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Abstract

Maximum consensus is fundamentally important in computer vision as a cri-
terion for robust estimation, where the goal is to estimate the parameters of
a model of best fit. It is computationally demanding to solve such problems
exactly. Instead, conventional methods employ randomised sample-and-test
techniques to approximate a solution, which fail to guarantee the optimal-
ity of the result. This thesis makes several contributions towards solving
the maximum consensus problem exactly in the context of Mixed Integer
Linear Programming. In particular, two preprocessing techniques aimed at
improving the speed and efficiency of exact methods are proposed.
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Chapter 1

Introduction

One of the earliest known attempts to enable computers to understand and
interpret the world as we see it is known as The Summer Vision Project.
Drafted by Seymour Papert in the July of 1966, participants were asked to
“construct a system of programs to divide a picture into regions such as likely
objects, likely background areas and chaos” [39]. Only a single summer was
allocated for its completion, which turned out to be a gross underestimation
of the vast scope and difficulty of the problem. Half a century later, there
remain multiple research groups in universities and similar institutions from
all over the world still working hard to understand, solve, and improve upon
the task of computer-based vision.

Human brains excel at processing the visual signals our eyes receive. Since
birth, we began learning how to recognise, navigate and interact with the
environment using mainly our sight. What we see as brightness, hues, and
colours, are recorded by computers as a series of ones and zeroes of digitised
measurements. From the perceived visual signals it is trivial for humans to
identify and recognise shapes, objects scenes, and faces. However, giving
computers the same level of ability is still a topic for ongoing research.

In the field of security, computer vision is used in biometrics authentica-
tion through iris and facial recognition. In medicine, computer vision is used
to perform classification and registration of medical images to help identify
potential lesions or tumours, and 3D human organ reconstruction is used to
simulate a view of the internal structure of the patient’s body for better di-
agnosis and visualisation in preparation for surgical procedures. Vision aided
servos are also widely used in the industrial manufacturing process to provide
guidance for parts assembly, control of timing and measurements, automated
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sorting and classification, manipulation and interaction with various objects,
and it is even used for quality control by automated imaging-based inspec-
tion for defect detection. In transportation we have autonomous self-driving
vehicles equipped with cameras used for pedestrian detection and avoidance.

The applications previously mentioned are examples of high-level com-
puter vision, which attempts to emulate human cognitive functions. In order
to perform such high-level tasks, images have to be put through a pipeline of
low to mid-level operations. Low-level vision is about extracting anything of
interest from the image at the most basic level - things such as edges, ridges
and localised points of interest such as corners and texture patches. In com-
puter vision, this step is known as feature detection or feature extraction.
Mid-level vision is where the observed features are processed, typically by
selecting, matching, or segmenting relevant points or regions of interest. The
information may undergo further processing, estimation, and refinement in
the mid-level pipeline to produce models used in high-level tasks.

An example of low to mid-level vision processing is to identify circles in a
photograph, such as the grayscale image in Fig. 1.1 (a). Low-level processing
is illustrated in Fig. 1.1 (b), where an edge detection algorithm is employed to
extract basic structural information from the image. The information is then
passed on to the mid-level step, where a parameter estimation algorithm is
used to identify potential circles. The circles identified are then superimposed
upon the original image, as illustrated in Fig. 1.1 (c).

(a) An image of coins. (b) Low-level edge detection. (c) Mid-level circle fitting.

Figure 1.1: An example of low to mid-level vision1.

The focus of this thesis will be on the mid-level pipeline, where data from
low-level operations are processed.

1All 3 images were provided by and generated using MATLAB.
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1.1 Parameter Estimation

A large number of tasks performed in computer vision involve using para-
metric models to describe information of interest, such as the calibration of
cameras, the parameters of geometric shapes including straight lines and el-
lipses, and the different types of transformations an image had undergone.
The majority of computer vision applications rely on estimating the param-
eters of such geometric models to perform high level vision tasks.

In the general sense, parameter estimation involves estimating the param-
eters of a model that best fits the observed data, making it an instance of the
problem of optimisation, where the aim is to find or approximate the best
possible solution from all feasible solutions. Over the years researchers from
a wide range of fields including computer vision, signal processing, statistics
and econometrics have developed different techniques to solve such problems,
some of which will be reviewed in section 1.2.

To illustrate the challenges faced in parameter estimation, we begin by
looking at the classic line fitting problem: given a set of 2D points, estimate
a straight line that best fits the given points.

Figure 1.2: Points for line fitting.

The line fitting problem appears trivial at first glance. While there may
be slight deviations in each given point, they all seem to conform to a single,
straight line. It is common knowledge that a straight line can be drawn by
connecting two unique points. To find a line of best fit, we can select any
two points from the given set and draw a line through the two. However, it
can be seen from Fig. 1.3 that the line obtained does not produce a good fit.
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Figure 1.3: A line drawn using two points can result in a bad fit.

To explain this, recall the equation of a straight line

y = mx+ c, (1.1)

which contains two unknowns, the first unknown m being the slope of the
line, and the second unknown c being the y-intercept. The two unknowns can
be solved using two equations of the form (1.1) corresponding to two points.
However, the problem becomes a little more complex when the number of
points we have is greater than two.

Figure 1.4: Line of best fit estimated using least squares.

When the number of data points or measurements exceeds the minimum
required to form a model estimate, the system of equations is said to be
overdetermined. Almost all problems encountered in computer vision consists
of overdetermined systems, and the measurements we attain are often subject
to the presence of noise, meaning that there are generally no single, exact
solution that perfectly fits all the given measurements, as can be seen in the
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case of Fig. 1.4. Rather than demanding for a perfect solution which does
not necessarily exist, we instead seek a suitable approximation, and one way
to do so would be to find a model that minimises some suitable cost function.
The most common way to deal with linear problems similar to (1.1) is to find
an estimate using an approach known as linear regression, which is commonly
based on the method of linear least squares.

Unfortunately, regression based on linear least squares is well known for
its lack of robustness [42], where a single outlier in the measurements can
have a disastrous effect on its estimate, as shown in Fig. 1.5. Its intolerance
towards outliers means that the least squares method is ill-suited for use
in computer vision, where measurement errors are inevitable and may even
outnumber the inlying data.

Figure 1.5: Least squares estimate skewed by a single (red) outlying point.

The challenge of parameter estimation in computer vision applications is
to find suitable model parameters that best describes the measured observa-
tions despite the presence of noise and outliers. However, this is generally a
computationally challenging task. In this thesis we shall focus on researching
more efficient robust geometric optimisation algorithms for parameter fitting.

In basic geometry, parameter estimation is used in the fitting of lines,
ellipses, planes, and hyperplanes. In computer vision parameter estimation
is frequently used to solve problems such as optical flow correspondences
for rigid motion segmentation (Fig. 1.6), the estimation of a homography
matrix for image stitching to create panoramas (Fig. 1.7), and multiview
triangulation for scene reconstruction (Fig. 1.8).
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Figure 1.6: Motion segmentation from video sequences1.

(a) Solving the correspondence problem [57].

Mosaic

(b) Stitched panorama.

Figure 1.7: Image stitching using homography estimation2.

Figure 1.8: A reconstruction of the Notre Dame cathedral based on photos
taken from http://www.flickr.com3.

1Image from http://www.bristol.ac.uk/vi-lab/projects/casblip/.
2Photos from http://hugin.sourceforge.net/tutorials/two-photos/en.shtml.
3Image from http://phototour.cs.washington.edu.
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1.2 Literature Review

1.2.1 Linear Regression

There are many ways to solve the problem of parameter estimation, and one
of them is by means of regression. Over the years many different techniques
and methods have been developed for regression, and some of the more com-
mon regression approaches are listed in this section.

1.2.1.1 Linear Least Squares

One way to approach parameter estimation is regression based on linear
least squares [42]. As the name suggests, the least squares method finds an
estimate to a given set of data by minimising the sum of squared errors,
also known as residuals, between the estimate and the entire dataset. If
the residual values are arranged in a vector, we will find that linear least
squares regression is analogous to the minimisation of the L2-norm or the
Euclidean norm, which is basically the sum of all squared elements in a
vector. Unfortunately, the method of least squares is sensitive to the presence
of outliers, making it unsuitable for use in computer vision.

1.2.1.2 Smallest Maximum Error

A different method of approximation that has been gaining attention in the
vision community is the minimisation of the L∞-norm [24, 25, 27, 28, 30,
36, 46, 59]. The L∞-norm of a vector is basically the entry with the largest
absolute value, and thus minimising the L∞-norm produces an estimate that
minimises the value of the largest (maximum) error. Since the estimate is
essentially being fitted to the worst outlying points, it is also easily biased
by outliers. This property allows for the detection and removal of outliers
during the optimisation process, and [46] provided a scheme for recursive
outlier removal during geometric multi-view reconstruction using a sequence
of images. The work of [30, 36, 59] proposed more efficient methods for
dealing with outliers. The greatest advantage of the L∞ framework is that
many computer vision problems relating to multiple view geometry possesses
a single, and hence global minimum on a convex parameter domain when
formulated using the L∞-norm [24]. [27, 28] expanded upon this concept of a
global minimum and showed that a variety of structure and motion problems
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can be cast as a quasiconvex optimisation problem within the L∞ framework.
A list of geometric vision problems solvable using L∞ can be found in [37, 43].

