as described above. The details of the plant transformations are given in the relevant chapters.

3.9 Sequence analysis

ABI PRISM® Big Dye ${ }^{\text {TM }}$ Terminator Ready Reaction Cycle Sequencing Kit supplied by Applied Biosystems (Quantum Scientific, Milton, Queensland, Australia) was used to determine the DNA sequences of isolated clones and confirm cloning reactions. Versions $1-3$ of the sequencing kit updated by Applied Biosystems have been used during the research. Sequencing reactions were set up according to manufacturers recommendations. Purification of the extension products was done with ethanol/sodium acetate precipitation method as outtined in the manufacturers protocols. Sequencing was done by the Australian Genome Research Facility (Brisbane, Queensland, Australia). Sequences
were analysed with programs on the Australian National Genomic Information Service (www.angis.org.au).

3.10 In-situ hybridisation protocol

Barley (Hordeum vulgare L. cv Golden Promise), wheat (Triticum aestivum cv Grebe), rice (Oryza sativa cv Jarrah) and maize (Zea mays cv Gold Queen) were grown in mycorrhizal nurse pots (G. intraradices, G.sp. WFVAM23 or Sc. calospora) as detailed in chapter 3.1, 3.2 and 3.3. Roots were harvested and immediately cut into 1 cm lengths under fixation buffer (2% formaldehyde and 0.5% glutaraldehyde in 50 mM Na-PIPES buffer pH 7.2). Root segments were incubated in fixation buffer for 2 h at room temperature. Tissue was dehydrated in a graded series of ethanol and ethanol/Histoclear (National Diagnostics, Atlanta, Georgia) and embedded in paraffin wax. Sections ($20 \mu \mathrm{~m}$) of tissue embedded in paraffin wax were sliced using a Biocut 2030 Reichert-Jung (Leica, Australia). Sections were mounted on Superfrost Plus slides (HD Scientific, Brisbane, Australia). Prior to hybridisation, paraffin was removed from sections by immersing the slides in containers with Histoclear, and tissue was rehydrated in a graded series of ethanol and water. Sections were treated with $1 \mu \mathrm{~g} \mathrm{~mL}$-1 Proteinase K for 30 min at $37^{\circ} \mathrm{C}$ and 0.25% acetic anhydride in 100 mM ethanolamine buffer pH 8.0 for 10 m at room temperature. Slides were dehydrated again in an ethanol series.

Sense and anti-sense RNA probes were generated by in vitro transcription (Promega Riboprobe System, Madison, Wisconsin) incorporating fluorescein-12-UTP (Roche Diagnostics, Basel, Switzerland) as the label. Probes were synthesised from full-length cDNA (sequences in Appendix 4) encoding HORvu;Pht1;8, ORYsa;Pht1;11, TRlae;Pht1;myc and ZEAma;Pht1;6 and used to screen tissue of appropriate plant species. Probes were hydrolysed to ca. 300 nucleotides by incubating the probe in $60 \mathrm{mM} \mathrm{Na}_{2} \mathrm{CO}_{3}, 40 \mathrm{mM} \mathrm{NaCO} 3$ (pH 10.2) for 20 m at $60^{\circ} \mathrm{C}$ followed by the addition of neutralisation buffer (final concentration: $0.2 \mathrm{M} \mathrm{NaOAc}, 1 \%$ acetic acid, pH 6). The probe was precipitated with $1 / 8$ volume LiCl and 3.75 volume ethanol and pelleted by centrifugation at 12000 rpm , $4^{\circ} \mathrm{C}, 20 \mathrm{~m}$. The hydrolysed RNA probe was dissolved in $50 \mu \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$ (DEPC) and $1 \mu \mathrm{~L}$ RNasin (Promega, Australia) and mixed with $450 \mu \mathrm{~L}$ hybridisation buffer (50% formamide, $300 \mathrm{mM} \mathrm{NaCl}, 10$ mM Tris-HCl pH 7.5, 1mM EDTA, 5% dextran sulphate, $150 \mu \mathrm{~g} \mathrm{~mL}{ }^{-1}$ tRNA). Dry sections were hybridised with 1:25 dilution of labelled RNA probe and hybridisation buffer at $47^{\circ} \mathrm{C}$ overnight. After hybridisation, slides were washed in $2 \times \operatorname{SSC}$ (Sambrook et al. 1989) for 60 m at $60^{\circ} \mathrm{C}, 1 \times \operatorname{SSC}$ for 30 m at $60^{\circ} \mathrm{C}$ and $0.1 \times$ SSC for 30 m at $60^{\circ} \mathrm{C}$. Hybridised probe was detected with anti-fluorescein antibody-alkaline phosphatase (Roche Diagnostics Australia, Castle Hill, New South Wales, Australia) and the substrates nitroblue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

Slides were examined using a Zeiss Axioskop microscope (Carl Zeiss Microscopy, Jena, Germany). Images were collected with an Olympus DP70 Microscope digital camera and supporting computer software (Olympus Australia Pty Ltd, Victoria, Australia).

3.11 Phosphate transporter nomenclature

The Commission for Plant Gene Nomenclature (appointed by the International Society for Plant Molecular Biology) has recently suggested the formal naming of genes (Bucher et al., 2001). Genes are named according to their gene family eg.:

Tomato (Lycopersicon esculentum) phosphate transporters confirmed to be in the Pht1 gene family would be named: LYCes;Pht1;1, LYCes;Pht1;2, LYCes;Pht1;3 etc. The Pht2 gene family would be named: LYCes;PHT2;1, LYCes;PHT2;2, LYCes;PHT2;3 etc.

Appendix 1 contains details of correct names and the common names used in publications and Table 3.3 contains the P transporters most commonly used in this thesis.

Table 3.3: Common names of P transporters and the correct names used in this thesis.

Common name	Correct name	Plant
PHT1;1, APT2, PHT1, AtPT1	ARAth;Pht1;1	Arabidopsis thaliana
PHT1;2, APT1, PHT2	ARAth;Pht1;2	Arabidopsis thaliana
PHT2;1	ARAth;Pht2;1	Aradidopsis thaliana
HvPT1	HORvu;Pht1;1	Hordeum vulgare
HvPT2	HORvu;Pht1;2	Hordeum vulgare
HvPT8	HORvu;Pht1;8	Hordeum vulgare
LePT1	LYCes;Pht1;1	Lycopersicon esculentum
MtPT1	MEDtr;Pht1;1	Medicago truncatula
MtPT2	MEDtr;Pht1;2	Medicago truncatula
MtPT4	MEDtr;Pht1;4	Medicago truncatula
OsPT11	ORYsa;Pht1;11	Oryza sativa
StPT3	SOLtu;Pht1;3	Solanum tuberosum
TaPTmyc	TRlae;Pht1;myc	Triticum aestivum
ZmPT6	ZEAma;Pht1;6	Zea mays

3.12 Statistical analysis

Statistics packages R and Ministat were used for analysis.

R: Copyright 2001, The R Development Core Team Version 1.3.0 (2001-06-22). R is free software and can be distributed under the licence details.

Ministat, FW Smith, CSIRO Plant Industry, Australia.

4 Variation between barley cultivars in P uptake and rate of colonisation.

Introduction

This chapter covers two subjects. The first examines the P efficiency of seven barley cultivars. The second is involved with the rate of colonisation in three barley cullivars by two mycorrhizal fungi. These subjects will be presented separately, all P efficiency sections followed by all rate of colonisation sections.

4.1 Variation between barley cultivars in \mathbf{P} uptake and efficiency

The aim of the work described in this chapter was to identify barley cultivars of different P efficiency for use in future experiments. Despite uniform environmental conditions, differences in growth characteristics and nutritional composition of crop species and cultivars have been regularly observed (Lyness, 1936). Plant breeders utilise these genetic differences by crossing cultivars with desired characteristics to produce a single progeny containing both parental characteristics. A characteristic of interest for this research is the ability of a cultivar to maintain productivity when grown on low P soils (agronomic P efficiency). Much research has been done into the variation of P efficiency in cereal crops to determine if there is potential for improvement (Clark, 1991). Scientists define nutrient efficiency differently, depending on the objectives of their research. Many of these definitions are listed in the chapter written by Clark (1991) on mineral nutrient efficiency. I have defined P efficiency (agronomic P efficiency) as the total amount of P accumulated by a plant, so a plant that is highly P efficient is one that accumulates significantly higher amounts of P from low P soils, and low P efficiency is the reverse. The variation of P uptake in several barley cultivars was examined to identify cultivars that may be classified as having high or low P efficiency for the growth environment utilised throughout this research. Having identified cultivars with high or low P efficiency they were then examined to determine if their ability to acquire P interacts with the rate and extent of mycorrhizal colonisation.

Variations in P uptake have been measured in many crops (Clark, 1991). My research focussed on barley. Jensen and Nittler (1971) noticed significant differences in the percentage of necrosis of leaves due to P deficiency in 24 spring barley cultivars. Nielsen and Schjorring (1983) were able to fit a formula to P uptake in barley cultivars that took into account root length (RL), net P influx per unit length of root ($I_{\text {max }}$), affinity of nutrient uptake $\left(K_{m}\right)$ and the minimum concentration of P in solution at which net influx
appears to be zero ($\left.c_{\text {min }}\right)$. This formula, root net influx of $P g^{-1}$ dry matter $=I_{\text {max }} * R L *\left(c-c_{\text {min }}\right) /\left(c-c_{\text {min }}\right.$ $\left.+K_{m}\right)$), revealed variations among six barley varieties out of 30 analysed in both field and hydroponic culture. If a variety had high values for $R L$ and $I_{\max }$ and low values for K_{m} and $\mathrm{c}_{\text {min }}$ then that variety was P efficient - able to accumulate high amounts of P (Nielsen \& Schjorring, 1983; Schjorring \& Nielsen, 1987). Differences in P uptake ($I_{\max }$) due to diversity in root hair architecture and root exudates between barley cultivars have been reported (Gahoonia \& Nielsen, 1997; Gahoonia et al., 2000). Barley cvs Yagan, WI2737, O'Connor and Kaniere were shown to be able to produce higher yields of dry matter when grown at low P (agronomic P efficiency), while cultivars Galleon, Shannon, WI2539 and Skiff are agronomically P inefficient (field studies by R.D. Wheeler pers.comm. cited in Baon et al., 1993a). A different set of barley cultivars used by Zhu et al. (2002) were not shown to have any significant difference in the amount of P acquired when grown in low P soils, but when grown in high P soils cultivars Clipper and Skiff were able to acquire larger amounts of P (efficient in high P soil) than cultivars Haruna Nijo, Sahara, Alexis and Galleon (inefficient in high P soil) (Zhu et al., 2002). These differences were also reflected in the specific P uptake (total $P(\mathrm{mg})$ absorbed per g root dry weight), with cultivars Skiff, Clipper and Sloop having higher values for specific P uptake than Sahara (Zhu et al., 2002). The differences in P efficiency reported in cultivar Skiff in low P soil by Wheeler (Baon et al., 1993a) and Zhu et al. (2002) may be due to the differences in growth conditions, field versus pots in a glasshouse. Several cultivars examined by Zhu et al. (2002 \& 2003) were included in my research. The barley cultivars Franklin, Forrest, Clipper, Skiff, Sahara and Arapiles studied in this chapter were chosen from parents of mapping populations used by the Cooperative Research Centre for Molecular Plant Breeding (Adelaide, South Australia, Australia). Cultivar Golden Promise was also included because it is commonly used in transformation studies. This was an important advantage because transgenic plants were to be produced for expression studies (see Chapter 5).

This experiment was designed to determine if there is variation in P efficiency of the chosen barley cultivars under the conditions to be used in later experiments. The results and discussion from this experiment are presented in the following sections.

4.1.1 Materials and Methods: Barley P efficiency

Barley cvs (Arapiles, Clipper, Forrest, Franklin, Golden Promise, Sahara and Skiff) were grown in 1:10 soil:sand mixes using the Millmerran soil (Chapter 3.1.1) with $\mathrm{CaH}_{4}\left(\mathrm{PO}_{4}\right)_{2}$ added to produce total soil P contents of $18,38,80$ or 118 mg P per pot ($\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$ and P 4 respectively) prepared as outlined in Chapter 3.1.1. The use of sand is to restrict the added P from becoming unavailable by interacting with soil particles. A high proportion of the P added to this low P sorbing soil:sand mix will therefore be available to plants. Following five days germination (Chapter 3.1.2), five plants were sown per pot with three replicate pots per treatment. Each replicate was set out in a block, and pots randomised within the block twice per week. Plants were grown in a glasshouse with natural light for 31 days (August September 2000). Day length averaged at 11 h 20 m , with day to night temperatures ranging from 23 $18^{\circ} \mathrm{C}$. Pots were watered according to Chapter 3.2. Plants were harvested 32 days after germination.

Fresh and dry weights for shoots and roots, P concentration and specific uptake of P were measured as outined in Chapter 3.1.2 and 3.5. Specific uptake of P was calculated by Equation 1 (Zhu et al., 2002):

Equation 1: \quad Specific uptake of $P=$ Total P uptake / Root dry weight ($\mathrm{mg} \mathrm{Pg}^{-1}$ root dry weight)

The proportion of acquired P allocated to shoots was calculated by Equation 2:

Equation 2: Percent P allocated to shoots $=A m o u n t P$ in shoot $/$ Total amount P in plant * 100 (\%)

The Ministat and R statistics packages were used for analyses of the root/shoot dry weights, P concentration in roots, shoots and whole plants, ratio of total P in shoots to roots and specific uptake of P utilised (Chapter 3.11). The l.s.d. at $P=0.05$ was used to separate the means of each treatment. The ANOVA for each set of calculations is presented in Appendix 5.

4.1.2 Results: Barley P efficiency

When grown in low P soil (P1) Sahara produced the largest total biomass and Franklin was ranked the lowest with the smallest biomass, at $1 / 6^{\text {th }}$ of that observed in Sahara (Table 4.1). Sahara was the most efficient in terms of dry weight production at P1. This was is also reflected in the root and shoot biomass at this P level (Table 4.2). Sahara is an agronomically efficient cultivar, being able to produce large biomass at low P levels. This is supported by the root:shoot ratio that indicates Sahara produced a large amount of roots in low P soil (Table 4.1). The total biomass of each cultivar increased when P was increased from P1 to P2 (Table 4.1). Increasing the concentrations of P in the soil altered the rankings of the barley cultivars between P levels. Franklin remained in the lowest ranking while Forrest (followed by Sahara) was able to produce the largest total biomass when P levels in the soil increased. The differences in total biomass between P levels P 2 and P 4 were not significantly different, though P 4 and P 2 biomasses were significantly higher than those observed at P 1 . Clipper was the only cultivar to increase total biomass when P was increased from P2 to P4. The remaining cultivars had a slight decrease in biomass. At P4 Arapiles (followed by Franklin) became the lowest rank cultivar and Forrest (followed by Sahara) the highest.

Table 4.1: Total biomass dry weight ($\mathrm{g} /$ plant) and root:shoot ratio of 7 barley cultivars grown in soil:sand culture. Superscript numbers are the ranking of the values in that P level. $\mathrm{P} 1=18 \mathrm{mg} \mathrm{P} /$ pot; $\mathrm{P} 2=38 \mathrm{mg} \mathrm{P} /$ pot; $\mathrm{P} 4=118 \mathrm{mg} \mathrm{P} /$ pot. Total biomass $\mathrm{I} . \mathrm{s} . \mathrm{d}$. $(\mathrm{P}=0.05) \mathrm{P}$ means $=0.140$, Cultivar $\times \mathrm{P}$ means $=0.371$. Root:Shoot ratio I.s.d. $(P=0.05) \mathrm{P}$ means $=0.310$, Cultivar $\mathrm{x} P$ means $=0.821$.

Cultivar	Total biomass (g)			Root:Shoot Ratio		
	P1	P2	P4	P1	P2	P4
Arapiles	0.3015	0.7935	0.5477	1.556	1.3945	0.929_{7}
Clipper	$0.338{ }_{3}$	0.8424	0.973_{4}	1.3876	1.2546	$1.297{ }_{4}$
Forrest	0.419_{2}	$1.59{ }_{1}$	1.3561	2.294_{2}	1.719_{3}	1.3462
Franklin	0.1417	$0.60{ }_{7}$	0.569_{6}	1.3047	0.9917	$0.976{ }_{6}$
Golden Promise	0.315_{4}	$0.750{ }_{6}$	0.7465	$1.825{ }_{3}$	1.4094	1.2185
Sahara	0.8581	1.2583	1.1672	3.551_{1}	2.691	$2.512{ }_{1}$
Skiff	0.2606	$1.267{ }_{2}$	0.9993	1.695_{4}	2.127_{2}	1.315_{3}
P means	0.376	1.015	0.908	1.945	1.655	1.370

As the concentration of P in the soil increased the root:shoot ratio decreased (Table 4.1). Cultivars supporting root development in P 1 changed to increased shoot development as the soil P increased. Sahara was consistently ranked the highest for root:shoot ratio at all P levels, while Franklin ranked the lowest at P levels P1 and P2. Arapiles ranked the lowest for root:shoot ratio at P4, followed by Franklin.

Increased production of roots (high root:shoot ratio) in response to low P concentrations is important for P efficiency (see Discussion).

The biomass of roots differed significantly between cultivars (Table 4.2). The variation between cultivars reveals that Sahara was ranked the highest (able to produce the most root biomass) and Franklin the lowest at low P . The root biomass did not increase proportionally with increasing P levels (Table 4.2). Increasing the total soil P from P 1 to P 2 resulted in a significant increase in root biomass. The difference in root biomass between soil P2 and P4 was not significant. Root biomass decreased slightly in all cultivars with the exception of Clipper when P levels increased from P 2 to P 4 . Sahara and Forrest were ranked in the top two positions for all P levels and Franklin ranked the lowest at P1 and P2 with Arapiles followed by Franklin at P4.

Sahara was ranked the highest for shoot biomass at P1, though the ranking decreased with increasing soil P (Table 4.2). Forrest became the highest ranking at P 2 and P 4 . Franklin maintained the lowest or second lowest ranking regardless of P level. Shoot biomass increased with increasing P levels from $P 1$ to P 2, but similar increases were not observed when P was increased from P 2 to P 4 . Analysis of the shoot biomass revealed a cultivar by P interaction, in which each of the cultivars reacted differently when soil P levels were increased (Table 4.2). Forrest was able to increase shoot biomass with increasing soil P from P 1 to P 2 significantly more than the other cultivars. Forrest was therefore the most responsive to P application.

Table 4.2: Root and shoot dry weight ($\mathrm{g} / \mathrm{plant}$) of 7 barley cultivars grown in soil:sand culture. Superscript numbers are the ranking of the values in that P level. $\mathrm{P} 1=18 \mathrm{mg} \mathrm{P/pot;} \mathrm{P} 2=38 \mathrm{mg} \mathrm{P} /$ pot; $\mathrm{P} 4=118 \mathrm{mg} \mathrm{P} /$ pot. Root biomass I.s.d. $(\mathrm{P}=0.05) \mathrm{P}$ means $=0.121$, Cultivar $\times \mathrm{P}$ means $=0.319$. Shoot biomass I.s.d. $(\mathrm{P}=0.05) \mathrm{P}$ means $=0.032$, Cultivar $\times \mathrm{P}$ means $=0.085$.

Cultivar	Root biomass (g)			Shoot biomass (g)		
	P1	P2	P4	P1	P2	P4
Arapiles	0.1905	$0.491{ }_{4}$	0.2647	0.111_{4}	0.302 6	0.2837
Clipper	$0.19{ }_{4}$	0.469_{5}	0.5544	0.1432	0.373	0.419^{3}
Forrest	$0.292{ }_{2}$	$1.00{ }_{1}$	0.7742	0.1273	$0.588{ }_{1}$	0.5821
Franklin	0.0797	0.3037	0.2826	0.0627	0.2977	$0.287{ }_{6}$
Golden Promise	0.2053	$0.438{ }_{6}$	0.4045	0.1105	0.3125	0.3424
Sahara	0.6701	$0.917{ }_{2}$	0.8301	0.1881	$0.341{ }_{4}$	0.3375
Skiff	0.1646	$0.872{ }_{3}$	0.5783	$0.096{ }_{6}$	$0.395{ }_{2}$	0.4212
P means	0.256	0.643	0.527	0.120	0.372	0.382

Phosphorus concentrations in roots and shoots varied significantly between cultivars, as did total plant P (Tables 4.3 and 4.4). Forrest and Sahara ranked in the top two positions, accumulating the highest concentrations of P in roots and shoots at all P levels; Franklin and Arapiles had the lowest rankings. The concentration of P increased with increasing P levels for all cultivars, except for Arapiles in which root P concentrations decreased at the highest P level. As seen in the shoot biomass results, there was a cultivar x P interaction arising where cultivars did not increase P concentrations at the same rate with increasing soil P levels in roots, shoots and total plant P uptake. The P concentration in the tissues accumulated from P 1 for all cultivars is indicative of P deficiency and P 2 and P 4 sufficiency of supplied P to all cultivars as recommended by Table 2.1 (Reuter et al., 1997).

Table 4.3: Phosphorus concentrations ($\mathrm{mg} \mathrm{P}^{-1} \mathrm{DW}$) in plant tissues of 7 barley cultivars grown in soil:sand culture. $\mathrm{P} 1=18 \mathrm{mg}$ P/ pot; $\mathrm{P} 2=38 \mathrm{mg} \mathrm{P} /$ pot; $\mathrm{P} 4=118 \mathrm{mg}$ P/ pot. Root $\mathrm{I} . \mathrm{s} . \mathrm{d}$. $(P=0.05)$ Cultivar means $=0.260, \mathrm{P}$ means $=0.170$, Cultivar $\times \mathrm{P}$ means $=0.450$. Shoot I.s.d. $(P=0.05)$ Cultivar means $=0.537, \mathrm{P}$ means $=0.351$, Cultivar $\times \mathrm{P}$ means $=0.930$.

Cultivar	Root (mg P g-1 DW)			Shoot (mg P g-1 DW)		
	P1	P2	P4	P1	P2	P4
Arapiles	0.368_{4}	1.004_{6}	0.889_{7}	0.252_{5}	1.483_{6}	3.223_{6}
Clipper	0.377_{3}	1.197_{4}	1.827_{3}	0.339_{2}	1.721_{4}	4.254_{4}
Forrest	0.510_{2}	2.251_{1}	2.886_{1}	0.359_{1}	2.247_{2}	5.955_{2}
Franklin	0.259_{7}	0.7547	1.102_{6}	0.139_{7}	1.227_{7}	3.142_{7}
Golden Promise	0.335_{5}	1.091_{5}	1.748_{5}	0.261_{4}	1.489_{5}	4.077_{5}
Sahara	1.026_{1}	1.688_{2}	2.615_{2}	0.339_{2}	2.248_{1}	7.266_{1}
Skiff	0.302_{6}	1.372_{3}	1.817_{4}	0.235_{6}	1.858_{3}	4.298_{3}
P means	0.454	1.337_{7}	1.841	0.275	1.754	4.602

The proportion of P allocated to shoots increased with increasing soil P levels (Table 4.4). Cultivar Sahara allocated the highest amount of P to shoots (ranked 1), while Arapiles (ranked 7) allocated the least. The cultivar x phosphate interaction for P concentration in roots, shoots and total plant P and proportion of P allocated to shoots was significant at the 5% level and demonstrated that not all cultivars accumulated P to the same degree. A cultivar $\times P$ interaction was found and indicates that not all cultivars allocate P to shoots in a similar manner with increasing soil P levels.

Table 4.4: Total P uptake ($\mathrm{mg} P \mathrm{~g}^{-1} \mathrm{DW}$) and allocation of P to the shoots (\%) in 7 barley cultivars grown in soil:sand culture. $\mathrm{P} 1=18 \mathrm{mg} \mathrm{P} /$ pot; $\mathrm{P} 2=38 \mathrm{mg} \mathrm{P} /$ pot; $\mathrm{P} 4=118 \mathrm{mg} \mathrm{P/pot}$.Total P uptake I.s.d. $(P=0.05)$ Cultivar means $=0.701, P$ means $=0.459$, Cultivar $\times P$ means $=1.215$. Proportion of P in shoot I.s.d. $(\mathrm{P}=0.05)$ Cultivar means $=4.10, \mathrm{P}$ means $=2.68$, Cultivar $\times \mathrm{P}$ means $=7.09$.

Cultivar	Total P uptake ($\mathrm{mg} \mathrm{P} \mathrm{g} \mathrm{g}^{-1} \mathrm{DW}$)			Proportion of P in shoot \%		
	P1	P2	P4	P1	P2	P4
Arapiles	0.6204	2.4886	4.111_{7}	42.764	$61.88{ }_{1}$	$78.32{ }_{1}$
Clipper	0.716_{3}	$2.918{ }_{4}$	6.080_{4}	47.561	$58.96{ }_{3}$	$69.95{ }_{5}$
Forrest	0.869_{2}	4.4991	8.842_{2}	$41.55{ }_{5}$	49.847	67.287
Franklin	0.3987	$1.981{ }_{7}$	4.2446	35.146	61.79_{2}	$74.12{ }_{2}$
Golden Promise	$0.596{ }_{5}$	2.580_{5}	5.825_{5}	44.40_{2}	$57.73{ }_{5}$	$69.58{ }_{6}$
Sahara	$1.365{ }_{1}$	3.9362	$9.88{ }_{1}$	26.357	$56.60{ }_{6}$	73.243
Skiff	0.5376	3.230_{3}	6.1153	$43.78{ }_{3}$	$58.02{ }_{4}$	70.694
P means	0.729	3.090	6.443	40.22	57.83	71.88

The specific uptake of P increased with increasing P levels for all cultivars and there was no cultivar by phosphate interactions. The rankings for specific P uptake varied between soil P levels (Table 4.5). At P1 Franklin (followed by Arapiles) was ranked the highest and Sahara the lowest. At P2 Arapiles (followed by Franklin) was ranked the highest and Sahara, again, the lowest. At the highest P level, P4, Golden Promise was the highest ranking and Clipper (followed by Sahara) the lowest.

Table 4.5: Specific P uptake in 7 barley cultivars grown in soil:sand culture.
Specific P uptake $=$ Total P in plant (mg) per root dry weight $(\mathrm{g}) . \mathrm{P} 1=18 \mathrm{mg} \mathrm{P} /$ pot; $\mathrm{P} 2=38 \mathrm{mg} \mathrm{P} /$ pot; $P 4=118 \mathrm{mg} P /$ pot. Specific P uptake I.s.d. $(P=0.05)$ Cultivar means $=2.746, P$ means $=1.798$, Cultivar $\times P$ means $=4.756$.

Cultivar	Specific P uptake ($\mathrm{mg} \mathrm{P} \mathrm{g}^{-1}$ root DW)		
	P1	P2	P4
Arapiles	4.091_{2}	$7.638{ }_{1}$	$15.838{ }_{2}$
Clipper	$3.864{ }_{3}$	6.287_{3}	11.393_{7}
Forrest	3.2935	4.4806	$13.932{ }_{4}$
Franklin	5.5031	6.845_{2}	15.110_{3}
Golden Promise	3.090_{6}	$5.885{ }_{4}$	$16.10{ }_{1}$
Sahara	2.0637	4.2877	12.029_{6}
Skiff	3.4324	4.4905	12.283_{5}
P means	3.619	5.702	13.813

4.1.3 Discussion: Variation between cultivars in P uptake and efficiency

Accumulation of P from low P soil was significantly different between barley cultivars (Table 4.1). This is an important result from this experiment, as a P efficient plant is one that can accumulate higher amounts of P from low P soils (as defined in the Introduction). As the soil P decreases all cultivars increased the proportion of biomass allocated to roots as indicated by increasing root:shoot ratio. This would result in a relative increase in the area of soil accessed. The total biomass decreased with decreasing soil P concentration for all cultivars. In low P soil, Sahara was able to produce double the amount of roots and total biomass than the other cultivars. This suggests that Sahara with a large root system that can access a larger volume of soil is able to deal with P deficiency better than the other cultivars.

Specific P uptake is a measure of the total P accumulated by the plant divided by the root biomass. Franklin had the lowest total plant P concentrations and the lowest root biomass, but the specific P uptake by Franklin was the highest. Conversely Sahara had the highest total plant P concentrations and root biomass, which resulted in the lowest specific P uptake. Franklin will have a higher level of P stress than Sahara and this may be the reason for the relatively higher specific P uptake observed.

Agronomic P efficiency requires the production of large biomass in P deficient conditions. Using this definition and under the growth conditions utilised in this experiment Sahara and Forrest are classified as being P efficient and Franklin and Arapiles as P inefficient. These results confirm those of Zhu et al. (2002), who identified barley cv Sahara as P efficient. The P efficient Sahara and P inefficient Franklin cultivars were used in further experiments involving AM fungi colonisation. The use of Sahara and Franklin will identify any differences in colonisation that may be due to the P efficiency of the barley cultivars. Cultivar Golden Promise, which has moderate efficiency, was included as a cultivar that is readily transformed.

In conclusion, barley cvs Sahara and Forrest are P efficient for the growth conditions to be used throughout the experiments reported in this thesis and cultivars Franklin and Arapiles are P inefficient.

4.2 Rate of colonisation by two mycorrhizal fungi

Variations in P efficiency of barley have been identified through measurements of the ability of plants to acquire P from the soil directly. As discussed in the literature review an alternative avenue of P acquisition is via mycorrhizal fungi. Just as there is variation among cultivars for P efficiency, the percentage of root length colonised by AM fungi may also vary between cultivars with consequent effects on mycorrhizal P uptake. Baon et al. (1993a \& b) used the high colonising G. etunicatum to look at the effects of colonisation on barley cultivars classified as being high or low P efficient. There was no significant difference in colonisation between the P efficient cultivars Yagan and Galleon and the P inefficient cultivars WI2539 and WI2737 (Baon et al., 1993b). When this experiment was extended to include the P efficient cultivars O'Connor and Kaniere and P inefficient cultivars Shannon and Skiff, significant differences in colonisation with G. etunicatum were recorded (8.6% for Kaniere to 28.6% for Shannon) (Baon et al., 1993a). Other variations between cultivars have also been observed. Indigenous mycorrhizal fungi were able to colonise hull--ess barley cultivars (1845-10-5, 1853-6-3, 62-25-7-4-36) more than hulled cultivars (DL3, DL70, DL85, Ratna) (Tilak \& Murthy, 1987). Conversely colonisation of cultivars Sahara and Clipper with G . intraradices was not significantly different (maximum colonisation recorded as 48% and 49% respectively), regardless of the variation in P efficiency of these two cultivars (Zhu et al., 2002 \& 2003). These observations demonstrate that different cultivars do not always have different degrees of colonisation. Variation may arise as a combination of cultivar and AM fungi as well as inoculum infectivity (see below).

Beside variations between crop species there is also variation between mycorrhizal fungi with respect to colonisation and consequent crop productivity. Inoculum of Gigaspora margarita was able to colonise barley (cv Zephyr) grown in field plots to a higher degree than G. tenuis (Powell et al., 1980). Varying levels of colonisation have also been observed in barley cultivar Salome colonised by G. mosseae (47 \%), G. intraradices (77 \%) and Gigaspora rosea (58%) (Vierheilig et al., 2000), and barley (cv Galleon) grown with six mycorrhizal fungi (G. versiforme - 1.2%, G. etunicatum - 20.5%, G . intraradices - 9.8 $\%$, G. fasiculatus - 2.6%, G. mosseae - 0.17% and G.sp. 'City Beach’ - 14.5%) (Baon et al., 1993b). Field experiments by Clarke and Mosse (1981) identified variation in colonisation of barley cv Royal when inoculated with G. mosseae $>G$. caledonius $>G$. fasiculatus. Supplemented P resulted in decreased colonisation of barley by all mycorrhizal fungi (Clarke \& Mosse, 1981; Baon et al., 1993b). The extent of colonisation can be dependent upon the AM fungi used and the effectiveness of the inoculum. I utilised mycorrhizal nurse pots (similar to Rosewarne et al., 1997) to ensure colonisation of barley plants studied was rapid and near synchronous.

Mycorrhizal colonisation decreases with increasing P levels in the soil. Colonisation of barley cv Vodka decreased from 97% to 71% when soil P levels were increased from $7.9 \mathrm{mg} \mathrm{P} \mathrm{kg}^{-1}$ to $317.9 \mathrm{mg} \mathrm{P} \mathrm{kg}^{-1}$ (Plenchette \& Morel, 1996). Danish field sites under various fertilisation regimes exhibited reduced colonisation in barley by indigenous fungi with increasing soil P levels (Jensen \& Jakobsen, 1980). Barley grown in low P soil with high colonisation had similar shoot P contents to that grown in high P soil with low colonisation (Jensen \& Jakobsen, 1980; Baon et al., 1994). These results can be explained in the light of results of Smith et al. (2003b \& 2004). They showed that in some non-responsive plants (tomato in their experiment) total P uptake into mycorrhizal and non-mycorrhizal plants was the same, even when the mycorrhizal pathway of P uptake made a highly significant contribution.

Temperature can also affect the extent of mycorrhizal colonisation. Inoculum of G. intraradices mixed through pots did not colonise barley cv Galleon when grown at $10^{\circ} \mathrm{C}$ and colonisation at $20^{\circ} \mathrm{C}$ was higher than colonisation at $15^{\circ} \mathrm{C}$ (Baon et al., 1994). Spring sown barley cultivars was colonised faster than winter sown barley cultivars grown in fields, reaching a plateau within 15 days and 30 days respectively (Jakobsen \& Nielsen, 1983). Differences in colonisation of several field-grown barley cultivars observed by Black and Tinker (1979) over two years of experimentation was attributed to the lower temperature recorded in 1976 compared to 1975. Increased temperature accounted for the increased rate of colonisation measured in barley cv Rupal with G. mosseae when two thirteen week experiments were run consecutively from winter into summer (Jakobsen \& Andersen, 1982). I have conducted these experiments at $\sim 25^{\circ} \mathrm{C}$ to achieve a high level of colonisation.

This experiment was designed to establish if variation in P efficiency affects mycorrhizal colonisation. The results and discussion from this experiment are discussed in the following sections.

4.2.1 Materials and Methods: Mycorrhizal colonisation of barley cultivars

P1 and P3 pots (details in Section 4.1.1) were prepared for this experiment. 500 g soil:sand was used to prepare G.sp. WFVAM23 and G. intraradices nurse pots for both P1 and P3 soil P levels (Chapter 3.3). Following five days germination (Chapter 3.1.2) barley cvs Franklin, Golden Promise and Sahara were sown, one plant per pot. There were three replicate pots per treatment. Plants were grown in the Controlled Environment Facility at CSIRO, St. Lucia (Chapter 3.1.2) and watered as described in Chapter 3.2. Root samples were collected from harvests at $5,8,11,14,20$ and 32 days after planting (Chapter 3.1.2), and processed for analysis of mycorrhizal colonisation (Chapter 3.4). Statistical analysis of the \% colonisation between barley cultivars and P treatments was done with the R statistics package (Chapter 3.11). The I.s.d. at $\mathrm{P}=0.05$ was used to compare the means of each treatment. The ANOVA is presented in Appendix 5.

4.2.2 Results: Mycorrhizal colonisation of barley cultivars

All barley cultivars were colonised by both G.sp. WFVAM23 and G. intraradices, although colonisation was consistently more extensive with G.sp. WFVAM23 (Figure 4.1). As well as hyphal colonisation, both arbuscules and vesicles were observed in roots colonised by G. intraradices and G.sp. WFVAM23. There was reduced colonisation of both mycorrhizal fungi when soil P was increased from 18 to 80 mg P per pot for all barley cultivars (Figure 4.2). Increased soil P concentrations reduced colonisation by G.sp. WFVAM23 significantly more than they did for colonisation by G. intraradices.

The percentage colonisation after 32 days was similar in all barley cultivars, but the rate of colonisation during the course of the experiment varied (Figure 4.1). The percentage colonisation by G.sp. WFVAM23 increased with increasing time, reaching a maximum in 11 days when colonising Franklin, but taking 32 days to reach a maximum for Golden Promise and Sahara. Colonisation by G. intraradices increased consistently throughout the experiment in all cultivars. A plateau was only reached in Golden Promise after 20 days. There was no clear evidence that colonisation had plateaued in Franklin and Sahara by the end of the experiment.. A difference in P efficiency does not appear to be associated with the final percentage colonisation by either of the mycorrhizal fungi.

Figure 4.1: Colonisation of barley cvs Franklin, Golden Promise and Sahara by two mycorrhizal fungi grown in low P soil (18 mg P per pot). $\mathrm{Gi}=\mathrm{G}$. intraradices, $\mathrm{Gv}=\mathrm{G} . \mathrm{sp}$. WFVAM23.

Figure 4.2: The effect of soil P concentration on mycorrhizal colonisation. Statistical analysis revealed a mycorrhizal x phosphate level x day interaction. This histogram demonstrates that the level of colonisation (after 32 days) was higher in barley plants grown in low P soil than those grown in high P soil. G.sp. WFVAM23 was able to colonise barley plants more than G. intraradices regardless of soil P concentrations. $\mathrm{Gi}=\mathrm{G}$. intraradices, $\mathrm{Gv}=\mathrm{G} . \mathrm{sp}$. WFVAM23, low $\mathrm{P}=\mathrm{P} 1(18 \mathrm{mgP} / \mathrm{pot})$, high $\mathrm{P}=\mathrm{P} 3(80$ $\mathrm{mgP} / \mathrm{pot}$). The LSD is calculated from the complete set of data for mycorrhiza x phosphate x day interaction.

4.2.3 Discussion: Mycorrhizal colonisation of barley cultivars

All internal mycorrhizal structures, including internal hyphae, arbuscules and vesicles were counted when measuring colonisation in this experiment. Colonisation of cultivars Sahara, Franklin and Golden Promise reached a maximum for both AM fungi after 32 days at values $>60 \%$ (Figure 4.1). This high level of colonisation was expected in plants grown in nurse pots, in which a high inoculum potential develops, leading to rapid earlier colonisation (between 5 and 45% in this experiment within five days post planting) (Figure 4.1). Such high levels of colonisation after 32 days of growth have also been recorded when barley cultivar Vodka was grown in G. intraradices inoculated pots for 80 days (Plenchette \& Morel, 1996). When Delp et al. (2000) used G. intraradices nurse pots to colonise barley cV Galleon, 55% of roots were colonised 10 days after transplanting, consistent with the rate of colonisation observed in my experiment (Figure 4.1). Nurse pots have the advantage of providing an active mycorrhizal network that can readily colonise plants transplanted into the network. An active mycorrhizal network was also evident with the fast colonisation of field grown spring barley (45% colonisation after 15 day growth) (Jakobsen \& Nielsen, 1983). Vierheilig et al. (2000) also observed rapid colonisation when nurse pots of G. mosseae, G. intraradices and Gigaspora rosea colonised barley cv Salome $47 \%, 77 \%$, and 58% respectively, within 12 days (Vierheilig et al., 2000). The significant differences in colonisation between AM fungi observed by Vierheilig et al. (2000), Powell et al. (1980), Baon et al. (1993b) and Clarke and Mosse (1981), were also observed between G.sp. WFVAM23 and G. intraradices used in this research. This and the cited research demonstrate that barley can be colonised by AM fungi to a higher level than what has previously been thought. G.sp. WFVAM23 was able to colonise all three barley cultivars tested more extensively than G. intraradices.

Soil P concentrations are also important in the symbiotic relationship. The level of P in the soil affected the colonisation by G.sp. WFVAM23 more than G. intraradices (Figure 4.2). Reduced colonisation of barley cv Ark Royal as a result of added P was reported for all three mycorrhizal fungi assessed by Clarke and Mosse (1981), G. intraradices recorded by Plenchette and Morel (1996) and indigenous fungi reported by Jensen and Jakobsen (1980). While these experiments were not concerned with the P transporters involved with P acquisition, the internal P concentrations may regulate the transcription of genes encoding P transporters as well as colonisation. The level of colonisation is inversely proportional to soil P levels, with shoot P content being similar when plants are grown in high P soils with little mycorrhizal colonisation or in low P soils and highly colonised by mycorrhizal fungi (Jensen \& Jakobsen, 1980). Reduced colonisation with increasing soil P concentration was also observed by Baon et al. (1993a) for several barley cultivars colonised by G. etunicatum, only colonisation in cultivar Kaniere remained unaffected by the increasing soil P level.

The rate of colonisation varied with barley cultivar and mycorrhizal fungi species in this research (Figure 4.1). Variations in the rate of colonisation between AM fungal species was reported by Powell et al. (1980) for barley cv Zephyr which was colonised faster by G. tenuis than by Gigaspora margarita. The colonisation of cultivar Ark Royal varied over time and resulted in different degrees of colonisation depending on AM fungi, with higher colonisation levels achieved by G. mosseae than G. caledonius and G. fasciculatus (Clarke \& Mosse, 1981). Regardless of the rate of colonisation in my experiment, all cultivars reached a similar level of colonisation after 32 days independent of AM fungus. There was also no specific pattern for the rate of colonisation with either mycorrhizal fungi that may have been linked to the P efficiency of the cultivar or the root growth. The hypothesis that a cultivar that can effectively acquire P may not benefit from mycorrhizal colonisation and would have a lower level of colonisation is not supported by these results. This was also demonstrated by Zhu et al. (2003) and Baon et al. (1993b) who showed that there were no differences in colonisation between the P efficient cultivars Sahara, Yagan and Galleon and the P inefficient cultivars Clipper, WI2539 and WI2737. The differences in colonisation observed by Baon et al. (1993b) in the P efficient cultivar Kaniere and the P inefficient cultivar Shannon may be specific to the AM fungi or root growth pattern. Relative rates of growth of roots and AM fungi determine the final outcome in terms of percentage root length colonised (Smith \& Walker, 1981; Smith et al., 1992).

In conclusion, there was no difference in colonisation between barley cultivars of different P efficiencies or root growth (Sahara, Franklin and Golden Promise). G.sp. WFVAM23 was able to colonise all cultivars more than G. intraradices. With the use of G. intraradices and G.sp. WFVAM23 nurse pots, barley cvs Sahara, Franklin and Golden Promise reach maximum colonisation after 32 days growth. Maximum colonisation ensures the establishment of an active symbiotic relationship, a pre-requisite for the study of P transport in mycorrhizal barley in this thesis.

5 Barley P transporters, wheat mycorrhizal P transporter and maize mycorrhizal P transporter

5.1 Introduction

Mycorrhizal plants are able to acquire P via two pathways (Chapter 2.2). Direct acquisition via the root requires P transporters to be expressed in root epidermal cells, while acquisition via the mycorrhizal fungi requires plant P transporters to be expressed in root cortical cells containing mycorrhizal structures. At the commencement of this research the P transporter LYCes;Pht1;1 had been reported to be expressed in cortical cells containing arbuscules (presumably at the peri-arbuscular membrane), thereby facilitating P uptake from the mycorrhizal fungi (Rosewarne et al., 1999). This expression pattern was visualised by in-situ hybridisation. Another three P transporters involved with P acquisition from mycorrhizal fungi have subsequently been identified by reverse-transcriptase PCR (RT-PCR), by using transgenic plants expressing reporter genes (Rausch et al., 2001), by real-time RT-PCR (Paszkowski et al., 2002), or immuno-localisation (Harrison et al., 2002). These results need to be evaluated in the context of the methods used.

- RT-PCR assesses the expression of a gene, by using gene-specific primers to amplify cDNA from an RNA template. Real-time RT-PCR is a refinement of RT-PCR that provides quantitative information on the initial levels of RNA transcripts in the tissue extract. Real-time RT-PCR was used by Paszkowski et al. (2002) to demonstrate the expression of ORYsa;Pht1;11 in rice roots colonised by Glomus intraradices. No expression was detected in non-mycorrhizal roots or roots infected only with root pathogens Rhizoctonia solani or Fusarium moniliforme.
- Reporter genes such as GUS (β-glucuronidase,(Jefferson, 1987)) and GFP (green fluorescent protein, (Carison et al., 2001)) are useful in promoter analysis as the expression site of the gene of interest can be visualised in transgenic plants. GUS activity can be visualised in a histochemical assay and GFP can be visualised in living tissue by fluorescence microscopy. GFP has the advantage over GUS in that visualisation is non-destructive. Potato transformed with the promoter of SORtu;Pht1;3 fused to GUS demonstrated expression of this gene in arbuscule-containing cells of potato colonised with G. intraradices (Rausch et al., 2001).
- In-situ hybridisation is the annealing of an RNA probe to complementary RNA sequence in fixed tissue, followed by the visualisation of the location of the probe via radioactivity or immunocytochemistry where the gene transcripts accumulate. Rosewarne et al. (1999) localised the expression of LYCes;Pht1;1 with an RNA probe that identified where the gene is transcribed (see above).
- Immuno-localisation is the annealing of a specific antibody to a particular protein in fixed tissue, followed by the visualisation of the location of the probe via radioactivity or immunocytochemistry. Harrison et al. (2002) utilised an antibody probe to MEDtr;Pht1;4 that recognised where the gene product was localised. The immuno-localisation of MEDtr;Pht1;4 was to the arbuscules formed by G. versiforme in Medicago.
The success of RT-PCR, real-time RT-PCR, in-situ hybridisation and immuno-localisation is in the specificity of the primers, probes and antibodies to the gene of interest and ensuring that no crossreaction occurs. RT-PCR, real-time RT-PCR, reporter genes and in-situ hybridisation have been used to determine the expression patterns of eight barley P transporters available to my research, with particular emphasis on identifying expression of a barley P transporter at the peri-arbuscular membrane and the effect of mycorrhizal colonisation on expression patterns.

An initial assessment of barley P transporters HORvu;Pht1;1 and 1;2 by Smith et al. (1999) revealed that both genes were down regulated when barley plants were grown in high P conditions. Constructs containing the promoters for both genes linked to the GFP reporter gene were made by Schünmann et al. (2003). I was able to utilise these constructs to produce transgenic barley plants in order to assess the expression of these two genes when plants were colonised by mycorrhizal fungi. The expression pattern of all eight barley P transporters was then assessed with RT-PCR in mycorrhizal and nonmycorrhizal roots. Real-time RT-PCR was used to quantitate the level of expression of three of the barley P transporters ($\mathrm{HORvu} ; \mathrm{Pht1;1,1;2}$ and $1 ; 8$). In-situ hybridisation was used to localise the expression of one barley P transporter (HORvu;Pht1;8) in mycorrhizal roots.

Having identified a barley P transporter associated with P acquisition from mycorrhizal fungi, the sequence of this gene was used to identify the homologous genes in wheat and maize. Greater than 98% of the publicly available proteins (not only P transporters, all proteins) of maize, wheat, and barley were found to have significant homology in the draft sequence assembly and more than 95% of translated cDNAs were found in the rice draft gene predictions (Goff et al., 2002). Taking advantage of the high degree of synteny between barley and wheat, primers from the barley sequence were used to amplify the homologous gene to HORvu;Pht1;8 from wheat cDNA by PCR (TRlae;Pht1;myc). Similar methods with maize did not yield a result. The homologous maize gene (ZEAma;Pht1;6) was identified from a family of P transporter genes cloned by Zhao et al. (1999) when the phylogenetic tree of all identified P transporters was constructed. Utilising the sequence information from Zhao et al. (1999) the ZEAma;Pht1;6 was cloned for use in in-situ hybridisation experiments. Both the TRlae;Pht1;myc and ZEAma;Pht1;6 clones were used in in-situ hybridisation studies to identify the cell types in which these genes are expressed.

Barley and wheat roots colonised by Sc. calospora (along with G. intraradices and G.sp. WFVAM23) were also included in in-situ hybridisation studies to determine if the arbusculate coils, common to Sc. calospora, are involved with supplying P to plants. The inclusion of Sc. calospora provides an alternative site of P supply via different $A M$ fungi structures that may be part of the indigenous soil microbial community.

This chapter identifies the expression pattern of barley P transporters ($\mathrm{HORvu} ; \mathrm{Pht1;1}$ to $1 ; 8$) in roots grown in soil containing low P, high P and mycorrhizal conditions. The isolation of three cereal crop P transporters presumed to be involved with P acquisition via mycorrhizal fungi is outlined and their localisation is explored.

5.2 Methods and Materials

5.2.1 Production of transgenic barley Plants

5.2.1.1 Agrobacterium-mediated transformation of barley

Spring barley (Hordeum vulgare L. cv Golden Promise) was grown in a plant growth room at $12^{\circ} \mathrm{C}$ with $16 \mathrm{~h} / 8 \mathrm{~h}$ light/ dark periods. Immature embryos were isolated from developing grains to provide material for transformation studies (Patel et al., 2000). Immature embryos, $1.5-2.5 \mathrm{~mm}$ in length, were isolated from developing barley caryopses. The embryo explants were transformed by co-cultivation with A. tumefaciens strain AGL1 harbouring a binary expression plasmid, (Tingay et al., 1997). The binary expression plasmids also carried a selectable marker gene encoding antibiotic resistance to hygromycin. Hygromycin was used for selection of Agrobacterium-infected embryos and resistant embryos subsequently used to generate embryonic calli. Plantlets were regenerated from hygromycinresistant calli after selection for up to 8 weeks, transferred to soil and grown to maturity. Several plantlets regenerated from a single transformed embryonic callus (line) are classified as replicates.

5.2.1.2 Plasmids

Plasmids containing the promoter region of barley P transporters, HORvu;Pht1;1 or HORvu;Pht1;2, controlling expression of green fluorescent protein gene (GFP) were provided by Dr P H D Schünmann (CSIRO Plant Industry, Canberra) (Schünmann et al., 2003). These constructs were transformed into Agrobacterium (Chapter 3.8.3).

5.2.1.3 Plant Propagation and growth conditions

Transgenic plants were grown in 1:10 soil:sand mixes using the Millmerran soil with $\mathrm{CaH}_{4}\left(\mathrm{PO}_{4}\right)_{2}$ added to produce a total soil P content of 18 (P 1) or 118 (P 4) mg P per pot (Chapter 3.1.1) or mycorrhizal nurse pots established with G. versiforme and G.sp. WFVAM23 (Chapter 3.3). Sc. calospora nurse pots were established with Ashland soil (Chapter 3.3) Plants were grown and watered as outlined in Chapter 3.1.2 and 3.2.

5.2.2 Reporter gene analysis of transgenic barley

Core samples of roots were taken and washed to remove soil prior to visualisation. GFP fluorescence was observed using a Leica MZ6 dissecting microscope with the GFP PLUS fluorescence module (Leica AG, Heerbrugg, Switzerland). A Bio-rad MRC 600 (Bio-rad Laboratories Pty Ltd, New South Wales, Australia) and Leica TCS SP2 Confocal System on an upright Leica DMRXE microscope was used for Laser Scanning Confocal Microscopy (LSCM).

5.2.3 Plant Propagation and growth conditions for RT-PCR, real-time RT-PCR and in-situ hybridisation analysis

Barley cultivar Golden Promise, wheat cultivar Grebe and maize cultivar Gold Queen were grown in the same conditions outlined in section 5.2.1.3.

5.2.4 RT-PCR analysis

RNA was extracted from root core samples as described in Chapter 3.6.2. Approximately $5 \mu \mathrm{~g}$ of total RNA was used as a template for first-strand cDNA synthesis, using a Superscript First Strand cDNA Synthesis Kit (Invitrogen, California, United States of America) according to the manufacturer's instructions. CDNA was produced from a pooled sample of the roots of three plants grown in a single pot for each treatment.

One $\mu \mathrm{L}$ of first strand cDNA was then used for PCR using gene-specific primers for each of the barley P transporters listed. Table 5.2.3-1 provides the details of primers and expected RT-PCR products. All primers were tested with barley $g D N A$, at various MgCl_{2} concentrations, prior to RT-PCR analysis. PCR was performed with EXPAND High Fidelity polymerase (Roche Diagnostics Australia, Castle Hill, New South Wales, Australia) according to the manufacturer's instructions. Thermal cycling consisted of an initial denaturation at $94^{\circ} \mathrm{C}$ for 5 m , followed by 10 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 30 s , annealing at $50^{\circ} \mathrm{C}$ for 30 s and extension at $72^{\circ} \mathrm{C}$ for 60 s , and then an additional 20 cycles during which the extension time was increased by 5 s per cycle, followed by a final extension at $72^{\circ} \mathrm{C}$ for 7 m . RT-PCR reactions were visualised on agarose gels (Chapter 3.8.5).

Table 5.1. Primer sequences, MgCl_{2} concentration and expected product size for RT-PCR of barley, wheat and maize P transporters. No MgCl_{2} concentration optimum was found for $\mathrm{HORvu} ; \mathrm{Pht1;} ; 6$. Sequences of the primers are indicated in gene sequences (Appendix 4). The primers for each gene were designed to areas of low homology between the P transporters listed in Appendix 1, to ensure specificity but this was not tested.

Gene	Sense primer: $\mathbf{5}^{\prime}-\mathbf{3}^{\prime}$	Anti-sense primer: $\mathbf{5}^{\prime}-\mathbf{3}^{\prime}$	Expected product size (bp)	MgCl2 conc.
HORvu;Pht1;1	ggcatcgatgcttaggctgg	cgaatacagagcaccatcag	200	2.5 mM
HORvu;Pht1;2	aactggtgtctaagacatgc	aagcattacattgtcacggc	150	2.5 mM
HORvuPhT1;3	gaccaggcacgaaccgccgc	ggcatatacatgagccggcc	200	2.5 mM
HORvuPhT1;5	tgaatcgcgagaaagcaacac	ctagatgagttctaggcactc	210	4 mM
HORvuPhT1;6	ggcgagaacgacgacgag	ctagtatatctgacgtac	80	-
HORvuPhT1;7	gtagatgatcgtcggtgaatac	cgaccttgatagttcggttgcag	269	2.5 mM
HORv;;Pht1;8	atcaacagggaggacgcg	cctaagtctaatctcgac	230	4 mM
TRlae;Pht1;myc	caccacctcatcatacc	cctaagtctaatctcgac	500	2.5 mM
ZEAma;Pht1;6	ctcaagaacaaacacaccacgctc	ctgcttactcgatcacgcatgc	465	3 mM

5.2.5 Real-Time RT-PCR analysis

Samples were prepared as above for RT-PCR analysis and a no-RT control for each sample was included. The first strand cDNA synthesis involved two reactions, one with the addition of the RTpolymerase and one without. The no-RT control is included to diagnose the presence of gDNA.

The Taqman Sequence Detection System 7700 (Applied Biosystems, Victoria, Australia) and corresponding computer programs were used for the design of primers (Table 5.2), real-time RT-PCR reaction and detection of product. The SYBR Green PCR Master Mix (\#4309155), Micro-Amp 96-well reaction plate (\#N801-0560) and Optical Caps (8 caps/strip, \#4323032) were supplied by Applied Biosystems. The PCR reactions were set up according to the SYBR Green PCR Master Mix instructions with the template diluted to $1: 10$ for gene-of-interest reactions and 1:10000 for ribosomal gene reactions. Thermal cycling consisted of an initial denaturation at $95^{\circ} \mathrm{C}$ for 10 m , followed by 45 cycles of denaturation at $95^{\circ} \mathrm{C}$ for 15 s and a combined annealing/extension at $60^{\circ} \mathrm{C}$ for 1 m , with a fluorescence reading detected 30 s into the annealing/extension.

Table 5.2: PCR primers used for real-time RT-PCR for HORvu;Pht1;1, 1;2 and 1;8. Sequences of the primers are indicated in gene sequences (Appendix 4.

Gene	Sense primer: $\mathbf{5}^{\prime} \mathbf{- 3} \mathbf{3}^{\prime}$	Anti-sense primer: 5' $\mathbf{\prime} \mathbf{3}^{\prime}$
HORvu;Pht1;1	ggagaacgtcggcgatga	aaatgctgcaaggcgaaaggaa
HORvu;Pht1;2	gacgccattgccccaact	caagccgcagaattaacacaga
HORvu;Pht1;8	ttgggtgattccagggttctt	cacatcacacatggaaatgggt

5.2.6 In-situ Hybridisation

Roots were prepared and screened as described in Chapter 3.10.

5.2.7 Pht 1 Family Topology.

A computer program available on http://www.cbs.dtu.dk/services/TMHMM-2.0/ was used to determine the topology of HORvu;Pht1;8, TRlae;Pht1;myc and ZEAma;Pht1;6. The amino acid sequence from each P transporter was input into the program for analysis.

5.3 Results

5.3.1 HORvu;Pht1;1 and HORvu;Pht1;2 transgenic barley plants.

Barley embryos transformed with HORvu;Pht1;1 or HORvu;Pht1;2 promoters linked to GFP were cultivated and five individual plant lines with HORvu;Pht1;1 and three lines with HORvu;Pht1;2 constructs were produced. Plantlets were transferred from tissue culture to soil when roots were well developed. GFP fluorescence was examined after 30 days of growth in soil. Barley roots do not display any autofluorescence, therefore any GFP fluorescence seen is due to the introduced promoter-GFP fused genes. All transgenic plant lines expressing the HORvu;Pht1;1 promoter-GFP displayed expression in root epidermal cells when grown in low P soil. The expression level of HORvu;Pht1;1 promoter-GFP was reduced in roots grown in high P soil or in mycorrhizal nurse pots, when compared to non-mycorrhizal roots grown in low P soil. A similar reduction in HORvu;Pht1;2 promoter-GFP expression in high P and mycorrhizal roots was seen in all transgenic lines and expression was localised to root epidermal cells and vascular tissue (results not shown). One transgenic plant line from each transformation was used for more detailed localisation studies using the confocal microscope (Figure 5.1). Mycorrhizal colonisation exceeded 50% root length for all inoculated plant roots. Mycorrhizal colonisation had the same effect of reducing expression levels of HORvu;Pht1;1 and HORvu;Pht1;2 as roots grown in the presence of high P levels ($118 \mathrm{mg} \mathrm{P} \mathrm{kg}{ }^{-1}$ soil). Neither HORvu;Pht1;1 nor $1 ; 2$ was expressed in arbuscule-containing cortical cells. Hence, neither of the proteins encoded by these genes appear to be involved in P transport at the peri-arbuscular membrane, and are unlikely to be involved with P acquisition via mycorrhizal fungi. In order to identify a P transporter expressed at the mycorrhizal interface the expression of all identified barley P transporters was examined by RT-PCR as discussed in the following section.

HORvu;Pht1;1

B

HORvu;Pht1;2

Figure 5.1: GFP images of transgenic barley roots, transformed with HORvu;Pht1;1 (A - D) or HORvu;Pht1;2 ($\mathrm{E}-\mathrm{H}$) promoters fused to GFP. Transgenic barley plants were grown in low P soil: 20 $m g P \mathrm{~kg}^{-1}$ soil ($A \& E$), high P soil: $100 \mathrm{mg} P \mathrm{~kg}^{-1}$ soil ($B \& F$), G. intraradices nurse pots ($C \& G$) or G.sp. WFVAM23 nurse pots ($D \& H$). Fluorescence was brighter in roots grown in low P soil (white arrows) than the other growth conditions. Red arrows identify cell structures, rh $=$ root hairs, $\mathrm{ep}=$ epidermis, vas = vascular tissue. Figure B was collect on the Bio-rad MRC 600 Confocal Microscope in black and white; the remaining figures were collected on the Leica TCS SP2 Confocal System in colour. Bars $=84 \mu \mathrm{M}$

5.3.2 RT-PCR expression of barley P transporters

Hordeum vulgare cultivar Golden Promise has eight identified genes in the PhT 1 P transporter family. Research by Smith et al. (1999) demonstrated via northern analysis that the expression of HORvu;Pht1;1, 1;2 and 1;3 genes was reduced when plants were grown in high P hydroponic solutions, compared to low P solutions. Primers specific for each of the 8 barley P transporters were designed by Dr F W Smith (personal communication), except for HORvuPhT1;3 and 1;4 that display 100\% homology throughout the coding region so the primers designed will amplify both genes. These primers were used in RT-PCR analysis of barley roots (cultivar Golden Promise) grown in low P , high P and mycorrhizal nurse pots for >30 days. All primers excluding those for $H O R v u P h T 1 ; 6$, successfully amplified products from genomic barley DNA (results not shown), confirming that primers successfully amplified that template. The P concentration and percent mycorrhizal colonisation of the plants were measured for each growth condition (Table 5.3). The concentration of P did not vary in shoots between plants grown in low P soil and mycorrhizal nurse pots, but did increase when grown in high P soils (protocol, Chapter 3.5). In roots the P concentration was slightly elevated in mycorrhizal roots than those grown in low P soil, but not to the extent seen in roots grown in high P soil. Mycorrhizal plants acquired similar P concentrations to those grown in low P soil, suggesting that $A M$ fungid did not increase the supply of P to the barley plant.

Table 5.3: P concentration and extent of colonisation of barley cultivar Golden Promise plants used for real-time-RT-PCR. The same plants were used to measure HORvu;Pht1;1, 1;2 and 1;8 expression via real time RT-PCR.

Golden Promise	P concentration mg $\mathbf{P} \mathbf{g}^{-1}$ dry weight tissue		
	Shoots colonisation		
Low P	1.137	Roots	0
High P	3.156	0.369	0
G. intraradices	0.991	1.197	0
G.sp. WFVAM23	1.115	0.483	37.5

The results of the RT-PCR are displayed in figure 5.2. No PCR products were amplified in no-RT controls (not shown) indicating that the products amplified were derived from RNA transcripts. Expression of HORvu;Pht1;1, 1;2 and 1;3 was reduced considerably when roots were grown in high P soil and slightly reduced when grown in mycorrhizal nurse pots. Barley P transporters HORvuPhT1;5, 1;6 and 1;7 were not found to be expressed in root tissue under the conditions used. The expression of HORvu;Pht1;8 only occurred in roots colonised by mycorrhizal fungi. The RT-PCR protocol restricts the
comparison of expression between samples because it is not sensitive to small variations in starting material, so real-time RT-PCR was used to compare RNA transcript levels of HORvu;Pht1;1, 1;2 and 1;8 under different P levels and mycorrhizal colonisation.

Figure 5.2. RT-PCR analysis of the Hordeum vulgare Pht1 family of P transporters (cultivar Golden Promise). Expected sizes of products from cDNA are shown in Table 5.2.3-1; all bands amplified are the expected size. LP - Low P soil ($18 \mathrm{mg} P \mathrm{~kg}^{-1}$ soil), HP - high P soil ($118 \mathrm{mg} \mathrm{P} \mathrm{kg}{ }^{-1}$ soil), G.i. - G. intraradices nurse pots, G.v. - G.sp. WFVAM23 nurse pots.

5.3.3 Real-Time RT-PCR of HORvu;Pht1;1, HORvu;Pht1;2 and HORvu;Pht1;8.

Real time RT-PCR is used to quantify the amount of template present in a sample using primers specific to the template. This technique was used to examine the expression patterns of genes encoding barley P transporters HORvu;Pht1;1, 1;2 and 1;8. While exact amounts of template can be calculated, using a standard curve, the most common method of analysis of real-time RT-PCR data is by the comparison of expression between samples relative to one of them. In this experiment I compared the expression of the barley P transporters in barley cultivar Golden Promise when grown in low P soil, high P soil and mycorrhizal nurse pots. I used the expression of each gene in low P soil as the reference value, as demonstrated in figure 5.3. Due to the cost of real-time RT-PCR reactions and insufficient time there are no replicates of the plants used to produce the CDNA. In a real-time RT-PCR reaction duplicates of each reaction are made and these results have been averaged for the presentation of the results in figure 5.3.

The expression of both HORvu;Pht1;1 and 1;2 was reduced when grown in high P soils and mycorrhizal nurse pots. The reduced expression confirms the results seen in the GFP images (Section 5.3.1) and RT-PCR (Figure 5.2). Colonisation with G.sp. WFVAM23 resulted in reduced expression levels of HORvu;Pht1;1 and $1 ; 2$ to similar levels to those observed with the supply of high P soil, while G. intraradices had a lesser effect on expression levels. The difference in expression levels may reflect the differences in percentage colonisation (Table 5.3.2-1, G.sp WFVAM23-79\%, G. intraradices - 37\%). The expression of HORvu;Pht1;8 was low in non-mycorrhizal roots and very high in mycorrhizal roots, regardless of mycorrhizal fungal species or percent colonisation. This suggests that HORvu;Pht1;8 may be involved in P acquisition via mycorrhizal fungi. Tissue localisation is discussed in the following section.

Figure 5.3. Real time RT-PCR results for expression of HORvu;Pht1;1 (A), HORvu;Pht1;2 (B) and HORvu;Pht1;8 (C) in H. vulgare cv Golden Promise plants grown in LP - Low P soil ($18 \mathrm{mg} \mathrm{P} \mathrm{kg}{ }^{-1}$ soil), HP - high P soil ($118 \mathrm{mg} \mathrm{P} \mathrm{kg}{ }^{-1}$ soil), Gi - G. intraradices nurse pots and Gv - G.sp. WFVAM23 nurse pots. The expression of each of the genes can only be compared to that gene in each treatment. The expression of different genes within a treatment cannot be compared. The values are means from the duplicate reactions ($n=2$) and the bars are confidence intervals.

5.3.4 In-situ localisation of HORvu;Pht1;8

In-situ hybridisation can be used to localise the expression of a gene (mRNA). In this experiment I used the RNA synthesised from HORvu;Pht1;8 to localise expression in mycorrhizal barley roots. The antisense probe only hybridised to cortical cells containing arbuscules and arbusculate coils (Figure 5.4). Hybridisation to other mycorrhizal or root structures was not observed. The control sense probe showed no hybridisation. From the images it appears that the anti-sense probe is concentrated around the peri-arbuscular membrane. Expression of this gene is likely to occur in the cytoplasm of the cell and transcripts may become concentrated within the highly invaginated membrane around the arbuscule, therefore demonstrating expression closely associated with the arbuscule and arbusculate coils. The probes used did not hybridise to other plant cell tissue, indicating that the probes and experimental design (high temperature hybridisation and high wash stringencies as described in section 3.10) used were specific for the genes being assessed, and giving confidence that the results observed are correct.

Figure 5.4: Detection of HORvu;Pht1;8 transcripts by in-situ hybridisation on sections of barley roots colonised by G. intraradices (A \& B), G.sp. WFVAM23 (C \& D) and Sc. calospora (E \& F). Sections A, C and E have been hybridised with the anti-sense probe, sections B, D and F with the control sense probe. The anti-sense probes hybridised to plant cells containing arbuscules or arbusculate coils (arrowed) and the sense probe showed no hybridisation. $\mathrm{Bar}=7.8 \mu \mathrm{~m}$.

5.3.5 RT-PCR of wheat mycorrhizal P transporter and In -situ images

The success in isolating a barley P transporter localised to arbuscule containing cells, and likely to be associated with P acquisition via mycorrhizal fungi, led to the screening of other cereal crops for homologous genes. Barley and wheat have a high level of synteny (as mentioned in the introduction to this chapter) and primers designed to the HORvu;Pht1;8 gene were used to amplify a homologue from wheat cDNA. This successfully yielded a 1781 bp clone TRlae;Pht1;myc (Appendix 4.2.1) with 95% similarity to HORvu;Pht1;8 at the DNA level and 79% similarity at the amino acid level. An alignment of TRlae;Pht1;myc with many full length and partial wheat P transporter sequences on the Genbank database did not yield an identical match. These wheat sequences are listed in Appendix 1. The topology of the wheat gene I have isolated indicates that it is a member of the PHT1 family of P transporters. Specific primers were designed to TRlae;Pht1;myc and used in RT-PCR to determine whether expression primarily occurs in mycorrhizal roots, as was the case for HORvu;Pht1;8. The results of this RT-PCR are shown in figure 5.5 .

Figure 5.5: RT-PCR analysis of expression of TRlae;Pht1;myc. Wheat roots were harvested from 30 day old plants grown in LP - Low P soil ($20 \mathrm{mg} \mathrm{Pkg} \mathrm{kg}^{-1}$ soil), HP - high P soil (100 mg Pkg - soil), $\mathrm{Gi}-\mathrm{G}$. intraradices nurse pots, Gv - G.sp. WFVAM23 nurse pots, Sc - Sc. calospora nurse pots and gDNA genomic DNA. Expected size of product (arrowed) is 500 bp for TRlae;Pht1;myc with 1 kb Plus DNA ladder (\#10787-018, Gibco Life Technologies, Melbourne, Australia).

TRlae;Pht1;myc was expressed in roots colonised by G. intraradices and G.sp. WFVAM23 (\% colonisation $>25 \%$). No measurable expression of the TRlae;Pht1;myc gene in LP, HP and Sc. calospora samples was observed with RT-PCR. The level of colonisation of wheat roots by Sc. calospora was less than 5% and the wheat plants were not as healthy as those plants grown in LP, HP, G.i. or G.v nurse pots. Localisation of TRlae;Pht1;myc by in-situ hybridisation was carried out to determine if this gene may be involved with P acquisition via mycorrhizal fungi. RNA probes synthesised to TRlae;Pht1;myc were used for in-situ hybridisation of mycorrhizal wheat genes (Figure 5.6). TRlae;Pht1;myc transcripts were localised to wheat cortical cells containing arbuscules or arbusculate coils, in a similar manner to HORvu;Pht1;8 expression. Despite the apparent lack of
expression of TRlae;Pht1;myc in the RT-PCR reactions with Sc. calospora colonised roots, in-situ hybridisation revealed that transcripts corresponding to this gene were present in cortical cells colonised by this fungal species. No hybridisation was observed with the sections hybridised with the sense probe.

Figure 5.6: Detection of TRlae;Pht1;myc transcripts by in-situ hybridisation on sections of wheat roots (harvested 30 days after germination) colonised by G. intraradices (A \& B), G.sp. WFVAM23 (C \& D) and $S c$. calospora ($\mathrm{E} \& F$). Sections A, C and E have been hybridised with the anti-sense probe, sections B, D and F with the control sense probe. The sense probes hybridised to plant cells containing arbuscules/arbusculate coils (arrowed) and the anti-sense probe showed no labelling. $\mathrm{Bar}=11.5 \mu \mathrm{~m}$.

5.3.6 Identifying a maize mycorrhizal P transporter from a phylogenetic tree

The amino acid sequences of all the P transporters tabled in Appendix 1 were processed by the computer program EPROTPARS available through the ANGIS web site (www.angis.org.au). EPROTPARS estimates the phylogenies of genes from protein sequences. The resulting phylogenetic tree (Figure 5.7) nested the maize P transporter, ZEAma;Pht1;6, between MEDtr;Pht1;4 and ORYsa;Pht1;11, both of which are expressed in root cells colonised by mycorrhizal fungi (Harrison et al., 2002; Paszkowski et al., 2002). The amino acid sequence of ZEAma;Pht1; 6 is 85% similar to the MEDtr;Pht1;4 sequence and 90% similar to ORYsa;Pht1;11 sequence. This suggested that ZEAma;Pht1;6 may also be involved in P acquisition via mycorrhizal fungi.

Figure 5.7: Phylogenetic tree of all P transporters listed in appendix 1. Prepared by EPROTPARS (www.angis.org.au) based on the amino acid sequences of P transporters. Arrowed P transporters are those transporters expressed in roots colonised by mycorrhizal fungi.

5.3.7 RT-PCR of maize mycorrhizal P transporter and $I n$-situ images

In order to confirm that the gene encoding the maize P transporter ZEAma;Pht1;6 is expressed in roots colonised by mycorrhizal fungi specific primers (Table 5.1) were designed to ZEAma;Pht1;6 and used in RT-PCR (Figure 5.8). ZEAma;Pht1; 6 was expressed strongly in mycorrhizal roots, and very faint level of expression was observed under low P conditions.

Figure 5.8: RT-PCR analysis of ZEAma;Pht1;6. Maize (Z. mays) roots were harvested from plants grown in LP - Low P soil (18 mg P/kg soil), HP - high P soil (118 mg P/kg soil), G.i. - G. intraradices nurse pots, G.v. - G.sp. WFVAM23 nurse pots and gDNA - genomic DNA. Arrowed products were the expected size (Table 5.1), MM - 1 kb Plus DNA ladder (\#10787-018, Gibco Life Technologies, Melbourne, Australia).

RNA probes of ZEAma;Pht1;6 were prepared according to section 3.10 and used for stringent in-situ hybridisation analysis of mycorrhizal maize roots (Figure 5.9). The anti-sense probe hybridised to those cells containing arbuscules, as observed with HORvu;Pht1;8 and TRIae;Pht1;myc. No hybridisation was observed in the control sections using the sense probe.

Figure 5.9: Detection of ZEAma;Pht1;6 transcripts by in-situ hybridisation on sections of maize roots colonised by G. intraradices (A \& B) and G.sp. WFVAM23 (C \& D). Sections A and C have been hybridised with the anti-sense probe, sections B and D with the control sense probe. The anti-sense probes hybridised to plant cells containing arbuscules (arrowed) and the sense probe showed no labelling. $\mathrm{Bar}=9 \mu \mathrm{~m}$.

5.3.8 Pht1 family topology

The amino acid sequence of HORvu;Pht1;8, TRlae;Pht1;myc and ZEAma;Pht1;6 can be processed to determine the 3D topology of the proteins. All three P transporters conform to the Pht1 family topology of 12 hydrophobic membrane-spanning regions divided into two groups of six by a large intracellular hydrophilic charged domain (Figure 5.10). This topology is typical of the members of the major facilitator super family (Marger \& Saier, 1993), (Smith et al., 1999).

TMHMM posterior probabilities for HORVU PHTt BAA

TMHMM posterior probabilities for TRIAEPHTMYC

TMHMM posterior probabilities for ZEAMAPHT1BAA

Figure 5.10: Predicted topology of P transporters HORvu;Pht1;8, TRlae;Pht1;myc and ZEAmaPht1;6. Red - Transmembrane, Blue - Intracellular, Pink - Extracellular.

5.4 Discussion

The expression of HORvu;Pht1;1 in root epidermal cells and HORvu;Pht1;2 in root epidermal cells and vascular tissue supports the suggestion that these P transporters are involved with Pi acquisition directly from the soil and mobilisation in roots (Smith et al., 1999). The expression of HORvuPhT1;3 was neither increased nor decreased by mycorrhizal colonisation, compared to expression in low Pi soils, and the expression of HORvuPhT1;5, 1;6 and 1;7 was not detected in roots (Figure 5.2). HORvuPhT1;6 is expressed in phloem of vascular bundles in old and flag leaves and barley ears (Rae et al., 2003). HORvuPhT1;6 probably functions in remobilisation of stored P from leaves and is the first of the barley Pht 1 family P transporters identified that is not associated with P acquisition from soil. Arabidopsis Pht 1 genes, ARAthPhT1;4, 1;5 and 1;6, have also been localised to shoot tissue and pollen grains (Mudge et al., 2002). The publications of Rae et al. (2003) and Mudge et al. (2002) do not support earlier suggestions that regarded the Pht1 family of P transporters as only being involved with P acquisition from soil and mobilisation within the root system. The genes HORvuPhT1;5 and 1;7 may be involved in P transport in the shoot or pollen and, if so, it is not surprising that transcripts were not found in the root mRNA tested in my experiments (Figure 5.2).

RT-PCR, real-time RT-PCR and in-situ hybridisation of HORvu;Pht1;8 reveal that this gene is expressed in mycorrhizal colonised root cortical cells (Figures 5.2-5.4). Even though the mycorrhizal plants did not accumulate more P than the low P plants (Table 5.3), the P transporters HORvu;Pht1;1 and HORvu;Pht1;2 had been down-regulated and HORvu;Pht1;8 up-regulated. This suggests that the plant was accessing P via the mycorrhizal fungus rather than via the direct uptake pathway through root epidermal cells. The in-situ hybridisations showed that expression of HORvu;Pht1;8 is localised to cortical cells containing arbuscules and arbusculate coils of G. intraradices, G.sp. WFVAM23 and Sc. calospora (Figure 5.4). The expression patterns that were observed with HORvu;Pht1;8 were similar to those seen with ORYsa;Pht1;11 (reported in Chapter 6), SORtu;Pht1;3, LYCes;Pht1;1 and MEDtr;Pht1;4 P transporters, previously shown to be involved with Pi acquisition via mycorrhizal fungi (Rausch et al., 2001; Rosewarne et al., 1999; Harrison et al., 2002). The expression patterns of TRlae;Pht1;myc and ZEAma;Pht1;6 revealed by RT-PCR and in-situ hybridisations are consistent with those observed with MEDtr;Pht1;4 and ORYsa;Pht1;11 (Figures 5.5, 5.6, 5.8 and 5.9).

LYCes;Pht1;1, HORvu;Pht1;8, ORYsa;Pht1;11, MEDtr;Pht1;4, SORtu;Pht1;3, TRlae;Pht1;myc and ZEAma;Pht1;6 are collectively called mycorrhizal P transporters in the remainder of this thesis. Discussion about the mycorrhizal P transporters sequences and their involvement with the alternative P pathway via AM fungi is detailed in Chapter 7.

Pi acquisition via the soil in barley plants utilises the P transporters HORvu;Pht1;1 and $1 ; 2$, while Pi acquisition via mycorrhizal fungi utilises HORvu;Pht1;8. The expression patterns of these genes identify the pathways of Pi acquisition utilised by the plant, via soil or mycorrhizal fungi, or a combination of both pathways. The main aim of this chapter was to identify P transporters that are involved with Pi acquisition via mycorrhizal fungi. This was achieved with the identification of HORvu;Pht1;8, TRlae;Pht1;myc and ZEAma;Pht1;6. The expression pattern of other barley P transporters (HORvu;Pht1;1 $\rightarrow 1 ; 7$) together with my RT-PCR results indicates that these P transporters are not involved with Pi acquisition via mycorrhizal fungi.

6 Identification and expression patterns of the PhT1 family of \mathbf{P} transporters and a mycorrhizal P transporter in rice

6.1 Introduction

April 2002 saw the publication of the draft sequence of the rice genome (Oryza sativa L. ssp. indica; Yu et al., 2002 and Oryza sativa L. ssp. japonica cv Nipponbare; Goff et al. 2002). The rice genome is approximately 430 Mb in size, 3.7 times larger than the genome of Arabidopsis thaliana and 6.7 times smaller than the human genome (Yu et al., 2002). Amongst the cereal crops, the rice genome is the smallest and has a high degree of synteny with other cereals (Yu et al., 2002). The completed rice genome is available to the public via the internet, http://btn.genomics.org.cn/rice (Yu et al., 2002). This database was accessed to screen the rice genomic sequence for P transporters.

There are several rice P transporters identified in this chapter and published. Table 6.1 lists these known rice P transporters. The expression of all of these genes is discussed in this chapter.

Dr.R.Godwin has cloned two rice P transporters from the rice ssp. indica, called OsPT1 (accession number AF493787, submitted April 2002) and OsPT2 (accession number AF493788, submitted April 2002; Godwin, 2002, sequences in Appendix 4.4). When the sequence of OsPT1 was Blasted against the GenBank database, http://www.psc.edu/general/software/packages/genbank, there was a 99% match with the partial mRNA sequence of another rice clone from Oryza sativa ssp. japonica cv Jingxi 17, thought to be a P transporter pseudogene (accession number AF259980, submitted September 2000; Yu et al., 2000a). The gDNA sequence of OsPT1 was used to screen the complete rice genome (ssp. japonica cv Nipponbare) for other P transporters. The expression of the resulting 11 rice P transporters (named Rice gene $A \rightarrow K$) was then assessed by RT-PCR to determine if any of the genes were up-regulated in rice roots colonised by mycorrhizal fungi.

In October 2002 Paszkowski et al. (2002) published a paper identifying 13 rice P transporters from the cv Nipponbare. The expression patterns of these P transporters were assessed by real-time RT-PCR for expression in rice roots colonised by G. intraradices. The rice P transporter ORYsa;Pht1;11 was expressed only in mycorrhizal roots, with the level of expression positively correlated with the degree of colonisation.

Table 6.1: A list of known rice P transporters and references. The names of the genes in this table are those allocated by the authors. Genes in the same row are considered to be identical.

(Yu et al., 2000a)	(Godwin, 2002)	(Paszkowski et al., 2002)	Genes identified by myself.
P transporter pseudogene	OsPT1	ORYsa;Pht1;11	Rice gene C
	OsPT2	ORYsa;Pht1;4	Rice gene H
		ORYsa;Pht1;1	Rice gene A
	ORYsa;Pht1;2	Rice gene B	
		ORYsa;Pht1;3	Rice gene D
		ORYsa;Pht1;5	Rice gene I
		ORYsa;Pht1;6	Rice gene E
		ORYsa;Pht1;7	Rice gene G
		ORYsa;Pht1;8	Rice gene K
		ORYsa;Pht1;9	
		ORYsa;Pht1;10	
		ORYsa;Pht1;12	Rice gene F
			Rice gene J

The sequences of the 11 rice P transporters identified by myself have been aligned and matched with those published by Paszkowski et al. (2002). The OsPT1/ORYsa;Pht1;11/Rice gene C gene is of particular interest to myself because the expression of this gene is linked to colonisation by mycorrhizal fungi. The sequence of the ORYsa;Pht1;11 gene is 100% identical to OsPT1 previously isolated by Godwin (2002) and the sequence of which I used to screen the rice genome. Although the sequence of OsPT1 was identified prior to $O R Y_{s a ; P h t 1 ; 11 ~ i t ~ w i l l ~ b e ~ r e f e r r e d ~ t o ~ a s ~}^{O R Y s a ; P h t 1 ; 11 ~ i n ~ o t h e r ~ t h e s i s ~}$ chapters. In this chapter OsPT1 will be used to report results found by myself and Godwin, and ORYsa;Pht1;11 when discussing results by Paszkowski et al. (2002) and discussing the gene in general. Prior to the publication of the paper by Paszkowski et al. (2002), RT-PCR results with gene specific primers for OsPT1, performed by myself, showed expression in rice roots colonised by G. intraradices and G.sp. WFVAM23. No expression was observed in roots not colonised by mycorrhizal fungi (Figure 6.1). This was consistent with the results subsequently published by Paszkowski et al. (2002) in rice roots colonised with G. intraradices. I have also performed in-situ hybridisations to demonstrate the localisation of expression of OsPT1 in cortical cells colonised by mycorrhizal fungi. Thus my work proceeded in parallel with and supplemented the work of Paszkowski et al. (2002).

This chapter identifies the expression pattern of rice P transporters (identified in Oryza sativa ssp. indica) in roots subjected to low P soil, high P soil and mycorthizal conditions. The chapter also presents the results of in-situ hybridisation studies aimed at identifying the site of expression of a \mathbf{P} transporter presumed to be involved with P acquisition via $A M$ fungi.

6.2 Methods and Materials

6.2.1 Screening the completed rice genome.

The rice genome (Oryza sativa L. ssp. indica) was sequenced by Yu et al. (2002) and is available on the web site http://btn.genomics.org.cn/rice. The putative rice P transporter genes identified were initially named rice gene $A \rightarrow$ rice gene K, correct nomenclature for these genes is clarified in the discussion, and identified from Table 6.1.1 in the Introduction.

6.2.2 Primers designed for RT-PCR

Specific sense and anti-sense primers for 11 of the rice P transporter genes identified from the rice genome were designed with the aid of the Primer3 program (Rozen \& Skaletsky, 2000) (Table 6.2). The pair of primers for each rice P transporter gene were checked against the sequence of the other rice P transporter genes, to ensure that primers were specific to only one P transporter, with the computer program Amplify (Engels, 1993). This ensures that a positive result is specific for individual rice P transporters and not a group of known P transporters. Rice P transporter gene D was not a full-length sequence and identifying primers that would not amplify other rice P transporters was not successful. Therefore no RT-PCR reactions were processed for this gene.

Table 6.2: Primers used for RT-PCR of rice P transporters identified from rice genomic sequences. Sequences read $5^{\prime} \rightarrow 3^{\prime}$. The size of the PCR product indicated in the table is the correct product for that primer combination, though some PCR reactions yielded other products as well. Rice genes $\mathrm{A} \rightarrow$ K are putative P transporters identified from the rice genome. n.a. $=$ no MgCl_{2} concentration resulted in the expected product size.

Gene	Sense primer	Anti-sense primer	MgCl conc. mM	Length of PCR product, base pairs
Rice A	GTCATGTACGGATTCACCTT	ACCTCCTGCGAGATAACC	2.2	326
Rice B	GTTCGGGTTCCTGTACGC	CCACAAATCCACAACTGTAA	3	351
Rice C	GCTGTCGATCGAGATAGAGG	GCTGTCGATCGAGATAGAGG	2.5	498
Rice E	GATGACCCTCTTCATGCTC	GGCACGAGCATCATGTCA	n.a.	383
Rice F	GAGCATTCGGTTTCCTCTA	ACAAGGAGACATTCCACAAA	3	527
Rice G	CTTCTTCTTCGCCAACTT	TATTTCATCATCCAGCCTCT	2	495
Rice H	GTACGCCTTCACCTTCTTC	TTCGGTACACTACCAGAACC	2.5	493
Rice I	AAACTCCACGACCTTCATC	AATCCTAGTCATGGGCAGTA	3	493
Rice J	AGGACACAGCTGTACCATTT	TTCAGGCTGGATTCAATTAC	3	500
Rice K	TTCATCTGCACGTTCCTC	TCAACACAGCCATAATTGAA	n.a.	470

6.2.3 OsPT1 cDNA

Following the identification that OsPT1 was only expressed in rice ssp. japonica cv Jarrah roots colonised by G. intraradices or G.sp. WFVAM23, I extracted the cDNA clone of this gene from mycorrhizal colonised rice roots (rice ssp. japonica cv Jarrah). Previous attempts by Godwin (2002) to extract the cDNA sequence of OsPT1 had been unsuccessful because mycorrhizal colonised roots had not been used for the cDNA production in her studies. I produced cDNA from rice cv Jarrah roots colonised by G. intraradices as described in Chapter 5.2.3. One $\mu \mathrm{L}$ of first strand cDNA was then used for PCR using gene-specific primers for OsPT1. The gene-specific primers for OsPT1 were 5^{\prime} atggcggacgcggac 3^{\prime} for the sense primer and 5^{\prime} agtacgcacgtacctaca 3^{\prime} for the anti-sense primer (see Appendix 4 for the position of the primers on the sequence). The PCR reaction was performed with EXPAND High Fidelity polymerase (\#1732650 Roche Diagnostics Australia, Castle Hill, NSW) according to the manufacturer's instructions, with a final MgCl_{2} concentration of 2.5 mM . Thermal cycling consisted of an initial denaturation at $94^{\circ} \mathrm{C}$ for 5 m , followed by 10 cycles of denaturation at $94^{\circ} \mathrm{C}$ for 15 s , annealing at $45^{\circ} \mathrm{C}$ for 30 s and extension at $72^{\circ} \mathrm{C}$ for 4 m , and then an additional 20 cycles during
which the extension time was increased by 5 s per cycle, followed by a final extension at $72^{\circ} \mathrm{C}$ for 7 m . The PCR reaction was visualised on an agarose gel according to Chapter 3.8.5. The PCR product was 1668 nucleotides in length and was purified from the agarose gel with the Ultra Clean DNA Purification Kit (\#12100-300, Gene Works, South Australia, Australia) according to the manufacturers instructions. Following purification, the PCR product was processed with the QIAGEN A-addition Kit (\#231994, QIAGEN, Victoria, Australia) which adds an A residue to a blunt-ended PCR product for easy cloning into pGemT-easy. The A-addition was performed according to the manufacturers instructions resulting in the PCR product then being cloned into pGemT-easy as described in Chapter 3.8. The pGemT-easyOsPT1cDNA clone was sequenced according to Chapter 3.9 and found not to contain any errors introduced by PCR.

6.2.4 OsPT1 promoter

The genomic clone of OsPT1 identified by Godwin (2002) consisted of a 3393 nucleotide 5^{\prime} untranslated region, 1759 nucleotide gene (including one intron) and 390 nucleotide 3 ' untranslated region (accession number AF493787). Using the gDNA clone of OsPT1 isolated by Godwin (2002) as a template in a PCR reaction the 5 ' untranslated region was amplified. Plasmid DNA $(750 \mathrm{ng})$ containing the gDNA clone of OsPT1 was used as a template in a PCR reaction using EXPAND Long polymerase (\#1732650 Roche Diagnostics Australia, Castle Hill, New South Wales, Australia) according to the manufacturers instructions. The sense and anti-sense primers were designed with restriction enzyme sites in order to allow easy cloning into the pWBvec8 vector. The sense primer was 5^{\prime} gccgccttaattaactcttgattggctcttagc 3^{\prime} (site for restriction enzyme Pacl is underlined) and the anti-sense primer was 5' gccgaggcgcgccctccgatgatgccgtcgatcgtcc 3 ' (site for restriction enzyme Ascl is underlined). The thermo-cycling conditions were the same as those used in section 6.2.3. The resulting PCR product was 3069 nucleotides in length and was processed as in section 6.2.3, cloned into pGemT-easy and pWBvec8-GFP and transformed into E. coli (Chapter 3.8). The pWBvec8-OsPT1prom-GFP clones were then transformed into Agrobacterium tumefaciens AGL1 as per chapter 3.8.3.

6.2.5 In-situ hybridisation of $O R Y$ sa;Pht1;11

In-situ hybridisations of sense and anti-sense probes of $O R Y_{s a} ; P h t 1 ; 11$ were performed according to Chapter 3.10. Rice roots (rice ssp. japonica cv Jarrah) were collected and prepared from nurse pots colonised with G. intraradices, G.sp. WFVAM23 and Sc. calospora.

6.3 Results

6.3.1 $\quad \mathbf{P}$ transporters identified from the entire rice genome.

The sequence of OsPT1 successfully aligned to 11 different genes in the rice genome (Rice genes $A \rightarrow$ J, Table 6.1). There was 100% similarity between Rice gene C and OsPT1. Rice gene C was then referred to as OsPT1. The percentage of similarity between OsPT1 and the other 10 rice clones varied from $95 \%-50 \%$. Nine of the rice putative P transporter gDNA genes contained full-length sequences (Rice genes A, B; E, F, G, H, I, K and OsPT1); the remaining two clones only comprised partial sequences (Rice genes D and $Л$).

6.3.2 RT-PCR and gDNA PCR of putative rice P transporter genes

RT-PCR reactions were performed only on root tissue from rice plants (ssp. japonica cv Jarrah) grown in low and high P soil and nurse pots of G. intraradices and G.sp. WFVAM23. RT-PCR reactions for putative rice P transporter genes E and K did not yield any amplified products (results not shown). Primers for rice P transporter genes E and K were tested on rice gDNA to ensure that primer design was correct; these PCR reactions did not yield any amplified products (results not shown). The primers for rice P transporter genes E and K need to be redesigned and RT-PCR reactions repeated. RT-PCR reactions for genes F, G and I did not yield any amplified products from rice root cDNA, but did successfully amplify gDNA (results not shown). Successful amplification of gDNA ensured that the primers designed for clones F, G and I were acceptable, but that the genes are not expressed in rice roots grown in low P or high P soils or when colonised by G. intraradices or G.sp. WFVAM23.

Rice putative P transporter genes A, B, J and $H / O s P T 2$ (Godwin, 2002) were expressed in rice roots grown in low P or high P soils and when colonised by G. intraradices or G.sp. WFVAM23 (Figure 6.1). While putative P transporter genes A, B and $\mathrm{H} / \mathrm{OsPT}$ 2 displayed similar levels of expression in each of the root growth conditions, clone J was expressed more in roots colonised by mycorrhizal fungi than those that were not.

OsPT1 was only amplified from rice roots colonised by G. intraradices or G.sp. WFVAM23 (Figure 6.1). The localisation of this expression was further clarified by in-situ hybridisations (Section 6.3.4).