1.2.1.3 Least Absolute Residual

Another metric that can be used for robut regression works by minimising
the L1 error norm, which is the sum of absolute values of all elements in a
vector. The L1-norm has been receiving significant attention [7, 8, 17, 18] for
its uses in recovering sparse representations of a set of data, which is basically
a parametric model with as little non-zero elements as possible. Sparse solu-
tions are desired in many practical applications because it provides important
benefits such as decreasing the use of antenna elements, reducing the number
of measurements needed, and minimising data storage [17]. This makes it
suitable for applications in geophysics, data compression, image processing,
and sensor networks [58]. Based on this, [16] advocates the effectiveness of
the L1-norm in dealing with certain quasiconvex problems in multiple-view
geometry. L1-norm minimisation can also be used directly as a preprocessor
to identify and weed out potential outliers [44]. Unfortunately, the L1-norm
approach is unable to cope well with gross outliers in the leverage [42, 50]
(see Section 2.1 for definitions on “leverage” and “response”).

1.2.1.4 M-Estimation

One of the earliest robust method is the M-estimator, which is a general-
isation of maximum likelihood estimators and least squares [30, 50]. M-
estimation works by replacing the traditional squared residuals cost func-
tion with another function of the residuals with certain robust properties
[42, 50, 52, 60]. This can be solved using an iteration scheme based on
reweighted least squares [42, 50, 52], which is unfortunately highly reliant on
a good initialisation to avoid local minima. While it is indeed more robust,
the M-estimator shares similar weaknesses with L1 regression in that it is
unable to cope with gross amounts of outliers in the leverage [42, 50].

1.2.1.5 Least Median of Squares

Another regression approach is the Least Median of Squares regression (LMS)
[21], which is one of the first few approaches that is truly robust. LMS works
by replacing the sum of squared residuals in the classical least squares re-
gression with the median of all squared residuals, thereby making it highly
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resistant to outliers in the data [42, 50]. Unfortunately, since the median
function is not differentiable, an exhaustive search in the space of all possible
estimates generated from subsets of the data is required to solve LMS ex-
actly [34, 60], which is expensive to compute. Consequently, approximation
methods are usually the only viable option for most practical applications,
with random sampling being the most commonly used approach [34, 50].

1.2.2 Maximum Consensus

Maximum consensus is one of the most popular robust parameter estimation
criterions in computer vision. The concept of “consensus” in parameter fit-
ting was first proposed by [22], which introduces the use of a threshold or
error tolerance value to separate the data into inliers and outliers. By con-
sensus, we refer to the set of data points that “agrees” with the estimated
model, whose error to the estimate falls within the predetermined threshold.
This is known as the inlier set. The rest of the data whose error lies without
the threshold is called the outlier set. Consequently, consensus maximisation
aims to find an estimate that maximises the cardinality of the inlier set.

1.2.2.1 Random Sample Consensus

The prevailing paradigm for robust estimation in computer vision is an ap-
proximation algorithm known as RANdom SAmple Consensus (RANSAC)
[22]. Based on an iterative resampling technique, RANSAC generates a new
estimate each iteration using a minimal number of samples randomly drawn
from the data. The generated estimates are then evaluated against all avail-
able data and scored by the size of its consensus set. The estimate with the
highest score is returned as the best solution when the algorithm terminates.
LMS and RANSAC share a common similarity in their methods - the solu-
tion of LMS can be approximated using random sampling, whereas RANSAC
is developed based entirely on the idea of random sampling. This unfortu-
nately means that RANSAC shares the same problem with many randomised
approximation methods, meaning that it is non-deterministic and offers no
guarantees to the optimality of its solution.

1.2.2.2 Mixed Integer Linear Programming

Linear programming (LP) is a method used to achieve the best outcome in
a linear model, whose requirements are constrained by a system of linear in-
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equalities. Mixed Integer Linear Programming (MILP) is an extension of LP
problems where some of its variables are further constrained to be integers,
and it can be solved using a search algorithm known as Branch-and-Bound
(BnB) [29, 41, 61]. On the other hand, the maximum consensus problem
is an instance of the Maximum Feasible Subsystem (MaxFS) problem [11,
Chap. 7], which can be formulated as a MILP by introducing additional
binary variables and a sufficiently large constant known as “slack”. Unfor-
tunately, the MILP formulation is not appealing due to potential numerical
issues due to overly large slack. Moreover, currently known approaches to
solving MILPs are slow in nature and incurs a large computational expense,
thereby making it practical only for relatively small problem sizes, low di-
mensionality, and a low outlier rate.

1.3 Thesis Contributions

In this thesis, we investigated ways to improve the efficiency of exact meth-
ods, with a primary focus on solving the maximum consensus problem using
commercial off-the-shelf MILP solvers. Contributions of this thesis include
devising a method to improve computational speed by minimising appropri-
ate slack values, and also the development of a a more efficient preprocessing
scheme to speed up maximum consensus.

1.4 Thesis Organisation

This thesis is organised into five chapters.

Chapter 1 We give an introduction to parameter estimation, and reviewed
some of the more common approaches used to solve the problem.

Chapter 2 We provide a theoretical foundation on how some of the ap-
proaches reviewed in chapter 1 are applied.

Chapter 3 We devise a method to alleviate issues with computation speed
in MILP.

Chapter 4 We present an efficient preprocessing scheme to to improve the
efficiency of outlier removal using commercial MILP solvers.

Chapter 5 We give a summary of the thesis.
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Chapter 2

Parameter Estimation Methods

Previously, we discussed why there is a need for parameter estimation or
model fitting in computer vision. We have also discussed the challenges
involved with estimating the parameters of geometric models.

The goal of this chapter is to provide a theoretical foundation on how
parameter estimation techniques are applied in the context of computer vision
by delving deeper into some of the methods surveyed in the previous chapter.

2.1 Linear Regression

Before we look into solving linear regression, we need a concrete definition
of the problem we are working with. In the context of computer vision, say
we have X as a set of data containing N measurements represented using

X = {ai, bi}Ni=1 , (2.1)

where each ai is a vector of n predictor variables (the “leverage”), and each
bi is a measured scalar value (the “response”). We can consider X to be an
overdetermined set of inhomogeneous linear equations represented using

Aθ ≈ b , (2.2)

where A is a N × n matrix with N > n, θ is a column vector parameterised
by θ ∈ Rn, and b is a column vector with N entries. The i-th row of matrix
A corresponds to ai of the i-th datum in X , whereas the i-th entry of vector
b corresponds to bi.
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The goal of linear regression is to estimate the parameters of a model θ
that best represents the data given in X . The error between the i-th datum
and a model θ is called the residual, denoted by ri(θ). In linear regression,
the residual of datum i is calculated as

ri(θ) = |aiθ − bi| . (2.3)

We represent the residual of the entire dataset with a vector:

r(θ) =


r1
r2
...
rN

 , (2.4)

where the i-th entry of r(θ) corresponds to the residual of the i-th datum.
An example can be given using line fitting, where the x and y-coordinates of
the given points corresponds to the set of X , and the model θ corresponds
to the two unknown variables that define a straight line. We achieve this by
manipulating the equation of a straight line (1.1):[

x 1
](m

c

)
= y . (2.5)

Using (2.5) we formulate X in the form of (2.1), where ai = (xi, 1) contains
the x-coordinates of the i-th point, bi = yi contains the y-coordinates of
the i-th point, and θ = (m, c)T contains the parameters for the line of best
fit. Geometrically, this means that the linear regression residual corresponds
to the vertical distance between each point and the estimated θ. Since we
are dealing with an overdetermined system of linear equations under the
influence of outliers and noise, it is almost always true that r(θ) 6= 0 for any
θ. Different regression methods differ by how the error values in r(θ) are
aggregated and minimised.

2.1.1 Linear Least Squares

The objective function of this regression technique minimises the L2-norm,
or the sum of squared residuals between X and θ:

min
θ

∑
i

r2i (θ) . (2.6)
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The solution θ to (2.6) can be found in closed form using a matrix decom-
position technique known as singular value decomposition (SVD). We will
not discuss the details of SVD, and interested readers can instead refer to
[23, 26] for more information.

2.1.2 Smallest Maximum Error

The L∞-norm of a vector is basically the vector entry with the largest ab-
solute value, and thus L∞-norm minimisation is also known as the minmax
problem, in which the desired estimate minimises the maximum error

min
θ

max
i

ri(θ) . (2.7)

Readers are referred to [9, Chap. 2] to learn more about solving linear L∞
minimisation problems using an efficient vertex-to-vertex descent algorithm.
We can also formulate and solve L∞ minimisation as a linear program (LP)

min
θ,z

z

subject to ri(θ) ≤ z ∀i ∈ {1, 2, ..., N} ,

z ≥ 0 ,

(2.8)

which will be discussed in section 2.2.2. Since the estimate in L∞-norm min-
imisation is obtained by minimising the largest residual values, it is essentially
fitting the estimate to the worst outlying points, making it non-robust.

2.1.3 Least Absolute Error

The L1-norm is also known as the Manhattan norm, which is the sum of
absolute values of all elements in a vector. Hence the objective function of
L1-norm regression minimises the sum of absolute errors between X and θ:

min
θ

∑
i

ri(θ) . (2.9)

This objective function places equal weight on all given measurements, mak-
ing the L1-norm more robust against outliers in the data, unlike the sum of
squared residuals which gives greater emphasis to measurements with larger
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errors. We can formulate and solve L1 minimisation as a linear program (LP)

min
θ,z

∑
i

zi

subject to ri(θ) ≤ zi ∀i ∈ {1, 2, ..., N} ,

zi ≥ 0 ,

(2.10)

which will be further discussed in section 2.2.2. The L1-norm approach is
unfortunately unable to cope well with gross outliers in the leverage [42, 50],
meaning that more robust methods are required.

2.1.4 M-Estimation

Another robust approximation method widely used in computer vision and
statistics literature is the M-estimatior, which is a generalisation of maximum
likelihood estimators (MLE) and least squares [30, 50]. Similar to the L1-
norm, M-estimation is proposed as an alternative to the L2-norm to reduce
the effect of outliers [60]. M-estimation achieves this by replacing the squared
residuals cost function r2i in (2.6) with another function of the residuals ρ(ri),
resulting in the new objective:

min
θ

∑
i

ρ(ri) . (2.11)

The replacement cost function ρ(u) has to satisfy the following mathematical
properties: it has to be symmetric ρ(u) = ρ(−u), has a unique minimum at
zero ρ(0) = 0, nonnegative or positive-definite ρ(u) ≥ 0 ∀u, and monotoni-
cally non-decreasing with increasing |u| [42, 50, 52, 60]. If ρ(u) = u2, (2.11)
becomes equivalent to the least squares objective in (2.6).

The solution to (2.11) can be calculated using an iteration scheme known
as iteratively reweighted least squares (IRLS) [42, 50, 52, 60]

min
θ

∑
i

w(r
[k−1]
i )(ri)

2 , (2.12)

where the superscript [k− 1] indicates a previous iteration. IRLS is achieved
by alternating between calculating the weights w(ri) using the latest estimate
θ, and then fixing the weights to find the next estimate θ using∑

i

w(ri)ri
∂ri
∂θ

= 0 . (2.13)
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The starting estimate θ[0] for initialising the weights w(r
[0]
i ) in the initial

iteration can be obtained using various ways such as linear regression or
other more robust methods. The weight function is calculated using

w(u) =
ψ(u)

u
, (2.14)

in which the influence function

ψ(u) =
∂ρ(u)

∂u
(2.15)

is the derivative of ρ(u). The influence function provides a measure of the
influence of a single datum on the estimate, such as for the case of least
squares where ρ(u) = u2, ψ(u) = 2u. This indicates that the influence of
each measurement in X increases linearly with the size of its error, illustrating
that the least squares approach is indeed non-robust. In order to reduce
the influence of outliers, the replacement cost function ρ(u) has to increase
subquadratically, meaning that it has to increase slower than the quadratic
square u2. Different M-estimators have been proposed based on different ρ(·)
functions, and interested readers can refer to [5, 50, 60] and the references
therein for a discussion on the more commonly used estimators.

The downside to IRLS is that it is highly reliant on a good initialisation
to avoid converging towards a local minima.

2.1.5 Least Median of Squares

Another widely used estimator is the Least Median of Squares (LMS) [21].
LMS works by replacing the sum of squared residuals in classical least squares
regression with the median of squared residuals.

min
θ

median
i

r2i (θ) (2.16)

This objective function makes LMS highly resistant (robust) against outliers,
allowing it to tolerate up to 50% contamination in the data [42, 50].

Unfortunately, since the median function is not differentiable, an exhaus-
tive search in the space of all possible estimates generated from the data is
required to solve the problem exactly [34, 60]. This is impractical even for
problems of moderate sizes. According to [50], there exists computationally
efficient algorithms to solve LMS exactly for special cases such as the fitting
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of regression lines [19, 49]. However, approximation methods are usually
the preferred option for more general settings, with Monte Carlo (random
sampling) methods being the most commonly used approach [34, 50]. This
results in an approach rather similar to RANSAC. More on RANSAC and
the specifics of random sampling will be discussed in section 2.2.1, with the
main difference between the two algorithms being their objective functions.

2.2 Maximum Consensus

Maximum consensus is popular as a parameter estimation criterion because it
is very robust, and has a clear cut definition of what consists as “inliers” and
“outliers”. Given a set of measurements X = {ai, bi}Ni=1, maximum consensus
seeks to find an estimate θ that maximises the number of measurements
whose residuals ri(θ) are within a predetermined threshold ε.

max
θ, I⊆X

|I|

subject to ri(θ) ≤ ε ∀{ai, bi} ∈ I
(2.17)

The solution to (2.17) gives us the maximum consensus set, denoted as I∗,
with a consensus size of |I∗|. We shall refer to the data contained within
consensus set I as inliers, and the data within the set of X \ I as outliers.
The challenge of maximum consensus is to find the optimum estimate θ∗ that
maximises the cardinality of I∗ for problems that are often overdertermined
and subject to the presence of noise and outliers.

2.2.1 RANSAC

We mentioned previously that RANdom SAmple Consensus (RANSAC) is
one of the more popular robust optimisation technique for consensus maximi-
sation in computer vision. RANSAC is developed based on random sampling,
where each candidate solution or hypothesis θ is generated by fitting a model
to a minimal subset of points randomly sampled from the dataset. The pa-
rameters of each hypothesis θ can be calculated using standard regression
techniques such as linear least squares. Each candidate θ is then evaluated
against the entire dataset and scored based on the size of their consensus
set. Once the RANSAC algorithm terminates, we can further improve the
solution by performing a final regression over the largest known consensus
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set to calculate the model of best fit. The workings of RANSAC can again
be illustrated using the line fitting problem.

(a) The first RANSAC iteration. (b) 20 consecutive RANSAC iterations.

(c) Best solution after 1000 iterations.

Figure 2.1: RANSAC in action.

Fig. 2.1 (a) illustrates the first RANSAC hypothesis generated using two
points (a minimum of two points is required to define a line) sampled ran-
domly from the given measurements. The points highlighted in blue shows
the minimum subset used to generate the candidate estimate, whereas the
points highlighted in red represent measurements that “disagrees” with the
candidate, meaning that their errors to the hypothesised line is greater than
the predetermined threshold. Fig. 2.1 (b) illustrates the next 20 RANSAC
iterations, where multiple candidates are generated and evaluated. Finally,
Fig. 2.1 (c) illustrates the best estimate returned by RANSAC when it ter-
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minates after 1000 iterations. The intuition behind RANSAC is that if the
randomly selected minimal subset is free of outliers, then there is a very good
chance for the generated estimate to produce a good overall fit of the inlying
data. The more times you iterate, the better your chances will be of finding
a good estimate with a larger consensus size.

Maximum consensus requires the definition of a threshold, which we shall
designate as ε, with ε ≥ 0. The threshold can be visualised as a “strip” that
encloses the estimated model, with the width of the strip determined by the
value of ε. Points that fall within the strip are known as inliers, and their
corresponding residuals are less than or equal to the threshold. Conversely,
points that lie beyond the strip are known as outliers, and their corresponding
residuals are greater than the threshold.

rinliers (θ) ≤ ε

routliers(θ) > ε
(2.18)

The value of ε is usually defined as the maximum tolerable deviation from the
estimated model under the effects of noise. RANSAC is highly sensitive to
the choice of a noise threshold - if ε is too large, RANSAC tends to judge all
candidates to be equally good, which would likely result in a poor estimate
[53]. If ε is too small, RANSAC tends to become unstable and results would
differ significantly across different RANSAC runs over the same dataset.

(a) A RANSAC candidate. (b) Another RANSAC candidate.

Figure 2.2: An illustration of the threshold “strip”.