Figure 6.1: RT-PCR results for rice genes A, B, C, J and H. PCR product sizes are given in Table 6.21. LP - low P soil, HP - high P soil, G.I. - colonised by G. intraradices, G.V. - colonised by G.sp. WFVAM23, gDNA - genomic DNA.

6.3.3 OsPT1 cDNA and promoter

The cDNA (ssp. japonica cv Jarrah) of OsPT1 was successfully cloned from rice roots colonised with G. intraradices. The resulting DNA sequence was a 100% match with the gDNA (ssp. indica) sequence obtained by Godwin (2002) and the gDNA (ssp. japonica cv Nipponbare) sequence obtained by Paszkowski et al. (2002). The sequence of OsPT1/ORYsa;Pht1;11 displayed no differences between rice cultivars and subspecies.

The promoter of OsPT1 was successfully cloned into pGemT-easy and from this into the barley transformation-reporter gene vector, pWBvec8-GFP. The pWBvec8-OsPT1 promoter-GFP clones were transformed into E. coli DH 10 B and cultured, but in spite of several attempts the vector was never successfully transformed into A. tumefaciens AGL1. Without a successful A. tumefaciens transformation, transgenic rice plants could not be produced for localised expression studies of OsPT1 via GFP confocal microscopy methods. The production of transgenic rice plants for reporter gene analysis of the expression of OsPT1 would be a useful experiment to complete by future researchers.

6.3.4 In-situ hybridisation of ORYsa;Pht1;11

RNA probes synthesised to the ORYsa;Pht1;11 gene were used for in-situ hybridisation analysis of mycorrhizal rice roots (Figure 6.2). The anti-sense probe localised to cortical cells containing arbuscules; also confirming specificity of the probe. No hybridisation was observed in the control sections using the sense probe.

Figure 6.2: Detection of $O R Y s a ; P h t 1 ; 11$ transcripts by in-situ hybridisation on sections of rice roots colonised by G. intraradices (A \& B), G.sp. WFVAM23 (C \& D) and Sc. calospora (E \& F). Sections A, C and E have been hybridised with the anti-sense probe, sections B, D and F with the control sense probe. The anti-sense probes hybridised to plant cells containing arbuscules and arbusculate coils (arrowed) and the sense probes showed no labelling. Bar $=6.7 \mu \mathrm{~m}$.

6.3.5 Pht1 Family Topology

The topology of the OsPT1/ORYsa;Pht1;11 protein can be ascertained from its amino acid sequence. The sequence indicated 11 well-defined hydrophobic membrane-spanning domains (MSD) plus another less well defined MSD (\#7) (Figure 6.3). These MSD's are arranged in two groups of 6, separated by a large central loop on the cytoplasmic side of this membrane. Both the N -terminal and C -terminal tails are also orientated toward the cytoplasmic side of the membrane. This topology is typical of the Major Facilitator Superfamily of membrane transporters (Marger \& Saier, 1993; Pao et al., 1998). All members of the Pht1 family of P transporters have been shown to have this topology and belong to the Major Facilitator Superfamily (Smith et al., 2003).

Figure 6.3: Predicted topology of P transporter OsPT1/ORYsa;Pht1;11. Red - Transmembrane, Blue - Intracellular, Pink - Extracellular.

6.4 Discussion

The sequencing of complete genomes has allowed researchers to identify whole gene families and study the roles and functions of those genes within the plant. An example of this is the study of nine P transporters identified by Mudge et al. (2002) in the Arabidopsis thaliana genome. All nine P transporters are of the Pht1 family and it was previously thought that this family of genes were only involved with P acquisition by the roots. Mudge and colleagues demonstrated that this gene family is not only involved with P uptake, but also remobilisation throughout the plant and supplying P to floral organs (Mudge et al., 2002). The studies of gene families give an overall view of how the genes function and interact within the plant. As mentioned in the Introduction, the sequencing of the rice genome will allow gene families to be identified and analysed. This was done by myself and Paszkowski et al. (2002) in the identification of rice P transporters from rice ssp. japonica cv Jarrah and cv Nipponbare, respectively. Of the 13 full-length sequences identified by Paszkowski et al. (2002), 11 sequences (full-length and partial) identified by myself, two full-length sequences identified by Godwin (2002) and the partial sequence identified by Yu et al. (2000a), the rice genome may have 13 members of the Pht1 P transporter gene family, significantly more than Arabidopsis thaliana which only has 9 members. The RT-PCR and real-time RT-PCR results by myself and Paszkowski et al. (2002) reveal that, under the conditions used, all genes are transcribed except $O R Y_{s a ; P h t 1 ; 12 . ~ O R Y s a ; P h t 1 ; 12 ~ m a y ~}^{\text {m }}$ be expressed in tissues that have not been studied in these experiments or in developmental stages or under environmental conditions not yet studied. Alternatively, it may be a pseudogene. Pseudogenes are genes with a high degree of similarity to normal genes but they are not transcribed or translated. Further examination of the transcription and translation of this gene within the rice Pht1 family needs to be done before the exact number of functional gene members can be clarified and their roles determined.

The expression of the rice P transporter family has been assessed with RT-PCR (myself) and real-time RT-PCR (Paszkowski et al. 2002). Real-time RT-PCR demonstrated that all but clones ORYsa;Pht1;12 and 1;13 were expressed in rice roots (expression in shoots was not examined). The expression of ORYsa;Pht1;4, $1 ; 5$ and $1 ; 7$ was unchanged when rice roots were colonised by G. intraradices, while colonisation reduced the expression of $O R Y$ sa;Pht1;1, 1;2, 1;3, 1;6, 1;9 and $1 ; 10$ by $>25 \%$ of that observed in un-colonised roots (Paszkowski et al., 2002). These results confirm and clarify the results with RT-PCR performed by myself for all clones except $O R Y_{s a ; P h t 1 ; 13 . ~ R T-P C R ~ o f ~ O R Y s a ; P h t 1 ; 13 ~}^{\text {a }}$ (Rice gene $ل$) resulted in higher levels of expression in rice roots colonised by G. intraradices and G.sp. WFVAM23 than non-mycorrhizal rice roots, though no expression was observed in real-time RT-PCR reactions performed by Paszkowski et at (2002) on G. intraradices colonised roots. This conflict in
results may be due to use of inappropriate primers by either myself or Paszkowski et al. (2002). Sequencing or restriction enzyme digest of the amplified PCR product would confirm that the product is the gene of interest. The primers may cross react with other P transporters - as with Rice gene D, or the primers designed do not pick up the desired gene - as with Rice genes E and K, or different mycorrhizal fungi have different effects on expression. While the RT-PCR results with ORYsa;Pht1;13 are interesting with respect to enhanced expression in mycorrhizal roots compared to non-mycorrhizal roots, this gene needs to be further examined to confirm this expression pattern. This is discussed further in Chapter 7. Expression of $O R Y s a ; P h t 1 ; 11$ only in mycorrhizal roots is confirmed by results from by both RT-PCR and real-time RT-PCR reactions.

The roles of genes $O R Y_{\text {sa; Pht1;1 }}^{\rightarrow 1 ; 10}$ may be in P acquisition directly from the soil or mobilisation of P through the roots to the shoots. The role of $O R Y$ sa; Pht1; 12 may be in shoot mobilisation of P; this would explain the lack of transcripts in root mRNA tested. ORYsa;Pht1;13 requires further work to clarify expression patterns before its roles can be determined. ORYsa;Pht1;11 is involved with P acquisition via mycorrhizal fungi.

The gene of particular interest in this chapter is $O R Y_{s a ;}$ Pht1;11 that was only expressed in rice roots colonised by mycorrhizal fungi. The in-situ hybridisation of $O R Y$ sa;Pht1;11 localises the expression of this gene to rice cortical cells containing arbuscules and arbusculate coils of G. intraradices, G.sp. WFVAM 23 and Sc. calospora. This expression pattern is consistent with that observed for mycorrhizal P transporters HORvu;Pht1;8, TRlae;Pht1;myc, ZEAma;Pht1;6, SORtu;Pht1;3, LYCes;Pht1;1 and MEDtr;Pht1;4 (see Chapter 8 for the discussion) (Rausch et al., 2001; Rosewarne et al., 1999; Harrison et al., 2002). The production of plants transformed with the ORYsa;Pht1;11 promoter linked to GFP would have been another reliable method to confirm the localisation pattern of this gene but unfortunately difficulties were encountered during transformation of this construct into Agrobacterium and the time available did not permit this problem to be solved.

As with the other plant species it seems highly likely that rice is able to access P supplied via the mycorrhizal fungi, as well as via root epidermal cells.

7 General discussion

The results from this thesis determined that barley cultivars varied in the way they acquire and utilise P and that colonisation by AM fungi is dependent on several factors including soil P concentrations, AM fungal species and type of inoculum. These results highlight the complex nature of P acquisition and led to the detailed study of the plant-mycorrhizal fungus interactions associated with P acquisition. P transporters (mycorrhizal P transporters) in four plants belonging to the cereal family (barley, wheat, rice and maize) were identified as being involved with acquisition of P via the alternative P pathway provided by the colonisation of these plants by AM fungi. This alternative P pathway is discussed after first analysing the sequences of the mycorrhizal P transporters to determine if there are any regions of homology.

7.1 Mycorrhizal P transporter sequence homology

Analysis of the homology between the mycorrhizal P transporters was carried out in order to determine if there were any areas that are unique to the mycorrhizal P transporters. Unique regions of sequence may reveal motifs that localise the expression of these genes to the peri-arbuscular membrane and not the remaining plasma membrane in colonised cells. The initial step is to align all of the sequences and create a phylogenetic tree to determine if the mycorrhizal P transporters are closely related. The phylogenetic tree displayed in Chapter 5.3 .6 contains all of the P transporters reported to date. In the phylogenetic tree the mycorrhizal P transporters are not grouped together. Analysis of the coding sequence alignment of the mycorrhizal P transporters (not shown) does not yield any regions that are unique to the mycorrhizal transporters. This suggests that regions of sequence in the coding region do not control the specific role of the mycorrhizal P transporters in P transport via mycorrhizal fungi. Transcription and initiation of translation of the mycorrhizal P transporters is likely to be controlled by sequence in the 5 ' untranslated regions.

Analysis of the mycorrhizal P transporters only (Table 7.1 and the phylogenetic tree Figure 7.1) reveals that the lowest percentage of homology is 72% between HORvu;Pht1;8 and the three P transporters ZEAma;Pht1;6, ORYsa;Pht1;11 and MEDtr;Pht1;4. The cereal crop P transporters do not group together (Figure 7.1). The genes from cereals wheat, maize and rice are grouped together, but the barley gene remains quite separate. Further studies on cereal evolution may reveal the reason for the divergence in the phylogenetic tree between barley and the other cereal crops studied.

Table 7.1: Percent homology between the mycorrhizal P transporter amino acid sequences.

	TRlae; Pht1;myc	ZEAma; Pht1;6	ORYsa; Pht1;11	MEDtr; Pht1;4	SOLtu; Pht1;3	LYCes; Pht1;1	HORvu; Pht1;
TRlae;Pht1;myc	100	75	75	78	87	89	79
ZEAma;Pht1;6		100	90	83	78	76	72
ORYsa;Pht1;11			100	83	78	76	72
MEDtr;Pht1;4				100	79	77	72
SOLtu;Pht1;3					199	91	78
LYCes;Pht1;1						100	77
HORvu;Pht1;8							100

Figure 7.1: Phylogenetic tree of all mycorrhizal P transporters. Prepared by EPROTPARS program (www.angis.org.au) based on the amino acid sequences of the P transporters.

7.2 Putative cis-regulatory elements in mycorrhizal P transporter promoters

Gene regulation is controlled by varied and complex mechanisms (Blancheete \& Tompa, 2003). The 5' untranslated region of SOLtu;Pht1;3 has been analysed for regulatory domains by Rausch et al. (2001) and Karandashov et al. (2004); and possible domains in MEDtr;Pht1;4 have been analysed by Harrison et al. (2002). Eight putative regulatory motifs have been identified in SOLtu;Pht1;3, MEDtr;Pht1;4, LYCesPht1;h (A.A. Levy, personal communication in Karandashov et al. 2004) and ORYsa;Pht1;11 (Karandashov et al. 2004) (Figure 7.2). The promoter region of HORvu;Pht1;8 contains six of these regulatory domains and LYCes;Pht1;1 contains seven (Figure 7.2). There is no obvious pattern of these motifs that appears likely to be associated with spatial and temporal expression of these
mycorrhizal P transporters in colonised roots. Gene regulation involves activators, repressors, and positive and negative feedback loops; and more detailed research needs to be done in order to understand the intricate regulatory network that is initiated when plants are colonised by mycorrhizal fungi and P acquired via the alternative pathway provided by AM fungi. The production of transgenic plants, transformed with promoter/reporter gene vectors where the promoter has undergone mutation or deletion of the motif to be analysed, will aid in identifying the role of that motif in localisation and expression of the mycorrhizal P transporters.

Figure 7.2: Illustration of the putative cis-regulatory motifs identified by Rausch et al. (2001), Karandashov et al. (2004) and Harrison et al. (2002) on P transporters described in this thesis. Motifs have been aligned on individual sequences with Vector NTI desktop sequence analysis software (Invitrogen Life Science Software). The 5 untranslated region analysed is -1000 bp from the start codon (ATG). Motif sequences and icons are listed below the figure. Precise motif location and sequences are identified on the actual sequences in Appendix 4.
\qquad _ \qquad [14. \qquad 1 \qquad -1 \qquad - \qquad HORva;Pht1;8
\qquad - \qquad $-$ \qquad
\qquad $-$ -3 1 \qquad相 $\square \square$ $-$ \qquad - ${ }^{\text {A }}$ - - \qquad LYCes;Pht1;1
\qquad $-$ \qquad ■

\wedge

\qquad
\qquad \square \qquad - _- \qquad (\qquad MEDtr;Pht1;4

I	I	I	I	I	I	I	I	I	I	I
1000	900	800	700	600	500	400	300	200	100	ATG

- TGTTATAAGT motif

A AAAACTTAG motif
6 TGCATTCTAT motif

- TAACAACTAT
- CTTCTTGTTCTA motif

A TAATATAT motif

- MRR1 - TACATAAATATGTTCTTTAACTTG motif
- MRR2 - GCACAAGTAGACCCTTAAACT motif

7.3 The 'alternative' P acquisition pathway in mycorrhizal plants

Four mycorrhizal P transporters were identified and characterised in the work described in this thesis. The barley gene HORvu;Pht1;8 was cloned by Dr Frank Smith (CSIRO Plant Industry, Brisbane), but no expression patterns had been ascertained at the start of my work. Through RT-PCR, real-time RT-PCR and in-situ hybridisation experiments it was determined that HORvu;Pht1;8 is expressed in root cortical cells containing AM fungal structures (arbuscules and arbusculate coils). Similar experimental procedures were also used to identify and determine the expression of TRlae;Pht1;myc (wheat), ORYsa;Pht1,11 (rice) and ZEAma;Pht1;6 (maize) in respective colonised root cells. The expression of the rice gene $O R Y_{s a} ; P h t 1 ; 11$ published by Paszkowski et al. (2002) had been found to occur in root samples that had been colonised by G. intraradices; I further demonstrated localisation in arbusculecontaining cortical cells via in-situ hybridisation experiments. The identification of these four P transporters with expression patterns associated with mycorrhizal colonisation increases both the number of 'mycorrhizal-related' P transporters and the range of plant species in which they have been found. Tomato, potato and Medicago genes were published during the course of my work (Rosewarne et al., 1999, LYCes;Pht1;1; Rausch et al., 2001, SORtu;Pht1;3; Harrison et al., 2002, MEDtr;Pht1;4). The expression patterns of these mycorrhizal P transporters support their potential role in acquisition of P via an alternative pathway for plants that form mycorrhizal associations (Figure 7.3). A second P transporter identified in tomato (LYCes;Pht1;h) has also been shown to be induced in plants colonised by AM fungi (A.A. Levy, personal communication, in Karandashov et al. 2004). LYCes;Pht1; h has not been mentioned prior to this discussion as no publications confirming the expression pattern have appeared in the literature.

Figure 7.3: Schematic representation of supply of P to plant roots via two alternative pathways. P transporters (black circles) located in the root epidermis and root hairs access P directly from the soil solution in the direct uptake pathway. In the mycorrhizal uptake pathway mycorrhizal P transporters (blue circles) in external hyphae take up P and translocate it to fungus-plant interfaces in the root cortex where plant P transporters (arrowed) access the supply of P via the mycorrhizal fungi. The yellow zones represent the area of accessible P. There is a narrow area of available P along the root in the direct uptake pathway, while the mycorrhizal uptake pathway can access P up to 30 cm away from the root. This figure is modified from Smith et al. 2003b.

The expression of the mycorrhizal P transporters is not always limited to cells containing mycorrhizal fungal structures; i.e. they are apparently not completely 'mycorrhiza specific'. The expression of LYCes;Pht1;1 was detected with in-situ hybridisation experiments in the stele and cortex of roots of nonmycorrhizal plants (Rosewarne et al., 1999) and in epidermal cells and root hairs (Daram et al., 1998; Bucher et al., 2001). Low levels of expression of both SORtu;Pht1;3 (Rausch et al., 2001) and HORvu;Pht1;8 (this thesis) were detected by real-time RT-PCR in non-mycorrhizal roots. Real-time RTPCR experiments on MEDtr,Pht1;4 (Harrison et al., 2002; Karandashov et al., 2003) and ORYsa;Pht1;11 (Paszkowski et al., 2002) demonstrate that these two genes are the only mycorrhizal P transporters associated with Pi acquisition via mycorrhizal fungi that, to date, have not been observed to be expressed in other plant cells of colonised or non-colonised plants. Expression in cell types other than mycorrhizal colonised cells needs to be examined carefully. In-situ hybridisation methods of detecting expression must be performed under very strict stringencies to ensure that expression of groups of P transporters, rather than single genes, are not detected. In order to overcome any problems associated with in-situ hybridisation specificity the production of transgenic plants containing promoter-reporter gene fusions and immuno-localisation experiments would be beneficial for future work. While the expression pattern varies between the mycorrhizal P transporters the results strongly suggest that they are involved with P acquisition at the peri-arbuscular membrane, accessing P supplied
by the mycorrhizal fungi. With the up regulation of mycorrhizal P transporters and down regulation of epidermal and root hair P transporters, eg. HORvu;Pht1;1, 1;2 and $1 ; 8$ expression, it appears that the plant is able to switch from the direct uptake pathway to the mycorrhizal uptake pathway.

Research to date, including that described in this thesis, indicates that the acquisition of P via mycorrhizal fungi does not only involve apparently 'mycorrhizal-specific' P transporters. There is also the redeployment of P transporters from non-mycorrhizal root cells to cells containing mycorrhizal structures when the roots are colonised (Harrison et al., 2002). This supports the theory that a plant colonised by mycorrhizal fungi can change its pathway of P uptake from direct to that via the mycorrhizal fungi. Support for the activity of the 'alternative' P pathway of P acquisition via mycorrhizal fungi in a wide range of mycorrhiza-responsive and un-responsive plants is strengthening. Some plants, such as barley, apparently do not respond to AM colonisation in terms of growth or P uptake (Jensen \& Jakobsen, 1980; Baon et al., 1994). The assumption has been that AM fungi make no contribution to P uptake and hence the 'alternative' mycorrhizal pathway is inactive. However, Smith et al. (2003 \& 2004), Zhu et al. (2003) and Schweiger and Jakobsen (1999) were able to demonstrate that the mycorrhizal network can supply up to 100% of the P acquired by flax, Medicago and tomato when colonised by G. intraradices. Smith et al. (2003b) used vials of radioactive P that were only accessible to mycorrhizal fungi hyphae (not plant roots) to determine how much P was being supplied to the plant via the mycorrhizal fungi. Depending on the combination of plant species and mycorrhizal fungal species, the percentage of P supplied by the mycorrhizal fungi varied. For example G. caledonium was able to supply flax and Medicago with 100% of the acquired P, but supplied tomato with approximately 75% of the acquired P and Gi. rosea only contributed a small proportion of the total P - (Smith et al., 2003b).

Plants that are not acquiring 100% of the P via mycorrhizal fungi must employ both the direct and mycorrhizal P pathways to achieve plant P uptake. P transporters involved with P acquisition in epidermal cells and roots hairs and at fungi-plant interfaces would all be active if the plant was utilising both pathways. P acquisition from mycorrhizal fungi has been localised to cortical cells containing arbuscules and arbusculate coils. The concentration of P in arbuscule containing cells has been measured via cryo-analytcal scanning electron microscopy to be as high as 25 mM , while cells containing no mycorrhizal structures have a concentration of $10 \mathrm{mM} P$ (Ryan et al., 2003). This illustrates that arbuscule containing cells accumulate P . Accumulated P acquired via plant P transporters in the peri-arbuscular membrane requires protons (H^{+}-ATPase). The presence of H^{+}ATPase activity at the peri-arbuscular membrane in colonised cells has been demonstrated and this would provide a source of protons for P transporters (Gianinazzi-Pearson et al., 1991 \& 2000). All of
this research and the localisation of several P transporters to colonised cells substantiates the likely importance of the alternative P pathway via mycorrhizal fungi that produce arbuscules. The expression of HORvu;Pht1;8, TRlae;Pht1;myc and ORYsa;Pht1;11 in cortical cells colonised by Sc. calospora suggests that the arbusculate coils produced by this fungus may also be a site of P transfer (this thesis), though it does not have the same detailed experimental support as for arbuscules. The inclusion of mycorrhizal fungi that form arbusculate coils will be important in future work, if these results are to be used to enhance our understanding of P uptake in field situations that may contain many indigenous mycorrhizal fungi forming different structures in the roots. Understanding the two pathways of P acquisition that work in combination will help determine how soil P and P fertilisers are used by plants and how to take advantage of indigenous mycorrhizal fungi.

Research on P transporters involved with P acquisition via mycorrhizal fungi has revolved around the identification and localisation studies with mycorrhizal P transporters. Paszkowski et al. (2002) were able to demonstrate that the expression of the mycorrhizal transporter $O R Y$ sa;Pht1;11 was related to the presence of internal mycorrhizal structures presumed to be involved with delivering P to the plant. Transcripts of $O R Y$ sa;Pht1;11 were only detected when intraradical fungal structures were observed, 25 days post inoculation with 1000 mycorrhizal spores. This expression pattern for $O R Y s a ; P h t 1 ; 11$ and all of the other mycorrhizal P transporters needs to be further assessed to determine if the expression is initiated when the root is initially colonised (appressorium formation), or if expression is related to the presence of those mycorrhizal structures that transfer the P into the plant cortical cells such as arbuscules and arbusculate coils. This would determine if the plant immediately identifies the colonisation by the mycorrhizal fungi as being beneficial or whether this recognition occurs at a later stage of development. An alternative avenue of research would involve the use of plant mutants. Plant mutants that are able to inhibit mycorrhizal colonisation at various stages would be useful in examining when the mycorrhizal P transporters are expressed in relation to the stage of colonisation. An example of the usefulness of mutants for assessment of colonisation and mycorrhizal fungi/plant interactions is the tomato mutant $r \mathrm{mc}$. When challenged with 8 different mycorrhizal species, three were unable to colonise further than the root epidermal cells, four were able to penetrate past the root epidermis but not into cortical cells and one mycorrhizal species achieved normal colonisation (Gao et al. 2001). While mutant plants definitely have a role in the study of colonisation, the research published by Gao et al. (2001) emphasises the differences in colonisation depending on the plant and mycorrhizal fungi species that must also be considered.

The coordinate observation of various stages of colonisation by the AM fungi and P transporter expression would also elucidate the timing of the down-regulation of those P transporters involved with

P acquisition via the root/soil interface. The barley P transporters HORvu;Pht1;1 and 1;2 are involved with P acquisition when the plant is grown in a P deficient environment. When P is supplied via increased fertiliser or via AM fungi the expression of these two genes is significantly reduced. Further investigations, both physiological and molecular, would reveal the processes involved in determining whether one pathway or both pathways are utilised for P acquisition.

The main aim of this thesis was to research the alternative P acquisition pathway via $A M$ fungi. The P transporters involved with P acquisition from AM fungi have already been discussed. The expression pattern of these mycorrhizal P transporters varies depending on the plant species (i.e. whether the P transporter is expressed exclusively at the peri-arbuscular membrane or also expressed at other cellular locations) and the AM fungi colonising the plant. This research has also suggested that there may be more than one mycorrhizal P transporter within a $\mathrm{PhT1}$ family of P transporters. The expression of both ORYsa;Pht1;11 (Paszkowski et al., 2002) and ORYsa;Pht1;13 (this thesis) have been shown to be induced in roots colonised by AM fungi, compared with uncolonised roots, section 6.3.2. Similarly, LYCesPhT1; h is reported to be induced in AM colonised plants (A.A. Levy, personal communication, in Karandashov et al. 2004) in addition to the expression of LYCes;Pht1;1 in mycorrhizal roots (Rosewarne et al., 1999). The expression patterns of these genes may indicate that in rice and tomato two P transporters are involved with P acquisition via the alternative pathway provided by AM fungi colonisation. Analysis of the two genes suspected to be involved with P acquisition via mycorrhizal fungi in each plant species needs to be done in order to confirm their role in P uptake in the plant. Optimally the assessment of both genes would be conducted in the same tissue to ensure that the same conditions are achieved. The use of real-time RT-PCR, in-situ hybridisation and immunolocalisation using different fluorescent labels for identification would be useful to determine the localisation of gene expression relative to the other. Further experiments researching the expression pattern of LYCes;Pht1;1 and ORYsa;Pht1;13 would clairify the results of these two genes that are regarded with caution due to the possibility of cross reactions within the Pht 1 gene family. Rice contains a PhT1 gene family that includes 13 genes. Other plant species may contain this number of $\mathrm{PhT1}$ genes and may contain more than one $\mathrm{PhT1}$ gene involved with P acquisition via AM fungi. The presence of more than one mycorrhizal P transporter in a plant species would require further investigation to determine if both transporters are up regulated in the same manner when colonisation occurs or if different expression patterns are observed. Different mycorrhizal P transporters within one plant species may be expressed differently depending on the AM fungi colonising the plant. This would be of particular interest in field applications, where there are many AM fungal species present, if optimal P acquisition is to be achieved.

Given the likelihood that AM symbioses evolved in primitive land plants, before the diversification of present day angiosperm families, it is possible that Arabidopsis thaliana (and other non-host plants) contains a PhT1 gene whose expression pattern is potentially influenced by AM fungi, although the nonhost status of the plant prevents direct testing of the possible induction of P transporter genes by AM fungi. Arabidopsis thaliana is a widely used plant model system in molecular, developmental, physiological and cell biology (Pigliucci, 2002). Nine members of the PhT1 family have been identified in this plant (Mudge et al., 2002). A preliminary attempt was made in this project to analyse the expression of some of these genes by introducing promoter-GFP constructs into the host plant Nicotiana tabacum. The assessment of the transgenic tobacco plants was unsuccessful due to masking of GFP fluorescence by autofluorescence of tobacco roots under the conditions used (results not presented). However, the recent identification of 5 Arabidopsis ecotypes and 2 mutants that do form mycorrhizal associations (Horii \& Ishii, 2003) will now permit further analysis of the expression patterns of the Arabidopsis P transporter family. A future experiment could use these Arabidopsis accessions to examine the expression patterns of all nine identified Arabidopsis P transporters in relation to the effect of mycorrhizal colonisation. If an Arabidopsis P transporter was identified as being involved with P acquisition via mycorrhizal fungi, it would stongly suggest that Arabidopsis had evolved from once being a host of AM fungi into a non-host plant. This would expand the value of Arabidopsis as a model plant for future mycorrhizal research.

The identification of more than one mycorrhizal P transporter per plant species highlights the need for high standards and quality control when researching P transporters to ensure that those results reported are correct for an individual gene and are not from cross-reactions between several P transporters. There is a high degree of similarity between P transporters and primers/probes/antibodies need to be designed in regions that are unique to the P transporter of interest. For example the genes HORvu;Pht1;1 and 1;2 are identical except for eight amino acids at the 3 ' end of HORvu;Pht1;2. The primers designed for both HORvu;Pht1;1 and 1;2 for real-time RT-PCR required the anti-sense primer to be developed in the 3^{\prime} untranslated region of the genes in order to guarantee that the specific gene of interest was being amplified. The specificity of the primers ensured that the different expression patterns seen for these genes are accurate. Nevertheless, the existence of more than one P transporter induced by AM fungi might be expected. Plants evolved alternative pathways to accommodate adaptations to different environmental conditions. Additionally, there is increasing evidence for some degree of specificity in the interactions between different plant and AM fungal species (Helgason et al. 2002) which is likely to involve expression of different genes in signalling and metabolic pathways.

Studies of gene expression will be able to be linked to physiological studies of the quantity of P reaching the plant via the mycorrhizal pathway (i.e. the \% contribution of this pathway to total plant uptake) should the project continue. Determining the predominant pathway of P uptake would be useful in field situations when assessing the need to apply fertiliser and the amount required. The identification of P transporters in barley, wheat, maize and rice involved with P acquisition via $A M$ fungi can be used in further research to understand P acquisition of field grown cereals and how they can be used to improve P efficiency when grown in P deficient soils.

APPENDIX 1

PHOSPHATE TRANSPORTERS ISOLATED UP TO June 2003 (plant and AM fungi only).

Those transporters highlighted in yellow in the Affinity K_{m} - details column are classified as high-affinity transporters and those highlighted in blue classified as low affinity transporters (according to the authors),
Those transporters highlighted in the Sites of Expression column in pink are classified as being specifically involved with P acquisition via mycorrhizal fungi and those highlighted in purple are classified as being down regulated when P is supplied to the plant as increased P levels or AM colonisation.
References listed in Affinity K_{m} - details and Sites of Expression are specific for the results reported in those columns, those references listed in References are other researchers involved with identification and reporting of that gene. NA means that no information about affinity or expression was available.

Phosphate transporter names, abbrevlated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
PHT1;1 APT2 PHT1 AtPT1 ARAth;Pht1;1	Arabidopsis thaliana	AAB17265-GB	High affinity $\mathrm{K}_{\mathrm{m}}=3.1 \mu \mathrm{M}$ in cultured tobacco cells (Mitsukawa et al., 1997b) Complements yeast strain NS219* when grown on media containing $110 \mu \mathrm{M}$ P. (Muchhal et al., 1996)	Roots, Hydathodes of cotyledons and leaves, Axillary buds, Peripheral endosperm of germinating seeds. P deficiency increased expression in root hairs and root cap. (Mudge et al., 2002)	(Muchhal et al., 1996) (Smith et al., 1997)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
PHT1; 2 APT1 PHT2 ARAth;Pht1;2	Arabidopsis thaliana	BAA24282-DBJ	Complements yeast strain NS219* when grown on media containing $110 \mu \mathrm{M}$ P. (Muchhal et al., 1996)	Roots only. P deficiency increased expression in root epidermal cells and root hairs, Near hypocotyl junction expressed in cortical cells, Aged root systems expressed in young lateral roots (Mudge et al., 2002)	(Mitsukawa et al, 1997a) (Smith et al, 1997) (Muchhal et al., 1996)
PHT1;3 PHT3 ARAth;Pht1;3	Arabidopsis thaliana	BAA24281- DBJ	NA	Roots only. P deficiency increased expression in stele of the primary roots (pericycle layer) and root hairs Weak expression noted in vascular tissue of young leaves and hydathodes (Mudge et al., 2002)	(Mitsukawa et al, 1997a)
PHT1;4 PHT4 AtPT2 ARAth;Pht1;4	Arabidopsis thaliana	U62331-NCBI	NA	Roots, hydathodes, axillary buds cotyledons, senescing anther filaments and abscission zone at the base of siliques. P deficiency increased expression in root epidermis, root tips and cells interior to pericycle. (Mudge et al., 2002)	(Muchhal et al., 1996) (Okumura et al., 1998) (Lu et al., 1997)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity \mathbf{K}_{m} - details	Sites of Expression	References
PHT1;5 PHT5 ARAth;Pht1;5	Arabidopsis thaliana	AC003033-NCBI	NA	Vascular tissue of cotyledons, senescing leaves strongest in the phloem, young floral buds and sepals later in floral development, weak expression in stele of P deficient roots (Mudge et al., 2002)	(Lin et al., 1999a) (Okumura et al., 1998)
PHT1;6 PHT6 ARAth;Pht1;6	Arabidopsis thaliana	BAA34390-DBJ	NA	Anthers, tapetum of flowers, dry mature pollen grains (Mudge et al., 2002)	$\begin{aligned} & \text { (Okumura et al., } \\ & \text { 1998) } \end{aligned}$
PHT1; 7 ARAth;Pht1;7	Arabidopsis thaliana	AL138650-EMBL	NA	Mature pollen grains, P deficient roots (Mudge et al., 2002)	$\begin{aligned} & \text { (Obermaier et al., } \\ & 2000 \text {) } \end{aligned}$
PHT1;8 ARAth;Pht1;8	Arabidopsis thaliana	AC007369 EMBL	NA	P-deficient roots (Mudge et al., 2002)	(Federspiel et al., 1999)
PHT1;9 ARAth;Pht1;9	Arabidopsis thaliana	AC015450 EMBL	NA	P-deficient roots (Mudge et al., 2002)	(Lin et al., 1999b)

8

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity $\mathrm{K}_{\mathrm{m}} \text { - details }$	Sites of Expression	References
PHT2;1 ARAth;Pht2;1	Arabidopsis thaliana	AB028611-EMBL	Low affinity Complements yeast strain PAM2 ${ }^{\dagger}$ when grown on media containing $394 \mu \mathrm{M}$ P.	Leaves Chloroplast envelope. Arabidopsis PHT2;1 null mutant (pht2;1-1) reveals that PHT2;1 is involved with P allocation, P deficiency responses and translocation of P within leaves.	(Daram et al., 1999) Nersaw \& Harrison, 2002)
CrPT1 = PIT1 CATro;Pht1;1	Catharanthus roseus	AB004809-GB	Transformed yeast mutant DpU\# able to grow on low phosphate $\quad(55 \quad \mu \mathrm{M})$ medium	Roots, stems and young shoots	(Kai et al, 1997)
HvPT1 HORvu;Pht1;1	Hordeum vulgare	AF543197	High affinity $\mathrm{K}_{\mathrm{m}}=8 \mu \mathrm{M}$ in barley roots.	Expressed in roots, induced by P deficiency.	(Smith et al., 1999) (Rae et al., 2003)
HvPT2 HORvu;Pht1;2	Hordeum vulgare	AY187019	NA	Roots	(Smith et al., 1999)

$\stackrel{\rightharpoonup}{8}$

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
HvPT3 HORvu;Pht1;3	Hordeum vulgare	AY187026	NA	Roots	(Smith et al., 1999)
HvPT4 HORvu;Pht1;4	Hordeum vulgare	AY187024	NA	NA	Dr Frank Smith personal communication
HvPT5 HORvu;Pht1;5	Hordeum vulgare	AY187021	NA	NA	Dr Frank Smith personal communication
HvPT6 HORvu;Pht1;6	Hordeum vulgare	AF543198	Low affinity $\mathrm{K}_{\mathrm{m}}=320 \mu \mathrm{M}$ in barley roots	Expressed in old leaves and flag leaves. Expressed in phloem of vascular bundles in leaves and ears.	(Rae et al., 2003)
HvPT7 HORvu;Pht1;7	Hordeum vulgare	AY187022	NA	NA	Dr Frank Smith personal communication

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
HvPT8 HORvu;Pht1;8	Hordeum vulgare	AY187023	NA	Expressed in mycorrhizal roots.	D. Glassop and Dr Frank Smith personal communication
GmPT GLYma;Pht1;1	Glycine max	BG791142-GB	NA	NA	(Shoemaker et al., 1999)
LaPT1 LUPal;Pht1;1	Lupinus albus	AF305623-GB	NA	Strong expression P deficient roots - normal and proteoid Weak expression stems and leaves	(Liu et al., 2001)
LaPT2 LUPal;Pht1;2	Lupinus albus	AF305624-GB	NA	Strong expression in roots - normal and proteoid	(Liu et al., 2001)
LePT1 LYCes;Pht1;1	Lycopersicon esculentum	AF022873 - GB	High affinity Complements yeast strain PAM971t when grown on media containing $31 \mu \mathrm{M}$ P.	P deficient roots (rhizodermal and root cap cells) and shoots, stele of root, cortical cells, phloem tissue and cells containing arbuscules	$\begin{aligned} & \text { (Daram et al., 1998) } \\ & \text { (Rosewarne et al., } \\ & \text { 1999) } \end{aligned}$

Phosphate transporter names, abbrevated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
LePT2 LYCes;Pht1;2	Lycopersicon esculentum	AF022874-GB	NA	Roots	(Liu et al., 1998a)
MtPT1 MEDtr;Pht1;1	Medicago truncatula	AF000354-GB	Low affinity Complements yeast strain NS219* when grown on media containing $192 \mu \mathrm{M}$ P.	Expressed in roots and up regulated when P deficient, down regulated when mycorrhizal. Localised to epidermal cells and root hairs.	(Liu et al., 1998b) (Chiou et al, 2001) Nersaw et al., 2002)
MtPT2 MEDtr;Pht1;2	Medicago truncatula	AF000355-GB	NA	Roots and up regulated when P deficient, down regulated when mycorrhizal	(Liu et al., 1998b)
$\begin{aligned} & \hline \text { MtPT3 } \\ & \text { MEDtr;Pht1;3 } \end{aligned}$	Medicago truncatula		NA	NA	(Harrison et al., 2002)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
MtPT4 MEDtr;Pht1;4	Medicago truncatula	AY116210 cDNA AY116211 - gene	Low affinity Complements yeast strain NS219* when grown on media containing $493 \mu \mathrm{M}$ P and $\mathrm{PAM} 2^{\dagger}$ when grown on media containing 668 $\mu \mathrm{M}$ P.	Expressed in mycorrhizal (G. versiforme) roots only with RNA transcripts being detected 14 days post inoculation with increased expression positively correlated to colonisation. No expression detected at day 7. Expression also noted in roots colonised by Gigaspora gigantea. Expression localised to the peri-arbuscular membrane and coordinated with the life of the arbuscule.	(Harrison et al., 2002)
MtPHT2;1 MEDtr;Pht2;1	Medicago truncatula	AF533081	Low affinity Complements yeast strain PAM2 ${ }^{\dagger}$ when grown on media containing $600 \mu \mathrm{M}$ P.	Expressed in all photosynthetic tissues, dependent upon light (light > dark), development (young > old) and Pi status of the plant (high P slightly $>$ low P). Localised to the chloroplast envelope.	(Zhao et al, 2003)
NtPT1 NICta;Pht1;1	Nicotiana tabacum	AF156696-GB	NA	Weak expression in immature leaves, mature leaves, old leaves, stems and roots. All expression increased when P deficient. NtPT1/2 detected together.	(Kai et al., 2002) (Baek et al., 2001)

$\stackrel{\rightharpoonup}{\text { a }}$

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity $\mathrm{K}_{\mathrm{m}} \text { - details }$	Sites of Expression	References
NtPT2 NICta;Pht1;2	Nicotiana tabacum	AB042950-GB	NA	Immature leaves, mature leaves, old leaves, stems and roots. All expression increased when P deficient. NtPT1/2 detected together.	(Kai et al., 2002)
NtPT3 NICta;Pht1;3	Nicotiana tabacum	AB042951-GB	NA	No expression when P sufficient. Expressed in old leaves and roots when P deficient. NtPT3/4 detected together.	(Kai et al., 2002)
NtPT4 NICta;Pht1;4	Nicotiana tabacum	AB042956-GB	NA	No expression when P sufficient. Expressed in old leaves and roots when P deficient. NtPT3/4 detected together.	(Kai et al., 2002)
OrPT ORYru;Pht1;1	Oryza rufipogon	AF337531-EMBL	NA	NA	(Ming et al., 2001)
$\begin{aligned} & \text { OsPT } \\ & \text { ORYsa } \end{aligned}$	Oryza sativa	AF239619-GB	NA	NA	(Yu et al., 2000a)
OsPT1169 ORYsa;PhT1169	Oryza sativa	AF271893-EMBL	NA	NA	(Yu et al., 2000b)

访

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
OsPT796 ORYsa;Pht;796	Oryza sativa	AF229169 - GB	NA	NA	(Yu et al., 2000b)
OsPT970 ORYsa;Pht;970	Oryza sativa	AF335588-GB	NA	NA	(Ming \& Shen, 2001)
OsPT1 ORYsa;Pht1;1	Oryza sativa	AF536961-GB	NA	Low expression in roots, transcription reduced when colonised with G. intraradices.	(Paszkowski et al., 2002)
OsPT2 ORYsa;Pht1;2	Oryza sativa	AF536962-GB	NA	Expressed in roots, transcription reduced when colonised with G. intraradices. Transcription reduced with increasing P content.	(Paszkowski et al, 2002)
OsPT3 ORYsa;Pht1;3	Oryza sativa	AF536963-GB	NA	Low expression in roots, transcription reduced when colonised with G. intraradices.	(Paszkowski et al., 2002)
$\begin{array}{l\|} \hline \text { OsPT4 } \\ \text { ORYsa;Pht1;4 } \end{array}$	Oryza sativa	AF536964-GB	NA	Low expression in roots, transcription unaltered when colonised with G . intraradices.	(Paszkowski et al., 2002)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
OsPT5 ORYsa;Pht1;5	Oryza sativa	AF536965-GB	NA	Low expression in roots, transcription unaltered when colonised with G. intraradices.	(Paszkowski et al., 2002)
OsPT6 ORYsa;Pht1;6	Oryza sativa	AF536966-GB	NA	Expressed in roots, transcription reduced when colonised with \mathcal{G}. intraradices.	(Paszkowski et al., 2002)
OsPT7 ORYsa;Pht1;7	Oryza sativa	AF536967-GB	NA	Very low expression in mycorrhizal or nonmycorrhizal roots.	(Paszkowski et al, 2002)
OsPT8 ORYsa;Pht1;8	Oryza sativa	AF536968-GB	NA	Low expression in roots, transcription unaltered when colonised with G. intraradices.	(Paszkowski et al., 2002)
OsPT9 ORYsa;Pht1;9	Oryza sativa	AF536969-GB	NA	Low expression in roots, transcription reduced when colonised with G. intraradices.	(Paszkowski et al, 2002)
OsPT10 ORYsa;Pht1;10	Oryza sativa	AF536970 - GB	NA	Low expression in roots, transcription reduced when colonised with G. intraradices.	(Paszkowski et al., 2002)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity $\mathbf{K}_{\mathbf{m}}$ - details	Sites of Expression	References
OsPT11 OsPT1 ORYsa;Pht1;11	Oryza sativa	AF536971 - GB (OsPT11) AF493787 - GB (OsPT1)	Low affinity Complements \quad yeast pho84 mutant grown on \quad media containing $200 \mu \mathrm{MP}$	Expressed in mycorrhizal (G. intraradices) roots with RNA transcripts being detected 25 days post inoculation at 2% colonisation with increased expression positively correlated to colonisation. No expression detected at day 15 (0% colonised). No expression when roots infected with other soil microbes. OsPT1 (Godwin, 2002)	$\begin{aligned} & \text { (Paszkowski et al., } \\ & \text { 2002) } \end{aligned}$
OsPT12 ORYsa;Pht1;12	Oryza sativa	AF536972-GB	NA	Not detected in roots.	(Paszkowski et al., 2002)
OsPT13 ORYsa;Pht1;13	Oryza sativa	AF536973-GB	NA	Not detected in roots.	(Paszkowski et al., 2002)
OsPT2	Oryza sativa	AF493788-GB	NA	NA	(Godwin, 2002)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
StPT1 SOLtu;Pht1;1	Solanum tuberosum	X98890-GB	Low affinity Complements yeast strain MB192 (PHO84 mutant) when grown on media containing $280 \mu \mathrm{M} \mathrm{P}$	Roots, tubers, source leaves, floral organs and P deficient roots	(Leggewie et al., 1997)
StPT2 SOLtu;Pht1;2	Solanum tuberosum	X98891-GB	Low affinity Complements yeast strain MB192 (PHO84 mutant) when grown on media containing $130 \mu \mathrm{MP}$	P-deficient roots	$\begin{aligned} & \hline \text { (Leggewie et al., } \\ & \text { 1997) } \end{aligned}$
StPT3 SOLItu;Pht1;3	Solanum tuberosum	AJ318822-GB	High affinity Complements yeast strain PAM2 ${ }^{\dagger}$ when grown on media containing $64 \mu \mathrm{M}$ P.	Root sectors where mycormizal structures are formed, most prominent in arbuscule containing cells, presumably located in the peri-arbuscular membrane	(Rausch et al., 2001) (Harrison et al., 2002)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
CSWPT1	Triticum aestivum Chinese spring wheat	Q9XEL6	NA	NA	
TaPT1 TRIae;Pht1;1	Triticum aestivum	AF110180 - EMBL Q9XEL6	NA	NA	(Li et al, 1999)
TaPT2 TRlae;Pht1;2	Triticum aestivum Xiaoyan 54	AJ344240	NA	Expression mainly seen in roots, weakly in leaves. All expression dependent on cultivar, P content. Cultivar Jing 411 expressed only in -P roots.	(Davies et al., 2002)
TRlae;Pht1;2-1	Triticum aestivum (81(85)-5-3-3-3)	AJ344241	NA	NA	(Davies et al., 2002)
TRlae;Pht1;2-5	Titicum aestivum $(81(85)-5-3-3-3)$	AJ344242	NA	NA	(Davies et al., 2002)
TaPT3 TRlae;Pht1;3		AJ344243	NA	Expression mainly seen in roots, weakly in leaves. All expression dependent on cultivar, P content.	(Davies et al., 2002)

亏

Phosphate transporter names, abbrevilated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
TaPT4 TRlae;Pht1;4	Triticum aestivum Chinese spring wheat	AJ344244	NA	NA	(Davies et al., 2002)
TaPT5.1 TRlae:Pht1;5-1	Triticum aestivum (81(85)-5-3-3-3)	AJ344245	NA	Cultivar 81(85)-5-3-3-3 expressed in roots and leaves (not P dependent)	(Davies et al, 2002)
TaPT5.2 TRlae;Pht1;5-2	Triticum aestivum $(81(85)-5-3-3-3)$	AJ344246	NA	Cultivar $81(85)-5-3-3-3$ expressed in low P roots only	(Davies et al., 2002)
TaPT6 TRla;ePht1;6	Triticum aestivum Chinese spring wheat	AJ433247	NA	Expression mainly seen in roots, weakly in leaves. All expression dependent on cultivar, P content. Strong expression - P leaves of $81(85)-5-3-3-3$. No expression in T. elongatum or T.intermedium.	(Davies et al., 2002)
TaPT7 TRlae;Pht1;7	Triticum aestivum Xiaoyan 54	AJ344248	NA	No expression noted in roots or shoots of hydroponically grown varieties.	(Davies et al., 2002)
TaPT8 TRlae;Pht1;8	Tinticum aestivum Xiaoyan 54	AJ344249	NA	No expression noted in roots or shoots of hydroponically grown varieties.	(Davies et al., 2002)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
The-15 THIel;Pht1;15	Thinopyrum elongatum wheat grass	AJ413955	NA	NA	(Davies et al., 2002)
The-17 THIel;Pht1;17	Thinopyrum elongatum wheat grass	AJ413956	NA	NA	(Davies et al., 2002)
The-19 THHel;Pht1;19	Thinopyrum elongatum wheat grass	AJ413957	NA	NA	(Davies et al., 2002)
Thi-1 THlin;Pht1;1	Thinopyrum intermedium wheat grass	AJ413958	NA	NA	(Davies et al., 2002)
Thi-2 THin;Pht1;2	Thinopyrum intermedium wheat grass	AJ413959	NA	NA	(Davies et al., 2002)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity K_{m} - details	Sites of Expression	References
Thi-3 THin;Pht1;3	Thinopyrum intermedium wheat grass	AJ413960	NA	NA	(Davies et al., 2002)
Thi-4 THin;Pht1;4	Thinopyrum intermedium wheat grass	AJ413961	NA	NA	(Davies et al., 2002)
Thi-7 THilin;Pht1;7	Thinopyrum intermedium wheat grass	AJ413962	NA	NA	(Davies et al., 2002)
Thi-9 THlin;Pht1;9	Thinopyrum intermedium wheat grass	AJ413963	NA	NA	(Davies et al., 2002)
Thi-91 THlin;Pht1;91	Thinopyrum intermedium wheat grass	AJ413964	NA	NA	(Davies et al., 2002)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Plant	Accession number	Affinity $\mathrm{K}_{\mathrm{m}} \text { - details }$	Sites of Expression	References
SrPT1 SESro;Pht1;1	Sesbania rostrata	AJ286743 - GB	NA	NA	(Aono \& Oyaizu, 2001)
SrPT2 SESro;Pht1;2	Sesbania rostrata	AJ286744 - GB	NA	NA	(Aono \& Oyaizu, 2001)
ZmPT1 ZEAma;Pht1;1	Zea mays	Patent WO9958657	NA	NA	(Zhao et al., 1999)
ZmPT2 ZEAma;Pht1;2	Zea mays	Patent WO9958657	NA	NA	(Zhao et al., 1999)
ZmPT3 ZEAma;Pht1;3	Zea mays	Patent W09958657	NA	NA	(Zhao et al., 1999)
$\begin{aligned} & \hline \text { ZmPT4 } \\ & \text { ZEAma;Pht1;4 } \end{aligned}$	Zea mays	Patent W09958657	NA	NA	(Zhao et al., 1999)
ZmPT5 ZEAma:Pht1;5	Zea mays	Patent W09958657	NA	NA	(Zhao et al., 1999)
ZmPT6 ZEAma;Pht1;6	Zea mays	Patent W09958657	NA	Mycorrizal roots.	(Zhao et al., 1999)

Phosphate transporter names, abbreviated and correct nomenclature (section 3.11)	Mycorrhizal fungi name	Accession number	Affinity K_{m} - details	Sites of Expression	References
GVPT	Glomus versiforme	$\begin{aligned} & \text { U38650 - GB } \\ & \text { Q00908 } \end{aligned}$	High affinity Complements yeast pho84 yeast mutant when grown on media containing $18 \mu \mathrm{M} \mathrm{P}$.	Expressed in external hyphae.	(Harrison \& van Buuren, 1995) (Versaw et al., 2002)
GiPT	Glomus intraradices	AF359112	NA	Expressed in external hyphae.	(Maldonado-Mendoza et al., 2001) (Versaw et al., 2002)

Gene names of Arabidopsis clones from http://www.mips.gsf.de/
† PAM2, PM971 - Saccharomyces cerevisiae yeast mutant defective in two high-affinity Pi-transporter genes PH084 and PH089 (Martinez \& Persson, 1998)
\ddagger DpU - Saccharomyces cerevisiae yeast mutant defective in high-affinity Pi-transporter gene PH084 (Kai et al., 1997)

* NS219 - Saccharomyces cerevisiae yeast mutant defective in high-affinity Pi-transporter gene PH084 (Bun-ya et al., 1991)

SOIL ANALYSIS REPORT

Faringa Foad. Gibson Island. Alirariie
PD. 日gn 140, Morringside. Cidd a 170 Tel (07) 38079300

Millmerran soil sample

Methods, calculat ions mutlined Dierpage
FDA IMTERPRETATLON OF TMESE REEULIS
PLEASE CONTACT YOU DEAL䍝:

- ACCOHMT

THASON ISLAND LRE

OR YOUR INEITEC AREA MANARER
HARELLE JMGER
This taboratory is accrerfited by the thational Nascciation of Testing Autbories. Austráa The teat is) repgetest hercin heive teon porlomed in accendance with is lotms of registaten Tha tockenent shat not ba reproducod excest in bill

Previous Grap
other Relevant tomments

fax

Portcode
Direstion to Tann
Average Antulal Rainfall Itio
SOIf SMPLE MD SITE JMFORMAIION:

Previous Crop
Prayiou Crop

Results of Analyais

 order mumb PRODUCT So aldor049
5AMPLE BAC MMBER SURTACE 155532 10402 corresponoing deep soll bag mo onie of samplimg

Date received	13/07/00
date af reparj	19/07/00

*PH(1:3 CaCL2) 4.0 0.6

NItrate Hitrogen $\mathrm{mg} / \mathrm{kg}$ 40.2 Phosphorus(Colwell) mg/kg 0.37
 Calciun (AmmoAc.) meq/100g Hagnesilun(Amen.Ac. 2mea/100g 4.36 Aluminius (KCl) misq/100g Sodium (NMm Ac.) meq/100日 1.4 B chloride mg/kg 35 Electrical Condict. dsjom 0.05
Copper (DIPA) ma/kg 0.3

Zinc (DTPA) mgikg 0.3
manganese (D TPA) mg/kg 2
Iron (OTPA) mg/kg 67
Boron (HOt Cacl2) mg/kg 0.4
sulfur ((w.P) ma/kg
10

This laboratoly is accreditor by tho Nom-onal Association of
 This docamand shall nut be reproduced excopt if full

Thin Iatirratiory is nol assaclated with the sampling pirceass
 Report $\#$ g004 9776

Ferm No gos (hey 5)

Appendix 3: Vectors

pGemT-easy (\#1360) - supplied by Promega Corporation, Annandale, New South Wales, Australia.

This vector can be transformed into E. coli DH10ß and grown on LB Ampicillin/XIA plates or LB Ampicillin broth.

LB (Luria-Bertani) broth per L:
To 950 mL distilled $\mathrm{H}_{2} \mathrm{O}$ add:
10 g bacto-tryptone
5 g bacto-yeast extract

10 g NaCl

Adjust the pH to 7 with 5 N NaOH , adjust the volume to 1 L with distilled $\mathrm{H}_{2} \mathrm{O}$ and sterilise by autoclaving for 20 m at 15 lb sq.in. ${ }^{-1}$ on liquid cycle.

LB plates per L:

Add 15 g bacto-agar prior to autoclaving.

LB Ampicillin/XIA plates:

Prepare LB plates and cool media to $50^{\circ} \mathrm{C}$ before adding:

Reagent	method of preparation	final concentration in media
Ampicillin	dissolved in $\mathrm{H}_{2} \mathrm{O}$ and filter sterilised	$100 \mu \mathrm{~g} \mathrm{~mL}$

Mix gently and thoroughly before pouring plates in sterile laminar flow.

LB Ampicillin broth:

Prepare LB broth and cool media to $50^{\circ} \mathrm{C}$ before adding Ampicillin, as above.
pZERO1 (\#K2500-01) - supplied by Invitrogen Australia Pty Lid, Mount Waverly, Victoria, Australia.

pZERO1 can be transformed into E. coli DH10ß and grown on LSLB Zeocin plates or LSLB Zeocin broth.

LSLB (Low Salt Luria-Bertani) broth per L:

To 950 mL distilled $\mathrm{H}_{2} \mathrm{O}$ add:
10 g bacto-tryptone
5 g bacto-yeast extract
5 g NaCl
Adjust the pH to 7 with 5 N NaOH , adjust the volume to 1 L with distilled $\mathrm{H}_{2} \mathrm{O}$ and sterilise by autoclaving for 20 min at 15 lb sq.in. ${ }^{-1}$ on liquid cycle.

LSLB plates per L:

As for broth, add 15 g bacto-agar prior to autoclaving.

LSLB Zeocin plates/broth:

Prepare LSLB plates and cool media to $50^{\circ} \mathrm{C}$ before adding Zeocin to a final concentration of $25 \mu \mathrm{~g} \mathrm{~mL}$ 1. Zeocin (\#R250-01) is supplied by Invitrogen Australia Pty Ltd, Mount Waverly, Victoria, Australia.
pWBVec8 - supplied by CSIRO Plant Industry, Canberra, ACT, Australia.

pWBVec8 is transformed into Agrobacterium tumefaciens strain AGL1 and grown on YEP/Rifampicillin/Spectinomycin broth or plates.

YEP broth media per L:

To 950 mL distilled $\mathrm{H}_{2} \mathrm{O}$ add
10 g Bacto peptone
10 g yeast extract
5 g NaCl
Mix and adjust volume to 1 L , autoclave.

YEP medium per L:

As for broth, add 15 g bacto-agar prior to autoclaving.

YEP Rifampicillin/Spectinomycin:
Prepare YEP and cool media to $50^{\circ} \mathrm{C}$ before adding:

Reagent	Method of preparation	Final concentration in media
Spectinomycin	dissolved in $\mathrm{H}_{2} \mathrm{O}$ and filter sterilised	$100 \mu \mathrm{~g} \mathrm{~mL}$
Rifampicillin	dissolved in Dimethyl Sulfoxide	$50 \mu \mathrm{~g} \mathrm{~mL}$

Other Reagents:

SOC Medium per L:

To 950 mL distilled $\mathrm{H}_{2} \mathrm{O}$ add:
20 g bacto-tryptone
5 g bacto-yeast extract
0.5 g NaCl

10 mL 250 mM KCl
Adjust the pH to 7 with 5 N NaOH , adjust the volume to 1 L with distilled $\mathrm{H}_{2} \mathrm{O}$ and sterilise by autoclaving for 20 min at $15 \mathrm{lb} \mathrm{sq} . \mathrm{in}^{-1}$ on liquid cycle.
Before use allow media to cool and add:
5 mL MgCl 2 [2 M, sterilised by autoclaving]
20 mL 1 M Glucose (filter sterilised through a $0.22-\mu \mathrm{m}$ filter)

TAE $1 \times$ buffer:
0.04 M Tris-acetate
0.001 M Ethylenediaminetetraacetic Acid (EDTA)

Appendix 4: Sequences

The origin of the sequences is from Genbank: accession numbers or patent numbers for each sequence is given in the introduction of that sequence. Coloured bases highlight the sequence of the primer named underneath.
Promoter regions $=$ plain text
Start codon = ATG
Coding region $=$ Bold
Stop codon = TAA or TAG or TGA
3^{\prime} untranslated region $=$ underlined.

Barley Phosphate Transporters

HvPT1

Accession number $=$ AF543197
HvPT1 total gene $=3202 \mathrm{bp}$
Promoter = 1403 bp
cDNA $=1563 \mathrm{bp}=521$ amino acids
3' untranslated region $=236 \mathrm{bp}$

5'	1	GAGCTCCGAC	TACCCCCGCG	ATATCAAGCA	agacccatgg	AGGGCAGGCG
	51	GCGGCCTACA	AAGTTCCAGg	ACCTAACCTA	CGGCCGGTGG	GGCCTCA
	101	CCTCGTTCAA	CGAGTCCGGC	GGCGAGGCGT	GGGCAGGCAT	CGGCGTAGAA
	151	AGCGATGGAT	CAACGGGGGC	CATCTACAAC	TGCCTACGTG	GACTGTTTGA
	201	CTCCGCCACG	TTGGCACTGA	CACTGGGTCC	TGTTTGTTAG	TC
	251	AAAATGCAAT	CAACCGACTA	TTTAGTGCTT	GAATTTTTTA	CTGAATAACG
	301	TGTTTTGGGC	AAACTTTTTT	GAAAACGATT	GTTITCGGCA	G
	351	CAATTTCGGT	GGTTTTTGAC	AATTTACTCT	AAACATCAGC	AGA
	401	CTCAGTTACA	gacccanctc	AAAAACACCT	CAATtacagt	CAGGCATGTT
	451	GCCAATGGGT	TCTTCGTTGT	TCTCACACCT	GGGTGGGTGT	TTATTCGAAA
	501	GCATGTTGAT	Attgctacge	TCCATGAGGT	Ataggccaga	gactctcgta
	551	AACTGATAGC	ACGTTTACTT	GCTGGTTGCT	gcatatcgia	CA
	601	AAACACGATG	AACTCCAACT	TGGTATAAAC	TACAGCCGTC	AC
	651	ССТСАТСССТ	AACGAATTGT	GGTGCCCATC	CGGGAAAATA	C
	701	TAATGCAATC	AATTTTTCGT	TACCTTTCTA	ACTATGGAAG	TGGGACG
	751	TGTAAACAAC	ACCATGTCAT	gGtcatatat	ACATAAAACT	GCCAACTTGC
	801	TAATTAAGTT	tCTCAGGCAT	ATTCGGATCT	TCTCATTATT	ttctctcgit
	851	TACAGTTGCT	AAGTTTGACA	tagctactag	TG	gTCtactact
	901	ATTCGAAGCT	GTGATCCGCT	TGATGTACTT	CAGCAGTTCG	AgAtccatct
	951	tatatgitca	tatatatgtc	ATGTATATTC	CtAgCATAAC	AATtATGTGG
	1001	GTTCCAGTTT	tatgtatatg	AAACTTCAAA	GTCAAATCTC	ACATAGACCT
	1051	tatatahgan	ATCCCTAGCT	CAATCCTTGC	GA	ATGCATCCCA
	1101	ACTTAGCAAG	CTGCAGCTTA	AATTAAGGGA	CGACATTTTA	CAT
	1151	TGTCTATTTT	AtAAGAGTAT	CATGCCAAAA	TCTTGCTGTC	TTGATAATGT
	1201	ACGGCTGTAC	gTACGTGCAA	tgccgtacat	GGAGATTTTA	atatttacan
	1251	gTAgCGAGGA	AATGTCCCTT	tggcatatcc	GCCGAACCTG	CATtATGCCT
	1301	ATATATACGT	ACTAGAAGAA	CGGAACAAAT	CACACAACAA	gagaialicca
	1351	gAAGAAAGAT	AGAAGGGGGC	AgGagttang	CTGAGAGATC	GCCGGCGACC
	1401	ATGGCGACTG	ancagctcaa	CGIGTtGAAA	gCGCTCGATG	rtgCCA
	1451	gcanctatac	CATTTCAAGG	CCGTGGTGAT	cgccgecatg	GGCTTCTI
	1501	CCGACGCCTA	CGACCTCTtC	tGCATCGCGC	ttgtcaccal	GC
	1551	cgcatctact	acacceatc	tGctctcanc	GAGCCCGGCC	ACCTCCCGGC
	1601	AAACGTGTCG	GCCGCCGTGA	ACGGCGTGGC	cctatgcgec	ACACTT
	1651	GCCAGCTCTT	CTTCGGCTGG	CtCGgTGACA	AgCtCGGCCG	CAAGAGCGTC
	1701	tacgecttca	cGCtcatcct	catgetcctc	tGctccatcg	CGTCGGGGCT
	1751	ctceittigea	CACGAGGCCA	AgGgcetaft	gGgGactcta	TGTITCTTCC
	1801	GCttctgect	CGGCTTCGGC	gtcgecgecg	ACTACCCTCT	gagcgecacc
	1851	Atcatgtccg	AGTATGCTAA	CAAGAAGACC	CGCGGCACCT	ttatcgccec
	1901	Cgterttecc	AtGCAGgGgt	ttgecatcct	atttgetact	attgttacca
	1951	tcatcatcti	gTCCGCATTC	cgacatgcat	tccctacacc	gccattctac
	2001	Attgacgecg	cggcatccat	tgatccgala	gccgactacg	tGTGGCGC

2051
2101

CATCGTCATG TTCGGCACCA TCCCGGCCGC CCTGACCTAC TACTGGCGCA tGAAGATGCC CGAAACTGCA CGGTACACAG CACTCATCGC CGGCAACACG AAGCAAGCCA CATCAGACAT GTCCAAGGTG CTCAACAAGG AGATCTCAGA GGAGGCTGGG CAGGGTGAGC GGGCCACTGG TGATACCTGG GGCCTCTTCT CCAGGCAGTT CATGAAGCGC CATGGGGTGC ACTTGCTAGC GACCACAAGC ACTTGGTTCC TGCTCGATGT GGCCTTCTAC AGCCAGAACC TGTTCCAGAA ggacatcttc accangatcg ggtggatccc gccggccaig accatgantg CATTGGAGGA ATTGTACCGC ATCGCCCGTG CCCAAGCGCT CATCGCGCTC tGCGGCACGG tGCCGGGCTA CTGGTTCACC GTCGCCTTCA TCGACATCAT CGGGAGGTTC TGGATCCAGC TCATGGGATT CACCATGATG ACCATTTTCA tGCTtGCAAT CGCGATACCG tatgactact tggtganacc aggeanccac ACCGGCTICG TCGTGCTITA TGGGCTCACT TTCTTCTTCG CCAACTTCGG CCCCAACAGC ACAACCTTCA TCGTACCGGC AGAGATCTTC CCGGCGAGGC tCCGGTCAAC ATGCCACGGT ATATCGGCCG CAACCGGTAA GGCGGGCGCG atcatcgacg cattcgegtt cttgtatgcg tcgcaggacc agangangcc tgagacagg t tattcacgeg gaitcgecat gcgcancgcc ctctucgigc TCGCTGGCAC AAACTTTCTG GGCCTGCTCT TTTCCCTGCT GGTGCCGGAG tCCAAGGGCA AGTCGCTCGA GGAGCTCTCC AAGGAGAACG TCGGCGATGA Sense primer \rightarrow RT-PCR
2951 TGGCATCGAT GCTTAGGCTG GTGCACATCT GGAGACACAG AGTCATGCAC Sense primer \rightarrow real-time RT-PCR
3001 AAGTGTTTCC TTTCTCCTTG CAGCATTTCT TTCCTTCTGT GTGGCCACTT \leftarrow Anti sense primer real-time RT-PCR
3051 CCTGAATTTG TGGTGTCGCT TACCGITCGT GTGTTGCTGT TTCTGGCTGG 3101 ATTTTGCCTA AACCCAGCGA GATTGCAATT TTCTGATGGT GCTCTGTATT 3151 CGTTTGTGAA GAATTGCCAA TAAAATATCC CCTTCATTTG ATTTGATTCC 3201
\qquad

HvPT2
Accession number $=$ AY187019
HvPT2 total gene $=3063 \mathrm{bp}$
Promoter $=1295 \mathrm{bp}$
cDNA $=1578 \mathrm{bp}=525$ amino acids
3^{\prime} untranslated region $=190 \mathrm{bp}$
5' 1 GAGCTCAATT AACCCTCACT AAAGGGAGTC GACTCGATCC TTTTTTTTAGA AAATGAGGAT TATCCACCGC CTCTCTTCAT TTTTTTTAAC TGAGTCAAAA GCTTTGTCTC ATCCATTAAA TAAAAGAGAA TAGAGTTTTT TACATCCCGC CTCTCTTCAT ATGCAGTCAT AATAACTGCA AGACCTACCA CTGCATATCC ATTTATCATT GATGTTTTGT TTTCTACTTT TGCTTTCCTT CTTATTCTCG AGCAACCGGC TAGAGCTTTG CCTTTTCATA CTATAAAACA AGATAATTGT CCAATTAATA TGAAAGACTG GCCGAAAACC GATATAACGA GCCATACAAA CGACATCCCC GTGGCCACAC CCCCAATGGC CCGACTACTC TATCACCCAA GAAATCCTAG TCGACACCCT ACCTAATGAT ACAGAGTCGT CACTCCGGCT TACAAACATC AGAAACACAC CACACTGGCC TCGAGGCCGC GCTCACCCAA CAGGTCGACG ACTCAACTAC GCGAATAGAT TCTCAAACCA CACCAAGGTG ATCTCCGGAG CCGCCACTCC GCTTCCTCAC CAGCCCCGAG GCTACACACC CGATGATTTG TTGAGAGCAC CACCCAAGCG ACAGAACAAA CATCTTTCAT TACAAAAGCA ATCTCCGGAG CCGCCGCTCC GGCTTTGACA CTGGCCCCAA GGAGACACAC ATGCCTAGTC GATAGCGACA CGCCATGAGA ACACGAGCCA CAAGTGCCTA CCTCTTTCTG CCATACCATG TAGTTATAGA GGAGCGACCA AATTAACCCC ATCTCTGAAC AAAGGTCACC AAATCCATGT TTGTAGTGAG AACATAAGAT ACAACTCATC GTATAATCTT GACCTTTTTC TCACAAAGCT TGCTTGTGTC TGTACAATCT GTTCCTTTGA GGTATATTCC AAGCATAACC ATGATTTGAC TTCAGTATTT TTATTTCCCA AATTCTATAG TACTGAAATT TGAAGGTCAA ACCTGATAAA TTAAAGTTTA GCATTCCTTA ATCCTTCTAA GAACCATCCT GATATGTACA ATTCGTTGTA CTTACAAGCG ATGCCGTACA tatcatattr tatactugca actagcagtg ttagattggc ataccacanc ATATGTCCTT ACCTGTATGC CTTCACCCTG CATTATGGCT ATATATACGT ACCAGATGAG CACCGAATAA AGCACACCAG AAGAGAGCAA AAAAAGAAGA AAGATAGAAG GGGGCAGGAG TTAAGCTGAG AGATCGCCGG CGGCCATGGC

HvPT3

Accession number $=$ AY187026
HvPT3 total gene $=6561 \mathrm{bp}$
Promoter $=4841 \mathrm{bp}$
cDNA $=1611 \mathrm{bp}=537$ amino acids
3^{\prime} untranslated region $=108 \mathrm{bp}$

5' | 1 | ACTAGTGAAT CAAAGGTTCC TTTAGAACTT GTGTTTTCGG ATGTATGGGG |
| ---: | :--- | :--- | :--- |
| 51 | TCCTGGCCCA ATCTCGGTTG GTAGACAAAA GTATTACGTG AGCTTTATTG |
| 101 | ATGATTTTAG TAAATTTTCT TGGATCTATT TACTCAAAAA TAAGTCTGAT |
| 151 | GTTTTTGAGA TGTTTCATCT GTTTCAACAG CTTGTTGAAC TCCTCTTTAA |
| 201 | TCGCAAGATT TTGTCTATGC AAACCAATTG GGGGTGAGTA CCAAAAGCTT |
| 251 | AACTCCTTCT TTGAGTGCAT TGGTATCTCC ACCATGTTTC CTGCCCTCAT |
| 301 | GCTCATCAAC AGAACGAATC TGCCGAGCGC AAACATTGCC ATATTGTTGA |
| 351 | GGTTGGCTTG TCCCTGCTCG CTCATGCCTC TATGACATTG AAATTTTGGG |
| 401 | ATGAAGCGTT TCTTACAGCG GTCTATCTTA TCAACCGTGT CCCTAGTCGA |
| 451 | GTCATCCACC ACCAAACTCC ACTAGAACGC ATGTTTGATA TTAAACCAAA |
| 501 | CTATAACTTT CTTCACATTT TTGGTTGTGC GGTATGGCCA AATCTACGGC |
| 551 | CTTTCAACAA ACACAAGCTC GAATTCCGTT CCAAACTGTG CGTATTCATA |

GgAtacagca atctccacai aggatacang tgtctugatg tttcctctgg CCGGGTTTAT ATTTCCTGCG ATGTTGTTTT TGATGATCAC ATCTTCCCTT TCGCCACCTT ACATCCAAAT GCCGGCGCTC AACTCCGCAA GGAGCTCATA СTTCTTCCGC CCAACCTTCT ACCTTTGTCC GGTCCTTTAC CACGGGGAGG AGTAGATTTT GATCATATGT CTATATCTCA TAACCCTGGT GCAAGTGTGC AGGAACATAC GGAAGAAGAA ATCGCCGAAA ACGGCCTTGA TTTTATGCAG CAACCAGATC ACAGCGGTGC AACAAATCCT GGTGGAGATC CTGATGCTGA TTCTGGCGCA GAATCTGCCT CGGAGTCACG CGCTGCAACT GCAGCAGACA GATCCTCCCC GGGATCAGCG CCATCGCCAG GCCGGGCAGG CGGATCCTCT CCGGGTCTCG CGCCAGCACC AGGTGGGTCG GGCGGGCCCT CGGTAGGTGG ATCTCCTTCG GCCCCGCGCT AGCACCAGGC AGGACGGACG GGCCACATGC ACTGTCCCCC GCGTGCCCCT CCCGACACTG GTCACACGCA TGCACCCACT CCGGAGCCTC CAAGTGGCGG CACTGCGGCT GATCTGCATG GCGGATCTTC TACGACTGAT GCAACCGATG CTTCTCCCGT GCATCAAACT CGcCTCCATC AACATCTCTC TCGACCACCG CCGCCACCAC CTGATCGACT CCAAACCAGG TCTCGTAGTG GCATTATTAA ACCTAAAGTT TATAAAGATG GTTGCGTACG CTGGGGTTCT TTCTGTTCTA CAGGTGAACC GCAAACTCTG GATGAGGCCC TTAGTCAGTC ACAATGGAAG GCTGCTATGG ATGAGGAGTA TTCTGCTCTT ATGGAGAACA ACACATGGCA ACTTGTTCCT CCTGTCAAGG GCAGAAATGT TATTGGCTGC AAATGGGTCT ATAAAGTTAA AAGGAAGTCT AACGGCACCA TTGACAGGTA CAAGGCTCGG TTGGTTGCAA AAGGGTTTAA GCAAAGGTAT GGACTTGACT ATGAGGATAC TTTCAATCAT GTAGTTAAAG TTGCCACTAT CAGAATTGTT CTTTCAGTAG CAGTATCTAG AAGCTGGTGC ATACGGCAAT TAGATGTGAA GAACGCGTTT TTGCATGGTG TTCTGGAAGA AGAAGTGTTT ATGAAGCAAC CTCCTGGATA TGAGAATCCA CAGTTACCAC AACATGTTTG CAGGCTTGAC AAgGCCTTGT ATGGTCTCAA ACAAGCACCA AGAGCTTGGT ACTATAGGTT GTCTTCCAAA TTGCAGCATT GGGTTMTATG CCCTCAAAGG GTGACACTTC ATTGTTCTTT TATCATAGGA AAGGAGTCAC TATTTATATG CTCATTTATG TTGATGATAT AATTGTCACC AATTCATGTT CCCAGGCTGT TGAAGCTCTT CTCAAGGATT TGCGCATGGA TTTTGCTCTC AAAGATCTTG GTGATCTCCA CTACTTCCTT GGCATTGAGG TAAAACATGT GGCAAGTGGC ATTGTGCTAT CACGGGAGAA ATATGTGCAG GATATACTCC AGAGAGCAGG AATGAAGAAT TGTAAGCCAT CTCCTACTCC TTTGTCAACT TCTCAAAAAC TGTCACTTTA TTCTGGGAGG GTACTTGTGC CAGAAGATGC TACCAAGTAC AgAAgTgTtG taggagccct acaitactta acattgacta gcccatatat CTCATACTCA GTGAATAAAG GATGGTAGTT CTTACATGCT CCAACCAGNG GACACTTTTT GTCACGCCCA AGATGCGACC CTATCCTTAA ATTTGGCACC GAGAAGCATC ATCGGGGATA GAAGCGCATC TCGTCGTGTC GCAtGAATGG ATATCGGTTA CAAGTACATG gTACTGAAAG GAAGAGATAT ATAATAGAAT TGGGCTTACA CTCGCCACAA GCTACATCAG AGTCACATCA GTACATTACA TAATCATCAA GGGTAAGAGC AGGGTCCGAC TACGGACGAA AACAACCGAG AAAAGAAGAA CGACGTCCAT CCTTGCTATC CCAGGCTGCC GGTCTGGAAC CCATCCTAGA TTGATGAAGA AGAAGAAGAA GAAGAAGAAG AAGAAGAAGA AGAAGAAGAA GCAACTCCAA ATAAACAATC CACGCGCTCG CGTCAAGTAA CCTTTACATG TACTTGCAAC TGGTGTTGTA GTAATCTGTG AGCCATAGGG gACTCAGCAA TCTCATTTCC AAAGATATCA AGACTAGCAA AGCTTAATGG GTGAGGCATG GTTAAGTGGT GAGGTTGCAG CAGCGGCTAA GCACATATTT GGTGGCTAAA CTTACGAGTA CAAGGAATAA GAGGGGATGA TCTACGCATA ACGTAGTGAA CTACTAATGA TCAGATGAAT GATCCTGAAC GCCTACCTAC GTTAGACATA ACCCCACCGT GTCCTCGATC GGAGTAAGAA CTCACGAAAG AgACAGTCAC GGTTACGCAC ACAGTTGGCA TATTTTAATT AAGTTAACTT CAAGTTATCT AGAACCAGTG TTAAACAAAG CTTCCACGTT GCCACAATTT tAgACTATGG TCTAAATACA TGTAGCTAGC GGGTTAGGTT TAGGGACATC TGGACCCTCA GATTTAGATC GGGTGGTCAA GATGATTAGG TTAGGGAGCC CAATGGACAA ACCGAAGACG GCTTGCGGTA AAACAGGGTT GATCCGGATA CAACGGTCAC GACCGTATGT TTCGGGTACC GAGAGGTTTT CGAACTAGGC TGCGCGTAGG GTCGATGCAC TGTGCAGAGG GGCTAGGCGG AGATTAGAGG GAAAACGGGC GACCCGGCGA CGATTTTTAA AACACCGACA ACCGTCCGAC GGTAGACCGA ATACGGTGCC GCTACGGTCG ACCGTTCGGG TACCAGACGG ACTCCGATCG CGACGAAATT CGACAGGCAG CCTAGCTATA TCTAATTACG ACCGCATGCC AAGTTTCACC TCGATCAGAG AAAGTTTTAT GCACACTTTT GAAAACAAGA TTTGACGATG TCGCGGGCGC GTGCGAGTGC GGTCGGGCTC AGAACGGACA ACGACGAGAA CCGGCAACTA ACAACGGATG CAAGTTTTGA AAACTGGCGG CAACGGAATG CTGATGCAAT GCAGATGATT CGAATGATGC

GATGATGATG CGACAAAAGA AAATAGACAC ACGACGAAAA CGGAATAAAG GGGGGATCTT CTGGAACGTC GGTCTTGGGC TGTCACAACT TTGCAGCTGT CAAAAGAATA CTTTGGTATC TTCAAGCAAC CAAGGGCCAT GGACTTAAGC TTGGTAGGTC AGACTCAATG CTAGTCAGTG CCTTCTCTGA TGCAGATTGG GCAGGATGCC CTGATGACAG GAGATCAACA CGGGCAGGAT GCAGATTGCT AAGTCTTCTT AGGCAGCAAC TTAGTTTCCT GAAGTGCTCG CAAGCAAGCT ACTGTATCCA GGTCAAGCAC GGAAGCTGAA TATAAAGCAC TAGCAAATGC TACCGCTGAA ATCATATGGG TGCAGAATAT GTTGATAGAA TTGGGTGTTT CACACCCATC ATCAGCATCT CTTTGGTGTG ATAATCTTGG TGCCACGTAC TTATCTGCTA ATCCTATCTT TCATGTCAGG ACTAACACAT ATCGAGATTG ACTATCACTT TGTTCGTGAA AGAGTAGCCA GCAAACAATT AAACATCCGG TTTGTACTCA CTGGAGATCA AGTGACAGAT GGTTTTTACTA AACCATTGAC AGCACAACAA CTAGCTTCAT TTAGACACAA TCTTAACTTA GATAGTTTCG ATCGAGGAGG AGTGTTGGAA GTTGTAATCT ACGGTATGTA TAAACCGTAT AGAGATAACT TAGACTTGGA GATAAGTTAG TTTAAACCAT CTATACCGAA gagatatgac tTgaigatca atcctcgaca tancanact t tctatatcti ATGCTATATA TTAACACGCA TCGCATCGCG TTCGTGCAAG CCATACGGTT AACCTAGCTT TTCCACGCTG CGGCCGGTCT ССTCCTCCTC GCCCTATTTA TACGAGCAGT AGGCGGCCCA TTATTTCTGC ACCACAACAC AACAAAGTCT TCCGGCCGGC GGGCACCGTC GTCTAGCTCT CACACTCGCA GCGTGCCGCG gCCAAACGTC AgTCCCCTGT GCAGCAACAG CAGCAGCAGC ATGGCGCGGT CGGAGCAGCA GGGGCTGCAG GTGCTGAGCG CGCTGGACGC GGCCAAGACG CAGTGGTACC ACTTCACGGC CATCGTCGTC GCCGGCATGG GCTTCTTCAC CGACGCCTAC GACCTCTTCT GCATCTCCCT CGTCACCAAG CTCCTCGGCC GCATCTACTA CACCGACCTC TCCAAGCCCG ACCCCGGCTC CCTGCCCCCC AGCGTCGCCG CCGCCGTCAA CGGCGTCGCC TTCTGCGGCA CCCTCGCCGG CCAGCTCTTC TTCGGCTGGC TCGGCGACAA GATGGGCCGC AAGAGCGTCT ACGGCATGAC CCTCCTCCTC ATGGTCATCT GCTCCATCGG CTCGGGCCTC tCCTTCGCGC ACACACCCAA GAGCGTCATG GCCACGCTCT GCTTCTTCCG CTTCTGGCTC GGCTTCGGCA TCGGCGGCGA CTACCCGCTC TCGGCCACCA tCatgiccga gtacgccanc angangaccc gcggcecatt catcgccecc GTCTTCGCCA TGCAGGGCTT CGGCATCCTC GCCGGCGGCA TCGTCACCCT CATCATCTCA TCCGCCTTCC GCGCCGGGTT CCACGAGCCG GCCTACCAGG ACGACCGCGT CGCGTCCACC GGCACGGAGG CCGACTTCGT GTGGCGCATC atcctcatgc tcgecgecct gccgeccctg ctcacctact actgecgeat GAAGATGCCC GAGACGGCGC GCTACACCGC CCTCGTCGCC AAGAACGCCA AGCTGGCCGC CGCCGACATG TCCAAGGTGC TGCAGGTGGA GCTGGAGGAC GAGACGGAGA AGATGGACGA GATGGTGAGC CGCGGGGCGA ACGACTTCGG CCTCTTCTCG CCGCAGTTCG CGCGGCGCCA CGGCCTCCAC CTCGTCGGCA CGGCGACCAC GTGGITCCTG CTGGACATCG CCTTCTACAG CCAGAACCTG tTCCAGAAGG ACATCTTCAC GAGCATCAAC TGGATCCCCA AGGCGCGCAC CATGAGCGCG CTTGACGAGG TGTTCCGCAT CTCCCGCGCG CAGACGCTCA TCGCGCTCTG CGGCACAGTG CCGGGCTACT GGTTCACGGT CTTCCTCATC GACGTCGTCG GCCGCTTCGC CATCCAGCTC ATGGGATTCT TCATGATGAC CGTCTTCATG CTCGGCCTCG CCGTGCCGTA CCACCACTGG ACAACGCCGG gCAACCAGAT CGGCTTCGTG GTCATGTACG GCTTCACCTT CTTCTTCGCC AACTTCGGGC CCAACGCAAC CACCTTCGTC GTGCCGGCGG AGATCTTCCC gGcgaggctg cgatcgacgi gccacgggat atcgecgacc gcgaggangg CCGGAGCCAT GATCGGGGCG TTCGGGTTCC TGTACGCGGC GCAGGACCCG CACAAGCCGG ACGCCGGGTA CAGGCCCGGG ATCGGGGTGC GCAACTCCCT CTTCGTGCTC GCCGGGGTCA ACCTGCTGGG GITCATGTTC ACCTTCCTGG TGCCGGAGGC CAACGGGAAG TCGCTGGAGG AGATGTCCGG CGAGGCACAG GACAACGAGA ACGAGGACCA GGCACGAACC GCCGCCGTGC AGCCGTCCAT

6451
6501
6551
6601

Sense primer \rightarrow
GGCCTAGGAC AACTCGTGCG TGCTAGCTAT TGCAGCTGCA GGCTGTTGAG TTGGTCGAAG ATCCTTAATT TGGTTTTTGT GATACATATA AACGCTTAAA CTACTACTAG TATGATATGT TTTGCGGGCC ACCCAATCAG GGCCGGCTCA TATATATACA CAGGCCGGCT CATGTCTATG CC 3^{\prime}
\leftarrow Anti sense primer

2851

2951
3001
3051
3101
3151
3201

GTCGCTCGAG GAGATGTCCG GCGAGGCCGA CGCCGAGGAA GGCAACGGCG CCAATAACGT TCGCCCGTCG GGAGAGCAGC TGGTTTGAAT CGCGAGAAAG

Senge primer \rightarrow
CAACACGCGC ATACGTGCAT GTTTGCGCAT GCGACGAGTT TTTGTGTCGT
GACTACTGTA GAACTTTGGG TAGGTGTGTA TTACACTACA CTTAATCTTA
GCCATAGCCA AAAGGTCGAC ACTAACGTGT AATTTTTTTTA AAAGAGTGCG TAGAACTCAT CTATATGAAA TATATTTTGG TCTCATTCAC ATTTTTTTAA AGAGTGCCTA_GAACTCATCT AGTGGGATAT AGTTTGATCG AGTCGACTCC
\leftarrow Anti sense primer CTTTAGTGAG GGITAATTGA GCTC 3'

```
HvPT6
Accession number = AF543198
HvPT6 total gene = 2876 bp
Promoter = 916 bp
cDNA = 1608 bp = 536 amino acids
3' untranslated region = 352 bp
```

 251 AATCATCTAC GATTCCGGCC GGTGTTTTAT CACCTGCTTG AACTGCTGCA
 301 GCGCATCACT TCTTGCTACC ACCTTAAACT GCTAGCTCTT CAAAAGGAGG
 351 TTTCTAGCAA ACTCTGCTGA CACACATAGC CATCCAAACC ATCTTTGTGC
 401 ACACAAGAAA CATGAGTAGG TCGAGAGAAG CCAAAGGGAT CTTCCAAATT
 451 TCGTCTTTCG AACTAGCAAG TTATGGTGAG TGGAGGCGGT ATCCGAAACT
 501 GAAAAAATGC GGATCAACCA AATCCCACAG TAACTGCCTG CAGGAGTCAC
 551 CTTTTTGATGG GATGTCACGT CACCTTATTA CTTGCCTCCA TTTTTTTTGT
 601 TTTTCATGCC TCCTTGATCG TGACAGCCTT CATTTATTTC CTCTTTTCCA
 651 TCCTCACCTT ACCAAGATAC CACAAAATAA ATTATAGTTT TCATTTACTA
 701 GAAAATAAAA AAAATAGTTA GATTTTTCCTT TTCACCAACA AAATCGGAAC
 751 AAGATAACTT ATTAGGGTGC GAATATTCCC CTTCAGGAGG AGGAGCCGCA
 801 GTATTTATCT TGTCCAACCC TCGCGGCTCG TCCCACCCTA AAATCTCTGA
 851 TCTTGTCTAT CTCTCAGCAC AACCAACAGC GATCCCCGGC GGCGGCGAGA
 901 GATAAGGCTC GTGGCCATGG CGCGCGAGCA GCTGGAGGTG CTGTCGGCGC
 951 TGGACACGGC CAAGACGCAG TGGTACCACT TCACGGCGAT CGTCATCGCC
 GGCATGGGCT TCTTCACCGA CGCGTATGAT CTCTTCTGCA TCTCGCTCGT
 1051 CACCAAGCTG CTCGGCCGCA TCTACTACTA CCGCGAGGGT GCCGACGCCC
 ACTAGTTATA CAGGTAGTCT ATTCCCTATG GGATTTTACC ATGATGAttc GTCAAAATTT ATAGATGATT ATCAATATTG CATTTTTTACT GTCGCAACTG TCCGCTGATG ATTGATTTAT TTGATACTGT TTATGCATAG GTATTATTGG CGTTATGAAA ACAAATTTAG TTCGGCGACA AGCTGATAGT CGCAAAGGAG 201 GAATTAAACG AGAGGCTTTA CATACCAAAG CAAGTAATCA TGGGCATTTA 251 AATCATCTAC GATTCCGGCC GGTGTTTTAT CACCTGCTTG AACTGCTGCA 301 GCGCATCACT TCTTGCTACC ACCTTAAACT GCTAGCTCTT CAAAAGGAGG 351 TTTCTAGCAA ACTCTGCTGA CACACATAGC CATCCAAACC ATCTTTGTGC 401 ACACAAGAAA CATGAGTAGG TCGAGAGAAG CCAAAGGGAT CTTCCAAATT 451 TCGTCTTTCG AACTAGCAAG TTATGGTGAG TGGAGGCGGT ATCCGAAACT 501 GAAAAAATGC GGATCAACCA AATCCCACAG TAACTGCCTG CAGGAGTCAC 601 TTTTCATGCC TCCTTGATCG TGACAGCCTT CATTTATTTC CTCTTTTCCA 651 TCCTCACCTT ACCAAGATAC CACAAAATAA ATTATAGTTT TCATTTACTA 701 GAAAATAAAA AAAATAGTTA GATTTTTCCTT TTCACCAACA AAATCGGAAC 751 AAGATAACTT ATTAGGGTGC GAATATTCCC CTTCAGGAGG AGGAGCCGCA 801 GTATTTATCT TGTCCAACCC TCGCGGCTCG TCCCACCCTA AAATCTCTGA 851 TCTTGTCTAT CTCTCAGCAC AACCAACAGC GATCCCCGGC GGCGGCGAGA
1101
1151
1201
1251
1301
1351
1401
1451
1501
1551
1601
1651
1701
1751
1801
1851
1901
2151
2201

1151
1201
1251
1301
1351
1401
1501
1551
1601
1651
1701
1801
1851

2201

901
951
1001
1051 tGGACACGGC CAAGACGCAG TGGTACCACT TCACGGCGAT CGTCATCGCC GGCATGGGCT TCTTCACCGA CGCGTATGAT CTCTTCTGCA TCTCGCTCGT CCGGCTCGCT GCCGCCCAAC GTCGCCGCCG CCGTCAACGG CGTCGCCTTC TGCGGCACGC TCTCGGGCCA GCTCTTCTTC GGCTGGCTCG GCGACCGCAT GGGCCGCAAG CGCGTCTACG GCATGACCCT CATGTGCATG GTGCTCTGCT CCATCGCCTC GGGCCTCTCC TTCGGCTCCA CCCCCGGCTC CGTCATGGCC ACGCTCTGCT TCTTCCGCTT CTGGCTCGGG TTTGGGATCG GCGGCGACTA CCCGCTCTCC GCCACCATCA TGTCCGAGTA CGCCAACAAG AAGACGAGGG GCGCCTTCAT CGCCGCCGTA TTCGCCATGC AGGGCTTCGG CATCCTCACC GGCGGCGTCG TCACGCTCAT CGTGTCCGCC GCGTTCCGCG CCGCCTTCCA CGCGCCCGCC TACGAGAAGG GCGCCGTCGC ATCCACGCCC CCGCAGGCCG ACTICGTGTG GCGCTTCATC CTCATGTTCG GCGCCGTCCC GGCCCTGCTC ACCTACTACT GGCGGATGAA GATGCCCGAG ACGGCGCGCT ACACGGCGCT CGTCGCCAAG AACGCCAAGC AGGCCGCGGC CGACATGTCC AAGGTGCTCC AGGTGGAGAT CGCCGCCGAG GACGAAACCA AGGACAACGA CGGGGCCGGC GAAGACCGCA ACTCGTTCGG GCTCTTCTCC GGCGAGTTCC TTCGGCGGCA CGGGCTCCAC CTCCTCGGCA CGGCCACCTG CTGGTTCCTC CTCGACATCG CCTTCTACTC GCAGAACCTG TTCCAGAAGG ACATCTTCAC GGCGATCAAC tGGATCCCCA AgGCCAAGAC GATGAGCGCC CTCGAAGAAG TGCACCGCAT CGCGCGCGCG CAGACGCTCA TCGCGCTCTG CGGCACGGTG CCGGGCTACT GGTTCACCGT GGCCCTCATC GACCGGATCG GGCGGTTCTG GATCCAGCTC GGCGGATTCT TCTTCATGGC GGTGTTCATG CTGGGGCTGG CCTTCCCGTA CCACCACTGG ACGACCCCGG GCAACCACAT CGGGTTCGTG GTGCTGTACG CGCTCACCTT CTTCTTCGCC AACTTCGGGC CAAACTCCAC CACATTCATC GTGCCGGCGG AGATCTTCCC GGCCAGGCTC CGGTCGACGT GCCACGGCAT