Fig. 2.2 illustrates how each randomly generated candidate is evaluated
in a single RANSAC run. Note how the width of the strip for the two candi-
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dates seem to be different even though they are both generated in the same
RANSAC run using the same threshold value ε. This artefact is an interest-
ing consequence of adopting the linear regression residual in equation (2.5),
which causes the error of each measurement to correspond to the vertical
distance between the point and the estimated line

ri(θ) = |
[
xi 1

]
θ − yi | .

This results in a strip that is infinitely thin when the slope of the line tends
to infinity (a vertical line), whereas the width of the strip is maximised when
the slope of the line is 0 (a horizontal line). In this thesis we choose to use the
linear regression residual for sake of convenience and ease of implementation,
rather than a residual based on orthogonal distance [40, 52] which is more
complex to implement and solve (in the context of line fitting, orthogonal
distance is the shortest perpendicular distance from point to line).

Another aspect of concern is the termination criterion: how many ran-
domly selected minimal subsets should RANSAC evaluate before terminat-
ing? Ideally, we want to evaluate all possible subsamples of the data, but
this is computationally infeasible even with problems of moderate sizes. In-
stead, we aim to sample enough subsets to lend statistical significance to the
best RANSAC hypothesis [53]. Let k be the number of RANSAC iterations
needed to make the result statistically significant, and P be the probability
of successfully selecting a random minimal subset that contains only inliers,
which will likely give us a good estimate. We calculate k using

k =
log(1− P)

log(1− wn)
, (2.19)

where n is the minimum number of measurements required to generate a
candidate estimate, and w is the probability of choosing an inlier each time a
single measurement is selected, which makes it equivalent to the inlier ratio

w =
number of inliers in the data

total number of measurements in the data
. (2.20)

While it is usually non-trivial to know w beforehand, we can get better and
better estimates of the true inlier ratio as better candidates are found in
consecutive iterations. We derive (2.19) by assuming that the inlier ratio w
is known, and hence the probability of randomly selecting a minimal subset
containing n inliers is wn, whereas the probability of selecting a random
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minimal subset containing at least one outlier is 1− wn. Out of k randomly
selected minimum subsets, the probability of failing to sample an all-inlier
subset is thus (1−wn)k, which can be seen as the probability of failure, where
RANSAC fails to generate a good estimate. This is in contrast to P , which
is defined as the probability of success. Thus

1− P = (1− wn)k . (2.21)

Equation (2.19) is derived by taking the logarithm on both sides of (2.21).
Generally a high probability of successfully selecting an uncontaminated min-
imal subset is preferred, usually with P > 0.95, where 0 ≤ P ≤ 1.

RANSAC is inherently nondeterministic due to the Monte Carlo nature
of its algorithm, and running RANSAC twice on the same dataset X with
the same parameters can yield different results. While RANSAC is capable
of finding structures formed by substantially fewer than half of the data, it
might also return random structures if the inlier ratio is very low [50]. An-
other lesser known issue is that the optimal solution θ∗ to X might not exist
within the set of possible estimates generated using a minimal subset [10].
This highlights one of the bigger concerns with RANSAC and other similar
randomised approaches in that it offers no guarantees to the optimality of its
solution, and there is no way to efficiently tell whether its solution is even a
satisfactory estimate of the true optimal.

Several variants of RANSAC have been developed over the years in an
attempt to overcome the deficiencies of the algorithm, and to increase its
speed and reliability. An example is the PROgressive SAmple Consensus
(PROSAC) algorithm [12], which exploits a priori knowledge of the input
data to guide the sampling procedure, increasing the chances of examining
uncontaminated minimal subsets early on. This improves the overall effi-
ciency and accuracy of PROSAC over the standard RANSAC algorithm, al-
lowing it to function better with data containing high outlier rates. Another
variant is known as Maximum Likelihood Estimation SAmple Consensus
(MLESAC), which abandons the idea of maximum consensus, opting instead
to evaluate each of its generated hypothesis based on maximum likelihood
[53]. Other variants proposed as improvements to the original RANSAC algo-
rithm include R-RANSAC [13], LO-RANSAC [14], and Preemptive RANSAC
[33], just to name a few. Unfortunately, since the RANSAC variants all fol-
low the same hypothesise and test framework based on random sampling,
none of them are guaranteed to find an exact (i.e. the optimal) solution.
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2.2.2 Mixed Integer Linear Programming

A linear program (LP) is a method widely used in various industries for the
purpose of resource optimisation, with the goal of achieving the best outcome
(such as maximising profits or minimising cost). As can be inferred from its
name, LP is only suited for solving problems whose constraints and objective
function is linear (or can be linearised), in which case the optimal solution
lies within a convex feasible region. Canonically, LP can be expressed as

objective function: min cTθ , (2.22a)

subject to: Aθ ≤ b , (2.22b)

θ ≥ 0 , (2.22c)

where θ is a vector of variables to be determined by solving the LP, while
vectors b and c and matrix A consist of known coefficients. The objective
of LP is to either minimise or maximise the objective value derived from the
linear objective function (2.22a) subject to restrictions set by the various lin-
ear inequality constraints (2.22b) and variable bounds (2.22c), which specify
the convex polytope in which the objective function is to be optimised. LP
can be solved using conventional simplex or interior-point (barrier) methods

A Mixed Integer Linear Program (MILP) is a generalisation of LP where
at least one of the unknown variables in θ is further constrained to be integer-
valued. There is an exact MILP formulation for maximum consensus, the
specifics of which will be discussed in Chapter 3. MILP can be solved using
search methods such as Branch-and-Bound (BnB) and Cutting-Plane. State-
of-the-art MILP solvers usually work by relaxing the integer constraints to
become continuous values, and then solving for the resultant LP. The afore-
mentioned search methods are then applied to yield multiple new (and further
constrained) versions of the original problem, which can again be solved as a
LP. This solve-and-search process is repeated until an optimal solution to the
original MILP problem is found. There exists many commercial off-the-shelf
optimisation software such as CPLEX, MOSEK, and Gurobi which can be
used as a “black box” for solving MILP. Interested readers are referred to
[15, 29, 32, 41, 61] for further details on how LP and MILP are solved.

The main attraction of exact methods such as MILP is in finding the
optimal solution. The drawback, however, lies in its speed and efficiency.
MILP is very slow compared to the likes of RANSAC for problems of high
dimensions and a large number of constraints. In the following chapters of
this thesis we investigate ways to alleviate this issue.
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Chapter 3

Big-M and M-bisection

In the previous chapter (section 2.2), we talked about consensus maximisa-
tion as a robust parameter estimation criterion. Then in section 2.2.1, we
showed how maximum consensus can be solved using RANSAC. However,
RANSAC is non-deterministic and suboptimal, and global optimisation tech-
niques are preferred in some applications for its capability to find an exact
solution. In section 2.2.2, we mentioned that maximum consensus can be for-
mulated and solved exactly as a Mixed Integer Linear Programming (MILP)
problem, and its weaknesses in terms of speed and efficiency.

In this chapter, we will discuss the details of the MILP formulation, and
suggest a method to improve the speed of its computation.

3.1 Feasibility and Maximum Consensus

Before we begin talking about the MILP formulation, we need to introduce
the concept of feasibility. In Fig. 3.1 we illustrate a system of linear inequal-
ities in 2D, with each blue line representing a unique inequality constraint.
Every linear inequality constraint defines a closed half-space (illustrated us-
ing gray arrows) in the search region in which the constraint is satisfied. The
shaded region represents a mutual intersection of all closed half-spaces, and
it is called the feasible region, in which all constraints are simultaneously
satisfied. Within the feasible region lies the optimal solution, which in this
case is a single 2D point, and it can be computed using linear programming
algorithms. If no feasible region exists, then there exists no solution where
all constraints are satisfied, and the problem is said to be infeasible.
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Figure 3.1: A graphed system of linear inequalities.

How can we express maximum consensus as a system of linear inequal-
ities? We illustrate this again using an example based on the classic line
fitting problem. Note that while this example is based on a low-dimensional
problem in 2D, the concepts discussed can be generalised to linear problems
in higher dimensions. Given a set of data X = {ai, bi}Ni=1 containing N mea-
surements, recall that the error of each measurement to the estimated model
θ can be calculated using the linear regression residual (2.3) as

ri(θ) = |aiθ − bi| .

Then recall (2.5) from Section 2.1, which shows how the data for line fitting
(consisting of N 2D points, or N pairs of x and y-coordinates) can be refor-
mulated in the form of X such that ai = (xi, 1) contains the x-coordinates
of the i-th point, bi = yi contains the y-coordinates of the i-th point, and
θ = (m, c)T contains the parameters for the line of best fit, where m is the
slope of the line and c is the y-intercept. Hence the residual becomes

ri(θ) = |mxi + c− yi| .

Now recall from Section 2.2 that maximum consensus aims to maximise the
cardinality of the inlier set, where the residual value of inlying measurements
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fall within a predetermined threshold ε

ri(θ) ≤ ε . (3.1)

This gives us a set of linear inequalities constraints. Following the rule of ab-
solute values, each derived residual results in a pair of inequality constraints

aiθ − bi ≤ ε , (3.2a)

−aiθ + bi ≤ ε . (3.2b)

Each pair can be seen as a strip of constant width enclosing the region that
satisfies both constraints, in which the width of the strip is defined by the
value of the threshold ε. With the line fitting problem, we can illustrate this
using a graph plotted against the parameters θ = (m, c)T .
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θai - bi ≤ ε

θ- ai + bi ≤ ε

Figure 3.2: Linear inequality constraints for line fitting.

The graph in Fig. 3.2 is drawn based on a dataset consisting of three
unique 2D points (N = 3). Each pair of linear inequality constraints derived
are distinguished using the colours red, green, and blue, and the regions
where the strips overlap are shaded in gray. Note how each shaded region
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satisfies only two pairs of constraints - there exists no region where all strips
simultaneously intersect. The line fitting problem in Fig. 3.2 is considered
infeasible and unsolvable in LP, because there exists no single point that
lies simultaneously within all three strips. This is a common occurrence in
overdetermined systems containing outliers, which will usually result in a set
of contradicting constraints. Unfortunately, as mentioned back in Chapter
1, almost all problems encountered in computer vision consists of overdeter-
mined systems, and it would be quite troublesome if we are unable to find
solutions to a majority of those problems. Intuitively, we know that max-
imum consensus requires us to find the point in space that falls within as
many strips as possible, but how exactly can this be achieved?

3.2 The Big-M Method

It has been mentioned at the start of the chapter that there exists an exact
MILP formulation for the maximum consensus problem. Specifically,

min
θ,z

∑
i

zi (3.3a)

subject to |aiθ − bi| ≤ ε+ ziM , (3.3b)

zi ∈ {0, 1} . (3.3c)

The above formulation (3.3) is also known as the Big-M method [11], where
M is a large positive constant known as slack, whereas zi are known as
indicator variables.

Recall from Section 2.2.2 that MILP is a generalisation of LP, where
some of the variables are required to take on integer values, rather than
being continuous. This additional requirement implies that MILP can not
be solved using linear programming algorithms. The unknown variables to
be determined in (3.3) are the continuous variables in θ and the binary
indicator variables in z = (z1, z2, . . . , zi)

T . Indicator variables can be viewed
as dummy binary values used to “activate” the corresponding slack M in
order to “satisfy” an inequality constraint. Activating a slack to artificially
compensate for a constraint labels the corresponding datum as an outlier,
because this indicates that the residual of the corresponding datum is in effect
greater than the allowable threshold ri(θ) > ε, and M has to be activated
to satisfy the aforementioned constraint. Thus the objective of minimising
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the sum of zi is to find a solution θ∗ that minimises the number of active
indicators (the outliers). The use of a large constant to “ignore” constraints
is a common practice in optimisation [11, 38].

From (3.2) we know that if X has N measurements, (3.3b) will comprise
of 2N inequality constraints. We can see from the illustrations in Section
3.1 that each constraint can be considered individually independent of each
other. Hence for the sake of brevity, from this point onwards we shall repre-
sent the constraints in (3.3b) using a more general expression

aiθ − bi ≤ ε+ ziM . (3.4)

The geometrical effect of adding slack M is shown in Fig. 3.3, which essen-
tially expands the closed half-space defined by the corresponding constraint.
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Figure 3.3: Expanding the feasible region of a single constraint.

Let us revisit the line fitting problem discussed in Section 3.1. Fig. 3.4
shows what we can potentially attain if we artificially expand the feasible
region of a single residual thresholding constraint derived from (3.1) by ac-
tivating M . The shaded region now represents an overlap of all constraints
- a feasible region where all constraints are simultaneously satisfied.
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Figure 3.4: Artificially expanding a constraint to create a feasible region.

Hence with the addition of M , the problem becomes one of deciding to
which constraint it should be applied. From Fig. 3.2 we can see that M
can potentially be applied to three of the six linear inequality constraints to
create a feasible region. Can M be applied to all three? Or could we apply M
to all existing constraints? What would happen if the number of constraints
increases? Applying M to all constraints is equivalent to increasing the
threshold value ε. This results in a different problem altogether, where the
solution obtained is not robust at all towards outliers. Whether M should be
applied to a certain constraint really depends on where the optimal solution
resides. This is actually a chicken-and-egg problem: in order to find which
constraints to apply M , we need to know the optimal solution. However,
in order to find the optimal solution, we need to know which constraints to
apply M . Fortunately, the task of determining which constraint to apply M
to can be resolved simply by solving the MILP in (3.3).

Another point of concern is the selection of a proper value for M . Firstly,
the value of M has to be at least large enough to create a feasible region,
otherwise the problem will simply remain infeasible. Furthermore, M also
has to be large enough such that the resulting feasible region actually contains
the optimal solution to the original maximum consensus problem.
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Theoretically, any slack value that is big enough will suffice. However,
the Big-M method is not favoured as its outcome depends on the selection of
a value for M [29, 61]. Apart from the fact that the corresponding problem
can remain infeasible or unsolvable with insufficient slack, giving too much
slack also proves to be problematic because it can result in numerical issues.
This is because an overly large M value dominates the calculations, e.g. it
is possible to “partially” activate an overly large slack by setting the cor-
responding indicator variable to a minimal value that is very close to zero
(zi ≤ 1.0× 10−6) without violating the integrality constraints.

Furthermore, the value of M can potentially affect computation speed.
Recall from Section 2.2.2 that solutions to MILP can computed by solving
its LP relaxation, which in the case of (3.3) this is achieved by replacing
zi ∈ {0, 1} in (3.3c) with zi ∈ [0, 1]. The resulting LP is used as a bounding
function for search algorithms such as branch-and-bound (BnB), which in
turn yield new and further constrained LPs to solve. This solve-and-search
process is repeated until an optimal solution is found - further information
on this and how MILP can be solved are referenced in Section 2.2.2. Since
the objective is to minimise (3.3a), we can observe that if M is very large,
the objective value of the corresponding LP will be small. This gives a loose
bounding function, which slows down search algorithms such as BnB. The
problem tackled in this chapter is how to best optimise M .

3.3 M-bisection

There exists various suggestions and guidelines on how to select M [2, 11,
38, 61]. Say we have determined an initial large value for M , and we wish to
reduce the slack of each constraint. This necessitates the use of individual
slack values for each constraint in (3.3b), resulting in

min
θ,z

∑
i

zi (3.5a)

subject to aiθ − bi ≤ ε+ ziMi , (3.5b)

zi ∈ {0, 1} , (3.5c)

where the initial value of Mi is equivalent to M . Ideally, we want M to be big
enough to ensure feasibility and correct operation of MILP, yet small enough
to avoid giving too much slack. To that end, we propose a novel method
called M-bisection to optimise M .
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Suppose now we wish to reduce the slack of single, specific constraint k.
We can reduce Mk by applying a multiplier αk ∈ [0, 1], giving us

akθ − bk ≤ ε+ αkMk . (3.6)

In this case, the value of the corresponding binary indicator variable zk is
set to 1. By applying αk, we are essentially cutting off an interval from the
expanded region, one that is constrained between akθ − bk ≥ ε+ αkMk and
akθ − bk ≤ ε + Mk. We illustrate this in Fig. 3.5, where the shaded area
is the interval removed by applying αk. Hence the problem becomes one of
determining the value of αk to safely reduce Mk - such that the resulting
MILP (3.5) will still yield the same solution as the original MILP (3.3).
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Figure 3.5: Cutting off an interval by applying αk ∈ [0, 1].

The MILP is formulated by applying the concept in (3.6) to (3.5):

min
θ,z

∑
i

zi (3.7a)

subject to aiθ − bi ≤ ε+ ziMi , (3.7b)

zi ∈ {0, 1} , (3.7c)

akθ − bk ≥ ε+ αkMk . (3.7d)
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The initial slack Mi allocated for all constraints is equivalent to M . Basically,
(3.7) seeks to find the optimal solution to the original maximum consensus
problem within the interval constrained between akθ − bk ≥ ε + αkMk and
akθ − bk ≤ ε+Mk, the width of which is determined by Mk and αk.

Assuming that the initial M is large enough, computing (3.7) will result
in one of two possible outcomes. The first being infeasibility, meaning that
there exists no solution in the aforementioned interval. From this we can
conclude that constraint k has excess slack, and the interval resulting from
the excess slack can be eliminated via reduction of the value of αk. The second
outcome is feasibility, in which the computation will produce a solution and
an objective value to (3.7a). Using a bisection scheme on αk in conjunction
with (3.7) allows us to minimise the slack Mk allocated for constraint k. This
can be done by utilising the previous objective value to adjust the bisection
on αk, either reducing or increasing the allocated slack until the objective
value is minimised. Once an optimal value for αk has been determined, the
slack for constraint k is updated such that the updated slack Mk holds the
value of αk multiplied by the old Mk.