CTCCGCCGCC GCCGGGAAGC TGGGCGCCAT CGTGGGGTCG TTCGGGTTCC tGTACCTGGC GCAGAACCAG GACCCCAGCA AGGTGGACCA CGGGTACAAG GCCGGCATCG GGGTCAAGAA CTCGCTATTC ATCCTCGCCG CCTGCAACTT CCTCGGCATG GCCTICACCT TCTGCGCGCC CGAGTCCAAC GGCATCTCGC tCGAGgAGCT CTCCGGCGAG AACGACGACG AGGCGCCGGC GCCGGCGACG Sense primer \rightarrow
\leftarrow Anti sense primer GTATATGCTA CCGGTGGTAT ACTCTGCAGG TTTGGATGGA TGTATGGGTG TTTTCTTTTT CTTGGTTGGG ACGTTCAACT CAGGAGTGAG TACAACAACA ATACTACTAT TGTCATGTGT CAGAGTTCTC CATGTTATAA TTAATTAATT AGAGTTTATG GTCGAGTTAA TTATTATTAG TAATATATAT ACTACGTAGG TAATACCAGG GACGGAGCTA GCATTCATGC ATAGAGGAGG CAAGTTTGTT TATTTAAAGG GCAGAATTCA TATGAAGTGA ATTTTTTTTA CTACAATTAC TACAATCATA ATAGAAGAAC CAATTT 3^{\prime}

HvPT7

Accession number $=$ AY187022
HvPT7 total gene $=3700 \mathrm{bp}$
Promoter $=1347 \mathrm{bp}$
CDNA $=1584 \mathrm{bp}=528$ amino acids
3^{\prime} untranslated region $=769 \mathrm{bp}$

5^{\prime}	1	AAGTTTTTCT	TGGATGGTTT	tTTATGNAAG	GTTTTTAATG	AGGCAATAGT
	51	AATGCAgACA	TTGTGATATG	TCAGTTTCTC	CTTATTTTCC	CACTGGGTTC
	101	TTGGAAGGAG	TTCTTGATGG	CATATTGTAT	GTATCTCATC	ATATTCTTCC
	151	TACATGGTTT	TTGGAGgAgA	CTAATCAAGT	TGATGATGAT	GAtGgTGATG
	201	ATGATGTTAC	AAGAATGATT	GAAGCAGAGA	TtAGGGAGAG	TGTTAGGATT
	251	TAATTAATTA	GTTTAATTAA	AGGGAATCTC	TGCCCGTGGA	ACAgAtAgGT
	301	AGTTTGGCTC	CCGAACGATC	ACATCCGAAT	GTAACGGATG	CGTCATTTTG
	351	ATCGTGGCTG	TTGTAACCAT	CGTGTCTGTG	TGATGCGCCT	CTTCAGGAGG
	401	tatatatatg	TACATCATCG	gTATCAATAA	ttatctattg	tTACtGttca
	451	TTAACAATTT	TCTGAAAGAA	TTGGTAATGA	GTTGTTATGT	GGTAACAATC
	501	CTCCATGITA	AACTTGCGGT	AATAAAGTAT	TGGGAAAGTT	GTGAATGAGC
	551	CGGGATGTAT	tTATACACAT	TAACTTTAGA	CATGATTTTG	CCAAAAAAAT
	601	TACAAGGGGA	tTCATGATAT	TATAATATTT	TTTGGAAAAT	AgAAAACCAT
	651	GGTtACAGTA	CAAGACAATA	AAATGTTACA	CATAAAACAT	CAGGAAAACC
	701	CGATGGTGTC	TGGTACAGAC	AAGATGACGA	TTGGTAACCT	ATAAATATAA
	751	ATTCATAGAA	ATGCCTATTT	TTACCCTCAA	Atg cacalc	ATGTCACCAT
	801	GAAACTTTTC	AAATCAAAGC	AACTTTAATC	AACTACTAGA	AAAAAGCAAG
	851	TTTATCATCA	gGgTgtatac	AATTTTATTC	GGAATCCTGG	tacactggta
	901	GGTTACCCGC	GAGCCCCTCT	CAGGAGCTAA	GACTGGCATG	ttttgettca
	951	TGTTGTGACA	Agtttcatca	TGCGTGGCTA	CAAACACAAC	AAATATATGT
	1001	ACATTTTGTT	tcgatatact	tgctgcagac	AAAACAAGAA	tatgcccatc
	1051	CATTATTCCT	AgAatatgct	CGCAAAACAA	AAGAGCTTCG	CTATGCATGG
	1101	GAAACTCTGA	gCCCATCCAT	GTTTтССтСт	ACAAATTAAG	AAGAGAACTG
	1151	TTAAACAGGG	AGAAGAAGTT	GGGCTCCAAG	TAACGAAGGA	CCAGGATCCC
	1201	gGAATATTCT	CACCTCTCCG	tccetatata	CATGGCTAAG	TGACACCTGT
	1251	GCCTTCTCCC	TCAGTTCACT	CCCATCTTAA	ACCTCAACAA	CCTACCATCG
	1301	CGGCTGATCG	CACGAGCAAT	CTCGCCGCCG	GCAGGTCGGA	gCtGgcantg
	1351	GCGGGCGACC	aggtacacgt	GCTCGCGGCg	CTGGACGGGG	ccalagceca
	1401	gtgetaccac	ttcacgacca	TCGTCGTCGC	CGGCATGGGC	ttcttcaccg
	1451	acgectacga	сСтсттстGe	atctecctcg	TCACCAAGCT	Catcgeccec
	1501	atctactaca	CCGTCCCGGG	CTCTCCCAGC	CCAGGCAGCC	tcccaccgac
	1551	CGTCTCCGCG	gtcetcance	GCGTGGCGTT	cgtcegcacg	ctctcagecc
	1601	Agctettcti	CGGCTGGCTC	gGCGACAAGG	TCGGCCGGAA	GAGCGTGTAC
	1651	gGcatgacge	tgatgctgat	gatcatctgc	tCCGTCGCGT	CGGGGCTCTC
	1701	GTTCGGCCGC	ACGCCCACCA	gcgtcatgec	Cacgetctac	ttcttcagat
	1751	tCTGGCTGGG	CTTCGGGATC	gGCGGCGACT	ACCCGCTCTC	cgccaccatc
	1801	Atgtccang	ACGCCAACAA	GCGGACGCGC	gGGgCettce	tcecceccet
	1851	cticgcgatg	CAgGgattcg	gcatcctcge	CGGCGGCGGC	gTGGCGATCG
	1901	ggatcacgec	GCTGTTCAGG	GсССтстTCC	CGGCGCCGCC	gtacgcgecg
	1951	GACCCGGTG	catccaccce	ggaccaggc	gactatgrg	gGCGCatcge

151 TACATGGTTT TTGGAGGAGA CTAATCAAGT TGATGATGAT GATGGTGATG
201 ATGATGTTAC AAGAATGATT GAAGCAGAGA TTAGGGAGAG TGTTAGGATT
251 TAATTAATTA GTTTAATTAA AGGGAATCTC TGCCCGTGGA ACAGATAGGT
301 AGTTTGGCTC CCGAACGATC ACATCCGAAT GTAACGGATG CGTCATTTTG
351 ATCGTGGCTG TTGTAACCAT CGTGTCTGTG TGATGCGCCT CTTCAGGAGG
401 TATATATATG TACATCATCG GTATCAATAA TTATCTATTG TTACTGTTCA
451 TTAACAATTT TCTGAAAGAA TTGGTAATGA GTTGTTATGT GGTAACAATC
501 CTCCATGTTA AACTTGCGGT AATAAAGTAT TGGGAAAGTT GTGAATGAGC
551 CGGGATGTAT TTATACACAT TAACTTTAGA CATGATTTTG CCAAAAAAAT
601 TACAAGGGGA TTCATGATAT TATAATATTT TTTGGAAAAT AGAAAACCAT
651 GGTTACAGTA CAAGACAATA AAATGTTACA CATAAAACAT CAGGAAAACC
701 CGATGGTGTC TGGTACAGAC AAGATGACGA TTGGTAACCT ATAAATATAA
751 ATTCATAGAA ATGCCTATTT TTACCCTCAA ATGGCACAAC ATGTCACCAT
801 GAAACTTTTC AAATCAAAGC AACTTTAATC AACTACTAGA AAAAAGCAAG
851 TTTATCATCA GGGTGTATAC AATTTTATTC GGAATCCTGG TACACTGGTA
GGIIACCCGC GAGCCCCICT CAGGAGCIAA GACIGGCAIG THTIGGTICA ATGCAGACA TTGTGATATG TCAGTTTCTC CTTATTTTCC CACTGGGTTC

AAGTTTTTCT TGGATGGTTT TTTATGNAAG GTTTTTTAATG AGGCAATAGT

\square
\square

GCTCATGCTC GGCGCGCTCC CCGCCGCGCT CACCTTCTAC TGGCGGATGA agatgccega gacgccgcge tacacgacge tcatceccan gaicgccgag CGCGCCGCGG CCGACATGTC CAAGGTGCTC AACGTGGAGA TCACCAAGGA GCAGGCCGGC GACCTGGAGA CCGCGATCTC CATCAAGTCC CACACGTCGC CGTCGTTCGG CCTCTTCTCC AGGGAGTTCA TGCGGCGTCA CGGGCTCCAT CTCTIGGGCA CGGCGTCGAC CTGGCTCCTC CTGGACATCG CCTACTACTC gCAGAACCTG TTCCAGAAGG ACATCTTCAG CGCCATCGGG TGGATCCCTC CGGCGCCGAC GATGAGCGCG CTGGATGAGC TCTACCACAT CGCGCGCGCC CAGATCCTGA tCGCGCTGTG CGGCACCGTG CCGGGCTACT GGTtCACCGT CGCCTTCATC GACTCCGTCG GCCGCTTCAA GATCCAGCTC ATGGGTTTCT TCATGATGAC GGCATTCATG CTCGGCCTCG CCGGGCCGTA CGACTACTGG ACGGGCCAGG GCCACCAGGT CGGGTTCGTC GTCATGTACG CGCTGACCTT CTICTTCGCC AACTTCGGGC CCAACGCGAC CACCTTCATC GTCCCCGCCG agatctacce gGccaggitc cgcgcgacgl gccacgegat atcgaccgcg tCGgGgaig tggecgccat catcgectcc ttcgegttct tgtacctgec CCAAAGCCCC GACCCGGCCA AGACAGCCCA TGGATACCAC CCCGGCATCG gCGIGCGCTA CTCCCTCTIC GTGCTCGCCT TGTGTAGCTT GCTGGGGTTC ATGCTCACGT TCCTCGTTCC CGAGCCCAAG GGCAAGTCGC TGGAGGAGAT gTCGCGCGAG ACCGAGCCCG ATCATTGCTA ACTAGTCTAC TCGTTGCTGC ATGAAGATCC GCTAGTCTAC TTGTAGATGA TCGTCGGTGA_ATACTGCATT

Sense primer \rightarrow
AAGTTTTGGC AATTAGGGGG CGACGATATG ATGAAATAAT CCTCAGAATT GTTTCTCGAA GTAGATCAAG AAGGTTCTTC ATTTGAAAAT TCCTTTCATT TGAATGTGTA TCTTAGCGAG TTTATGTCTC AAAACGCTCG TTATGTGTCA CAAGACTACA CTTATGAGGA TACGATTTGA GCACATCAAG GATAAAACGA ACATGCAAAC CGCGTGATCT GCAACCGAAA_CTATCAAGGT CGGGCCGGCA
\leftarrow Anti sense primer
AAATCTAGGG ACATGTGCAA AACTAAAACA TGAATCCTAT TTCAATAAAA AAACTAACGA TTAGTTTTTT TTAACACGGT ACAGAAACAA ACGCTGATAC ATACACATAC ACTCACTCCT ATGAACGCAA ACACGCATAC TCTACCCTAT GAACATCTCC GTGAGACTTA GACGGCATAG CATCTTAAGA TTTACGAAGT CACCATAGAA TCATAGATGC CTCCTCGTCG ATGAAAACGT CTCCTCCCAT TGAATGTGCA TCGTCAAAAA TCCTAAAATA ACTCCAGGAA TTATGCGAGC ACCGGGATTT GAAACCTGTT GGGCTGCGGA TACCACATTT TATTTAACCA TCCAACCACA GGTTGGTTCG CACTAACGAT CAGTTATAAT GCATATATAT CTCACATAAT TGNTTATAGT GNATACATCT CGCAATTGGT TTTTATAATG 3 '

HvPT8

Accession number $=$ AY187023
HvPT8 total gene $=3163 \mathrm{bp}$
Promoter $=1371 \mathrm{bp}$
CDNA $=1602 \mathrm{bp}=534$ amino acids
3' untranslated region $=190 \mathrm{bp}$
Putative cis-regulating motifs (referenced in section 7.2) have the motif aligned under the sequence with the percentage of similarity.
5' 1
GCGTTAAGAG CAACACGGTT TTCTCTATAT TCTGTCGCAA ATGGTAATAT GGCATAGCCA CGCCAGTCGG TATGAATTCA GGAAAAATGT TTGAAAAACG AATATTTTTT ATATTTGTAA CATTTTTGAA AAGCAAGGAC ATTTTTTGAA ATTAAAGAAC AATTTTGGAA CACAAACTTG GTTTAATAAT TGAATAATAT TTAAATATTT CGAACATTTT TTAAAGTACC AAACATTATT TGAAAATATC AAACATTTTT TAAAACCACA AATTTAAGGA AATCGCACAC CTTTTTTTAG TTATGAATAT TTTTAAAAAA CGGAAACTAT TTTGAAATTT AGAGAAAAAA TAGAAACTAA AATTATTTTC CAAATTTAAA GAACAGTTTT TGAACATGAG CTTATTTGAA AAAAGATAAA ATAACCTTAG AACAAAGAAA AAAAGAAACG AAAACTTAG-Motif 78\%
1 GAAAACAAAA ACATAAAAAA AAGCAAAAAC ATAAAAAGGA AAAAGAAAAA
AAA ACTTAG-Motif 78\%AAAAC TTAG-Motif 78\% CAGATAAAAA AAAGGTTCAG GAACCTACCA GAAGGTTCCC AAAACTGGTG GACTGGGCCA GCCCAAGTAT CGCCTGGGGA GCCTCGACTA CTTGTTACAA CTT CTTGTTCTA-Motif 75\%

AATACGTCAA ATAAGATATT CCGGATTTAG AGTCTGTTTT TCTTTTAAAA TAATATAT-Motif 88\%
CATACCGA TITCAGTGG AGGTGGGGG CCTCATCTTC AATTACCAAT
CATAATTATA CACATGAGTT TATACGTAAA ATTGTAGACG TAGCATTACT TACATAAATA TGTTCTTTAA CTTG-MRR1 Motif 63\%

TGIT TATAAGT-Motif 82%
1001 CTCATTCACA CCTGCACCCA ACGACACAAT CATTCCCGTG CGTATATTGC 1051 GTATTGCACC GGCCCTGCGA TGCCCACCGG CGCCTTGGAG TTTCCACCCC
1101 CTTTGTTCCT TCTCCCCGCT TTCAGCAAGT TCATTGTCTG GTACATGCAC
T GCATTCTAT-Motif 70\%
1151
1201
1251
1301
1351
1401
1451
1501
1551
1601
1651
1701
1751
1801
1851
1901
1951
2001
2051
2101
2151
2201
2251
2301
2351
2401
2451
2501
2551
2601
2651
2701
2751
2801
2851
2901

3001 | | TCACTTGATG AAAAAGAACC CATTTCCATG TGTGATGTGC TGGGAACCCG |
| :--- | :--- |
| | \leftarrow Anti sense primer real-time RT-PCR |
| 31051 | $\frac{\text { GGATTAGATG CAGTCCAAGG ATCCCTACAT GACGTTTGGC AACTATTGCG }}{}$ |
| $\frac{\text { GAGGAGAAAT GTGAATTATA AGAGGAAGGA ATTGTCGAGA TTAGACTTAG }}{\leftarrow \text { Anti sense primer RT-PCR }}$ | |

$\begin{array}{ll}001 & \frac{\text { TCACTTGATG AAAAAGAACC CATTTCCATG TGTGATGTGC TGGGAACCCG }}{\leftarrow \text { Anti sense primer real-time RT-PCR }} \\ 051 & \frac{\text { GGATTAGATG CAGTCCAAGG ATCCCTACAT GACGTTTGGC AACTATTGCG }}{101} \\ \frac{\text { GAGGAGAAAT GTGAATTATA AGAGGAAGGA ATTGTCGAGA TTAGACTTAG }}{\leftarrow \text { Anti sense primer RT-PCR }}\end{array}$

3001 | | TCACTTGATG AAAAAGAACC CATTTCCATG TGTGATGTGC TGGGAACCCG |
| :--- | :--- |
| | \leftarrow Anti sense primer real-time RT-PCR |
| 31051 | $\frac{\text { GGATTAGATG CAGTCCAAGG ATCCCTACAT GACGTTTGGC AACTATTGCG }}{}$ |
| $\frac{\text { GAGGAGAAAT GTGAATTATA AGAGGAAGGA ATTGTCGAGA TTAGACTTAG }}{\leftarrow \text { Anti sense primer RT-PCR }}$ | |

3151 ACTTAG-Motif 78\%

TAATATAT-Motif 88\%
TTAGAAATCG GCTGACAACG CATGTAAAAC CGGTCAACCC CATAAGCACG AATCACAAAG CAATAAATGG ACGGTAGCAG ATTTGACCGA AAGCTAAAAA AAACAATTGC CGACAAATAG CAAACCGATT ATTGACACAA TAATGCTACT CCTACAAAGA CTTATAAAGG GTTACTTAAC CTTTCAAACT AGTTCTCCCC AAAA CTTAG-Motif 78\%
CCTCCTCCGA TTTTCAGTGG AGGTGGGGGT CCTCATCTTC AATTACCAAT

ACGCTACAAG ATAACCACAT GCAGCTATAC CATCCTCGTA TCTTGCTATT GTTTCCATTT GGCACATCTA AACAAACCAA AGCAATAAGC CGGCTTACAT AACCCCCTTG CTCGCCTATG CTTACTTGGC TCCCATTCCC TGTAAACACA CGATCGAGGA CCGTCTTGAA TCTTGCTTTG CACCGGCCAA GAAGTGCGGA CGGGCAGACG TACGTCCGGC GATGGCACGG CAGCAGCTGC AGGTGCTTCA CGCGCTGGAC GTGGCCAGGA CACAGAGGTA CCACGCGTGG GCGGTGGIGA tCGCCGGCAT GGGCTTCTTC GCCGACGCGT ACGACATCIT CTGCATCACC CTGGTCACCA AGCTCCTGGG ACGCATCTAT TACCACGTCC CTGGCCAACC AGACCCCGGA ATGCTCCCCC GGCGGATCGA GGCGGCCATC AACGGCGTCA CCTTCTGCGG CATGATCGTG GGGCAGCTCT TGTTTGGCTG GCTCGGCGAC AAGGTCGGCC GGAAGATGTT CTACGGCAAG ACCATCATGC TCATGATCAT GGGCTCCTTT CTCTCGGGCT TGTCATTCGG GAACACGGCC GACGGCGTTA tGGCCACGCT GTGCTTCTTC CGGTTCTGGC TCGGCGTCGG TATCGGCGGA GACTATCCGC TCTCCGCGAC CATCATTTCC GAGTACTCTA ACAAGAGATC GCGCGGGAGC CTCATCGCGG CCGTGITTGC CATGGAAGGG TTTGGCATTC tTGCAGGCTG CATTGTCACC TTGGTCGTGT CGGCCACGTT CCAGGCCCGC tTCAACCCGC CGGCGTATGA GGAAGACCCC ATGGCCTCGG tCCCGCCGCA gGCTGACTAC GTGTGGCGCA TCATCCTCAT GGTGGGTGCC ATCCCAGCCG tCTTCACCTA CCGCTGGAGG GTGATGATGC CGGAGACGGC GCGCTATACG GCGCTGGTGG CCCGCGACGC CGAGAAGGCC GCGCGCGACA TGTCCAAGGT GCTCAAGGTG GAATTCACCG GCGAGCAGGA CAAGATCGAG AGCTTCACCA gGgacaggea ctacgecgic trctcccacc guttceccce ccgccatgac tGGCATCTCG TCGGCGCCGT TGCGICCTGG TTCGTGCTCG ACATCGTCTT CTACTCCCAG ATCATTCTCC AGGAGGAGAT ATTCAGGGAC GTCAAGTGGA tCCCCGAGGC ACGCACCATG AGCGCGCTCG AGGAAGCGTA CCGCGTCGCC CGTGGACAGG CGATCATCGC GCTCTGCGGC ACACTACCTG GCTACTGGTT CACCGTCGCC TTTGTGGATG TCGTCGGGCG GAAGGCCATC CAGTTCCTCG GGTTCACCAT GATGAAGGGT CTCATGCTCG TCGTCGCCGC CTTCTACCAC CACCTGACGC AGCCTGGCCG GCGAATATGG CTGGTGGTCA TGTACGCCTT CACCTTCTTC TTTGCCAACT TTGGGCCCAA CAGCACCACC TTCATCATAC cgeccgagat tuttccgaca cacgtccgga cgacctgcca tggeatatca tCGgCGGCAG GCAAGGTAGG CGCCATTGTC GGGACGTTTG GCTTCCTGTA CGCCTCGCAG AGGGCGGACG GCAGCAACGA GGTGAAAAGT GGGTACCCGT CGGGCATCGG CGTGCGTGCC TCACTGTTCG TGCTGGCCGC GTGCAATGTG TTGGGCATAA TTTTCACCTG TCTCCTGCCT GAGCCGAATG GGAGGTCGCT gGaggaggtg tccgacgagc ccatcaicag ggaggacgcg gatttgcgig Sense primer \rightarrow RT-PCR
2951 ATTCCAGGGT TCTTCCCTTG TAGAACCTGT TTGAACGTAG GCTGTGCGCA Sense primer \rightarrow real-time RT-PCR GATTTCACAT TTT 3^{\prime} AATCAGCTAA AATATGTTAT TACTTTAAAA AAATACTGAA GAAAACCAGG

Wheat Phosphate Transporter
TRlae;Pht1;myc Accession \# AJ830009
TRIaePHT1;myc total gene $=1781 \mathrm{bp}$
cDNA $=1602 \mathrm{bp}=534$ amino acids
3' untranslated region $=179 \mathrm{bp}$

Maize Phosphate Transporter

ZEAma;Pht1;6
Patent number $=$ WO9958657. Accession \# AJ830010
ZEAma; Pht $1 ; 6$ total gene $=1726 \mathrm{bp}$
Promoter $=49 \mathrm{bp}$
cDNA $=1665 \mathrm{bp}=555$ amino acids
3' untranslated region $=12 \mathrm{bp}$

5' | 1 | GACACCTGCC TTACATTGCC GGCGCGCTTG CGTGACTGGG CGCGGCGAGA |
| ---: | :--- |
| 51 | TGGCGGCGCC GGGCGGGTCG AACCTGGCGG TGCTGGACGC GCTGGACTCG |
| 101 | GCGCGCACCC AGATGTACCA CATGAAGGCC ATAGTCATCG CCGGCATGGG |
| 151 | CTTCTTCACC GACGCCTACG ACCTCTTCTG CATCTCCACC GTGTCCAAGC |
| 201 | TGCTCGGCCG CATCTACTAC CCGGACGACA ACCTGTACAT AGACAAGCCC |
| 251 | AAGCCGGGCA CTCTGCCCGT GTCCGTCAAC AACATGGTGA CAGGCGTCGC |

GCTCGTCGGC ACGCTCATGG GCCAGCTCGT CTTCGGCTAC TTCGGCGACA AGCTCGGGCG GAAGCGCGTG TACGGCATCA CGCTCGTGCT GATGGCCGCC TGCGCCATCG GCTCGGGCCT CTCGTTCGGC AGCTCGGCGC ACGCCGTCAT CGGCACGCTC TGCTTCTTCC GCTTCTGGCT CGGCTTCGGC ATCGGCGGGG ACTACCCGCT GTCCGCGACC ATCATGTCCG AGTACTCCAA CAAGAAGACG CGGGGCGCGI TCATCGCCGC GGTGTTCGCG ATGCAGGGCG TCGGCATCAT CTTCGCGGGG CTCGTGTCCA TGATCGTCTC GGGCATCCTC CTGCACTACC ACCCGGCGCC GGCGTGGAAG GAGAACCACG ACCGGTCGTG GCAGGACCAG ATGCCGGCGG CGGACTACAT GTGGCGCATC GTCCTGATGA TCGGCGCGTT CCCGGCGCTG GCCACGTTCT ACTGGCGGAT GAAGATGCCC GAGACGGCAA GGTACACCGC GCTCATCGAG GGCAACGCCA AGCAGGCGGC CAACGACATG CAGAAGGTGA TGGACGTCGA GATCCAGGCC GAGCAGGACA AGCTCGCGAG GTACAAGGCG GCGAACGACT ACCCGCTGCT GTCGAGGGAG TTCGCCCGGC GCCACGGCCT GCACCTCATC GGCACGGCCA CCACGTGGTT CCTTCTCGAC ATAGCCTTCT ACAGCCAGA CCTGACCCAG AAAGACATCT TCCCGGCGAT CAMACTGACG AGCCCCGTCG ACGACATAAA CGCCCTCAAG GAGGTGTTCG AGATTTCCAA GGCCATGTTC CTCGTCGCAC TCCTCGGCAC CTTCCCCGGC TACTGGGTCA CCGTCGCGCT CATCGACAAA ATGGGCAGGT ACCTGATCCA GCTCATCGGT TTCTTCATGA TGTCTGTCTT CATGCTACTG ATGGGCGTCA TGTACAACGA CCTCAAGAAC AAACACACCA CGCTCTTCGC CCTCTTCTAC

Sense primer \rightarrow
GCGCTCACCT TCTTCTTCGC CAACTTCGGC CCCAACAGCA CCACCTTCGT GCTGCCGGCC GAGCTATTCC CGACGCGCGT GCGCTCCACC TGCCACGCCA TCAGCGCCGC GTCAGGCAAG GCCGGCGCCA TCGTCGCGGC CITCGGGGTG CAGAGCCTCA CGCTCAAGGG AGACGTGGGC CACATCAAGA AGGCGCTCAT CATCCTCTCC GTCACCAACA TCCTCGGCTT CTTCTTCACC TTCCTCGICC CGGAGACCAT GGGCCGCTCG CTCGAGGAGA TCTCCGGGGA GGACGGCAAC GTCGAAAACG GTCCCGGTGC TCCCGCCGGC GTGGCCATGG GCGTCGCGGA CGTGAGCAAG GATGACAAGA TGCCTGTTTC CAGTACTGAG TGGCAGAGCT CCATGCATGC GTGATCGAGT AAGCAG 3^{\prime}
\leftarrow Anti sense primer

Rice Phosphate Transporters

OsPT1, Rice C, ORYsa;Pht1;11

The sequence of OsPT1 (personal communication Godwin) was used to screen the rice genome. There was a 100% match with a gene designated rice C. Upon publication of a paper by Paszkowski (2003)it was revealed that all three genes have 100% similarity. The name ORYsa;Pht1;11 will be used when referring to any of these genes.

```
Accession number = AF493787 (OsPT1), AF536971 (ORYsa;Pht1;11)
ORYsaPhTl;1 total gene = 5451 bp
Promoter = 3393 bp
CDNA = 1668 bp = 556 amino acids
3' untranslated region = 390 bp
Putative cis-regulating motifs (referenced in section 7.2) have the motif
aligned under the gequence with the percentage of similarity.
```

5' | 1 | AAGCGAGGTG CCTCTGGGGC CAAATGCTCG ATCTACCGGA GCGGCGGAGT |
| ---: | :--- |
| 51 | CATTTTCTAG GATCCGCAAG CGGCGTCGAG GAAAACCGTG ACCATACTGA |
| 101 | CCAACCACGC AAGACATCGC TGGCGCTCGG CCACTCCGCC CCTCCACCAT |
| 151 | TTCTCCTTGC TGAAGCTGCT GCTTCTCCCC ATGCCTATCA TCTCCGGTCT |
| 201 | ACGCCCCCTC TTCAAGCTTC TCCGCGCCAC TCTCCTTGAT TCTTGCATAT |
| 251 | CCTTCTCGCA CAATTGATTT TCTGGACAAG TTTGGTACAT CGATTGATTT |
| 301 | GAGAACACAT CTAGTAGCGA GAAATTCTCT TGATTGGCTT CTTAGCAACA |
| | Sense primer \rightarrow with Pacl at 5' GCCGCCTTAATTAA |
| 351 | TGCATTACTA GAGTATTAGT CAGGTAGGCA GCTTAATTTG CTGGCTAAAT |
| 401 | AGTACCAACG AAGGCCCACA ACACCAGCAA GTGGATGTTG GCATTATCGT |
| 451 ATTAGACCGG AATAAGTCTG TTGTTCCTCC CTCATTTGTT GCTCCCGATT | |
| 501 | AAATCGTCTT CCTCAACCAC AAAACCAGTT ATAACGTACT ACCCATCTCC |ACCTTCAGCC TCTATAAGAG CTAT-Motif 80%

CTTCTTGT TCTA-Motif 67\%

AAAACTCGGT GCAAATAAAC TCCTTCAGTG ATTTAAGTAG CGGTTTCTGC TGACGTGGCA AGTTGACCAC GTTGACTCGC TGAGTCAGTA GGTGGGTCCC ACATGTTAGC GATTTCTTCC TCATCTCATC TCCTTCCTCA ССТАТССТСТ СТСТСТСССС СССССССТСТ СССТСТСТСТ СТСТСТСТСТ ТСТСТТСССТ CTTCCTCCTG TCTCACCTTC CAGCAGCAGT AGAGCCCGGG ATGGTGGTGG TGGTTGTGAG CTGAAGCCGA AGAAGGCAGC TAAGTAACCG AGGAAGCCCG ATGGGAGGAG GCGACTAGTG AGAAGGGCCC CGTCCCCCCA AGGGTGATGG ATGTGGAGAA GTTTGGATGG AgTAGGAAGA GGCCCCAAGC GACGACGAGA GCTTAGCGAG GCTGAGGCGG CTAGAAACAT GAGGCCAAAT CTAGTCATTG TCGACATGCT GTCAAGGAGC GTGCACGTGG TGGTGCTCGA GGTAGCGGCA GGCGGCACTC GAGGCTGCAA CTTCATGGAT GTCGCAGTCC ACGTCGTATG CGCTCGTGGC CTCCTCCGGC CCGGCCCCTT GCCCCCTCCC AAGATGGTGT CGTAGCGGCA AACGGCCGGA AGGAAGGGCT CGATGTTGGC GGCTCCTCTC CCGAGTGGGG TTTGGGGTTCG CGAGGGTGCT CACCAGCTAG CACCGTCTTC ACCTGGCTCC GGGGATGCGT GCACCTAACA CTACAGACTA ATAGGGGAGT GATGGGAGAG GGTGGAGCTT TGGTGTCGTC ATCGATGTCT TCTCGTCTTC AGCTGTCGTT GCTAGTGAAG ATCTTCCAAG TTCCAAGTCT CACTTGGCAC ATCCCTACCG GTCACGTCCT CCTTCCCTGA ATGCTCCGAG GTGGCCACCA TCCTCGGCTC CGGGTCACCA CCACCATCGC CCTGTCGGGG CCATCTCGCC ACTACCGCTA CCCTCCCGAG CTTTACTGTT GTTGGAAGGT GAGAGACGAA gAAGAGGgAA GAgAgAAAAG AGAGAGGTGG AAGGGGGAGG GGGAGGTGAG GAGGAAGATG AGACAAGGAA ATCACCAATA TGTGAATCCC ACATGCTAAT ATAGTAAGTC AACTGCAGTA AACCTGGCAT CTCAGGAGAT ACCGCTTCCC AAATTCTCGA AGTAGTTGAT TTACATCGGT TTTTGAAGTT AGGGAAGGCA TTATACCCGG TTTTGCGGCT GAGGGAGCGA TTCATTCAGG AGCAATAGAC GAGGGATGCC AAATAGACTT GTTCCTATTA GACCGTAAGA TTATTGATGG GACGAAAGGC CTTGCATAGA TAGTGATATC TGAGCCCATG CAGGGGCTAT CACCAATGCA GTGTTGCTAG AAAGTGCAGT ATCACTACTA GCAAAATAAA AAGTTTGTCT GCTAAGAGAA AAAAAAGGGA CCCATTTAAC ACAATTCTAG CTCTAGATAA GTGGGACTGT ACAAATTCTT CATTTTTTTT AGCGAAGTTA gAAgTtAgTA gagtrgctcc AcAAAATTGT Actatggggg tggagatggg TTTTTGCTAC TTCACCGCTC CACTCCATCC AAAAAAGCTA ACTAACTTTT AATTTTTCAT GTATTTACCG AATATGCCAC TGAACTACCC ATTCATACCC TCTCTCATCC CGTTCTTCCT CCCAACTAGG CGGCTGGGTG GCGACCGGCC GCTGGGACTG GTGGCGGCGA GCGGGTTGCA CAGCTGCTAG GCGGCTTGGT GGTGTGCGAG GGCAGCAAGG GAGAGGGCGG TGGCACGCGG GCTGAGCATC GATCGGCAGG GTCAGCAGGA CAACGTGTGG GTGACGGGGT GTGGGATGAG CGACAACGGT GTCGGTTGGT TGGGTGGCAT GCATAGGCCG TAACCAGTCG TGGGGACCAN CGGCTATTGG GTGTCTTGGT GGCGCACAAG CGCAACAGGG CGGCGCACGT GTGGGCAGCA GTGCACAGGC TGAGCGGTGA CGCGCAACGG CGGTGGTGGC AAGCCGCGGA CGCCAACCAA GTATTCGATG AAATGAGATG T GCATTCTAT-Motif 70% GGATGTGGTA GCGTGGAGCT AACCAAATCT AGCCAAACAT TTTTACAACT T GITTATAAGT-Motif 73\%

TAACAACT

TGTTTATAAG
AAAAC
TACATAAA
2701 TAGGAGTTGA AATTTGGAGG CTTAACAAAT GGGGCCGAAA TATCTGCTTT T-Motif 73\% TAATATAT-Motif 75\%
TTAG-Motif 78\% TAA TATAT-MOtif 75\%
TATGTTCTTT AACTTG-MRR1 Motif 54\% TACATAAA TATGTTCTTT
$2751 \bar{T} \overline{A G G C} \overline{A G} \overline{A C G} \overline{G C G T A G C G G T}$ AAATCGATGA TGTAGACAGT TGGCCGCAAC TAACTTG-MRR1 Motif 54\%
2801
2851
TGCAAGGAAA CAACACTCTG TCACACAGGT TCCGCCGTAT GGTAGGAATC GCCAATCATG ATTATCTGCC GAATATCCTA CCAAAAACGA CGCATTTCCG TCCTAGTTAA CTTCGATGCT GCTGCGCTGC ATCCTCCAGG TAAAGTAAAA TGC ATTCTAT-Motif 70\%

TAAT
2951 TCTTGCAAGG GACAAAACAC ACAGGCTCTT CTCCCATATC CATCAGCTGC ATAT-Motif 75\%
3001 CCAATTGACG CATCACTGAG TTGAATTACA CGCGCGCAAG GGCAACGCAG

CATGATTGAT TTCGTCATTC TCCTCTCGAG ACAAAGAATC CGATCTCATC TCCGCACGAG GGACGGCCAA CTGCTTCCAC CCTTCACAAT GCCGCCTAGA CGCCTAGTGT ACGCGCCGAA TATGCTGCCA AACCAACACG GGACAATCTC CCGCGCTTGG CGACAGCTTC TCCTCGGTGC AGACGCCCTC TCGTTCATCG

CTTC TTGTTCTA-Motif 67\%
ACCTAGCTTG AGGGTGAAAT CCCAGCTATA AGATCGGGCA AGGCAGCGAG CAGTTTGGTG ATCAGAGGTA GCTAGCTAGC CTCGTAGCAG TGTTCCCCGG CGGCGAGAGC GGCAGGAGAG GACGATCGAC GGCATCATCG GAGATGGCGG
\leftarrow Anti-sense primer with AscI site at 3^{\prime} GGCGCGCCTCGGC ACGCGGACGG GGGCTCGAAC CTGGCGGTGC TGGACGCGCT GGACTCGGCG cgCacgcaga tgtaccacat ganggcgatc gtgatcgccg gcatggectt CTTCACCGAC GCCTACGACC TGTTCTGCAT CTCCACGGTG TCCAAGCTGC tCGGCCGTCT CTACTACCAA CCCGATGGCT TGACGGACAG TAAGCCAGGC GCTCTGTCCA AGACCGCCAA CAACATGGTC ATCGGCGTCG CGCTCGTCGG CACGCTCATG GGCCAGCTTG TCTTCGGCTA CITCGGCGAC AAGCTCGGCC gGAAGCGCGT TTACGGCGTC ACCCTCATCC TGATGGCCGC CTGCGCCATC gGGTTCGGCC TGTCGTTCGG CAGCTCGCGC AAGGCAGTCA TCGGCACGCT GTGCTICTTC CGCTICTGGC TCGGCTTCGG CATCGGCGGG GACTACCCGC tGTCGGCCAC CATCATGTCC GAGTACTCAA ACAAGAAGAC GCGCGGCGCG tTCATCGCCG CGGTGTTCGC CATGCAGGGC GTCGGCATCA TCTTCGCGGG GCTCGTGTCC ATGATCGTCT CTAGCATCTT CCTCACCTAC AACAAGGCGC CGTCGTACAA GGGGAACCAT GACCTCTCGA GGCAGATGCC CGCGGCTGAC TACGTGTGGC GCATCGTCCT GATGATCGGC GCGTTCCCGG CGTTGGCGAC CITCTACTGG CGGATGAAGA tGCCGGAGAC GGCGAGGTAC ACGGCGATCA tCGAtGgcan cgcgaigcag gcggcgancg acatgcagan ggtgctgtcg ATCGAgAtag aggccgagca ggagangctg gccangitca acgcgeccai Sense primer \rightarrow RT-PCR
CAACTACCCG CTCCTGTCGA TGGAGTTCGC CCGGCGCCAC GGCCTGCACC tCATCGGCAC GACGACCACG TGGTTCCTCC TTGACATCGC CTTCTACAGC CAGAACCTGA CCCAGAAGGA CATCTTCCCA GCTATGGGCC TGATCAGCGG CGCTGCCGAA GTCAACGCTC TCACGGAGAT GTTCCAGATA tCCAAGGCCT CGITCCTCGT CGCTCTCCTC GGCACCTTCC CCGGCTACTG GGTCACCGTC gCtCtcatce acaagatggg caggtacgta cganccgiat anacatggac actigatgca antgcantcg atgcgancat acacganatg antganttca tggtcacata tgcaggtaca tgatccagct gatcgetttc ttcatgatgy CCATGTTCAT GCTGGCGATG GGCATCCTGT ACGACTACCT CAAAACCCAT CACTTCCTGT TCGGGCTCCT GTACGCGCTC ACTTTCTTCT TCGCCAACTT CGGGCCGAAC AGCACCACCT TCGTGCTGCC GGCCGAGCTG TTCCCGACGC GCGTGCGCTC CACCTGCCAC GCCATCAGTG CCGCGGCGGG CAAGGCCGGC gCCATCGTCG CGGCCTTCGG CATTCAGAAG CTCACGTACA ACTCTCAAGT CAAAAGCATC AAGAAGGCGC TCATCATCCT CTCCATCACC AACATGCTCG GCTTCTTCTT CACGTTCCTC GTCCCGGAGA CCATGGGTCG GTCGCTCGAG gagatctcce gcgaggacgg calcaccgec gccegtggce gcgacgccce tGCCGCTGCC AATGCCGGCG TTGGCGTGAG CGCTTCGGAT GTGAGCAGGG acgagangit ccctgctica agcacceant ggcagacatc catgcacgea tGATACGCTC ATCTGGGATA TGCATACCTA CACAATACCA GTACGTATAC CTACGCAATA ATAGTACTAT ATTGATATAT CTGTATTATG AGAGTGGAAA TGGACCAAAA TAATGGCAAT AACTTGAATT GCCAGATGCT AGCTTGGGAA tTTGATATAC AAGTATATAT CTCCATTACC ATGTTAGAGT AATATATATG TTTGAGTGTG TGCACTCATG CAACAATAGT ATATATCGTG ACCATTCACA ATGTTGAGAA CTACTAGCTA GCAAGAAACT GAGAATGAGA GGGACAATGC AACTATGCTC CTTTTACTAC TTCGTATTGG TGTATGCGTA TTGCAAGCAG CTAATCAATC ATTCTGTTAG TTCTTTCTCT ATATGACGAG CTC 3^{\prime}

OsPT2

Accession number = AF493788
ORYsaPhT1;2 total gene $=2510 \mathrm{bp}$
Promoter $=781 \mathrm{bp}$
cDNA $=1617 \mathrm{bp}=539$ amino acids
3^{\prime} untranslated region $=112 \mathrm{bp}$

2501

AACTTTTTAC TAATGAACAT TCAGAAATTT CTGTGCAATA TTATCTCATG ACCTGAACCA AACGATGCTT GAGCCACGAA ATAGTAGAGG AGACAAAGAT ATAGTTTCGT CAATTCGAGA AGTTTGTCCG GATACTACGG ATGATAGCGG CAGATTTGGA CTGGTTCCAT GAAAGTTGTA CAGTAAGGTG CGAATCTTGA GTTGCAGAGA TGCACCTGGA TCCGGCTATC TAGCTTCACG AGAATCCCAT СTCTACTCTC CTAAATTGCC CACGAAACTG AATTTATGTA GGGATTTTTA GCGAAATTCA GACATTTTTC ACGGGGATGG GTCGGGGATT GTTGACTGAT AAAGCTGGAT TTGAAGAAAC AACAAAATTT TGATATATGA TACCTTGAAT AAACGAGGAG TTTCTGAAGT AGTGGCATGG TCTGTTCCAG ATGTCTCTCT GAACTTCCGT TTCAGTTTCA GTGGACCATA TTGTTGGTGA ACTGAAACGA ATATTATCTT CTCGTAGCCA CGTGCATTCT GTAGATTTTC TTTTGCTCAG TTCGACACAT AGACATCTGA GGCTAATTAG CTCTGTTAAT CGCGCGGTTT GTGTAATTCT CACAAATAAT TAGTTTCTCG TTCATTGCAA ATTGCAGCGA GATTTTGTCG AAATAATAAA CTTGGTGTTC AGTTATTCTC TGCAAAAAAT TGCATATTGC AGAGTAGCTG AGATTGGCGC CATGGCCGGC GAGCTCAAGG tGCTGAACGC GCTCGACTCG GCGAAGACGC AGTGGTACCA tTtCACGGCG atcergatcg ccgecatggg gitctrcacc gacgcctacg acctcttctc CATCTCCCTC GTCACCAAGC TGCTCGGCCG CATCTACTAC TTCAACCCGG CGTCCAAGAG CCCTGGCTCC CTCCCGCCCA ACGTCTCCGC CGCCGTCAAT GGCGTCGCCT TCTGCGGCAC CCTCGCCGGC CAGCTCTTCT TCGGTTGGCT cGgcgacalg atggggcgca aganggtgta cgecatgacg ctcatgctca TGGTCATCTG CTGCCTCGCT TCCGGCCTCT CGTTCGGGTC GTCGGCGAAA GGCGTCATGG CCACGCTCTG CTTCTTCCGC TTCTGGCTCG GCTTCGGCAT CGGCGGCGAC TACCCGCTCT CGGCGACCAT CATGTCGGAG TACGCTAATA AGCGCACCCG TGGAGCGTTC ATCGCCGCCG TGTTCGCCAT GCAGGGCTTC gGCAACCTCA CCGGCGGCAT CGTGGCCATC ATCGTGTCCG CCGCGTTCAA GTCGCGGTTC GACGCGCCGG CGTACAGGGA CGACCGGACC GGCTCCACCG tgCcgcaggc cgactacgeg tggcgcatcg tgctcatgit cggcgccatc cCgGCGCTGC tcacctacta ctggcggatg angatgcceg agacgecgcg CTACACCGCG CTGGTCGCCA AGAACGCGAA GCAGGCCGCC GCGGACATGA cGCAGGTGCT CAACGTCGAG ATCGTGGAGG AGCAGGAGAA GGCTGACGAG GTCGCGCGGC GCGAGCAGTT CGGGCTCTTC TCCCGCCAGT TTTTGAGACG CCATGGGCGC CACCTGCTGG GCACGACGGT GTGCTGGITC GTGCTGGACA tCGCCTTCTA CTCGTCGAAC CTGTTCCAGA AGGACATCTA CACGGCGGTG CAGTGGCTGC CCAAGGCGGA CACCATGAGC GCCCTGGAGG AGATGTTCAA GATCTCCCGG GCACAGACGC TCGTGGCGCT GTGCGGCACC ATCCCGGGCT aCTGGTTCAC CGTCTTCTTC ATCGACATCA TCGGCCGCTT CGTCATCCAG CTCGGCGGCT TCTTCTTCAT GACGGCGTTC ATGCTCGGCC TCGCCGTGCC gTACCACCAC tGGACGACGC CGGGGAACCA CATCGGCTIC GTGGTCATGT ACGCCTTCAC CTTCTTCTTC GCCAACTTCG GGCCCAACTC CACGACCTTC ATCGTGCCGG CGGAGATCTT CCCGGCGAGG CTGCGITCCA CCTGCCACGG CATCTCGGCG GCGGCGGGGA AGGCCGGCGC CATCGTCGGG TCGTTCGGGT tcctgtacge ggcecagagc acggacgcga gcangacgea cgccgactac CCGCCGGGCA TCGGCGTGCG CAACTCGCTC TTCTTCCTCG CCGGATGCAA CGTCATCGGG TTCTTCTTCA CGTTCCTGGT GCCGGAGTCG AAGGGGAAGT CGCTGGAGGA GCTCTCCGGC GAGAACGAGG ACGATGACGA TGTGCCGGAA GCGCCCGCGA CGGCCGATCA CCGGACTGCG CCGGCGCCGC CAGCTTGATA CCCCGCGGCA AAACCCAAAT GGTCAATCAT CAGTGTTTTG TTGTAATATA TGTGCAATGG ATGATTATTC TGGTTCTGCT AGTGTACCAA ACAAAATTAC AAATACTAGT 3^{\prime}