We can optimise the slack values for each constraint (and hence minimis-
ing the regions defined by each slack) by iterating through k = {1, 2, . . . , 2N}
repeatedly until αk = 1 ∀k = 1, 2, . . . , 2N , meaning that the regions defined
by each slack can no longer be further reduced. However, this equates to
solving the original maximum consensus problem in (3.3). Moreover, the
computational overhead involved in iterating through all constraints repeat-
edly will cause this approach to run much slower compared to a single MILP
computation of the original maximum consensus problem.

We remedy this by relaxing the integer constraints in (3.7) such that it
becomes the following LP:

min
θ,z

∑
i

zi (3.8a)

subject to aiθ − bi ≤ ε+ ziMi , (3.8b)

zi ∈ [0, 1] , (3.8c)

akθ − bk ≥ ε+ αkMk . (3.8d)

Let us define lk as the optimal objective value to the LP in (3.8).

Lemma 1 lk serves as a lower bound to the outlier count of the original
maximum consensus problem subject to the interval constrained by αk.
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Proof The optimal objective value of (3.3) returns a minimal value to the
outlier count to the original maximum consensus problem. (3.7) is a further
constrained version of (3.3), whose optimal objective value returns a minimal
to the outlier count subject to the interval constrained by αk. It is a standard
approach to calculate a lower bound to a MILP formulation via relaxation
of its integer constraints, which turns the MILP into a LP [15]. Intuitively,
the optimal objective value of the LP relaxation cannot exceed the optimal
objective value of the original MILP formulation by the simple argument that
the relaxation zi ∈ [0, 1] (a continuous range between 0 and 1, inclusive) is a
superset of the binary constraints zi ∈ {0, 1}. Since (3.8) is a LP relaxation
of (3.7), we can conclude that its optimal objective value lk serves as a lower
bound to (3.7).

We can obtain an upper bound û on the outlier count of the original
maximum consensus problem in (3.3). For this thesis, we designate RANSAC
as our preferred approximation method, and thus

û = |X | − |Î| , (3.9)

where Î is a suboptimal consensus set attained from RANSAC. We will use
û as the upper limit to the largest possible objective value we are willing to
accept. Using (3.8), the value of αk can be approximated by comparing the
corresponding outlier lower bound lk to a predetermined outlier upper bound
û via repeated bisection on the interval between αk ∈ [0, 1].

Lemma 2 Given that M is big enough, M can be reduced if lk > û, or if αk

causes (3.8) to be infeasible.

Proof Having lk > û indicates that the region constrained between akθ−bk ≥
ε+αkMk and akθ−bk ≤ ε+Mk will not contain a better solution than û, which
allows us to discard the region by reducing the value of the corresponding
slack to αkMk. Likewise, if αk causes the resulting LP in (3.8) to be infeasible,
we know that the corresponding region does not contain a feasible solution
and hence can also be discarded.

We can quickly determine the value of each αk by applying Lemma 2
with a bisection scheme, allowing us to reduce the region defined by the
slack Mk. A single M-bisection run attempts to minimise all regions defined
by the slack values of each constraint by iterating through all constraints
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k = {1, 2, . . . , 2N}. Note that a single M-bisection run is not guaranteed to
reduce the slack values for all constraints, and hence it is possible for a slack
Mi to hold the same value both before and after a M-bisection run. This
can be remedied by running M-bisection repeatedly until none of the slack
values can be further reduced.

3.4 Main Algorithm

Algorithm 1 M-bisection using LP

Require: Data X with N datums, inlier threshold ε, slack value M .
1: Execute RANSAC on X to obtain an upper bound û.
2: Initialise individual slacks Mi = M for all constraints derived from X .
3: for k = 1, 2, . . . , 2N do
4: Initialise variables

αl = 0
αu = 1
αprev = αu

α = 0.5× (αl + αu)
5: while |α− αprev| > 1× 10−6 do
6: Solve LP in (3.8) with αk ← α to obtain a lower bound lk.
7: if infeasible or lk > û then
8: αu ← α
9: else

10: αl ← α
11: end if
12: αprev ← α
13: α← 0.5× (αl + αu)
14: end while
15: Mk ← αu ∗Mk

16: end for
17: return Adjusted slack values Mk for each constraint.

Algorithm 1 summarises our proposed method for a single M-bisection
run. Since LPs are solvable in polynomial time, M-bisection is usually rel-
atively efficient and will terminate much faster than running MILP on the
original maximum consensus problem (3.3). Once it terminates, we can sub-

33



stitute M with the individually adjusted slack values Mi, and then perform a
MILP computation to find the solution to the maximum consensus problem.

3.5 Applications in Computer Vision

Previously in section 2.1, we have discussed the linear regression residual
(2.3), which produces equations linear to the unknown variables that can be
formulated as a system of inhomogeneous linear equations Aθ ≈ b. We have
also discussed an alternate and more robust means of estimation using max-
imum consensus. In this section we will show how certain computer vision
problems can be solved using the MILP formulation of maximum consensus.

Figure 3.6: Local feature points detected in a photograph.

We mentioned in chapter 1 that applications in computer vision consists
of a pipeline of low to high-level tasks. Low level operations begin by iden-
tifying from an image the most basic points of interest, such as edges with
sharp changes in image gradient, or corner regions with a high contrast. For
example, to reliably match a sequence of images (such as frame sequences
from a video, or two different photographs of the same scene), we need to
find unique features local to each image that are invariant under various
transformations. This includes both geometric invariance (translation, ro-
tation, scaling) and photometric invariance (such as brightness, colour, and
exposure). Those features or keypoints can be identified using an algorithm
proposed by [31] known as the Scale Invariant Feature Transform (SIFT).

The SIFT keypoints in Fig. 3.6 are computed using the open source
VLFeat library1, which packs a feature detector implemented based on SIFT.

1http://www.vlfeat.org
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The feature detector takes in a single precision grayscale image and returns
a descriptor for each keypoint detected in the image, which is basically a
succinct description of the corresponding keypoint. Local descriptors from
one image can be matched to descriptors from other images using a fea-
ture matching algorithm (also available as an implementation of SIFT in the
VLFeat library) to find similar regions. To achieve high matching accura-
cies, the SIFT feature descriptor has to be invariant to scaling, orientation
(changes in viewpoint), distortion, and significant differences in illumination.
SIFT achieves this by capturing and summarising the information taken from
a region around the detected feature point.

Fig. 3.7 illustrates the set of matched descriptors between two photographs.
The feature detection and matching algorithm is not perfect, as we can ob-
serve matches that are obviously wrong. The most apparent false positives
are the ones originating from the far left of the left image and the ones ending
in the far right of the right image. Such outliers can be removed using robust
estimation methods based on maximum consensus, where X usually consists
of monomials calculated from all pairs of putative correspondences, whereas
θ models the geometric relationship between the matched pairs.

Figure 3.7: Putative pairwise correspondences between two photographs1.

3.5.1 Epipolar Geometry

Say we have a set of keypoints matched to another set of keypoints xi ↔ x′i,
where xi = (xi, yi) is the Euclidean coordinates of the i-th keypoint in the
first image, and x′i = (x′i, y

′
i) is the Euclidean coordinates of the corresponding

keypoint match from the second image. Two photos of the same scene taken

1The correspondences can be used for image stitching, as illustrated in Fig. 1.7.
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Figure 3.8: Pairwise correspondences for affine epipolar geometry1.

from two distinct positions are related by a geometric relationship known as
epipolar geometry. In the case where the cameras are affine, we can model
the relationship using an affine fundamental matrix FA

x̃′iFAx̃
T
i = 0 , (3.10)

where x̃i is xi in homogeneous coordinates. FA has the form

FA =

 0 0 θ1
0 0 θ2
θ3 θ4 θ5

 , (3.11)

where θi indicates non-zero entries. FA is a homogeneous matrix with five
non-zero entries, giving it 4 degrees of freedom, and with a sufficient number
of point matches xi ↔ x′i we can derive the value of the non-zero entries in FA.
The matrix dimensions are consistent in equation (3.10) because xi and x′i
are represented using vectors in the projective plane, where x̃i = (xi, yi, 1).
The coordinate of a point (x, y) in the R2 Euclidean plane can be repre-
sented in the P2 projective plane simply by appending a third coordinate
with the value of 1 to the end to get (x, y, 1). Such coordinates are called
homogeneous coordinates because scaling is unimportant in projective geom-
etry, and the coordinates (x, y, 1) are equivalent to the coordinates (αx, αy, α)
for any α 6= 0. More on projective geometry and why it is crucial in computer
vision can be found in [26, Chap. 2] and [4] (and the references therein). The
derivation of FA in equation (3.10) can be found in [26, Chap. 14].

1Grayscale photographs of All Souls College in Oxford, United Kingdom. Original
images provided by http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/.
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From (3.10) each point match in xi ↔ x′i gives rise to one linear equation

x′iθ1 + y′iθ2 + xiθ3 + yiθ4 + θ5 = 0 . (3.12)

The set of all point matches for i = 1, 2, ..., N results in an overdetermined
system of homogeneous linear equations of the form

Aθ = 0 . (3.13)

This is a special case of (2.2), where the constant terms are all zeroes, and the
residual is the algebraic error r(θ) = Aθ. Observe that there always exists a
trivial solution to (3.13), which is the zero solution θ = 0. However, a model
consisting of all zeroes provides no useful information, and further constraints
should be imposed to avoid a zero solution. Generally the restriction is
imposed on the norm of θ, e.g. requiring its value to be ‖θ‖ = 1. Since
θ can only be determined up to a non-zero scale factor, the value chosen
for ‖θ‖ matters little. We note again that for an overdetermined system of
homogeneous linear equations, there will be no exact solutions apart from the
(usually undesired) zero solution. Instead, as mentioned in section 1.1, we
seek a solution that minimises some suitable cost function. In the same vein,
given that there is no exact solution to (3.13), we elect to find a solution that
minimises ‖Aθ‖ subject to ‖θ‖ = 1. With linear least squares regression the
solution is the column of V corresponding to the smallest singular value of A
in a SVD decomposition, where A = UDV T [26, Sec. 4.1.1]. This approach
is known as the Direct Linear Transformation (DLT) algorithm.

To achieve consensus maximisation, the problem can also be converted
into inhomogeneous equations (2.2) and solved using MILP by linearising and
dehomogenising equation (3.13). This is achieved by imposing a condition
on the j-th entry of θ such that θj = 1, which is justified because θ can only
be determined up to scale; and the scale can be chosen such that θj = 1
[26, Sec. 4.1.2]. E.g. if we chose θ4 = 1, then equation (3.12) becomes

x′iθ1 + y′iθ2 + xiθ3 + θ5 = −yi ,

which gives a system of equations of the form (2.2), where ai = (x′i, y
′
i, xi, 1),

bi = −yi, the parameters we wish to solve for are θ = (θ1, θ2, θ3, θ5)
T with

θ ∈ R4, and the error becomes the linear regression residual in (2.3). Hence
X = {ai, bi}Ni=1 contains the coordinates of the keypoint matches x↔ x′, and
solving for θ gives us the non-zero entries of FA, with θ4 = 1.
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(a) The inlying correspondences to the estimated FA.

(b) Epipolar lines in the first view. (c) Epipolar lines in the second view.

Figure 3.9: Affine epipolar geometry estimated using MILP.

The results of estimating FA using MILP is shown in Fig. 3.9. (a) Illus-
trates inliers whose errors fall within a threshold of 2 pixels (ε = 2). (b)
and (c) illustrates the epipolar lines derived using FA and the inliers from
(a). We can see from the illustration that all affine epipolar lines are parallel.
More information on affine epipolar geometry and its uses including image
retrieval and motion recovery can be found in [26, Chap. 14] and [3, 45].

3.6 Experimental Results

We test our conjecture on M-bisection using linear data that is syntheti-
cally generated. In particular, we compared the results of exactly solving
(3.3) on input data X (we call this EXACT), against the results of running
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M-bisection (Algorithm 1) repeatedly to reduce the individual slack values
Mi, then solving (3.3) exactly after replacing M for each constraint with the
adjusted slack values Mi (we call this M-Bisection+EXACT). The industry
grade Gurobi Optimiser is applied to exactly solve both the MILP formula-
tion for maximum consensus (3.3) and the LP formulation for M-bisection
(3.8).

As mentioned previously in section 3.2, if the slack value M is too large,
it will cause numerical issues with Big-M (3.3). For the purpose of our
experiment, we expect M-bisection+EXACT to conform to the integrality
constraints and produce an integer result. If there are no numerical issues,
both EXACT and M-bisection+EXACT are expected to return the same
objective value. Theoretically, we would also expect the runtime of EXACT
following M-bisection to be shorter than the runtime of EXACT alone, since
M-bisection essentially reduces the search space and thereby the amount of
computation required for EXACT.

The experiments were applied on synthetically generated data and affine
epipolar geometry estimation discussed in section 3.5.1. The experiments
were carried out on a standard 1.40 GHz machine with 8 GB of RAM. A
slack value of M = 1000 was used in all MILP instances.

3.6.1 Synthetic Data

Synthetic data in the form X = {ai, bi}Ni=1 (2.1) was produced for testing
GORE. The ground truth θ was generated uniformly in [−1, 1]3. Each ai

was drawn uniformly from the range [−50, 50]1×3, and bi was obtained as
bi = aiθ, which essentially produces a linear plane fitting problem in 3D.
This justifies the linear regression residual (2.3)

ri(θ) = |aiθ − bi| , (3.14)

which is applicable to the MILP formulation of maximum consensus. To
simulate outliers, around 55% of the dependent measurements {bi}Ni=1 (i.e. the
“response”, see section 2.1) were perturbed with independent and identically
distributed (i.i.d.) uniform noise in the range of [−50, 50], while the rest were
perturbed with i.i.d. normal inlier noise with σ = 0.01. Using a threshold of
ε = 0.02, this produces datasets with an outlier rate between 40% ∼ 60%.
For this experiment, all sets of synthetic data are generated using N = 100.

Results are shown in table 3.1. For all instances tested, the results of
EXACT and M-bisection+EXACT remain consistent with each other. The
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Dataset 1 Dataset 2 Dataset 3

Methods |I| time(s) |I| time(s) |I| time(s)

EXACT 50 270.94 50 330.95 45 220.39

M-bisection 63.76 82.36 97.81

M-bisection+EXACT 50 166.59 50 254.49 45 214.87

Dataset 4 Dataset 5 Dataset 6

Methods |I| time(s) |I| time(s) |I| time(s)

EXACT 55 987.34 50 164.37 47 174.16

M-bisection 48.09 47.50 66.22

M-bisection+EXACT 55 979.02 50 182.54 47 294.66

Table 3.1: Results from 6 different sets of synthetic data. |I| = size of
optimised consensus set.

computational gain achieved by M-Bisection+EXACT on input data X can
be expressed as the ratio

1− runtime of M-bisection+EXACT

runtime of EXACT
. (3.15)

From the results we can see that datasets 1 and 2 achieved a positive gain
of 0.39 and 0.23. On the other hand, datasets 3 and 4 experience almost no
improvement in runtime with gains of 0.03 and 0.01, whereas datasets 5 and
6 experience a slowdown with negative gains of -0.11 and -0.69. We can see
that only half of the instances tested achived a reduction in runtime.

3.6.2 Epipolar Geometry Estimation

We tested GORE on images used in previous works for affine epipolar geome-
try estimation [3], including Kapel and Valbonne Church from the multi-view
reconstruction dataset1, Notre Dame from the Paris dataset2, and All Souls
from the Oxford Buildings dataset3. All images mentioned are provided by
the Oxford Visual Geometry Group.

The results are displayed in table 3.2. For all instances tested, the results
of EXACT and M-bisection+EXACT remain consistent. Notre Dame and
All Souls has the respective positive gains of 0.10 and 0.53, whereas Kapel
and Valbonne has the respective negative gains of -0.39 and -0.99. The rest

1http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
2http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/
3http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
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Kapel Notre Dame
N = 47, ε = 2 N = 84, ε = 2

Methods |I| time(s) |I| time(s)

EXACT 21 78.03 50 350.92

M-Bisection 5.75 13.62

M-Bisection+EXACT 21 108.46 50 319.01

All Souls Valbonne

N = 70, ε = 2 N = 100, ε = 2

Methods |I| time(s) |I| time(s)

EXACT 38 186.14 63 96.35

M-Bisection 10.29 17.62

M-Bisection+EXACT 38 87.19 63 191.37

Table 3.2: Results of affine epipolar geometry estimation. |I| = size of
optimised consensus set.

of the instances experience a significant slowdown in runtime for the sub-
sequent EXACT computation after preprocessing with M-bisection. Again,
only about half of the instances tested achieved a reduction in runtime.

3.7 Summary

We proposed M-bisection as a way to reduce M to deal with the issues inher-
ent in the Big-M method, which makes use of a bisection scheme to reduce
M . Theoretically, a reduction of M should result in an overall speedup in
the computation of MILP.

Experiments however showed that the improvements gained from M-
bisection are unstable. Preprocessing with M-bisection might result in a
speedup, but it may as well result in an overall slowdown of the computa-
tion. This is due to the fact that the value of M is not the only deciding
factor when it comes to computation efficiency. Changing the values of M
will likely affect the various decisions made by the internal heuristics of the
MILP solver, which varies between the implementation of different solvers,
and hence affecting the speed.