Rice A, ORYsaPhT1;1

The contig (5095) containing the rice A sequence has a total length $=12280 \mathrm{bp}$

```
RiceA total gene = 4248 bp
Promoter = 2406 bp
cDNA = 1587 bp = 529 amino acids
3' untranslated region = 255 bp
```

5' 1 CAGTTTCTAA ATTCTTCATT TTCTGGATTG TACTTCTTCT TCAAATATTG 51 AGAAAAGCTG GACTCGGCTG GTGATAACAT GTAGATGTTG GAAAAATAAC 101 TTTTTCCATC TAGGGTGTAT TTAGTTCACG CTAAAATTGA AAGTTCGGTT

151

201
251
301
351
401
451

GAAATTGGAA CGATGCGACG AAAAAGTTGA AAGTTTGTGT GTAGAAAAGT TTTAATGGGA TGGAAAAGTT GAAAGTTTGA AAAAAAATTA CAACTAAACA TGGATCAAGT TCATTITTTTT TTATATTCTA TAACAATAGT TTCTTATAAT ATGAAAAGTA GTAGCTTTGC TATTAGACCT TTGCTATTAG TAGTAGCTTG TTTGGCGCCA TCCTCTTGTT GAGCAATCAT TCTTCAGAAT TCATCTGAAG TAGCGAATGG CAACAAAGGG GTAAATCGTT TTGTTTGTTT AGCTCGAAGG AgTAAACTTT GATGTAACCA CCCATACTCA GGATGGGTGT AGGCAGTGCA GATGGCCTAA CGCATTCCGA CGGCAACGGA GTTCTGGCGA AGGAGAGGGC TCCGTGACGA GGACGAGGAA GGAGCCATCA GAGGAGGAAG TCGGGGTGGC CAAGACCGAG GTGGAGCAAG GAGGGATGTG CCCCTGGCAG CGGCGAAAGG CAGAAGTTCG GAGTAGGTCG GCACAGGCAG GAGGAGGTTG GGGAAGTCCG GCGAAAGTAT CGGCCGTGGA GCTATACGCC GGAGAAGGGA AGGTGGCCAT gGgGccacca tragcaigtg ggtatggctg grcagatrtag gctacgitic CCTGGAGCAA CAGCAACCAA CAAGGACACA ACGAGGTGAA GAGTTATCCT CGAGGCGTAA AAGGTGAAGA TGGCAATTCG CGGGGAGCTA TAGCTAGCCT TCTCCAGTAC TTCTGTAGTT CTGTCCATAT CCTGTTCTGC GTCACGAGCC ATGCAAACAA AACACACACA TCTCTGCGTC ATTCGCGGGG AGTAGTTTCG CTCGCTCGCT AGGGCATGCA TGCTTGTCAA GTTGCTCGCA AGAGTTCATC GTCAAGAAGC TTCGCTGGAA ATTTCGTCGA CCTCTTCTCC GATTGTTGTA GCGAAAGGGA CATGGTTTGT TCTCTAGCTG AAGTTTCAGC CCCATGTCAA TTCCATCACC AAAACGAGAT AGCGACAAGC CAGATCGTAT TAGCTAGGCA TGTGCCATGT GGAAAACCAA GAAACAAGAT AATTTAAGAC GGGAAGGCCC AAGTGTGTAC TGCAACTACT GTTGCGAGCT GTGTGTCCAC CCTACCGAAG GACGCCTATG AACTGGACTT CATTGAGCCA GTAGTGCAGC CAGCCCATGC TCTGCAAAAT CCTACCCTCG CATACTTCAA CGGCGATGAC TTCCATATCA AAGAAAGAAT GTTCAGTCAG AACTACTCCG GCTAACAAGT ACAGTAGTAA TAACCAATTG AACAAACACG GCATTCAGCT GCTGATTTCC AAGCCTATCC ATATACTCCC TCCGTTTTTT AATAGATGAC GCCGTTGACT TTTTCTTACA TGTTTGACCA TTCGTCTTAT TCAAAAATTT TATGCAATTG TATAAGATAT AAATCACACT TAAAGTATTA TGACTGATAT AACAACTCAT AATAAAATAA ATTATAATTA CGTAAAATTT TTGAATAAGA CGAATGGTCA AACATGTGAG AAAAAATCAA CGGCATCATC TATTAAAAAA CGGAGTTAGT ACTTGGTTCT TGCTCAGCTT GTCGCTGTCT TGTTTCAACC TGCTAAGAGC ACCCGCAATG GTAAAGTAAT GTGCTATCTA TAAAACATGT ACACCTCAGC AATAGACTCG ATTAATAGTA AACCACTTCA ATGGTATGTC TACATTGGTA TCTATAGCTC TCTCATGCAT TGTCTCGTTT TTCTCTATAG ACTATCTCTA AGTTAGTAGA TAGCTTTGCT CTTTCTCTTC ATTTAATATA TTCCAAGTAG GAAAATATGC TGACATGGAT CTCTTGTAGA GAGCCTATAG ATAATCATTG TGGGTGCCCT AATGAGAAGC GATTGTGTTA CGTACTACAC AGTACAGACT ACAGACTACA AAGTATCCAT CTCAACATGC TTCGTCAGTA ATTGATGAAG ATGTGCCGGT TAATTACTGC TCCAAACGCG GGAAGAACGG AGACCAAAAG ACTTCCAGTT TTGCAGTCCG CCCCCTCTAC TGTGCCCCTG CCCTGCTTTT GATAAGAACG GCAACCATTA GAGTTGACTA GTTTGAGCAT TCAACACTGG ACCTGCGACT GCGAGTAGTA TATATCTGCG TCCAGTAGAG AACAGTCAGT TCAGCGGCAA AGCAAAAGAA AAAGTTAGAT CAGAGGAGAG CTCAGAGCTC AAAGAGTTGG GAAGCCATGG CGGGAGGGCA GCTCAACGTG CTGAGCACGC TCGACCAGGC gangacgcal tggtaccact tcatggcgat cgtcatcgcc gecatggect tCTTCACCGA CGCCTACGAC CTCTTCTGCA TTTCCCTCGT CACCAAGCTG CTCGGCCGCA TCTACTACAC CGACGATTCC AAGGACACCC CCGGCGCGCT CCCGCCCAAC GTGTCGGCCG CCGTCACCGG CGTCGCGCTC TGCGGCACGC TCGCCGGCCA GCTITTCTTC GGATGGCTCG GCGACAAGCT CGGACGCAAG AGCGTGTATG GTtTCACGCT GATTCTGATG GTCGTGTGCT CGGTCGCGTC CGGGCTCTCG TTCGGGAGCT CGGCCAAGGG CGTCGTGTCG ACGCTCTGCT TCTICCGGTT CTGGCTCGGC TTCGGCATCG GCGGCGACTA CCCGCTCAGC gCCACCATCA tGTCGGAGTA CGCGAACAAG AGGACGCGCG GGGCCTTCAT CGCCGCCGTG TTCGCCATGC AGGGGTTCGG GATCCTCTTC GGCGCCATCG tCGCGCTCGC GGTGTCGGCG GGGTTCCGGC ACGCGTACCC GGCGCCGTCC tactccgaca accacgccec grcgetcgic ccgcaggcce actacgigtg gCGCATCATC CTCATGTTCG GCACCGTCCC GGCGGCGCTC ACCTACTACT GGCGGATGAA GATGCCCGAG ACGGCGCGGT ACACGGCGCT CATCGCCCGC AACGCGAAGC AGGCGGCGGC CGACATGTCC AAGGTGCTGC ACACCCAGAT TGAGGAGAGC GCGGACCGCG CCGAGACGGT GGCCGTCGGC GGCGAGAGCT GGGGCCTCTT CTCGCGCCAG TTCCTGCGCC GCCACGGCCT CCACCTCCTC gCCACCACCA GCACGTGGTT CCTCCTCGAC ATCGCCTTCT ACAGCCAGAA

CCTGTTCCAG AAGGACATCT TCAGCAAGGT CGGGTGGATC CCGCCGGCGA agaccatgan cgcectcgag gagctctacc gcatcecccg cgcccaggce CTCATCGCGC TCTGCGGCAC CATCCCGGGC TACTGGTTCA CCGTCGCATT CATCGAGATC ATGGGCAGGT TCTGGATCCA GATCATGGGC TTCGCCATGA tgacgecgut catgctcgec ctcgccatce cgtaccacca ctggacgacg CCGGGGCACC ACACCGGCTT CATCGTCATG TACGGATTCA CCTTCTTCTT

Senge primer \rightarrow RT-PCR
CGCGAACTTC GGGCCAAACA GCACCACCTT CATCGTGCCG GCGGAGATAT ACCCGGCGCG GCTCCGGTCG ACGTGCCACG GCATCTCCGC CGCCGCCGGG AAGGCCGGCG CCATCATCGG AGCGTTCGGA TTCCTGTACG CGGCGCAGGA CCAGCACAAG CCCGAGCCTG GGTACCCCAG GGGGATCGGC ATCAAGAACG CGCTCTICGT GCTCGCCGGC ACAAACTTCC TCGGGACGAT CATGACGCTG CTCGTGCCGG AGTCCAAGGG CATGTCGCTC GAGGTTATCT CGCAGGAGGT
\leftarrow Anti-sense primer RT-PCR CGCCGACGGC GACGACGAGG AGGCGGCCTA CCCGAAGTAA TTTGACCGCG CGCGTGATCA CGCAGGGAGT GGTTGCCGCT AACCATTGGT GTCATCTCTT TTCCCAACTG TAACAACTCT AGTCGTCGCT TCCGTACGAG TGGTAGTTTT TTCTTTTTCT TGGATAAGTT TGTAGAAATT TCAATTAGTG ACTAGTTTGT AgTATATGTG AGTGAGATGT GTGTATATGT TCTTGAAGAA TTGGTGAACT TTTCCTGGAT TTGAAAGAAC CGTGTAGTTT GAAAAAAGAA TGCAATGGAT 3^{\prime}

Rice B, ORYsaPhT1;2

The contig (5095) containing the rice B sequence has a total length $=12280 \mathrm{bp}$

```
RiceB total gene = 2938 bp
Promoter = 1200 bp
cDNA = 1587 bp = 529 amino acids
3' untranslated region = 151 bp
```


atcatgtcge agtacgcgag cangangacc cgcgggecct tcatcgccge CGTGTTCGCC ATGCAGGGGT TCGGGATCCT CTTCGGCGCC ATCGTCGCGC TCGTCGTCTC GGCCGGCTIC CGTCACGCGT ACCCGGCGCC GTCGTACGCC CAGAACCCCG CCGCGTCGCT CGCGCCGCAG GCTGACTACA CGTGGCGGCT CATCCTCATG TTCGGCACCA TCCCGGCTGG GCTCACCTAC TACTGGCGCA TGAAAATGCC CGAGACGGCG CGGTACACGG CGCTCGTCGC CCGCAACGCC aAgcaggcgg cgactgacat gtccangetg ctccacgccg agatcgagga gCGgCCGgag grggrcgaga gccaggtget cgccggggag acctggggce TCTTCTCACG GCAGTICATG AAGCGCCACG GGATGCACCT CCTGGCGACC accagcacge ggttcctgct cgacatcgcc ttctacagcc agancctgit CCAGAAGGAC ATCTTCAGCA AGGTCGGGTG GATACCGCCG GCGAAGACCA tGAACGCGCT CGAGGAACTC TACCGCATCT CCCGCGCCCA GGCACTCATC gCACTCTGCG GAACCATCCC GGGCTACTGG TTCACCGTCG CCTTCATCGA CATCGTCGGC AGGTTCTGGA TCCAGATCAT GGGCTTCTTC ATGATGACCG tGTTCATGCT CGCGCTCGGC GTGCCCTACG ACCACTGGAC GCACCCGGCG CACCACACCG GCTTCGTCGT GCTCTACGCA CTCACCTTCT TCTTCGCCAA CTTCGGGCCC AACAGCACCA CCTTCATCGT GCCGGCTGAG ATCTTCCCGG CGAGGCTCCG GTCGACGTGC CACGGCATCT CCGCCGCGTC CGGCAAGGCC GGCGCGATCA TCGGCGCGTT CGGGTTCCTG TACGCTGCGC AGGACCAGCA Sense primer \rightarrow RT-PCR
CAATCCCGAC GCGGGATACT CCCGCGGCAT CGGCATCCGG AACGCGCTCT TCGTGCTCGC CGGCACAAAC TTCCTCGGTA TGCTCATGAC GCTGCTGGTG CCGGAGTCCA AGGGCTTGTC GCTGGAGGAG ATGTCCAAGG ACAACGTCGT CGACGAGACC GCCCAAGAAG CGATCGCCCA AGCGTGATGT CATAAACATG CCGTCTCGAC GTGAGTGACT GAAAAAAATG TATGCTTTAT TACTCTATTG GTGTGATTAC TTAATCTAGT TTTGTATACT TTTGTAGTGT CTCTCCTTTT ACAGTTGTGG_AT1'FGTGGGG TTTCTCTTTC TTTCTTTT ${ }^{3 \prime}$
\leftarrow Anti-sense primer RT-PCR

Rice D, ORYsaPhT1;3

The contig (24795) containing the rice D sequence has a total length $=4083 \mathrm{bp}$
Riced total gene $=3483 \mathrm{bp}$
Promoter $=2511 \mathrm{bp}$
partial cDNA $=972 \mathrm{bp}=324$ amino acids

5' | 1 | TGTTTTATTG TGTTCCTCAG CTATGATTCT ATATGTACTT CTTTTCATGT |
| ---: | ---: | :--- | :--- | :--- |
| 51 | AACGTTTAGC TGTGTATATT TATTTGTGGA TATAGAGATT GGATTTTAT |
| 101 | CCATTATCTT AAAAAAGAGC TACCATACTG TGAAAATAAT GGCTGAAATC |
| 151 | ACACAAATTG CTTAAGTACA TCAGGACCTA GTACGTGCTA TCCAAAGCCA |
| 201 | GACCGTTTTG CTGCATTCCA TGGACCATGC ATGATTAACC TCTGGCTCTA |
| 251 | TGTCAAAAGT TCTGGGCACA AAAGAGTCAA AACTTCCAAT GTATATTTTA |
| 301 | CAAACACCAA ACAAGACAGA TACAAATTAT CCCCATATTT TATTACAGGG |
| 351 | TCCAGTAGGA TGACATGGAG TACAAATTAG TTGGTCGCTT ACCACACGGG |
| 401 | TAATTAAAGC AGGTAGGTGA AAATGAAATC ATGAAACAAT CGATACTTAG |
| 451 | CTTATTTAAC ATCATGCGAT GCATGCTGAT GCTGAATACT CCAATGTTCA |
| 501 | AGCTTGCCCT CTATCAGTCT CCAAATCATG TAGGTTCAAT TGTAACGGTC |
| 551 | CTTAATTAAT TCATCAGTCA TCACTGCCCA AATTCATAAA TATTTTGATA |
| 601 | AAAAAACTCC CAAATTTACA CCAGGGCAAT ATTTAATTTT GGAGATCCAA |
| 651 | GCTGTCATAT TAGCATAAGA AAGATACCTA GGAATCTGAC TTGGCAATGT |
| 701 | GCAGACACGG GTGACTTGGA AGACCAGGCA AAGCATCTCT GCTTCTTGGC |
| 751 | ATCAAATGAT GCTCCATCGT GGTCAATTAC TCTATCCATT AATGAAGGAG |
| 801 | AGAGATGGGA TGAAAATATG AAATAGGCTA AAATAGTTTA GTTAAGCGGT |
| 851 | TGTACCATCA AATATATATG TGTTCAACTT GCAACAACTC ATTAATGTTA |
| 901 | GTACATTGAG ACAGACGCCG TGTTTAGTTC CAAAATAATT CTTTAAACTT |
| 951 | CTAACTTTTT CATCAAATTA AAACTTTCCT ACACACAAAC TTTTAACTTT |
| 1001 | TCCGTCACAT CGTTTCAATT TCAATCAAAC TTCCAATTTT AGTGTAAACT |
| 1051 | AATCACATCC AGAGAGATGT GTACATTCAG TTCAGATTGC TCTGAACTTG |
| 1101 | GGAGTATGCT TCAGACCAAG ATTAGCATGG ATTATCACCA CACGATGTCA |
| 1151 | CACCAAATAG GAACTGAAGT TAGATTCAGC AGATACAAAA TTAACTACTA |
| 1201 | CTTCTGGAGT TAAATTTAAA AGTTGGAGCT CTACCAAACG TACCCAAAGC |
| 1251 | ATATTGTAGA ATTTTTTTTT TTTGACAATC CTTAATTAGT TAAGAGTTCT |

TCAGAGATAA AGGTACCTTG TAGCGTTAAT CAGTAGTGCT TGCTAATAAC TCTGAAGAAC CTAAGACAAA ACTATATTTT TGGAGGGAAA GAAACTAATT TCGCGATAGC TTTAGCTAGT GTGTCATCCA CACTCCTAAG AATTATATCC TACATATGCT ACTTGGAGAT ACTAAGCAGA GCCGCTGCAA GCTTCAAGCT TCAAGACCAG AAGATCAAGC TTGGATGTCT TGGATCACAT TCACTATGAC TTGGAATGCA AAACACTTAC AAGAAATGAA AAAGAAAGAT GCTCCCTTTC ACAAAATTGA TAAAACTITA TTTTCTTGTG AGTGTGCAAG TAGTGCTGGG AACTAACTTG TTAAGGTACA TGTAACACGG CATTGGGAAT AGTTGACTAG GATTAAACAA CATCCAAATG GAGGAGACTT CTCGAGATCA GGTATATTCC TAGGATCAAA CCATAGTACA AATAACCAAA TACTACAATT TTAGATTATT TGGGCAGTTA GGAATAATAA TTTTCAGTGT CCTTTGCAAA ACCTTAGCTC CAAGCTCATT AACATAATCG TCTAACCATA TAAATGTTTT TAATTTGAAG AAATTCAATA TTATCATTTA CAATTTAGAT CATTTGGACA GTTAATTCCT AACATGAAAG GGGTTAAAAA ATATATTTTA TTCCAAAAAA CACAACACAA ATGTAGACAC TCATAACGCG TATACTCAAC GCACACATGG ATATCCCTCT AAAAGGATGG ACCGGCAAAT CATGAAATTG ACGTGTCACC ATGGGCGTCA CACTGTCAAT AGGTATATAG TCTACCACTG AAAAATTTAA TAGCCATAAA TACGATTACA TATATCAAGT CTATAACTTG AACCTAGATG GGTTAGTTCC ACCATATATA ACGAATCTAA CCAATTGAGC TACTCTATCA TTTGGAAGTT TTTAATTTGA AGAAATTTAA AATGTTCTTT CGGAAATAGA ATTTTTAAATC GAGCCTATCT CTCGTTGACT CAGATCACTC CAATCATCAT GTCCCTAAGC CGGGAAGCAG CATTAACCAA TAAAATCTTA AGCAAGTGCA TCTAGCTCAC ACGTACTAGT ACATTAATTC TCTAGGGTTA TATATATTTG CACTGCAGCT AGTTGCCTTG CTAGCTCGGC GAGGAGCAAG ACGAACAACG AGGCTACGTA CGCCGGCGAC AATGGCGGAC GGGCAGCTCA AGGTGCTGAC GACGCTGGAC CATGCGAGGA CGCAGTGGTA CCATTTCATG GCGATCGTGA TCGCCGGAAT GGGCTTCTTC ACCGACGCGT ACGACCTCTT CTGCATCTCC CTCGTCTCCA agCtGctcge ccgcatctac tacaccgaca tcgccagcga cacccccgec AGCCTGCCGC CCAACGTGTC GGCGGCGGTG AACGGCGTCG CGCTGTGCGG CACGCTCGCG GGGCAGCTCT TCTTCGGGTG GCTCGGCGAC AAGCTCGGGC GGAAGAGCGT GTACGGCTTC ACGCTCGTGC TCATGGTGGT GTGCTCCGTC GCGTCGGGCC TCTCGTTCGG GCGCACGGCG AAGGGCGTCG TCGCCACGCT CTGCTTCTTC CGCTTCTGGC TCGGCTTCGG CATCGGCGGC GACTACCCGC tGTCGGCGAC GATCATGTCG GAGTACGCCA ACAAGAGGAC GCGCGGGGCG tTCATCGCCG CCGTGTTCGC CATGCAGGGG TTCGGCATCC TGTTCGGCGC CATCGTGGCG CTCGTCGTGT CGGCCGGGTT CCGGAACGCG TACCCGGCGC CGTCGTACGC CGACGGCCGC GCGGCGTCGC TGGTGCCCGA GGCCGACTAC GTGTGGCGGA TCATCCTCAT GTTCGGCACC GTCCCGGCGG CGCTCACCTA CTACTGGCGC ATGAAGATGC CGGAGACGGC GAGGTACACC GCGCTCATCG CGCGCAACGC CAAGCAGGCC GCCGCCGACA TGTCCAAGGT GCTCGACACG gagatccagg aggacgcega ccgccccgag gccgtcgccg ccgacgaccc CGGCAACGAG TGGGGGCTCT TCTCGCGTCA CTTCGTGCGG CGGCACGGGG tGCACCTGGT GGCGACGACG AGCACGTGGT TCCTGCTCGA CATCGCGTTC TACAGCCAGA ACCTGTTCCA GAAGGACATC TTC 3'

Rice E, ORYsaPhT1;6

The contig (19209) containing the rice E sequence has a total length $=5406 \mathrm{bp}$

```
RiceE total gene = 3899 bp
Promoter = 2345 bp
cDNA = 1521 bp = 507 amino acids
3' untranslated region = 34 bp
```

5' 1 GGAACGAAAG CATCTCCAAT CTCTCATTGC TGACCTCTTT AAATTAACCC 51 CCTTAATTTG ACCACCCTAC GTACCAGCTT TCATTTCTTA ATTTAATTCT 101 CTGGCTTCTG TATTATATTG ACAGTGCTCC TATATATATG TACTTTAGCG 151 TGGTTAGTTA TATATTATAA CAGCACGTAA TCACTGCTCA GCATGTACTT 201 AATTTGTCCC TTGGTAGAAT GATCAGCCGA TGCTTTTGCA CGATCAGTTC 251 ACTGTGCCAT ATAGGGGCTC CCATGCATCA TGAACAAATT AACATGACCT 301 TCGGTAAGGC GGTACTCTCG AAAGTCGCTA TTGGGGTTGC ACGAGGGATG 351 AGTTCATCTT CTTCTCTCTT ATTCCTCCTC CTCATCAACC TGTTTCTATA 401 GGATGACTAG GAGTGTGGGT AGCTAGTAGC TTGCAGTTAT GGTAGGACAG 451 AGTGTCTATG TCCCGCTGTA GAGCTGTGGT GACAGGCCAC ACATAACAGT

GATAGGCTCG GCGTTAGTTC TTTTCTCAAG TTGGTGGTTG GGAGTCGTTA GTTTCATGCT GGTGAGTTTT TCTTTTCTTT CCTGATTGTA GCCTCCTAGA GTTGTAATAT TGTATATTTT TTCATGCTAT ATTAATATGA AGCCTCGCAG CTATCTCATA TGGTTTGTTC AAAAAAATAA CACGATCAAT TGTTGTTTGT TGTGTAGTGG TCTCTCCGGT GTCACTATCG GTGATTTGAC AAAGACGCTC CCAATGTTGG ATGGTGTAAA GATAGTCATG TCTCCAGTCT TTGCACATAT ATATAATACA TAGAGTCAAA GTTTAAGATG AAAGGTAACC TTAATAAGCG ATTGAATGCT CTATGTGATG GAAATGTGCA TGACGTCTAT AATCCTTTCT AAGACTCTAA GAGTGAGTTA CAAACCGCCT TTGCTACCTG TACGTTGATT GAGTTTTAGA AAAATCGTAG TTGATTGATC AATCATCAAT CTGTTGTTGA TCTAAGGGCT ATAGCTCTAT CTTGTACCTC GAGCCAAGAG GGAGACATGA tAAGGAGAGG GATATGTCAG AGAGGACTCA CGACAACGTC CTGGTGGAGA TGGGCGGGCG GTGGGTGGGG GTGAGATCAT GTGGTTAGGT TGTAAGGGTG ACAGATCTAG CAGCGTGAGC CACCCCGAGA TGAAGGAGAA AATACATATG GATTTGTTGA TGAAGAGGGT GATGGCAGTG ATGTGGAGGG AAAGAGGACA gGgataggai aggctugtcc Aacctcgccg gTgTcagcgc tggcagtgca AAGAGGAATG CCATCACACG CGAGTCAAAG TTGGGACTTA GAACGTTGGT ggcacangag anggggatca ggagaggggg aggctatgit aianattagat TGTTACACAA ATAACAATGT AATCTGAGCT GTTTAATAAA CTATATATAA AACATCAGGC AACTAATGAA TGGTCAAGGC CGTTATCAAT TGGTCTGGAT GGTAACTCCC TGCCTTCGAT GCAGGACGGA GTGTAGCGGG GGCCCCTGTC CGACCATCCC TTGCGATAAG AGTTTTTTCC TTTCTCAGTA ACTTATATTT CCTGTATTTG TGTTTTTTGT TTCTTTTTTT CCTTGACCCC TAGCAACGGC CCTCTGACCG TTTGCGTTGT GTAACCAAAC TCTGTTGTCT TCTTTTAATA TATTGACGTG CAATCATTTA GCGCGTTCGC GAGAAAAAAA TGGTTTGGAT GGTTAAATCT TACTAGAAAC CAGAACGAGA TAGGCTACGC AATTAGCAAT GGATGGTTGG CATTAGGTCA TCTAAGGTCA AACCGATGGA GATACATTTG CTGCATAAAT AGCAACTAGC GTAATATGTG ATGTGATGTA CTTCCTACGT CTTATAATAA GTTTATTTTT TAGCTACTTA TATTTGTCTA GAAATAAGTT AATTTTTTAGA ATAATTATTT GTATCGGAGT TTGTGAAAGT AAAAAGTAAT TGTATTTGGA GTACATAAAG TGAGAAAGTA TTGAGATTTG ATAAAGTAGA GGTATTTTAG TTTTITTTAT TGGTACGTGT GAGATTAGTG AAAAATAAAT TTATTTGGGA AGGGATGTAG TACCTAGCTA CTCTTGTACC AGCTAGATTA AGTATAAACC AAAAACAACG GGAGTAGTAG TAGTAAGAAT GTAAAACGGT TCCAACATAA CGCAACAACG GAACGGTTGG ATATTCGGTT GGGAGAAGAA GGGAGATTCC GTTTGAGTAG GTTATAAATA GCAAGGAATA CATACGTAAG TTCCAAATCA TCACAAAGCA AAGCAAAGCA AGCAATTAAG CTGGCATGGG CGGCGGCGGC GGGGAGCAGC AGCAGCTTGA GGTGCTCCAC GCCCTGGACG tgGccangac gcantggtac catttcacgg ccatcgiggt ggccggantg gGGTTCTTCA CCGACGCCTA TGACCTCTTC TGCATCTCCC TCGTCACCAA GCTGCTGGGC CGCATCTACT ACCGCGTCGA CGGGTCCCCG TCCCCCGGCA CGCTCCCCCC GCACGTCTCC GCCTCCGTCA ACGGCGTGGC CTTCGTGGGC ACGCTCTCAG GGCAACTCTT CTTCGGCTGG CTGGGCGACA AGCTCGGCCG taAgCGCGTC TATGGCATCA CCCTCATGCT CATGGTGCTC TGCTCCCTCG ССTCCGCGCT CTCCTTTGGC CACACCCCGA CCTCCGTCAT GGCCACCCTC TGCTTCTTCC GCTTCTGGCT CGGCTTCGGC ATCGGCGGCG ACTACCCGCT CTCCGCCACC ATCATGTCCG AgTACGCCAA CAAGAAGACG CGTGGCGCCT tCATCGCCGC CGTCTTCGCG ATGCAGGGCT TCGGCATCAT CACCGGCGGC CTCGTCGCCA TCCTCGTCTC CGCCTCCTTC AGGGCCGCCT TCCCGGCGCC tCCCTACGGC GAGGACCCCG TGGCCTCCAC GCCGCCGCAG GCCGACTTCG tGTGGAGGAT CATACTCATG CTGGGCGCGC TGCCGGCGGC GCTCACCTAC tactggcgca ccangatgcc cgagacgecg cgctacacge cgctcgugcc CAACAACGCC AAGCAGGCCG CGGCCGACAT GTCCAAGGTG CTGCAGGTGG tGGAgAtGCG tAAtATTGGT AATAATGGTG GCAGCAGGAG GCCGTTCGGG CTGTTCTCCG GCGAGTTTGT CCGGCGGCAC GGGCTGCACC TGGTGGGCAC GTCGGCGACG TGGTTGCTGC TGGACATTGC GTTCTACAGC CAGAACCTGT tCCAGAAGGA CATATTCAGC GCGGTGGGGT GGATCCCCAA GGCGGCGACG ATGAGCGCGC TGGAGGAGCT GTTCCGCATC GCGCGGGCGC AGACGCTGAT CGCGCTGTGC GGGACGGTGC CCGGCTACTG GTTCACCGTC GCGCTCATCG ACGTGGTGGG CCGTTTCAAG ATCCAGGCCG TTGGCTTCGC CGGGATGACC CTCTTCATGC TCGCCCTCGC CCTGCCGTAC CACCACTGGA CGGCGCCGGG Sense primer \rightarrow RT-PCR
CTTCTTCTTC GCCAACTTCG GGCCGAACGC GACGACGTTC ATCGTACCGG

3651 CCGAGATCTT CCCGGCGCGT CTCCGGTCAA CCTGCCACGG CATCTCCGCC 3701 GCGTCCGGCA AGGCCGGCGC GATCATCGGA GCATTCGGTT TCCTCTACGC 3751 GGCGCAGCCA CAGGACAAGG CGCATGTCGA CGCCGGCTAC AAACCTGGGA 3801 TTGGCGTGCG GAACGCGCTC TTCGCTGCTC GCCGGGTGCA ACCTCGTTGG
3851 GTTCCTCATG ACATGATGCT_CGTGCCGGAA TCGAAAGGGA AGTCGCTGGA 3' $\quad \leftarrow$ Anti-sense primr RT-PCR

Rice F, ORYsaPhT1;12

The contig (17657) containing the rice F sequence has a total length $=12280 \mathrm{bp}$.

```
RiceF total gene = 4871 bp
Promoter = 2901 bp
CDNA = 1626 bp = 542 amino acids
3' untranslated region = 344 bp
```

5' 1 TAAAACAACT CATAACAAAA TAAATATAAT TACGTAAATT TTTTGAATAA
51 GACGAATGGT TAAACATGTA AGAAAAAACC AACGGCATCA TTTATTAAAA
101 AACGGAGGGA GTATATATCT CGTGGTCTTG TTCATGTTGG TCAATGAAGG
151 ACTATAATAT ACTCTCTCCG NTTTTTTTAAT AGATGACACC GTTGACTTTT
201 TTAATATGTT TGACCATTCG TCTTATTCAA TAAATTTACG TAATTATAAT
251 TTATTTTGTT ATGAGTTATT TTATCACTCA TATTTAACCA TTCGTCTTAT
301 TCAAAAAATT TACGTAATTA TAATTTATTT TGTTATAAGT TGTTTTATCA
351 CTCATAGTAC TTTAAGTGTG ATTTATATCT TATACATTTG CATAAAATTT
401 TTGAATAAGA CGAATGGTCA AACATGTGAG AAAAAGTCAA TGGTGTCATC
451 TATTAAAAAC GAAGGTAGTA ACATGGAAAC GGTGAATTTT CCATACTACT
501 GATACTACTT TCTCTCGTTC GAATACTACT TTGTTTTCCC GTATAAAGTT
551 TATTGACCGA AATACGGAAT CCATGAAAAG ATAAAGATGC TCTTATTATC
601 TGATGCTACT GTTAACTCTC TACTTCTTGA GAACAGTAAA CCCTCCCTCT
651 TTCAACTAGT CAGCAAATTA ACCAAAGCCG GTGTCTATAC CAGTCAGTCC
701 CAAAAAAAGT CAAACCCTAG TTATGAACTT AGGCACGTAT ATGTCCGGAT
751 TCGTAGTTAG GATTGGACTT TTTTTAGGGC TGGGGTAGTC TGGTAAAAAC
801 CGATTCCCCA ACAGGTAAAA AGAAGTGGTC CTCGGAAGTT GCCAAACCGA
851 ACCCACCGAT CGAATCGAGG CGTGTGTGCC GCGTGCGCGC CCGTACAGTA
901 CGAGGAGAGC GGGACGCGGC CGGGTTCGCG ACGGCGCACA CGCAGGCTGG
951 GCCGGTGATG GGCTGCGTGG GAGGTGTGCT GCTGATGCAT GGGCCAATGC
1001 GCGAGATAGC TCGGTCGCGT GGTATGTGTC GGGCCTCGGT TCCCACGGGC
1051 TTCGCACGCA GGCCGGATAC AGAAACAGAT CGAATCTCGG AACAAAAACA
1101 GAGAGCCACA TATCACTATA TCAGATGTCA CGGTGGATTT GCCGCCGCGC
1151 AGATCGGGAT AGCTGGCAGG CATTCGTACA CCCGGATTTC TGCTTTGATA
1201 TTCTGTTATC ACAGTATATC CGAGGGCACC GTATCTGGTG CAAACCAGGG
1251 TTGCTGTGCA GCCTTGCAAA TTTTCAATTA AGACCATAGA ATACCCATCC
1301 GATGGCTAGG TATAGAGGTG GGTTACTTTT GCACTTAACC GCCCACACTC
1351 ATCTATGCTA ATCTGTTTTTT TATGCAAATC CCCCCTAATC ACAGCATCCG
1401 TCCGCCCGCT CTTCCCGCGT CGTTTCGTTT CTGCAGCACA CGCGATTCGC
1451 CGCCGCCCGC TCGAGTCCCC GCCGCCCGCC AGCGACTCGC CGGCGCCCCT
1501 TCGCCACGCC ACCACCGCCA TGTTGCAAAC CCTCCCGTTG TGAGGTCACG
1551 GGGTAGACCG TGCCGCTGCC GCCATGGAGT CTGGCACGCG CGACGTTTCG
1601 GATTCCAACG CGATAGACCT TGTGCAGGAC CAGCGGGCGG GTGCCGTTGA
1651 TCCTGTCGTC GCTATTGATC CCGTCTCCGT TGAGGCCGCC GCCATATATC
1701 ATGCCGTCAT TATCGTGGAC GCGGGCCAAA CAAGGTGTGA ACTATGAACC
1751 GTGGAAGTGT ACTTGCTGGA AGTTTATTCT GAACTTGTAT CCCTATACTT
1801 GATGTATTCC TGAATGAGAC ATGCTTATTT TCGTATTGTG AACATTTTAA
1851 TCTTAACCTG TATGCTCTTG TTATTGGTAG ATGCTGCCAA AATTTAGTAA
1901 AAAGGGATAC ATGCTACCAA AATCTGAACT GCATCAAGAG TTTCTTATCT
1951 GAGACATGTT TATCATCAAT ATATGACAAT ACATGAAACT GAACCTGTAT
CAAACCTATC AAGCTGTTGT GTTCTAGCAC ATGTGCAGAA AATGCAGAAC
2051 AAGTAGTTTG ACAGTTTGAC ATATTACAAA ATCCGTGCTG GTTTCAGTTC
2101 ATCTGTCATC CGAATGCATG AAGCTGAGCA TATATTCAGT TTGACAGATT
2151 GACACAGAAA ACAGCTGGTA GTTCATTCAG GCTATTATTC AGTTACACAC
2201 CCATAGGTTC CACTGCCACC ACAAGCAAGA AAAATGTTTT TTTATGGTTC
2251 CACTTGACTT GACTCAATCT CATTATCAAA TGACAGAACA CAATTCCATT
2301 GCATATTTGC AGTCACAATC TTTCAGAGTT TCAGATTACA AAATTAGTAC
2351 ATCAGTGTCA ATCTCAGAAC ACGATTCCAT TGCATATCAG CTCGGCGGGC

CAGCGACCGC GTCGAGCCGG CTGGGCGGGG ACGCGGTCGC GGCGGCGAGC GGCGACGGCG GGAGGGCGGA GGACGGCGGC CACATGAAGC AGGGGGGATT TGCATAAAAA ACAGATTAGC AGAGATGAGT GCGGGCGGTT AAGTGCAAAA GTAGCCTACC TCTGTCCGTA GCCATCGGAT GAGCATCATG TGGTCTTGAT TGAAAGTTTG CAAGGTTGCA CAGCAACTCT GGTTTGCACG AGATACGGTG CCGTATCCGA GGGGGTGCTA GTGTCTGCCA ATGGCGTTGC ATACGTATCT CGTTTGTATA ACGGAATCGG GCTCTTTGCA CGGCACACGG TTCATCTCGT ACTCGAACTC CGATCTGTTA TAACCATCGC GTTGGATCGT AGCAGCACAC GGTTCATCTC GTACTCGAAC TCCTGATCTG TTATAACCAT CGCGTTGGAT CGTAGCAGCA GCCGCCGACC CAAACGCAAA CGCAAACGCA AACGCGACGC CATGGGAAGG CAGGACCAGC AGCTGCAGGT GCTGAACGCG CTCGACGCGG CCAAGACGCA ATGGTACCAC TTCACGGCGA TCATCGTCGC CGGCATGGGG TTCTTCACCG ATGCCTACGA CCTCITCTGC ATCTCGCTCG TCACCAAGCT TCTCGGCCGC ATCTACTACA CCGACCCCGC CAGCCCCACC CCCGGCTCGC TGCCGCCCAA CATCGCCGCC GCGGTGAATG GCGTCGCGCT CTGCGGCACC CTCTCCGGCC AGCTCTICTT CGGATGGCTC GGCGACAAGC TCGGCCGCAA GAGCGTCTAC GGGATGACGC TGCTGCTCAT GGTGATITGC TCCATCGCCT CAGGGGCTCT CCTTCTCGCA CACGCCGACG AGCGTCATGG CCACGCTCTG CTTCTYCCGC TTCTGGCTCG GCTTCGGCAT CGGCGGTGAC TACCCGCTGA GCGCCACCAT CATGTCCGAG TACGCCAACA AGAAGACCCG CGGCGCGTTC ATCGCCGCCG TCTTCGCCAT GCAGGGGTTC GGCATCCTCG CCGGCGGCGT TGTCACGCTC GCCATGTCCG CGGGGTTCCA GGCCGCGTTC CCGGCCCCAG CGTACGAGGT CAATGCCGCT GCGTCCACCG TGCCGCAGGC CGACTACGTG TGGCGCATCA TCCTGATGCT CGGTGCGCTG CCGGCCATAC TGACGTACTA CTGGCGGATG AAGATGCCGG AGACGGCGCG GTACACGGCG CTCGTCGCCA AGGACGCGAA GCAGGCGTCG TCGGACATGG CCAAGGTGCT GCAGGTGGAA ATCGAGGTGG AGGAGGAGAA GCTCCAGGAC ATCACGAGGG GCAGGGACTA CGGCCTCTTC TCGGCGCGGT TCGCCAAGCG CCATGGCGCG CACCTCCTGG GCACGGCGGC GACGTGGTTC CTCGTGACGT CGCGTACTAC AGCCAGAACC TGTTCCAGAA GGACATCITC ACCAGCATCC ACTGGATCCC CAAGGCGCGC ACCATGAGCG CGCTCGAGGA GGTGITCCGC ATCTCCCGCG CGCAGACGCT CATCGCGCTC TGCGGCACCG TGCCGGGCTA CTGGTTCACC GTCTTCCTCA TCGACATCAT CGGCCGCTTC AAGATCCAGC TCCTCGGCTT CGCCGGGATG ACGGCGTTCA TGCTCGGCCT CTCCATCCCG TACCACCACT GGACCATGCC TGGCAACCAG GTCATCTTCG TCTTCCTCTA CGGCTTCACC TTCTTCTTCG CCAACTTCGG GCCGAACGCG ACGACGTTCA TCGTACCGGC CGAGATCTTC CCGGCGCGTC TCCGGTCAAC CTGCCACGGC ATCTCCGCCG CGTCCGGCAA GGCCGGCGCG ATCATCGGAG CATTCGGTTI CCICTACGCG GCGCAGCCAC

Sense primer \rightarrow RT-PCR
AGGACAAGGC GCATGTCGAC GCCGGCTACA AACCTGGGAT TGGCGTGCGG AACGCGCTCT TCGTGCTCGC CGGGTGCAAC CTCGITGGGT TCCTCATGAC ATGGATGCTC GTGCCGGAAT CGAAAGGGAA GTCGCTGGAG GAGATGTCCG GCGAGGCCGA CGACGAGGAA GCTTCTGCCA ACGGCGGTGC CATCGCCGTC AACTCGTCCG GAGTTGAGAT GGTGTAATCC TTCAGGACGC AACGAGATGA CGAACACTTG CATGCGAAGC TCGTACTTGT AGCGTGATAG GAAATGTTAT ACTTATATTT ATTAGATCGT ACTCCTACTA GTAACTATCA TAACTATGTT AGTACTTGCT TTTTAGGTAC AGGAGTTCTC TTTGTACCTC AAGTTGATCC CTAATTTTCG TAGAACTTAA TTAATTCATG GCAAGAAGTT GCTCATTACT CATTAATAGA AGCTATTCTA AACTTTTGTG GAATGTCTCC TTGTTATTTG \leftarrow Anti-sense primer RT-PCR CATGTTACTT AAACAATTAT AAAAAAAATA GAAAAAAATT AAATAGATAG ATTACGATAT ATCATTACAC A 3^{\prime}

Rice G, ORYsaPhT1;7

The contig (2059) containing the rice G sequence has a total length $=17252 \mathrm{bp}$

```
RiceG total gene = 4801 bp
Promoter = 2852 bp
cDNA = 1581 bp = 527 amino acids
3' untranslated region = 368 bp
```

TCTAGAAAGA TTAAAGAAAC AGATGACACA AGGAATCAGT CTTATCCCGT CCCTGGTTGC AACAAGGACA ACCACAATGG CTAATAAGCA TAGTGTTAGG CTGGCTGTTG TCTTCGGTCT GATATCATCT GAGATTGGAT CCCCTATTCT TGTCAAGAAG AATGTGCGTA TATGCAACCA CTGTCATCAT GCATTGAAGT TGATATCAAG ATATTCAGGA CGGAGGATTG TTGTCGGTGA CTCAAAGATC TATCATGAAT TCTCTGATGG CTCTTGTTGC TGTGGTGACT ACTGGTGAAT GGATATCACT GTTTCAGTAT TTGACAATGT TCTTCACACC TTCGGCAACA CCAATGGAAC GCCTGAATGA ATAGGTGTTG TGGCAAAATA TCATCATAAA GTCACAGCTH AGATGAACCA TCGAGTATGA GTCCAAATGC TACAGCTGTA TCAATTTTCG GGGGGCACAT AGACGAGAAA TCAATTCCCA GGTACTGGTA CAATGTTACT CCGGTAGCAG CGGCTCAAAG TGAAAGGGTG AATATGCACA CTGGACAGGA ACCTCCTCTT AATACTGTAA CACATTGATA TGATGTACAA AGTCCATTCT TTTCGAGTGA AGATTCTGAA TCACATAGCT CCATGTACCA САСАTCATTC AATAATGAAA TTTAACAGAA AACTACTTTC ATTTGCAATT CTTAACAAAA CAGAATTTAG AGATTTAGAA GAACATTTGC TTGACACAAG GCCAAGTTTT ACTCGTTTTC ATACAAACTT CAGAACAAAA TTAAGCATAT GAAACGCATC GAAACGGCAT GTAGCCGCAC TTCAGCTATG CTCCGCCCCG GCGCTTGGCC TCCTCGGCCT CGACCATGCG GCGGGACGCC TCGGCGAGCC GGTCGAGCGC CTGCTGCACG GCGTCGCGGC CGCCGATGAG GAGCCGCGCC ACCACCTCCG GGTCGCGCTC GCCGCGGGCC TCCTCGAACT CCCGCCGCGC GTTGGCGCGC AGCACCTCGC GCCACGGGAC GCCGCGGTCG TCGGGCCACT CGAACAGCCG CGTGACCCGG AGGATGTCCC GGTACAGCCC CAGCGCCTCC CGCCGCGAGC TCGTCAGCCG GCGGCGCGCC TCGGCGTCCG CCGCGTCTCC GTCGAGCGCC CCGGAAGAGG AGGAGGGGGA CTTCTTGGCG AGGTGGCGGT CGAGCAGCTC GTCGATGGTG TCGGGCCCCT CGTGGATGGA TCGGACCGGC GGCCGCCGCC TCAACACGGC CACGCCGCGG AGGAGGGAGG AGGAGGCGCG TGCTGCGACG GCCATGGCTG GGTTATTCTT CCCCTCGTCC CGTCTATTTA CCGTTGCGTT GCTCCTGAGT TGGGTATTTG GGTGAGATCC CCAATTCTTG ACCTGGTTGG GTCGGTATCC AGCCGATGGG CACCGTGCCA CCGTGCTACT AGTATGTGGC AAACCGGAGA CTGGATTTAC CAAGAAATTG CGTTGATTTA CAAAGAAACC ACACCATAAT TCTCATCGGT TTCATCATCC CATAGTACTA СTACAATTTA TTTATTTGCA ACAACGGCGA ACCAAGATCA CAATGGAATA CGTITTACAT GTCCTACTTG TAACACCGAA CGCTACTACG ATGTTGATGT ACAAGGTTTC ATCTCATCTG TACGGTGCGG TAGCCGGAGG ATTGGCCACG GTGACGGCCT TGGTCTTGAT CCGGTACCTC GGCCGGCGAG GGATGACCTG GCTGGGGCCC ATCCCGAACT GGCCGGTGCC GTCCATGGCC GGCGGCCCGT CGTCGTAGAC GTAGCCGAGG AGGCGGCCGC AGGCGTCGCA GCTGATGCGG GTGCGCTTCC GCTGGATCCC CCAGTAGTTG AGCGTCTCGA AGAAGGGGCG GATCTTGTCC TCCGGCGCGA ACCGCAGCCG CGACTCGTCC ACCCACGAGA AGGAGAGCGT CCCCTTGTTG CCGGCCTCGA AGTAGACCCC CTCCGGGTAT AGCTGCGCCG CCGTCAGGTT CAGGTCCGCC CCGCACTCCG CGCACCGGTA CGTCGCCGCC GCCGCCGATG AGGACGCCAT CCCGCCGCGC CGCGCCGCGC CACCCGAGCA CGGAGATCTT CTGCGTGGCC GCAACGATGG ATCTGCGTAG TTCAGTGTAA TTTTGTCCAA TTTAGGGACG ATGATTTCTA GGGAGGACAC GGCACCGGAA GCGAAGCCGC GTTGGACTGG AATTTCTTGC TACGACCATG AGAGGGTTCT TCTATGGTGA GAAGTCAAAG CCAAGACGCC ATGTTTITTC GAGTTTCGCA ATGGTTTCAC GACGGAATAC GGTGCGGCCC ATTCAGGCCC AGTTTGTTTT GGATCGCCCG GCCCATTAGC CGTTGCTTCC TCTCTCTCCG TTCCGTGTTC TACGAGATTT GTCTCAACAA TCAATCCGAA TTTTGGAAGC AGAGTTGTTA CGAATTGTAT CGGCAAACAC ATATCATGTG TATCATGTGA TCATCAGAGT ATATACATAA CAAGTAACAA AATCTGCAGG TTTGCACGTC TCGTGTGTAG TACGGCGATA AGCTAATGGG ATATGGATCC AAAACACGCA GAGCCATGCG ATTGCGATGC GAGCCCGTCA AAACTTGTTG CTGGAAAGGA GGGAGAAGGC GTTGCATTCT CCCGAGAAAA ATGAAGGATA TGACCTCGGA ATATTCTCGC GTCACCCGCG TATACATAGC AACCAACCAC CTGTTCCATC TCTCTGTAGC TCACTCCCTC GCCGCCATTT ACGAGGCAGG AAGGTGTTTG TGTGTGAGAG AGAGAGAGAG CCTTTGACCG CCGGAGCAGC AGCGTCACCG CCATGGCGGG CGATCAGATG CACGTGCTCT CCGCGCTGGA CAGCGCCAAG ACGCAGTGGT ACCACTTCAC CGCCATCGTC ATCGCCGGCA TGGGCITCIT CACCGACGCC TACGACCTCT TCTGCATCTC CCTCGTCACC AAGCTCATCG GCCGCGTCTA CTACACCGCC GACGGCGCGT CCAAGCCGGG CAGCCTGCCG CCCAACGTCT CGGCGGCCGT GAACGGCGTC GCCTTCGTCG GCACGCTCAC GGGGCAGCTC TTCTTCGGGT GGCTCGGCGA CAGGGTCGGC CGGAAGAGCG TCTACGGCAT GACGCTGCTC TTGATGATCA TCTGCTCCGT CGCGTCGGGG

4801

CTGTCGTTCG GGGACACGCC GACGAGCGTC ATGGCCACGC TCTGCTTCTT CCGCTTCTGG CTCGGCTTCG GCATCGGCGG CGACTACCCG CTCAGCGCCA CCATCATGTC GGAGTACGCG AACAAGCGGA CGCGCGGGGC GTTCATCGCC GCCGTGTTCG CGATGCAGGG GTTCGGGATC CTCGCCGGCG GCGCGGTGGC GATCGGGATC ACCGCGATCT TCAGGAGCCG GTTCCCCGCG CCGCCGTTCG CCGCCGACCC GGCGGCGTCC ACCCCGCCCC AGGCCGACTA CGTGTGGCGG CTCATCCTCA TGTTCGGCGC GCTTCCCGCG GCGCTCACCT TCTACTGGCG gatgageatg ccgangacgg cgcgetacac cgccatcgic gccaagancg CGGAGCGCGC CGCGGCCGAC ATGTCCAAGG TGCTCCAGGT GAAGATCACG gCGgagcagg cggagatggc ctcgccgetg gacalacccct tcaccagcan GCCCTTCGGC CTCTTCTCCG GCGAGTTCGC GCGGCGCCAC GGGTTCCACC TCCTGGGCAC GACGTCGACG TGGCTCCTCC TGGACATCGC CTACTACTCC CAGAACCTGT TCCAGAAGGA CATCTTCAGC GCCATCGGGT GGATCCCGGA gGCGAAGACG ATGAGCGCGC TGGACGAGCT GTACCACATC GCGCGCGCGC agacgetgat cgcectatgc ggancgatgc cggactactg grtcacgetg GCGCTGATCG ACGTGGTCGG GCGGTTCAAG ATCCAGGCGG CGGGGTTCTT CATGATGACG GCGTTCATGC TGGCGCTGGC GGTGCCGTAC GACCACTGGA CGGCGGCGGG GAACCAGATC GGGTTCGTGG TGCTGTACGC GCTCACCTTC TICTTCGCCA ACTTCGGGCC GAACGCGACG ACGTTCATCG TGCCGGCGGA Sense primer \rightarrow RT-PCR
gatataccce gcgaggctgc gcgcgacgtg ccacgegata tcgacgecgt CGGGGAAGGT GGGCGCGATC GTCGGGTCTT TCGGGTTCCT GTACCTGGCG CAGAGCCCCG TCCCGGCCAA GGCGGCGGCG CACGGCTACC CGCCGGGCAT CGGCGTCCGC AACTCGCTCT TCGCGCTCGC CGGCTGCAGC TTGCTCGGCT TCCTCCTCAC CTTCCTTGTG CCGGAGCCCA AGGGCAAGTC GCTCGAGGAG ATGTCACGGG AGAACGAGGT CGGCCAGCCG TGATCCACC CGTTAATTCC ACCGCCGTCC GTCTGCATGC AAGATCCATG CGTATGCGTG GTTAGTCCAC TAGAGATTTT TGTTCTCTTT TTTCTAGAAT CCATTGGAAT GCATATGTTC TTTTTTTTTT CTAGAATCCA TTAGAGGCTG_GATGATGAAA_TAATGGCCGC \leftarrow Anti-sense primer RT-PCR CAATTAATTG TTGACGACAA TGTAGTTTAG CATTAGGTGA GTTTTTCATA TAATGAAACT ATCATTAGAG TTCATGCTGA TTCTGTTTCG GCACGAGGGA TCCTCGCGTC GTTCCTTTTT TTCTGTTGAT TGTGATGATC AAGAGCGATC TCTCCTCCAA AAAACAAAAC AGAATGCATC TCTCTATAAT CAAAAGGAAA A 3'

Rice H, ORYsaPhT1;4

The contig (1494) containing the rice H sequence has a total length $=19078 \mathrm{bp}$

```
RiceH total gene = 5050 bp
Promoter = 3056 bp
cDNA = 1617 bp = 539 amino acids
3' untranslated region = 377 bp
```

5' | 1 | AAATTTGGTA GAATTGTTCA GTGGATTCGG TTATGGAAAT AAACTAATTG |
| ---: | :--- | :--- | :--- |
| 51 | GTAGATGGAA ATGGATATGA CTGAATTTAG TATATCCCCT AAATAGGTAT |
| 101 | GATTAATTAG TTGTCTTTTC TTATTAGGAA ATCTTATCTC GTGTGTAACT |
| 151 | TGCACTTTTA CAAACCCGAG GTTATAAATA TATACATCTA GGGTTTTTTA |
| 201 | ATCTATCTCT CTAGATCAAT ATAATTACTT TCAACGCATC AACACATTTT |
| 251 | AATTCTGGTG AGTTCTTAGT TTCGAGCGAG GCTGCATCAT TTCATCAGGC |
| 301 | ATGGAAGTAA GTTCCACCAA CTTCAATTGT ATTGGCTTAG GTAGGACTTT |
| 351 | CTAGGTTCGT TCCGATATTC TAATTAGTTG CTATAATCGT TGCATATACT |
| 401 | AGCTTTGGCT AAAGCTGAGT CGTTTCAATC TTTTGGTCTG ATCTTATATA |
| 451 | TCCATCACGC TTGTATAGAT CTCTCAACTA AATTGTTTTT CTTATTATCT |
| 501 | ACAATTTTAT AGTGTCTTGG TTAGGTCCGA TCTATTAGAT TGCTGCCAAT |
| 551 | AAGTTTAATT CTACTAAGTC GATAGGGTTT TATGCAACAT TCATAAGAAT |
| 601 | TCTAGCCAAT TAGTTATCTT GCTATAATTT CTGGGTGTTA CATCGGCTCA |
| 651 | TGTTTTAATTG AGTATATTCA CTAGTTAGAT CACTTTTTAT TAACTTAAAT |
| 701 | CTTATACTGT CTTGATTTGG TCCGATCTAC CAAGGTTATT TTTAATGTGA |
| 751 | AACGATTTAT TACTGATTAT ACATTGCTTG GTTCTAGCCG ATCGAAGCAT |
| 801 | AAGTTCTTAT ATTAATCTAT TCAAGTTTAC ATTGGAACCA TAGCCATTGA |
| 851 | TTGAAACGCT GTTGACATCG GCTGGCTACG CTATAACACA TCGACCTATT |
| 901 | AGCCGATCAG CTCCTTAATC TTATACGTTC TATTGTTAGT TGTAGAATTA |

AACTAATTGA CATGTCCTGA ACTCGGATTT TAGGACCTAC ATTAGAGCTA AACAGATCTG TCAGGTTCTG GTGTGTTGTA CAAATTITGA GGCAACAGGC TTTTTATCGA TTTTAATAAG TGGTGTAAAT CATCGATATC GCTATCTGAG TGAAGCCATT CTTGTCTTTA CAGTGCAGTG TCATAAGAAA ATCACCAGTC TTCAAACAAA TAGGCGTACC CACTTAACTT AATTAAACAA ATATAATTGT CCAATAAAAT GAGAACGTAG TTGAGTTTTA CTTCTACACA CCAGTTGCAA ATAGAATATT TTTTTTAATGA ATATCAACCC GACCTCTATA TTTCGCATTG ATATGCACAA ACAAAAATCC CCGCTCTTAA AAAATGATAC AAGAAATGGT ACCAAAAGTC ATGTTCTCTT AAAAAAAAAA AGAAATGTCA CCCAGTTTGA TACTCACTTT GTCCCAAAAT ATGTAAGTGT TACAGGTTTT GGAGAACTTA TCCCATCGGA ACACACTTTG TTTACATTTT ATCCGATCCT ACCCCATGCA CCCTTACGCT TTCCAATTAC TCGTCGAATT GATAATACTC TCTCTCATTC TTGATCTCTC TAAAAGACCA TGAATCCCTT GAATACGGAG ATAGGTAACC TTGTCTTGTT TTGACTTGAC AAATATTGAT TCCTCGAGCA TCTAAATGGC ACATTGAGGA CATGACTATT TGTCTATCTG GCCCCACAGT AGAAGAATCC TGAATATAAA CAAATGATAC AAAACAATAA AAAGTCAATT CAACATCACT gGtagtagat ggataicata gatancacge accctgccca antttcgang ATATTAGTAC GTGATTTGTT TGACTAATCT TATTCTTATA GGAGTATTGC ATTAGGGAGA AACAAATCGA AGCGATGACG TGGCTCTTTC TAGCTAGTTT TGTCATTTGC CTCCCTATAA ATACCATCCA TGTGTACCTT GCCATCGGTT СTTCAGAGTT ACAGTGCTAA CGGCCTGCAG CAGAGTGCAG CGACTCCCCT GAAGAAACTG GTATATTAAT ATCAGGTGTG TATATATTTC ACATTTTATT CTAGTACTAC TATTAATGAC ATGTCTATAT ATGTCAATTT TAAGTATATA CATGTAATGG GAAATTAAAA TTTTCATATA TTCACAAGTT TCTTGCTCAT gGAACATGCG TCAAGGCAGG ATGTTGTGTA GGGGTGTTAA TTACTGATTG GTCATTAGTT GCCCTCATGA ATCCATGAAA AAGTTCTTCA TAAAGTCATC ACAAGAAGAG ACCTTTTGTG CCCTCTTTAC GGCATGCTAA GGTCACGAAC AGTTCAACAA AAGCAACCAC AAGATTTCTT TTCTGAAAAC TAATGAACAT TCAGAAATTT CTGTGCAATT TATCTCATGA CCTAACCAGA CGATGCTTGA gCCACGAAAT AGAAGAGACA AAGATAGTTT CGTCAATTCG AGAAGTTTGT CCGGACACTA CTGATGATAG CGGCAGATTT GGACTGATTC CATGAAAGTT GTACAGTAAG GTGCGAATCT TGAGTTGCAG AGATGCACCT GGATCCGGCT ATCTAGCTTC ACGAGAATCC CATCTCTGCT CTCCTAAATT GACCACGAAA CTGAATTTAT GTAGAGATTT TTCTCGAAAT TCAGACATTT TTCACTGGGA TGGATCGGGG ATTGTTGGCT GATAAAGCTG GATTTGAAGA AACAACAAAA TTTTGATATA TGATACCTTG AATAAACGAG GAGTTTCTGA AGTAGTGGCA TGGTCTGTTC CAGATGTCTC TCTGAACTTC CGTTTCAGTT TCAGTGGACC TTATTGTTGG TGAACTGAAA CGAATATTAT CTTCTCGTAG CCACGTGCAT TCTGTAGATT TTCTTTTGCT CAGTTCGACA CGCATATACA TCTGAGGCTA ATTAGCTCAA TTAATCGCGC GGTTTGTGTA ATTCTCCCAA ATAATTAGTT TCTCGTTCAT TGCAAATTGC AGCGAGATTT TGTCGAAATA ATAAACTTGG TGTTCAGTTA TTCTCTGCAA AAAATTGCAT ATTGCAGAGT AGCTGAGATT gGCGCCATGG CCGGCGAGCT CAAGGTGCTG AACGCGCTCG ACTCGGCGAA gacgcagtgg taccattrca cggcgatcgr gatcgccgac atgggattct tCACCGACGC CTACGACCTC TTCTCCATCT CCCTCGTCAC CAAGCTGCTC GGCCGCATCT ACTACTTCAA CCCGGCGTCC AAGAGCCCCG GCTCTCTCCC GCCCAACGTC TCCGCCGCCG TCAATGGCGT CGCCTTCTGC GGCACCCTCG CCGGCCAGCT CTTCTTCGGC TGGCTCGGCG ACAAGATGGG GCGCAAGAAG GTGTACGGGA TGACGCTCAT GCTCATGGTC ATCTGCTGCC TCGCCTCCGG CCTCTCGTTC GGGTCGTCGG CGAAAGGCGT CATGGCCACG CTCTGCTTCT TCCGCTTCTG GCTCGGCTTC GGCATCGGCG GCGACTACCC GCTCTCGGCG ACCATCATGT CGGAGTATGC TAACAAGCGT ACCCGTGGCG CGTTCATCGC CGCCGTGTTC GCCATGCAGG GGTTCGGCAA CCTCACCGGC GGCATCGTGG CCATCATCGT GTCCGCCGCG TTCAAGGCGA GGTTCGACGC GCCGGCGTAC AGGGACGACC GGGCCGGCTC CACCGTGCCG CAGGCCGACT ACGCGTGGCG CATCGTGCTC ATGTTCGGCG CCATCCCGGC GCTGCTCACC TACTACTGGC gGatgangat gccggagacg gcgcgctaca ccacgctggt ggccaigaic GCGAAGCAGG CCGCCGCCGA CATGACGCAG GTGCTCAACG TCGAGATCGT gGaggagcag gaganggcce acgaggtcge gcgacgceag cagttcggec TCTTCTCCCG CCAGTTCTTG AGACGCCATG GGCGCCACCT GCTGGGCACG ACGGTGTGCT GGTICGTGCT GGACATCGCC TTCTACTCGT CGAACCTGTT CCAGAAGGAC ATCTACACGG CGGTGCAGTG GCTGCCCAAG GCGGACACCA tgagcgccct ggaggagatg trcangatct cccggecaca gacgctcetg GCGCTGTGCG GCACCATCCC GGGCTACTGG TTCACCGTCT TCTTCATCGA

4151
4201
4251

CATCATCGGC CGCTTCGTCA TCCAACTCGG CGGCTTCTTC TTCATGACGG CGTTCATGCT CGGCCTCGCC GTGCCGTACC ACCACTGGAC GACGCCGGGG AACCACATCG GCTTCGTGGT CATGTACGCC TTCACCTTCT TCTTCGCCAA Sense primer \rightarrow RT-PCR

4301
4351
4401
4451
4501
4551
4601
4651
4701
4751
4801
4851
4901
4951
5001 CTTCGGGCCC AACTCCACGA CCTTCATCGT GCCGGCGGAG ATCTTCCCGG CGAGGCTGCG TTCCACCTGC CACGGCATCT CGGCGGCGGC GGGGAAGGCC gGCGCCATCG TCGGGTCGTT CGGGTTCCTG TACGCGGCGC AGAGCACGGA CGCGAGCAAG ACGGACGCCG GCTACCCGCC GGGCATCGGC GTGCGCAACT CGCTCTTCTT CCTCGCCGGA TGCAACGTCA TCGGCTTCTT CTTCACGTTC CTGGTGCCGG AGTCGAAGGG GAAGTCGCTG GAGGAGCTCT CCGGCGAGAA CGAGGACGAT GACGATGTGC CGGAGGCGCC CTCGACGGCC GATCACCGGA CTGCGCCGGC GCCGCCAGCT TGATACCCCG CGGCAAAACC CAAATGGTCA ATCATCAGCG TTTTGTTGTA ATATATGTGC AATGGATGAT TATTCTGGTT CTGGTAGTGT ACCGAACAAA ATTACAAATA CTAGTCGTCA ACCCGTGCGA \leftarrow Anti-sense primer RT-PCR GTGATATTAT AAATGACACT TAGATTATGT ATTAAATATA TTTTCTAAAA 51 TTATTGTGGC TTAAATTTTG TAAAAAAGAA TATTGCGGCT TAGATTGCAT TAGAATAACA ATAACATCGC CCACAATTCA CTTAGAGCCC CTTTGATTTG GAAGAAAAAC AAAGGAATAT TGGATGGTTT TAATCCTATA GGAAAATTTG CTACGAAGGC ATTTGAAACA AAGGATTAAA TCTTATCCTA TCCTTTGGAA 3^{\prime}

Rice I, ORYsaPhT1;5

The contig (1361) containing the rice I sequence has a total length $=19355 \mathrm{bp}$
RiceI total gene = 7050 bp
Promoter $=5027$ bp
cDNA $=1650$ bp $=550$ amino acids
3^{\prime} untranslated region $=373 \mathrm{bp}$
5^{\prime}
1
51 CCGGCGGCGA AACACGGGAG ATCGAGGCGT TCAAGGAAGA AATGAAGCAG

AgAtcanalg gagacacatg tacgatgTtg ttgcatggtt anganganat ATTTTGACTA ATTGGGTCAT AGTGCTCTTC TGAGCACTGT ATATATTGGA AgACAAAGCA GGCAAATGAT ATGTACCATA TCAACCATAA AGATTCCCTC GATGTGCATG CAGCACCTAA CTGCAATTTA GACATGATAG AAAGAAGCTG AATAAACTAT TTCCTGGTAT GAATCTTTTA CAGTACTAAA TAAGACGGCA GCTTCTTTCT ATCAGGTGTA AATTGCAGTT TGTGTGGTCC TGTTTCTTAA TTGTTAAACC CGTTCGGTCC ATTTCGTAGT TATGTTTTGT TAGATAATGG TATTGCTTTG GATCATGTCT TCTTTTTTTT TTTTAACGTA TAGAGCTAGC CCACACTTGG ACACTCCACA TACACCCATG AGCATGCCTC CTTAGCGTAG ACTGAAAGAG ATAGAGTCTA ACGTAAATAA ATTCAAAACC TCACTGAATT TCTGATAAAA AAAAGTATAC TTCCATGAAT GTAACTGTAG GCGTGCACCA GGATTTGGAT CCTTTCCCTT TTTTAACCAA AGAATATACG AGAGTAAATT TTATAACACT ACATATATAT ATATTCATTA AATTATCACA AAACAATAGA TTTAAGATGA TGTATCACAA TAATACAGAT TTAACACCAA ATTTATTACA AATTAAACTA CAATTTAAGG TGGAGCATCA TAAAACTACA GATTTAATAA CACAATTATC ACAAAACTAA TAGCGTCAAT TTAATTACAA AAGTAGAACG TTTATAACTT AATCATAGCA GTAGTACTAA GAATTTAAAC CTCAAAATCT GTAGTTTTGT AATAATTTTA TTATTAAATC GATAGTTTTA AGATACTTAG ССТTAAACTT CTAGTTTTGT GACAAATTTG TTATTAAATT TGTAATTCTG TGATACACCA CCTTAAAACT ATAGTTTTGT GATAATTTGC TCCAAATAGT GTAAAATTTA CTCAATATAG TTAATTTGTT GTTCTAGTTC ATCCAACATC GTTTATACTC CCTGTATTCA CCTGATATTA TTTTATCTTCA CATTTTGATC ATATCTTTTT TACCAATAAA ATTATAAATA TTTTAGAATA TACCATATTA TGAAAATGTT TTGCATCGTA AATATAAACA GACAATTTAA CTTTTCATTGA TTATAGATTA ACCAAGTAAC CATTTAAAAG TTATAGATAG TAGGAATTGA AACATTAATA ATCAATGCTA GCGATTATTC GCATTCTTAT TTTACTCCCT CCATCCTATA ATATAATGCG CGCACGCATT TCAAGATTTA ACTTTTAAAA CATTTGACCA ACACTTAGTA TAATATGAAA TTAATTTTAT TTATCAAAAA TTATATCATT AGATTGTGAT TTGAATTTAC TTTCGTATGG TTATAATTTT GTTGCTACAA ACCTTACAGT ATATGAGAAA TTATAAGTTA AAGATTAGTT TTAGATACTA TACTAATTTT GACCGTGCCT TATATTATAG GATAGAGTGG GTATCTAATA AATTGCCGTT GTGTTTGGAT GTGAAATTAC CCGACCTTTT AACTAATTTG ATATTTTAGG AAAAATCCAC ATAAGGTGAG ATGGAAATAT CCCGTTAACT CCATATTATT TTTTACCAAAA ATATTAATTA AACTAACAAG CTTTGATCGA GCTGGGTGTT TGGTACATTT GAGTACTTAT TATATTTTTA TCGTTTTGAA AGTACGTTGG CATGTTTGCT GTCTTCCGTT GATTCATGCA AGATGCCAAG AAAACAAAAT ATTTTTCTTAT ATTTAATTTT AGTCGTCGTC AAGCTCAGGT GTAGAATATC GTGATATGTT GGACCTGTTA GATGTGTCCA AATCCACGCA GATGGAAGTT TGGAAACACA GTTTCATGGG TCATTCCAGA AGTTCAAACA ACCAGCCAGC TAGTCCCTCC ATCCTCAAAT ATAAAATAGT ATCCCTCTCT ATTCGTATTT TAATGTAAGA CGTCGTTAGT CTTTTCACTA ACATTTGATC ATTTGTCTTT TTCAAAAAAA TTATGTAATT ATTATTTATT TTATTGTGAT TTAATTTATC ATCAAATGTT TTTAAGCATG ACATAAATAT TTTTATATTT AAAAAAAATT TGAAATGGTT AAAAAGTCAA CAATATCATA ATACAAAAGG AGTACCTTTT AAAATTTGAG AGGTCAGITT TTTTTTTAGAA CTCATACCCA CAAACTTAAA CATTTATGAG GTACTTTTAT TATTGTCCTC TCCCCCTTAT TCACTGGACA GGAACATTCC ACAGTTGATG GTTTCCTTCA ATTAGGGGCA TATCGTCCAA AAAACTATAA TTGTTTTGAT TTTCCTTCGT CTTAATCTCT ATAAGAAAAT AGAAATTTTT ATTTTTTTTG GTGGATCCAT ATAGTATTAT ATATAGGTGA TATATACATA AGCTTCTCGT GCGCACACAC ACTAACATAA AAATATCATC GAAATTTTCT TAAAAAAATA TATACATGTG CCTCCTATAG TAATAGAGAA TGAAAACACC TATATAGAAA GTTTCATCTT CAAATTCATC ATTTAAAGAG GAAAAAAACA AAATTCTTGT AGTTAATATT CATAAAACTC AACTTTTTTT CTCTTTTTTG CAGGTATAAT ATAATGAACT TACAGTTGAG ACATACATAT GAATAATACT ATTGAAAATA TTTTTTATAAA СТTTTCTAAA ATTTTCACTC GAAGTTTGTG CACCCAACAT ATGTTCTCTT ATATAACATA CCTGGTATGA ATAAGCAACT ACATTACAAT AGAACAACAC AAGGCAAGAT TAATATATAT ACCCAATGAA ATATTCCCTC TGTTTTCTTT AATTTAACAT TGGAAAGTAT AAAATAGAAC TAACCAACGT CAGAAAGTAA AAATAGAGGA AACATATAAA CCTAAAGATC AGCATTTAAA ATACTTTTCG TGTATTTTCC TCCAATTTAC AAGATAATTC ACATAACAGT ACAACCTACT ATTTAGTGGA GAAAATAGTT AATAATGACC TATATGATCC AGAGGTTCAA ACTGTATATG TTCTAGACCA TTCACAACCT GTGCCAAAAT ACCAATGAGA TTATGACATG CATGCATATG CATTGCCCTA TAGTATGATG GTAACCATGC

ATACCAGCCA TAACAAATTA AACTTGTCCA TGCATGAACA AACCAGAATG TTCCAGGATT TATTCTCTAG CTAATACCTG TCACTTACAC CAAATTCCTT gCACTATATA TATAGCTACA ATAATTCATG CGTGCATGCC ATTGCCATTG ACCATATGCA AGACTAGTGC CATAACAATT TCACAATAAC TTAGAGTATT ATATCAAAGA TAGTCGCCGG CGCCGCCATG GCTCAGGATC GCAAGGTGCT CGACGCGCTG GACACGGCGA AGACGCAGTG GTACCACTIC ACGGCGGTGG tgatcgccga catgeggitc trcaccgacg cctacgacct cttctccatc tCCCTCGTCA CCAAGCTGCT CGGCCGCATC TACTACTTCA ACCCGGCGTC CAAGAGCCCC GGCTCCCTCC CGCCCAACGT CTCCGCCGCC GTCAATGGCG tCGCCTTCTG CGGCACCCTC GCCGGCCAGC TCTTCTICGG CTGGCTCGGC gacaigatge ggcccaigan ggtgtacgge atgacgetca tgctcatggt CATCTGCTGC CTCGCCTCCG GCCTCTCGTT CGGGTCGTCG GCGAAAGGCG TCATGGCCAC GCTCTGCTTC TTCCGCTTCT GGCTTGGGTT CGGCATCGGT gGCGACTACC CGCTCTCGGC GACCATCATG TCGGAGTATG CTAACAAGCG tacccetgec gcgutcatcg ccgccetgit cgccatgcag gecttrcgea ACCTCACCGG CGGCATCGTG GCCATCATCG TGTCCGCCGC GTTCAAGTCG CGGTTCGACG CGCCGGCGTA CAGGGACGAC CGGGCCGGCT CCACCGTGCC GCAGGCTGAC TACGCGTGGC GCATCGTGCT CATGTTCGGC GCCATCCCGG CGCTGCTCAC CTACTACTGG CGGATGAAGA TGCCGGAGAC GGCGCGCTAC ACCGCGCTGG TCGCCAAGAA CGACAAGAAG GCAGCCGCCG ACATGGCGCG CGTTCTCAAC GTCGAGCTCG TCGACGAGCA GGAGAAGGCA GCGGCGGCGA CGGCGGCGGC TGCGGAGGAG GAGGCAGCAC GGCGCGAGCA GTACGGGCTC tTCTCCCGGG AATTCGCACG GCGCCATGGC CACCACCTGC TGGGCACGAC GGTGTGCTGG TTCGTGCTGG ACATCGCCTA CTACTCGCAG AACCTGTTCC AgAaggacat Ctacacggcg grgcagtggc tgcccangec gaicaccatg AGCGCCCTGG AGGAGATGTT CAAGATCTCC CGGGCACAGA CGCTCGTGGC GCTGTGCGGC ACCATCCCGG GCTACTGGIT CACCGTCCTC TTCATCGACA tCGTCGGCCG CTTCGCCATC CAGCTCGGCG GCTTCTTCCT CATGACGGCG tTCATGCTCG GCCTCGCCGT GCCGTACCAC CACTGGACGA CGCCGGGGAA CCACGTCGGC TTCGTGGTCA TGTATGCCTT CACCTTCTTC TTCGCCAACT TCGGGCCAAA CTCCACGACC TTCATCGTGC CGGCGGAGAT CTTCCCGGCG

Sense primer \rightarrow RT-PCR
AGGCTGCGIT CCACCTGCCA CGGCATCTCG TCGGCGGCCG GGAAGATGGG CGCCATCGTC GGGTCGITCG GGTTCTTGTA CGCCGCGCAG AGCACCGACC CGAGCAAGAC GGACGCCGGC TACCCGCCGG GCATCGGCGT GCGCAACTCG CTGTTCCTGC TCGCCGGATG CAACGTCGTC GGCTTCTTGT TCACGTTCTT gGTGCCAGAG TCGAAGGGGA AGTCGCTGGA GGAGCTCTCC GGCGAGAACG aAATGGAGGC tGAGCCGGCG GCAGCAACTA ACTCCTACAG GCAGACCGTC CCTGACAGCG GACAGTCCGA GTAAATAAAC ATAAATTACC GCAATTACTG TATCTGATCT TGTATACTCT CACTAGTTGC ATTCTGCCAT TCTTGCCTCA $\frac{\text { GGCCGTATAA TAATAATCTC GAAATCTTGC TACTGCCCAT GACTAGGATT }}{\leftarrow}$ CTGGGAACCA GCAGATTTTC ACCATGTTGG TACAGCTTCT CTGGATCTCT TCTATGGTCT GCAAGACCAC CTGGAATTCT CACATGGCAC CTTGGTGCCC TCTGAGTCTC ATTTCACAGA TTGGCAAATG AGATAAACTT TAAACGCTCC AGAGCAATTG ATACTGGCAA ATGAGATAAT GTTCCTTGAG CGGCATTGCA TCCACGTCTT TTTCACCCTG ATGCTTATAA CTCTGAGGAG CATGGATGTT 3^{\prime}

Rice J, ORYsaPhT1;13

The contig (285) containing the rice J sequence has a total length $=28353 \mathrm{bp}$

```
RiceJ total gene = 4499 bp
Promoter = 3838 bp
partial cDNA = 661 bp = 220.3 amino acida
```

5'	1	ATAAATCCAC GAGTTACTAA GTGCTCCTTC ACTTTAAAAG CATCGTCGAA	
	51	TTCGCAGGCT ATTTAATTCT TAGAGTCAGC ACATGGACAA ATTATCTTCC	
101	TCATATTGTT CTTCTCAGCG TATGCCTTGG CAATACCAAT AAATTTAAAA		
151	TATGGAGCTC TTCCTTCAAA ATTTTGCATG CATAAATCCA TCACAAATTG		
201	AGGTCTAAAA GCTTAATAAA TTGCATACCC AGTGTGGAAA TGAGTAGATC		

TAAGCACCGT AGAAAAATCC CCCGAAGATT TGAAGTTTAA AACCTCCCCC CTATATTTAA GTTACTTTAG GAGAGAGAAA CTTCGGGGAG AATGAACAGG ACTCGGGGAG GAAGAAGACT ATATATATAG GGGCATCTTT GCAGGCGGGC CATATAAGAG GCACATGCAA AAATCGATGT TGCCCAGGCG CACAACGTCT GCCTTCTTCG TAGGCGCCGC TTATATGGTC TGCCTGCAAA GATCGATCTT TGCAGGCGGA CCGCCCCCTC CACCCCGGGT ACATTTTTGTG CCGGTAGGGT TTTGGCTCCG AATTACATGT CCGCCTGCGA AAATGGAACC CCTACGACGC CGAAAATGAG TTTTCTAGCA GTGCCCTCCG CCTCCACCTC GCATCTTCTA TGGGCGAAGG AACCGAGCAG CTCTATGCCT CGATGGGCTG CTGCCACTGC ACCATTGGCC AGCTCTGTCC GAGCCATTGC CGACGTCGCG AGGCCCCTCC GGTCGCTCGC CCTCTCTTTG GCTGGCTGTT GAATAAACAA TGGCAGATAA AgGgatagag ananatagag aggaianaga gcgagaiggc tanctatcgc TGCCAGCGAT CGTTTTTTTT TCTITTTTTT TCTTTTCCTC TTTTAGTGAG TTTATACACC TAAAGTTTAC ACATCTAAAA TITATCCACC TAAAGTTTGT GAAGCTAATG TTTATAAGTC AAAAGTTTAT ATACCCAATT AAAATTCAAA TTCGGATTCA AATATTTTAT ATTAAAATAT TTCTATACAT AAAGTTTATG tgTgcanagt atacgatata angtctatgc acatgantga gagtattaga TTTTTTTCCT AATTTTCTTT TACTATTTTT TTTGAAATTT ATGATGTAAT AgAAAAGTAA AAAAGAGAGA TGAAAGATGA GTATTAGGGG GGAGGGACGG GTGATCGCTA GGAGGAGAGG GAAGCGATCA CCCGCCCACT AGCAACCCCC CAAAAAGAGA GCAGAGAAAC ATAAAAATGC CCCGACATGT GGAGTCCACA TGGATATATC CCATGCTAAC TCAGCCGGGT TGATTATAGC CAACTCGCCA CGTTAGCTGA AACCGAGCAC AATACCACCC TAGTAACTCA GGTATTCCAA TAATTTGTGC ATAAGTAGAG AGAGAGGACG AGGAACGAAA GGGAGGAAGT GGGCCAACGT ATTGGCCTTG GCCCAAGAAG AATATATTGA GTTAGGTTTTT TTCACGATTT TTAGAGGGAA AAATTGAATG AGTTGGATCA ATGAAGTCAA tCAgAAggga gaiggggana atangtggga adggatcgai agggctccga CTCGACAAGA ATGAACAATG TTGATGAAAA ATATTTTCGC TAATGATTTT CCCAAATTTG TGGAGTATGT TACTCTAAGC TTGTGTATAT ATAAGCTATT TTGTAGGTAA TCGAAGAAAA GTAATTTAAA TATAGTGAGA AGAACAGAAG GTGAAGGAGG CCATTTATAG AAATAGCATA CTAGGACTGT TAAATAGTTA TCTGTATATT ATCTTTGGAT ACCAAAGATG CGGCCTACTA GTCACTGCCC ATTAATTCTT TTCAAGTTTG TTGAATACAT AAGCACATAA TGATTTAATT TATTCCCTAA ATAAATCATG ACATTGCAGA TGTAAACTAG TATAATCATA TCATACGATT TACACACGTA AACTAGACAG TAAAGCATGA ACAGGTCGAA TATGCGAAAC ATGTTGAATG CATACCGAGG GTTTTGAAAA ACTGGCTGCT CAGTAGGAAG AACTCATGGT ACAGTGCGTT GATGACGGCG CGCAGCACGT gagtgaigag gaigacgagc tgitgtggat gaicagggag tagtcacgca AACCGCTTCC TAAAAACCTT AATGCCACCA TCTCTTGGTG CAGGACGTCG AACACGAAGG TTCTGGAAAC CTACTCTCCC GATCGCCGGT GCATGCCCGC gagcgggata angtagacta cgagtgatgg cgccgtacag aggagcaggt AACCCTAGAT TGATTTCGCA TTTTGCATGG AGGCAGTGAC TCTACTTATA tAgAGATATC AGGATGCTTG ATCAGGGCGC CTGCACGATC TCCACTACAG GTAACCGAAC CGAATAAGTC GCTCGTAACT TATCCAGACT CCACGCCGTT TCACGCACCG GATTATTCAG AGCGTTTCCA AAAAACAAAT CTGAATTTTC TGCAGCAAAA CAAAACTGCA AAAGGAACCA ATTTTATCAG ACCATTCGAC GCGTACGTCG TGCACGTGCC CCAGCATGTC CGGCCAGGCG AGGCGAGCGA GCGTGCGTCT GTGTTCCTCC TGTTCTCTCC ACCTCACATG CCTCAAGTGG CTAGGAGAGC ATCCTCCCTT TTAAGGAGGT ACTAAACTAC CCATACATGT TATCCCATGA GGTGTGGTTT TGTGATTTTT CAAAGAATTA ATCTTTGATG AAGTTGTCGA TAAAGTTTTC TGTGTACAAG TTTGTTCATA ATTGTTTGAA TTATATATTA TGAAAAGCTA TTAAAAGTAT AACTATATGG ATATATTCTC ATGAAAACAT TATTGATACC ATTTTTGCAA ATGAATTATG AAACCTTAAA ATGITTGTAC ATCCATACAT CCTAAGACCA GATCTATCTG TAAACGGAGC AGTGTTTTCT GAACTCGCTA GCTCTTACGG AATCTGTATC TTCATTAGAG AATATTACAC CCAGCAATTC ATCGGGCACG TCAGATGCCA GGATGATTGA AACAGACATC TTTTACTTTC TTGTTCCTGC TTGCCGTCCG GGACTTCAAG TGGACGACTT TGATCGAATA AATTGCAACC AGCAAGTTCC AGCTAACTTC TGATCTGAAG AACCAAGCAC GTACACCACT AGTATTTTCC AGTCTACATT TAATTTGCAC TACCTAGTAG CTATCAGTTG TTACACTAAA TTCAAGATTT CTACAGATCC AAGTATATCT GATACAATAA TAAGAATATT CATTCAGTTC ACCATATGCT AGTGTCTTGT TGCACAAGTA CAGACACATG TTGACAATAA ACCATTTGTG ACTCCCAGAT GGCTGTCAGG TTCAGCAGAT TGTAGAAATG AAATTCATAA AGTTCAGGGA ACTATCTTAA AAAAAGTGCA GCAAGTGTTT

4401
4451

CAAGGAAAAA CATTAAAATC TAACTATAGT ATAATTGTAA TATAATTCCA CTATAACTAT AATATAAGTT GTATATAAGT ATTAAAATAA TACCTAAAAT AATATATGCA ACTTTATATC TAACTTATAT AGAATTTACG ATGTAGTTAC AGTGCAGTTA CACTACAACT GTTGTACTAT AGTTACATTT GAAAGTTTTT TTTGCCGAAA AAAACTTGTG ATAGTTTTTC AGCAATTCCA TTCAGAAATC GATTAGATGG AAAGCATAAA ACCTTTGATA TGACAGAGAC AGTTTAATTA TGCTTGGAAG CTTATATAAC TTAGCAACTT ACAATAGCAA GGACAGGATC gaigaiatta aggangcang tcggatcaga angcancait ggccggcanc CAGCAGCTGC GGGTGCTGCA CGCCCTGGAC ATTGCAAGGA CACAGCTGTA Sense primer \rightarrow RT-PCR CCATTTCATC GCGATCGTGA TCGCCGGCAT GGGCTTCTTC ACCGACGCCT ACGACCTCTT CTCCATCTCC CTCGTCGCCG ACCTCCTCGG CCACGTCTAC taCCACGGCO AGCTCCCCCG GAACATCCAC GCCGCCGTCA CCGGCATCGC GCTTTGTGGC ACCGTCCCCG GACAGCTCGT GTTCGGCTGG CTCGGTGACA agatgggcce ganccgrgtc tatggantca ccctcctcct catggtcgcc tCCTCTCTCG CCTCCGGACT CTCCTTCAGT AAGCGCGAGG GGAAGAACGT tatcactatg cttrgcttct tccgattitg gettegtatt agcatcgetg gCgattaccc gctctccecc accatcatgt cagagtacgc cancalagge ACTCGTGGTG CCTTCATTGC TGCTGTTTTT GCTATGCAAG TAAGTAGAAA CTATGTTTTT CTTATTGTAA TTGAATCCAG CCTGAACATG AATGATGTTT
\leftarrow Anti-sense primer RT-PCR

CTGCATATGA CCCACACCAT CCATTCTTTA GITTTTAAAC ATAACATTTC gganattatt antggacana gittcanaig crtgacanai tcttttana 3^{\prime}

Rice K, ORYsaPhT1;8

The contig (24425) containing the rice K sequence has a total length $=4097 \mathrm{bp}$
Ricek total gene $=2351 \mathrm{bp}$
Promoter = 384 bp
cDNA $=1626 \mathrm{bp}=542$ amino acids
3' untranslated region $=341 \mathrm{bp}$

5'	CTAAAAGCTT	ttaggergan	Ctgattgana	taAatcatac	atacatiana
51	tacattatat	Atcgcatatt	attangtcag	CgTGCGAAGA	GCTTCTGGGA
101	tganccgatc	GGTGACccga	GCGCGTGCGT	tcGcgcacct	ATCAAACCCT
151	tgtacacaig	cgcatgacci	CGCGTGAGAT	TCGTGCCGTT	T
201	Ctccatatta	CAGTGACAAC	CAAGCAGGCG	TG	ACTGGACACG
251	gccangtcg	CTACCATTCC	tgcgectaca	tataccgccg	GC
301	gccattccta	TGCCCAGAGA	gCTCGACACA	AATACAG	T
351	CTTCCCCGAG	CTtTGCGAGC	AGAGTCGTTC	AGCC	
401	agcagcagc	cctacage	ctgagcge	tGgacge	gangac
451	tgetaccact	tcacgeceat	cetcatcecc	GGCATGGGCT	tctrcaccea
501	cgcctacgac	стстtстес	тстссСтсяt	CA	ctcgecceca
551	tctactacac	cgacctc	ahgeagat	CC	gccecccanc
601	grceccecge	cgetcaicge	CGTCGCGTTC	tgcgec	tcgcgegcca
651	өстсттстт	GGGTGGCTCG	gceacaagct	CGGcce	G
701	ggatgacget	gctgatgatg	gтсатстест	CCATCGCG	G
51	ttctcgcaca	cgeccaccaa	cgtcatgecg	acgetctect	tcrtcceett
1	стGgctcegc	ttcgecatcg	gcgecgacta	cccectercg	gcgacgatca
851	tetcgeagta	cgccancalg	angacccgeg	GCGCGtrea	cgcceccerg
901	ttcecgatge	AGGGGttcge	catc	ggcgecatcg	tcaccetcat
1	catctectec	GCattccece	ccGegttccc	gececcegce	taccageacg
1001	accectcgeg	ctccaccerc	cgccageccg	actacgtatg	gcgeatcatc
1051	ctcatectce	gcGccatgcc	GGCGCTGCTC	acctactact	gecgeatgaa
1101	gatgecgeag	acgecgecct	acacceccet	cgtcgccai	ancgccaagc
1151	agacceccec	cgacatgtcc	Aagetectcc	agetcgaga	ccaggaggag
1201	caggacaagc	tgeagcagat	getgaccecg	ancagcagca	gcticgecct
1251	сттстсссяс	cagttcgcec	gcceccacge	сстссасс	gTcgeca
1301	ccacgacatg	өттсстсстс	gacatcg	tctacagcca	GAACCTGITC
1351	cagangeaca	тсttcacca	Cata		
1401	gtceecce	gaggagetat	tccecat		acgctatcg

1451

CGCTGTGCGG CACCGTCCCG GGCTACTGGT TCACCGTCTT CCTCATCGAC ATCGTCGGCC GCTTCGCCAT CCAGCTGCTA GGGTTTTTCA TGATGACCGT GTTCATGCTC GGCCTCGCCG TGCCGTACCA CCACTGGACG ACGAAGGGGA ACCACATCGG CTTCGTCGTC ATGTACGCCT TCACCTTCTT CITCGCCAAC tTCGGCCCCA ACTCCACCAC CTTCATCGTG CCGGCGGAGA TCTTCCCGGC GAGGCTGCGT TCCACCTGCC ACGGCATCTC GGCGGCGGCG GGGAAGGCCG GCGCCATCAT CGGATCGTTC GGGTTCCTGT ACGCGGCGCA GGACCCGCAC AAgCCCGACG CCGGGTACAA ACCCGGGATC GGGGTGAGGA ACTCGCTGTT CGTGCTCGCC GGATGCAACC TGCTCGGGTT CATCTGCACG TTCCTCGTGC Sense primer \rightarrow RT-PCR CGGAGTCGAA GGGGAAGTCG CTGGAGGAGA TGTCCGGCGA GGCGGAGGAC GACGACGACG AGGTGGCCGC CGCCGGCGGT GGCGCCGCCG TGCGGCCGCA gacggcgtag tgTatgact gcacgigant atagtgtagg tittacttan TTTACTTACT GTTATTATTA TTATACTCCT ACTTGTGTTT GTCTATGTGA AATTGGGAAT CATGAACCCA TGATCATGTT TTGTTAGGTT AAGAAGGCAA AAGAAATGTG TGTTAAATAC TTCAATTATG TAAACTCTGT TTTTAAGTAT TTGGCCACTT GAGGAATAAT TCTTGCAGAC CAGCAATTTG GCACGAATAC ATTTTATAAT TGAACTACCA CTCTACCAGA GTAGTACACT ACTAATTTGC CTTAGAGAGG ACAATGAGAT GTCTAAATTT TCAATTATGG_CIGTGTTGAG
\leftarrow Anti-sense primer RT-PCR
2351

```
T 3'
```


Tomato Phosphate Transporter

LYCes;Pht1;1

The cDNA sequence of Lycopersicon esculentum (LePT1) was submitted to the Genbank database by Daram et al. (1998). The promoter region was cloned by myself and has not been added to the database.
LYCes;Pht1;1 total gene $=3269 \mathrm{bp}$
Promoter $=1356 \mathrm{bp}$
CDNA $=1620 \mathrm{bp}=540$ amino acids
Putative cis-regulating motifs (referenced in section 7.2) have the motif aligned under the sequence with the percentage of similarity.

tgTgTCATAT TAAAACTAAT AAAATAATAG ACAGAAAACA AGACTTTTTG AAAACTTAG-Motif 78\%
TGGCCCCCCT TGCTTTGTCT TTATCAAGAA GTCAATTTTC TACCCCCCTA
T GCATTCTAT-Motif 70\%
CAGGACAACT TACAAATTTA TTAGTATTAA TTATTCAGAT AAGGITTGAT LePTipromB \rightarrow
AAAACT TAG-MOtif 78\% TGTTTA TAAGT-Motif 73\% TAATGCAATT CCCAAATATC TTCTTATTTT TGTAATGTTA TTTGAGTTTA \leftarrow LePTlpromy
ACTTGTGTGT ACTGACAGTG ACAATGTAAA GCAATAGTAA AAAGTGGGAT TAGTAACCTT GAACAATAAG TATGTTACTT GTTACAACAG GTTAAAATAT TAATATAT-Motif 88\%

TAATAT
ATGTTCTTGT GAACCAAGTA TACTAATGTT ATAAGTGATG TAAGTTAAGT AT-Motif 88\% TGTTT ATAAGT-Motif 72\%

T
CCTTATAATT TACATAACCT CTTGTTTGAT CAGATTTGAT TTATGCAAT \bar{C} GTTTATAAGT-Motif 73\%
CTAAACTACC TTTTTGGTTT GTTCTGTTAT TTGAGTTTAA CTTGTGTATA
CTGATAGTGT AACGCGGGAG TAGTAACCTT GAACACTAAG TATGTTCCTT LePTIpromC \rightarrow

AAAACTTAG-Motif 78\%
GTTATAACAG GCTAAAGTTA TATATTCTTG TAAAGAATGT TTACTATGTT TGCATTC TAT-Motif 70\% TGCA TAA TATAT-Motif 88\%
AGTTATGTAA GTTGAATTGT TATAATTTAC ACCCTCTTGT TCTGTTTTTT \leftarrow LePTlpromZ
ATTCTAT-Motif 70% TGTT TATAAGT-Motif 73\%
CTTCTTGTT CTA-Motif 84\%
GCAGGAAGTT TAGTCATGGC GAACGATTTG CAAGTGCTAA ATGCACTAGA
\leftarrow LePTlpromBamHI cctaggcggc
tGTCGCGAAG ACACAACTGT ATCACTTCAC AGCGATTGTG ATtGCTGGCA tGGGTTTTTT TACTGATGCT TATGACCTTT TCTGCATTTC TATGGTCACT AAATTGCTTG GTCGTCTTTA CTACCATCAT GACGGTGCAT tGAAACCTGG CTCTCTGCCC CCTAATGTTT CAGCAGCTGT TAATGGAGTC GCCTTCTGTG GCACCCTTGC TGGACAGTTG TTCTTCGGGT GGCTTGGAGA TAAAATGGGA agganganag tctatggant gacccttatg attatggtca tttgttcant TGCCTCGG
\leftarrow GWTOMATO389
IPCRTOMATO1 \rightarrow GWTOMATO452
trtctgccac catcatgict gagtatgcta acananagac ccgtggagcg TTCATTGCTG CTGTGTTTGC TATGCAAGGT ITCGGAATTC TGGCTGGTGG AATGGTGGCA ATCATTGTTT CTGCAGCATT CAAGGGCGCA tTCCCTGCAC cagcatatga ggttgatgct attgettcan cagtccctca ggctgattic GTGTGGCGTA TAATTCTCAT GTTTGGTGCA ATCCCTGCTG GACTTACTTA ttactggcgi atgangatgc ctganactgc ccgttacact gccttggtcg CCAAGAACTT GAAACAGGCA GCTAACGACA TGTCCAAGGT GTTGCAAGTC gaAattgang cagagccaga ganagtraca gctatttctg angcanalg agccantgac tttgetttgi tcactangga gitcctccet cgccatggac tTCACTTGCT TGGAACTGCT AGCACATGGT TCTTGTTGGA CATTGCTTTC tACAGTCAAA ACCTTTTCCA GAAGGACATT TTCAGTGCAA TTGGATGGAT tccaccagca caanccatga acgcgttgga agangtttac angattgcan gGGCACAAAC ACTTATTGCT CTTTGTAGTA CTGTTCCTGG TTACTGGTTC ACAGTTGCAT TCATCGATAA GATTGGTCGA ITTGCAATTC AGTTGATGGG ATtCTTCTIC ATGACAGTCT TCATGTTTGC CTtAGCCATT CCATACCATC ACTGGACTCT CAAGGATCAC AGAATTGGCT TCGTGGTCAT GTACTCATTC ACCTTTTTCT TCGCCAATIT TGGTCCAAAC GCCACAACAT TCGTCGTCCC tGCtGagatt ttcccagcca gGcttaggtc cacatgccat ggantatcag CAGCAGCAGG TAAAGCAGGA GCTATGGTTG GTGCATTTGG ATtCTTATAC GCTGCTCAGC CCACGGATCC AACAAAGACT GACGCCGGTT ACCCTCCTGG CCATTGGTGT GAGGAACTCG TTGATCGTCC TTGGTTGTGT AACTTCCTCG GTATGCTGTT CACATTCTTG GTTCCAGAAT CCAATGGGAA GTCATTGGAA

2901	gatticticga	ggganalcga	aggegatalg	ganactatag	ctganatang
2951	AGCAACAAGT	gGAAGGACAG	TTCCTGTGTG	AGTTTTAGAC	AAGTTATCAG
3001	TTAGTATACA	CTACAATGCA	GTTTGAGTTA	ATTTGTGGTA	TTTGGGATTA
3051	GAAAGAGATT	GTTTGTTGGT	TTGTTATAAG	AAGATGGAAT	AAGCTCTTAT
3101	CTTTTTGTTT	GTTTGTTTGG	GTAATTAAAC	ATTATTACCT	TACTTCTGCA
3151	AATCTCAGAA	ATTCTGAGAT	tatatanag	AACCAAAGGA	GGTTCTTTGG
3201	TTGTCTATCT	CTTTTTATAA	AACATTTCTT	GACTCTAAAA	AAAAAAAAAA
3251 AAAACTCGAG ACTAGTTCA 3'					

sGFP - synthetic Green fluorescent protein

1
51

101 CGAGGGCGAG GGCGATGCCA CCTACGGCAA GCTGACCCTG AAGTTCATCT
Sense primer \rightarrow GFPFOR133
151 GCACCACCGG CAAGCTGCCC GTGCCCTGGC CCACCCTCGT GACCACCTTC
201 ACCTACGGCG tGCAGTGCTT CAGCCGCTAC CCCGACCACA TGAAGCAGCA
251 CGACTTCTTC AAGTCCGCCA TGCCCGAAGG CTACGTCCAG GAGCGCACCA
301 TCTTCTTCAA GGACGACGGC AACTACAAGA CCCGCGCCGA GGTGAAGTTC
351 GAGGGCGACA CCCTGGTGAA CCGCATCGAG CTGAAGGGCA TCGACTTCAA
401 GGAGGACGGC AACATCCTGG GGCACAAGCT GGAGTACAAC TACAACAGCC
451 ACAACGTCTA tatcatggcc gachagcaga agancggcat CAAgGTgaic
501 TTCAAGATCC GCCACAACAT CGAGGACGGC AGCGTGCAGC TCGCCGACCA Antisense primer \leftarrow GFPREV511
551 CTACCAGCAG AACACCCCCA TCGGCGACGG CCCCGTGCTG CTGCCCGACA
601 ACCACTACCT GAGCACCCAG TCCGCCCTGA GCAAAGACCC CAACGAGAAG 651 CGCGATCACA TGGTCCTGCT GGAGTTCGTG ACCGCCGCCG GGATCACTCT 701 CGGCATGGAC GAGCTGTACA AGTAAGATAT C

Appendix 5: ANOVA's for results presented in Chapter 4.

Abbreviations: $\mathrm{Df}=$ degrees of freedom; $\mathrm{Sum} \mathrm{Sq}=$ Sum squared; Mean $\mathrm{Sq}=$ Mean Sum Squared

Part 1: Results from experiments analysing P efficiency between seven barley cultivars.
ANOVA results for g Root Dry weight per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD $(\mathbf{P}=\mathbf{0 . 0 5})$	LSD $(\mathbf{P}=\mathbf{0 . 0 1)}$
Rep	2	0.51154	0.25577	6.840		
Cultivar	6	2.43565	0.40594	10.856	0.184	0.247
Phosphate	2	1.65075	0.82537	22.072	0.121	0.161
Cultivar \times Phosphate	12	0.54994	0.04583	1.226	0.319	0.427
Residuals	39	1.45839	0.03739			

ANOVA results for g Shoot Dry weight per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD $(P=0.05)$	LSD $(\mathbf{P}=\mathbf{0 . 0 1})$
Rep	2	0.0644	0.0322	11.998		
Cultivar	6	0.2815	0.0469	17.496	0.049	0.066
Phosphate	2	0.9274	0.4636	172.914	0.032	0.043
Cultivar \times Phosphate	12	0.1289	0.0107	4.006	0.085	0.114
Residuals	39	0.1046	0.0027			

ANOVA results for concentration of P mg in roots per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD $(P=0.05)$	LSD $(P=0.01)$
Rep	2	0.7605	0.3803	5.118		
Cultivar	6	11.4060	1.9010	25.585	0.260	0.348
Phosphate	2	20.7007	10.3504	139.305	0.170	0.228
Cultivar \times Phosphate	12	3.7874	0.3156	4.248	0.450	0.602
Residuals	39	2.9720	0.0743			

ANOVA results for concentration of P mg in shoots per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD $(P=0.05)$	LSD $(P=0.01)$
Rep	2	2.1864	1.0932	3.442		
Cultivar	6	22.2248	3.7041	11.664	0.537	0.718
Phosphate	2	203.184	101.5919	319.896	0.351	0.470
Cultivar \times Phosphate	12	21.0074	1.7506	5.512	0.930	1.244
Residuals	39	12.7031	0.3176			

ANOVA results for Total $\mathbf{P} \mathbf{m g}$ per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD $(\mathbf{P}=\mathbf{0 . 0 5)}$	LSD $(\mathbf{P}=\mathbf{0 . 0 1})$
Rep	2	5.4672	2.7336	5.041		
Cultivar	6	64.3303	10.7217	19.773	0.701	0.939
Phosphate	2	346.2865	173.1432	319.305	0.459	0.615
Cultivar \times Phosphate	12	36.6860	3.0572	5.638	1.215	1.626
Residuals	40	21.6900	0.5423			

ANOVA results for proportion of P in shoot per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD $(\mathrm{P}=0.05)$	LSD $(\mathrm{P}=0.01)$
Rep	2	39.6626	19.8313	1.073		
Phosphate	2	538.7776	89.7963	4.856	4.095	5.481
Cultivar	6	10571.3870	5285.6935	285.865	2.681	3.588
Cultivar \times Phosphate	12	928.5291	77.3774	4.185	7.092	9.494
Residuals	38	739.6080	18.4902			

ANOVA results for specific uptake of P in root per plant.

Trait	Df	Sum Sq	Mean Sq	F value	LSD $(P=0.05)$	LSD $(P=0.01)$
Rep	2	77.5223	38.7612	4.662		
Phosphate	2	77.9059	12.9843	1.562	2.746	3.676
Cultivar	6	1218.2314	609.1157	73.260	1.798	2.406
Cultivar \times Phosphate	12	40.6106	3.3842	0.407	4.756	6.366
Residuals	38	324.2620	8.3144			

Part 2: Results from experiments analysing the rate of colonisation of three barley cultivars by two AM fungi.

Trait	Df	Sum Sq	Mean Sq	F value
Cultivar	2	1758	879	7.3795
Mycorrhiza	1	41829	41829	351.0912
Phosphate	1	3962	3962	33.2553
Day	5	70316	14063	118.0405
Rep	2	468	234	1.9629
Cultivar:Mycorrhiza	2	198	99	0.8311
Cultivar:Phosphate	2	31	16	0.1311
Cultivar:Day	10	3130	313	2.6276
Mycorrhiza:Phosphate	1	2068	2068	17.3619
Mycorrhiza:Day	5	3404	681	5.715
Phosphate:Day	5	1067	213	1.7914
Cultivar:Mycorrhiza:Phosphate	2	974	487	4.0895
Cultivar:Mycorhiza:Day	10	1871	187	1.5707
Cultivar:Phosphate:Day	10	1272	127	1.0675
Mycorrhiza:Phosphate:Day	5	3249	650	5.4542
Cultivar:Mycorhiza:Phosphate:Day	10	775	78	0.6505
Residuals	141	16799	119	

Bibliography

Aono T, Oyaizu H. 2001. The expression of phosphate transporters in response to phosphate starvation is different from that of H^{+}-ATPase or PEPC in Sesbania rostrata. Direct submission of sequence to Genbank.

Ayling SM, Smith SE, Smith FA. 2001. Colonisation by arbuscular mycorrhizal fungi changes the relationship between phosphorus uptake and membrane potential in leek (Allium porrum) seedlings. Australian Journal of Plant Physiology 28: 391-399.

Azcón-Aguilar C, Barea JM. 1997. Applying mycorrhizal biotechnology to horticulture - significance and potentials. Scientia Horticulturae 68: 1-24.

Baek SH, Shung IM, Yun SJ. 2001. Molecular cloning and characterisation of a tobacco leaf cDNA encoding a phosphate transporter. Molecules and Cells 11: 1-6.

Baon JB, Smith SE, Alston AM. 1993a. Mycorrhizal responses of barley cultivars differing in \mathbf{P} efficiency. Plant and Soil 157: 97-105.

Baon JB, Smith SE, Alston AM. 1993b. Phosphorus allocation in P-efficient and inefficient barley cultivars as affected by mycorrhizal infection. Plant and Soil 155/156: 277-280.

Baon JB, Smith SE, Alston AM. 1994. Phosphorus uptake and growth of barley as affected by soil temperature and mycorrhizal infection. Journal of Plant Nutrition 17: 479-492.

Barber DA. 1972. 'Dual isotherms' for the absorption of ions by plant tissues. New Phytologist 71: 255262.

Barber SA. 1962. A diffusion and mass-flow concept of soil nutrient availability. Soil Science 93: 39-49.
Bates TR, Lynch JP. 2000. The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. American Joumal of Botany 87: 964-970.

Bleleski RL, Ferguson IB. 1983. Physiology and Metabolism of Phosphate and its compounds. In: Inorganic Plant Nutrition III. Springer-Verlag, 422-449.

Birnhoim HC. 1983. A rapid alkaline extraction method for the isolation of plasmid DNA. Methods in Enzymology 100: 243-255.

Black R, Tinker PB. 1979. The development of endomycorrhizal root systems. II Effects of agronomic factors and soil conditions on the development of vesicular-arbuscular mycorrhizal infection in barley and on the endophyte spore density. New Phytologist 83: 401-413.

Bolan NS. 1991. A critical review on the role of mycormizal fungi in the uptake of phosphorus by plants. Plant and Soil 134: 189-207.

Bolland MDA, Gilkes R.J. 1998. The chemistry and agronomic effectiveness of phosphate fertilisers. Journal of Crop Production 1: 139-163.

Brundrett M. 2000. Mycorrhiza. http://www.ffp.csiro.au/research/mycorrhiza/.
Bucher M, Rausch C, Daram P. 2001. Molecular and biochemical mechanisms of phosphorus uptake into plants. Journal of Plant Nutrition and Soil Science 164: 209-217.

Bun-ya M, Nishimura M, Harashima S, Oshima Y. 1991. The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Molecular Cell Biology 11: 3229-3238.

Bun-ya M, Shikata K, Nakade S, Yompakdee C, Harashima S, Oshima Y. 1996. Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cervisiae. Current Genetics 29: 344-351.

Bun-ya M, Harashima S, Oshima Y. 1992. Putative GTP-binding protein, Gtr1, associated with the function of the Pho84 inorganic phosphate transporter in Saccharomyces cerevisiae. Molecular and Cellular Biology 12: 2958-2966.

Burleigh SH. 2001. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas. Plant Science 160: 899-904.

Carlson AR, Letarte J, Chen J, Kasha KJ. 2001. Visual screening of microspore-derived transgenic barley (Hordeum vulgare L.) with green-fluorescent protein . Plant Cell Reports 20: 331-337.

Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock, CM, Manners JM.. 2003. Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Molecular Biology 52:371-386.

Cavagnaro TR, Gao L-L, Smith FA, Smith SE. 2001. Morphology of arbuscular mycorrhizas is influenced by fungal identity. New Phytologist 151: 469-475.

Chiou T-J, Liu H, Harrison MJ. 2001. The spatial expression patterns of a phosphate transporter (MIPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. The Plant Journal 25: 281-293.

Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. 1979. Isolation of Biologically Active Ribonucleic Acid from Sources Enriched in Ribonuclease. Biochemistry 18: 5294-5299.

Clark RB. 1991. Physiology of cereals for mineral nutrient uptake, use and efficiency. In: Crops as Enhancers of Nutrient Use. San Diego. USA: Academic Press, Inc., 131-183. (Eds Baligar, V.C. and Duncan, R.R.)

Clarke C, Mosse B. 1981. Plant growth responses to vesicular-arbuscular mycorrhiza. XII. Field inoculation responses of barley at two soil P levels. New Phytologist 87: 695-703.

Clarkson DT, Grignon C. 1991. The Phosphate transport system and its regulation in roots. In 'Phosphorus nutrition of grain legumes in the semi-arid tropics', p49-62. (Eds Johansen, C., Lee, K. K., and Sahrawat, K. L.) (ICRISAT- International Crops Research Institute for the Semi-Arid Tropics).

Clarkson DT, Scattergood CB. 1982. Growth and phosphate transport in barley and tomato plants during the development of, and recovery from, phosphate-stress. Journal of Experimental Botany 33: 865-875.

Cogliattl DH, Clarkson DT. 1983. Physiological changes in, and phosphate uptake by potato plants during development of, and recovery from phosphate deficiency. Physiologia Planta 58: 287-294.

Colwell JD. 1963. The estimation of the phosphorus fertilizer requirements of wheat in Southern New South Wales by soil analysis. Australian Joumal of Experimental Agriculture and Animal Husbandry 3: 100-107.

Comerford NB. 1998. Soil Phosphorus Bioavailability. In 'Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem Processes', p136-147. (Eds Lynch, J P. and Deikman, J.).

Cox G, Tinker PB. 1976. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study. New Phytologist 77: 371378.

Daram P, Brunner S, Persson B, Amrhein N, Bucher M. 1998. Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta 206: 225-233.

Daram P, Brunner S, Rausch C, Steiner C, Amrhein N. 1999. Pht2;1 Encodes a low-affinity phosphate transporter from Arabidopsis. The Plant Cell 11: 2153-2166.

Davies TG, YIng J, Xu Q, Li ZS, Li J, Gordon-Weeks R. 2002. Expression analysis of putative highaffinity phosphate transporters in Chinese winter wheats. Plant, Cell and Environment 25: 1325-1339.

Delhaize E, Randall P. 1995. Characterization of a phosphate-accumulator mutant of Arabidopsis thaliana. Plant Physiology 107: 207-213.

Delp G, Smith SE, Barker SJ. 2000. Isolation by differential display of three partial cDNA's potentially coding for proteins from the VA mycorrhizal Glomus intraradices. Mycorrhizal Research 104: 293-300.

Dickson S, Smith SE, Smith FA. 1999. Characterisation of two arbuscular mycorrhizal fungi in symbiosis with Allium porrum: colonisation, plant growth and phosphate uptake. New Phytology 144: 163-172.

Dickson S, Kolesik P. 1999. Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9: 205-213.

Dong B, Rengel Z, Delhaize E. 1998. Uptake and translocation of phosphate by pho2 mutant and wildtype seedlings of Arabidopsis thaliana. Planta 205: 251-256.

Engels WR. 1993. Contributing software to the Internet: the Amplify program. Trends in Biochemical Sciences 18: 448-450.

Epstein E, Hagen CE. 1952. A kinetic study of the absorption of alkali cations by barley roots. Plant Physiology 27: 457-474.

Federspiel NA, Palm CJ, Conway AB, Conn L, Hansen NF, Altafi H, Araujo R, Huizar L, Rowley D, Buehler E, Dunn P, Gonzalez A, Kremenetskaia I, Kim C, Lenz C, Li J, Liu S, Luros S, Schwartz J, Shinn P, Toriumi M, Vysotskaia VS, Walker M, Yu G, Ecker J, Theologis A, Davis RW. 1999. Arabidopsis thaliana chromosome I BAC F9H16 genomic sequence, complete sequence. direct submission of sequence to EMBL.

Fohse D, Jungk A. 1983. Influence of phosphate and nitrate supply on root hair formation of rape, spinach and tomato plants. Plant and Soil 74: 359-368.

Fried M, Noggle J.C. 1958. Multiple site uptake of individual ions by roots as affected by hydrogen ion. Plant Physiology 33: 139-144.

Furihata T, Suzuki M, Sakurai H. 1992. Kinetic characterisation of two phosphate uptake systems with different affinities in suspension-cultured Catharanthus roseus protoplasts. Plant Cell Physiology 33: 1151-1157.

Gahoonia TS, Asmar F, Giese H, Gissel-Nielsen G, Nielsen NE. 2000. Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments. European Journal of Agronomy 12: 281-289.

Gahoonia TS, Nielsen NE. 1997. Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica 98: 177-182.

Gao L-L, Delp G, Smith SE. 2001. Colonisation patterns in a mycorrhiza-defective mutant tomato vary with different arbuscular-mycorrhizal fungi. New Phytologist 151: 477-491.

Gianinazzi-Pearson V, Arnould C, Outattole M, Arango M, Gianinazzi S. 2000. Differential activation of H^{+}-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211: 609-613.

Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA. 1991. Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is $\mathrm{H}^{+}-$ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces? New Phytology 117: 61-74.

Godwin RM. 2002. Cloning and Characterisation of Genes Encoding Phosphate and Sulphate Transporters from Rice. Thesis housed at The University of Queensland.

Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun W-L, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S. 2002. A draft sequence of the Rice Genome (Oryza sativa L. ssp. japonica). Science 296: 92100.

Grundon NJ, Robson AD, Lambert MJ, Snowball KA. 1997. Nutrient Deficiency and Toxicity Symptoms. In: Plant Analysis: an Interpretation Manual. Collingwood: CSIRO Publishing, 35-52.

Haeberli, Paul. Gap and BestFit were originally written for Version 1.0 by Paul Haeberli from a careful reading of the Needleman and Wunsch (J. Mol. Biol. 48; 443-453 (1970)) and the Smith and Waterman
(Adv. Appl. Math. 2; 482-489 (1981)) papers. Limited alignments were designed by Paul Haeberli and added to the Package for Version 3.0. They were united into a single program by Philip Delaquess for Version 4.0. Default gap penalties for protein alignments were modified according to the suggestions of Rechid, Vingron and Argos (CABIOS 5; 107-113 (1989)).

Harrison MJ. 1999. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annual Review of Plant Physiology and Plant molecular biology 50: 361-389.

Harrison MJ, Dewbre GR, Liu J. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi . Plant Cell 14: 2413-2429.

Harrison MJ, van Buuren ML. 1995. A phosphate transponter from the mycorrhizal fungus Glomus versiforme. Nature 378: 626-629.

Hedley MJ, Kirk GJD, Santos MD. 1994. Phosphorus efficiency and the forms of soil phosphorus utilized by upland rice cultivars. Plant and Soil 158: 53-62.

Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH. 2002. Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. Journal of Ecology 90: 371-384.

Horii S, Ishii T. Arbuscular mycorrhizal fungi penetrate into Arabidopsis thaliana roots. 4th International Conference of Mycorrhiza (ICOM4). Abstract \# 732.

Horst WJ, Kamh M, Jibrin JM, Chude VA. 2001. Agronomic measures for increasing P availability to crops. Plant and Soil 237: 211-233.

Howeler RH, Sieverding E, Saif S. 1987. Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant and Soil 100: 249-283.

Jackson RB, Manwaring JH, Caldwell MM. 1990. Rapid physiological adjustment of roots to localised soil enrichment. Nature 344: 58-60.

Jakobsen I, Andersen AJ. 1982. Vesicular-arbuscular mycorrhiza and growth in barley: effects of irradiation and heating of soil. Soil Biology and Biochemistry 14: 171-178.

Jakobsen I, Nielsen NE. 1983. Vesicular-arbuscular mycorrhiza in field-grown crops. I. Mycorrhizal infection in cereals and peas at various times and soil depths. New Phytologist 93: 401-413.

Jefferson RA. 1987. Assaying chimeric genes in planis: The GUS gene fusion system. Plant Molecular Biology Reports 5: 387-405.

Jensen A, Jakobsen I. 1980. The occurrence of vesicular-arbuscular mycorrhiza in barley and wheat grown in some Danish soils with different fertiliser treatments. Plant and Soil 55: 403-414.

Jensen HA, Nittler LW. 1971. Varietal differences among barley seedlings grown with various nutrient solutions. Agronomy Journal 63: 714-717.

Johnson NC, Graham JH, Smith FA. 1997. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytologist 135: 575-585.

Jungk AO. 1996. Dynamics of Nutrient Movement at the Soil-Root Interface. In: Plant Roots: The Hidden Half. New York, Basel, Hong Kong: Marcel Dekker Inc., 529-556.

Kai M, Masuda Y, Kisuhiro Y, Osaki M, Tadano T. 1997. Isolation and characterisation of a cDNA from Catharanthus roseus which is highly homologous with phosphate transporter. Soil Science and Plant Nutrition 43: 227-235.

Kai M, Takazumi K, Adachi H, Wasaki J, Shinano T, Osaki M. 2002. Cloning and characterisation of four phosphate transporter cDNAs in tobacco. Plant Science 163: 837-846.

Karandashov V, Nagy R, Amrhein N, Bucher M. 2003. Regulation of phosphate transport in arbuscular mycorrhizal symbiosis. Fourth International Conference of Mycorrhizas. Abstract \#442

Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M. 2004. Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Science 101: 6285-6290.

Keeton WT, Gould JL. 1986. Biological Science. 4h Edition. USA: W.W. Norton \& Company, Inc.

Khaliq A, Sanders FE. 1998. Effects of vesicular-arbuscular mycorrhizal inoculation on the growth and phosphorus nutrition of barley in natural or methyl bromide treated soil. Journal of Plant Nutrition 21: 2163-2177.

Khaliq A, Sanders FE. 2000. Effects of vesicular-arbuscular mycorrhizal inoculation on the yield and phosphorus uptake of field-grown barley. Soil Biology and Biochemistry 32: 1691-1696.

Leggewie G, Willmitzer L, Riesmeier J. 1997. Two cDNA from potato are able to complement a phosphate uptake-deficient yeast mutant: Identification of phosphate transporters from higher plants. The Plant Cell 9: 381-392.

Li YJ, Chen SY, Li ZS. 1999. TRlaePhT1;1, direct submission of sequence to EMBL.

Liao H, Rubio G, Yan X, Cao A, Brown KM, Lynch JP. 2001. Effect of phosphorus availability on basal root shallowness in common bean. Plant and Soil 232: 69-79.

Lin W. 1979. Potassium and phosphate uptake in corn roots. Plant Physiology 63: 952-955.
Lin X, Kaul S, Rounsley SD, Shea TP, Benito M-I, Town CD, Fujii CY, Mason TM, Bowman CL, Barnstead ME, Feldblyum TV, Buell CR, Ketchum KA, Lee JJ, Ronning CM, Koo H, Moffat KS, Cronin LA, Shen M, VanAken SE, Umayam L, Tallon LJ, Gill JE, Adams MD, Carrera AJ, Creasy TH, Goodman HM, Somerville CR, Copenhaver GP, Preuss D, Nierman WC, White O, Eisen JA, Salzberg SL, Fraser CM, Venter JC. 1999. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402: 761-768.

Lin X, Kaul S, Town CD, Benito M-I, Creasy TH, Haas BJ, Wu D, Maiti R, Ronning CM, Koo H, Fujii CY, Utterback TR, Barnstead ME, Bowman CL, White O, Nierman WC, Fraser CM. 1999. Arabidopsis thaliana chromosome 1 BAC F14G6 genomic sequence - direct submission of sequence to EMBL.

Liu C, Muchhal US, Uthappa M, Kononowicz AK, Ragothama KG. 1998a. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiology 116: 9199.

Liu H, Trieu AT, Blaylock LA, Harrison MJ. 1998b. Cloning and characterisation of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and response to colonization by arbuscular mycorrhizal (AM) fungi. Molecular Plant Microbe Interactions 11: 14-22.

Liu J, Uhde-Stone C, Li A, Vance C, Allan D. 2001. A phosphate transporter with enhanced expression in proteoid roots of white lupin (Lupinus albus L.). Plant and Soil 237: 257-266.

Lu Y-P, Zhen R-G, Rea PA. 1997. AtPT4: A fourth member of the Arabidopsis phosphate transporter gene family (Accession No. U97546). Plant Physiology 114: 747-749.

Luttge U, Higinbotham N. 1979. Chapter 6: The simplified cell models of transport physiology. In: Transport in Plants. New York: Springer-Verlag, 124-128.

Lynch JP, Brown KM. 2001. Topsoil foraging - an architectural adaptation of plants to low phosphorus. Plant and Soil 237: 225-237.

Lynch JP, Brown KM. 1998. Regulation of root architecture by phosphorus availability. In: 'Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic, and Ecosystem Processes' (Eds Lynch, J. P. and Deikman, J.) American Society of Plant Physiologists. 148-156.

Lyness AS. 1936. Varietal differences in the phosphorus feeding capacity of plants. Plant Physiology 11: 665-683.

Ma Z, Bielenberg DG, Brown KM, Lynch JP. 2001. Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant, Cell and Environment 24: 459-467.

Maldonado-Mendoza IE, Dewbre GR, Harrison MJ . 2001. Expression of a Glomus intraradices phosphate transporter gene (GiPT) in the extra-radical mycelium of an arbuscular mycorrhiza: regulation in response to phosphate. Molecular Plant-Microbe Interactions 14: 1140-1148.

Marger MD, Saier MHJr. 1993. A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. Trends in Biochemical Sciences 18: 13-20.

Marschner H. 1995. Mineral Nutrition of Higher Plants. London San Diego: Academic Press.
Martinez P, Persson B. 1998. Identification, cloning and characterisation of a derepressible $\mathrm{Na}^{+}-$ coupled phosphate transporter in Saccharomyces cerevisiae. Molecular and General Genetics 258: 628-638.

McGonigle TP. 2001. On the use of non-linear regression with the logistic equation for changes with time of percentage root length colonized by arbuscular mycorrhizal fungi. Mycormiza 10: 249-254.

Mimura T, Sakano K, Shimmen T. 1996. Studies on the distribution, re-translocation and homeostasis of inorganic phosphate in barley leaves. Plant, Cell and Environment 19: 311-320.

Mimura T. 1999. Regulation of phosphate transport and homeostasis in plant cells. International Review of Cytology 191: 149-200.

Ming F, Shen D. 2001. Oryza sativa P transporter - direct submission of sequence to Genbank.
Ming F, Shen D, Zhang Y. 2001. Common wild rice phosphate transporter mRNA, Oryza rufipogon P transporter - direct submission of sequence to EMBL.

Mitsukawa N, Okumura S, Shibata D. 1997a. High-affinity phosphate transporter genes of Arabidopsis thaliana. Soil Science and Plant Nutrition 43: 971-974.

Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D. 1997b. Over expression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proceedings of National Academy of Sciences, United States of America 94: 7098-7102.

Moody PW, Bolland MDA. 1999. Phosphorus. In: Soil Analysis: an Interpretation Manual. Collingwood: CSIRO Publishing, 187-220.

Muchhal US, Pardo JM, Raghothama KG. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of National Academy of Science, United States of America 93: 10519-10523.

Muchhal US, Raghothama KG. 1999. Transcriptional regulation of plant phosphate transporters. Proceedings of the National Academy of Sciences, United States of America 96: 5868-5872.

Mudge SR, Rae AL, Diatloff E, Smith FW. 2002. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant Journal 31[3]: 341-353.

Narang RA, Bruene AAT. 2000. Analysis of phosphate acquisition efficiency in different Arabidopsis accessions. Plant Physiology 124: 1786-1799.

Nielsen NE, Schjorring JK. 1983. Efficiency and kinetics of phosphorus uptake from soil by various barley genotypes. Plant and Soil 72: 225-230.

Nissen P. 1996. Uptake Mechanisms. In: ‘Plant Roots: The Hidden Half’ New York, Basel, Hong Kong: Marcel Dekker, Inc., 511-527.

Obermaier B, Ottenwaelder B, Duchemin D, Zeitler K, Mewes HW, Lemcke K, Mayer KFX, Quetier F, Salanoubat M. 2000. Arabidopsis thaliana DNA chromosome 3, BAC clone T5N23. - direct submission of sequence to EMBL.

Okumura S, Mitsukawa N, Shirano Y, Shibata D. 1998. Phosphate transporter gene family of Arabidopsis thaliana. DNA Research 5: 261-269.

Pao SS, Paulsen IT, Saier MH. 1998. Major facilitator superfamily. Microbiology and Molecular Biology Reviews 62: 1-34.

Paszkowski U, Kroken S, Roux C, Briggs SP. 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences, United States of America 99: 13324-13329.

Patel M, Johnson JS, Brettell RIS, Jacobsen J, Xue G-P. 2000. Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Molecular Breeding 6: 113-123.

Pearson JN, Jakobsen I. 1993. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labeling with 32P and ${ }^{33 P}$. New Phytologist 124: 489494.

Phillips JM, Hayman DS. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions British Mycological Society 55: 158-161.

Pigliucci M. 2002. Ecology and Evolutionary Biology of Arabidopsis. The Arabidopsis Book http://www.arabidopsis.com.

Plenchette C, Morel C. 1996. External phosphorus requirement of mycorrhizal and non-mycorrhizal barley and soybean plants. Biology and Fertility of Soils 21:303-308.

Poole RJ. 1978. Energy coupling for membrane transport. Annual Review of Plant Physiology 29:437460.

Powell CLL, Groters M, Metcalfe D. 1980. Mycorrhizal inoculation of barley crop in the field. New Zealand Journal of Agricultural Research 23:107-109.

Rae AL, Cybinski DH, Jarmey JM, Smith FW. 2003. Characterisation of two phosphate transporters from barley; evidence for diverse function and kinetic properties amongst members of the Pht1 family. Plant Molecular Biology 53: 27-36.

Raghothama KG. 1999a. Molecular regulation of phosphate acquisition in plants. In: Plant Nutrition Molecular Biology and Genetics (Eds Gissel-Nielsen G and Jensen A) Kluwer Academic Publishers, Netherlands. 95-103.

Raghothama KG. 1999b. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology 50: 665-693.

Raghothama KG. 2000. Phosphate transport and signaling. Current Opinion in Plant Biology 3: 182187.

Rausch C, Daram P, Brunner S, Jansa J, Lalol M, Leggewie G, Amrheln N, Bucher M. 2001. A phosphate-transporter expressed in arbuscule-containing cells in potato. Nature 414: 462-466.

Redecker D, Kodner R, Graham LE. 2000. Glomalean Fungi from the Ordovician. Science 289: 19201921.

Reisenauer HM. 1966. Mineral nutrients in soil solution. In: Environmental Biology (Eds Altman PL and Dittmer DS) Federation of American Society of Experimental Biology, Bethesda. 507-508.

Reuter DJ, Robinson JB, Boardman R, Cresswell GC, Cromer RN, Edwards DG, Grundon NJ, Handreck KA, Huett DO, Lambert MJ, Lewis DC, Loneragan JF, Maier NA, Peverill KI, Piggott TJ, Pinkerton A, Price GH, Robson AD, Smith FW, Snowball KA, Sparrow LA, Stephenson RA, Treeby MT, Webb M, Wilhelm NS. 1997. Plant Analysis: an Interpretation Manual. CSIRO Publishing, Australia.

Rosewarne GM, Barker SJ, Smith SE. 1997. Production of near-synchronous fungal colonisation in tomato for developmental and molecular analyses of mycorrhiza. Mycological Research 101: 966-970.

Rosewarne GM, Barker SJ, Smith SE, Smith FA, Schachtman DP. 1999. A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytology 144: 507-516.

Rozen S, Skaletsky HJ. 2000. Primer3 on the WWW for general users and for biologist programmers. http://www-genome.wi.mit.edu/genome_software/other/primer3.html. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology (Eds Krawetz S and Misener S) Humana Press, Totowa. 365386.

Ryan MH, Angus JF. 2003. Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn -uptake but no increase in P-uptake or yield. Plant and Soil 250: 225-239.

Ryan MH, McCully ME, Huang CX. 2003. Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study. New Phytologist 160: 429-441.

Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning - A laboratory manual. United States of America: Cold Spring Harbor Laboratory Press.

Schachtman D, Reid R, Ayling S. 1998. Phosphorus uptake by plants: From soil to cell. Plant Physiology 116: 447-453.

Schjorring JK, Nielsen NE. 1987. Root length and phosphorus uptake by four barley cultivars grown under moderate deficiency of phosphorus in field experiments. Journal of Plant Nutrition 10: 1289-1295.

Schünmann PHD, Richardson AE, Smith FW, Delhaize E. 2003. Characterisation of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). Journal of Experimental Botany 55: 855-865.

Schweiger PF, Jakobsen I. 1999. Direct measurement of arbuscular mycorrhizal phosphorus uptake into field-grown winter wheat. Agronomy Joumal 91: 998-1002.

Shoemaker R, Keim P, Vodkin L, Erpelding J, Coryell V, Khanna A, Bolla B, Marra A, Hillier L, Kucaba T, Martin J, Beck C, Whlie T, Underwood K, Steptoe M, Theising B, Allen M, Bowers Y, Person B, Swaller T, Gibbons M, Pape D, Harvey NSR, Ritter E, Kohn S, Shin T, Jackson Y, Cardenas M, McCann R, Waterston R, Wilson R. 1999. Public Soybean EST Project. unpublished.

Smith, F.A.; Jakobsen, l.; Smith, S.E. 2000. Spatial differences in acquisition of soil phosphate between two arbuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytologist 147: 357-366.

Smith FW. 1999 Molecular biology of nutrient transporters in plant membranes. In: Mineral nutrition of crops: Fundamental mechanisms and implications (Ed Rengel Z) Binghamton, Haworth Press. P67-89.

Smith FW. 2001. Sulphur and phosphorus transport systems in plants. Plant and Soil 232: 109-118.
Smith FW, Cybinski DH, Rae AL. 1999 Regulation of expression of genes encoding phosphate transporters in barley roots. In: Plant Nutrition - Molecular Biology and Genetics (Eds Gissel-Nielsen, G and Jensen, A.) Netherlands, Kluwer Academic Publishers. p145-150.

Smith FW, Ealing PM, Dong B, Delhaize E. 1997. The cloning of two Arabidopsis genes belonging to a phosphate transporter family. The Plant Journal 11: 83-92.

Smith FW, Mudge SR, Rae AL, Glassop D. 2003a. Phosphate transport in plants. Plant and Soil 248: 71-83.

Smith SE, Read DJ. 1997. Mycorrhizal Symbiosis. London: Academic Press.
Smith SE, Robson AD, Abbott LK. 1992. The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant and Soil 146: 169-179.

Smith SE, Smith FA, Jakobsen I. 2003b. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133: 16-20

Smith SE, Smith FA, Jakobsen I. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162: 511-524

Smith SE, Walker NA. 1981. A quantitative study of mycorrhizal infection in Trifolium: separate determination of the rates of infection and of mycelial growth. New Phytologist 89: 225-240.

Smith SE, Dickson S, Smith FA. 2001. Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Australian Journal of Plant Physiology 28: 685-696.

Tilak KVBR, Murthy BN. 1987. Association of vesicular-arbuscular mycorrhizal fungi with the roots of different cultivars of barley (Hordeum vulgare). Current Science 56: 1114-1116.

Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R. 1997. Agrobacterium tumefaciens - mediated barley transformation. The Plant Journal 11: 1369-1376.

Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P. 2003. Progress in selected areas of mizosphere research on P acquisition. Australian Journal of Soil Research 41: 471-499

Ullrich-Eberius Cl, Novacky A, van Bel AJE. 1984. Phosphate uptake in Lemna gibba G1: energetics and kinetics. Planta 161: 46-52.

Vance CP, Uhde-Stone C, Allan DL. 2003. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytologist 157: 423-447.

Versaw WK, Chiou T-J, Harrison MJ. 2002. Phosphate transporters of Medicago truncatula and arbuscular mycorrhizal fungi. Plant and Soil 244: 239-245.

Versaw WK, Harrison MJ. 2002. A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14: 1751-1766.

Vierheilig H, Garcia-Garrido JM, Wyss U, Piche Y. 2000. Systemic suppression of mycorrhizal colonisation of barley roots already colonised by AM fungi. Soil Biology and Biochemistry 32: 589-595.

Villegas J, Fortin JA. 2002. Phosphorus solubilisation and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO_{3} as nitrogen source. Canadian Journal of Botany 80: 571-576.

Watanabe FS, Olsen SR. 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO_{3} extracts from soil. Soil Science Society of America Proceedings 29: 677-678.

Weir RG, Cresswell GC. 1994. Plant Nutrient Disorders. 4ih Edition. Pastures and Field Crops. Melbourne: Inkata.

Williamson LC, Ribrioux SPCP, Fitter AH, Leyser HMO. 2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology 126: 875-882.

Yao Q, Li X, Christie P. 2001. Factors affecting arbuscular mycorrhizal dependency of wheat genotypes with different phosphorus efficiencies. Journal of Plant Nutrition 24: 1409-1419.

Yompakdee C, Ogawa N, Harashima S, Oshima Y. 1996. A putative membrane protein, Pho88p, involved in inorganic phosphate transport in Saccharomyces cerevisiae. Molecular and General Genetics 251: 580-590.

Yu F, Zhang A, Zhang F, Chen S. 2000a. direct submission of sequence to Genbank.

Yu F, Zhang A, Zhang F, Chen S. 2000b. Rice shoot phosphate transporter - direct submission of sequence to Genbank.

Yu J, Hu S, Wang J, Wong GK-S, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X, Cao M, Liu J, Sun J, Tang J, Chen Y, Huang X, Lin W, Ye C, Tong W, Cong L, Geng J, Han Y, Li L, Li W, Hu G, Huang X, Li W, Li J, Liu Z, Li L, Liu J, Qi Q, Liu J, Li L, Li T, Wand X, Lu H, Wu T, Zhu M, Ni P, Han H, Dong W, Ren X, Feng X, Cui P, Li X, Wang H, Xu X, Zhai W, Xu J, Zhang K, He S, Zhang J, Xu J, Zhang J, Zheng X, Dong J, Zeng W, Tao L, Ye J, Tan J, Ren X, Chen X, He J, Liu D, Tian W, Tian C, Xia H, Bao Q, Li G, Gao H, Cao T, Wang J, Zhao W, Li P, Chen W, Wang X, Zhang Y, Hu J, Wang J, Liu S, Yang J, Zhang G, Xiong Y, Li X, Mao L, Zhou C, Zhu Z, Chen R, Hao B, Zheng W, Chen S, Guo W, Li G, Liu S, Tao M, Wang J, Zhu L. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296: 79-92.

Zhao L, Versaw WK, Liu J, Harrison MJ. 2003. A phosphate transporter from Medicago truncatula is expressed in the photosynthetic tissues of the plant and located in the chloroplast envelope. New Phytologist 157: 291-302.

Zhao S, McElver JA, Wang X, Bowen BA. 1999. Zea mays phosphate transporter genes and uses thereof. Pioneer Hi Bred Int., Zhao, S., McElver, J. A., Wang, X., and Bowen, B. A. Patent number: WO1999US10374, 19990511.

Zhu Y-G, Smith FA, Smith SE. 2002. Phosphorus efficiencies and their effects on Zn, Cu, and Mn nutrition of different barley (Hordeum vulgare) cultivars grown in sand culture. Australian Journal of Agricultural Research 53: 211-216.

Zhu Y-G, Smith SE, Barritt AR, Smith FA. 2001. Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant and Soil 237: 249-255.

Zhu Y-G, Smith FA, Smith SE. 2003. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil. Mycorrhiza 13: 93-100.