The stability and usefulness of M-bisection leaves much to be desired.
Nevertheless, the idea of minimising slack by means of bisection holds merit,
and a more in-depth investigation into the implementations of a MILP solver
may allow for further improvements to M-bisection.
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Chapter 4

Guaranteed Outlier Removal

In section 2.2, we discussed the problem of consensus maximisation, how
it is useful in computer vision and how it can be achieved. However, it is
computationally demanding to solve the problem exactly, especially since the
effort required increases rapidly with the problem size. In this chapter, we
present a Guaranteed Outlier REmoval (GORE) technique based on MILP
as a way to reduce the runtime of exact algorithms. GORE can also be
employed as a means to improve the success rate of randomised methods by
reducing the ratio of outlying measurements.

Specifically, before performing global optimisation, we conduct GORE as
a preprocessing technique for removing data that are provably outliers. This
results in a dataset with a lower outlier rate, which can potentially speed up
subsequent globally optimal algorithms while preserving the same globally
optimal result. A potential speedup of 80% can be achieved on common
computer vision problems such as the ones discussed in section 3.5.

4.1 Overview of GORE

Given a dataset X = {ai, bi}Ni=1 containing N measurements, GORE reduces
X to a subset X ′ under the condition

I∗ ⊆ X ′ ⊆ X , (4.1)

where I∗ is the maximum consensus set as defined in section 2.2. As its
name suggests, any data removed by GORE are guaranteed to be true out-
liers. While the resulting X ′ may not be completely outlier-free, solving the
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maximum consensus problem (2.17) on X ′ will generally take less time while
preserving the same result as the original dataset X .

(a) |X | = 100, time to solution = 423.07s (global optimization)

(b) |X ′| = 95, time to sol. = 50s (GORE) + 32.5s (glob. opt.) = 82.5s

Figure 4.1: (a) Solving (2.17) exactly on X with N = 100 to robustly fit an
affine plane (d = 3) using the Gurobi solver took 423.07s. (b) Removing 5
true outliers (points circled in red) using the proposed GORE algorithm (50s)
and subjecting the remaining data X ′ to Gurobi returns the same maximum
consensus set in 32.5s, representing a reduction of 80% in the total runtime.
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Of course, the duration spent conducting GORE should be included in
the overall runtime. Intuitively, the effort required to identify and remove all
outliers is unlikely to be less than that of solving the original maximum con-
sensus problem. Therefore, the problem becomes how many outliers should
be removed for the outlier reduction scheme to pay off ? Experiments show
that it is relatively cheap to remove a small portion of the most egregious
outliers using GORE (i.e. usually the ones with the largest residuals), and
the removal of those outliers are sufficient to produce a substantial speedup
of subsequent exact methods. Fig. 4.1 demonstrates that removing a mere
5% of data from X using GORE decreases the overall runtime required to
find the same globally optimal result by 80%.

Our version of GORE is an extension of two recent techniques [6, 51],
respectively specialised for estimating 3D rotations and 2D rigid transforms,
both of which are problems with 3 degrees of freedom (DOF). Both works
exploit the underlying geometry of their respective models to quickly prune
away outlying feature matches, which unfortunately means that their meth-
ods cannot be applied to models other than their respective target problems.
The GORE method proposed in this chapter is generalised to a larger range
of problems, which will be formulated based on the linear regression residual.
However, the formulation can easily be extended to geometric (quasiconvex)
residuals as discussed in section 4.4.

4.2 MILP Formulation for GORE

Similar to M-bisection (see Chap. 3), the flexibility of our proposed GORE
method is founded on the basis of a MILP formulation, allowing us to “ab-
stract away” the calculation of upper and lower bounds required for determin-
ing outliers. The MILP formulation allows us to utilise efficient off-the-shelf
linear optimisation solvers (e.g. Gurobi) to handle up to 6DOF models.

With the linear regression residual, the MILP formulation of the maxi-
mum consensus problem (3.3) can be written as

min
θ,z

∑
i

zi (4.2a)

subject to |aiθ − bi| ≤ ε+ ziM , (4.2b)

zi ∈ {0, 1} , (4.2c)
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where zi are indicator variables, and M is a slack value that is large enough.
Intuitively, zi = 1 amounts to identifying {ai, bi} as an outlier. Hence given
the solution z∗ to (2.17), the maximum consensus set is defined as

I∗ = {ai, bi | z∗i = 0} . (4.3)

GORE begins by rewriting (4.2) as the following “nested” problem

minimise
k=1,...,N

βk, (4.4)

where βk is defined as the optimal objective value of the following subproblem

min
θ,z

∑
i 6=k

zi (4.5a)

subject to |aiθ − bi| ≤ ε+ ziM , (4.5b)

zi ∈ {0, 1} , (4.5c)

|akθ − bk| ≤ ε . (4.5d)

The formulation in (4.5) seeks to remove as little data as possible to achieve
a feasible subset, under the strict condition that a datum {ak, bk} is included
(fixed) as an inlier in said subset. Note that the formulation in (4.5) remains
a MILP and not a LP, and that the problem in (4.4) is no easier to solve
than the original maximum consensus problem in (2.17). Instead, the utility
of (4.4) derives from how a bound on (4.5) allows us to identify datums as
outliers to the maximum consensus set I∗.

Let θ̂ and its corresponding indicator variables ẑ indicate a suboptimal
approximation to (4.2), and let

û = ‖ẑ‖1 ≥ ‖z∗‖1 (4.6)

be its corresponding objective value. Let αk be a lower bound to (4.5), i.e.

αk ≤ βk . (4.7)

Given ûk and αk, a test can be performed according to the following lemma
to decide whether {ak, bk} is an outlier to (4.2).

Lemma 3 If αk > û, then {ak, bk} is an outlier to I∗.
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Proof The lemma can be established via contradiction. The k-th datum
{ak, bk} is an inlier if and only if

βk = ‖z∗‖1 ≤ û . (4.8)

In other words, if {ak, bk} is an inlier, insisting it to be an inlier in (4.5)
does not change the fact that removing ‖z∗‖1 datums is sufficient to achieve
consensus. However, if we are given that αk > û, then from (4.7)

û < αk ≤ βk , (4.9)

meaning that the necessary inlier condition in (4.8) cannot hold. Thus
{ak, bk} must be an outlier to I∗.

The following lemma shows that there are cases where for a datum {ak, bk},
the test above will always fail to affirm it as an outlier.

Lemma 4 If ẑk = 0, then αk ≤ û.

Proof If ẑk = 0 (i.e. an inlier to the suboptimal approximation θ̂), then (θ̂, ẑ)
is also suboptimal in regards to βk in (4.5). Thus if ẑk = 0,

û ≥ βk ≥ αk , (4.10)

and the condition in Lemma 3 will never be met.

GORE applies Lemma 3 iteratively to all datums to achieve outlier re-
moval. Critical to the operation of GORE is the calculation of the bounds
û and αk, in which the former can be obtained from the various approxi-
mation techniques. For this thesis, we designate RANSAC as our preferred
approximation method, and thus

û = |X | − |Î| , (4.11)

where Î is a suboptimal consensus set attained from RANSAC. The main
challenge of GORE lies in computing a tight lower bound αk for each datum,
and we will describe our method for calculating αk in the following section.

Lemma 4 establishes that there are certain datums in which the test in
Lemma 3 are ineffective. Hence our main GORE algorithm will prioritise
tests for data with the largest errors with respect to the suboptimal solution
θ̂, i.e. the largest residual values corresponding to those with ẑi = 1.
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4.2.1 Lower Bound Calculation

As mentioned in Lemma 1, the standard approach for lower bounding MILPs
is via a LP relaxation [15]. In the context of the MILP formulation for GORE
in (4.5), αk is obtained as the optimal value of the following LP

min
θ,z

∑
i 6=k

zi (4.12a)

subject to |aiθ − bi| ≤ ε+ ziM , (4.12b)

zi ∈ [0, 1] , /*continuous*/ (4.12c)

|akθ − bk| ≤ ε , (4.12d)

where the binary constraints in (4.5c) are relaxed to become continuous.
αk cannot exceed βk by the simple argument that the range [0, 1]N−1 is a
superset of {0, 1}N−1.

However, the lower bound obtained solely via (4.12) tends to be loose.
Observe that since the value of the slack M is very large, each continuous
zi in (4.12) needs only a small value to provide sufficient slack to satisfy its
corresponding constraint. As a result the optimised z tends to be small and
fractional, leading to a large difference in value between αk and βk.

To obtain a more useful lower bound, we leverage on existing algorithms
based on Branch-and-Bound (BnB) for solving MILPs [15]. In the context
of solving (4.5), BnB maintains a pair of lower and upper bound values αk

and γ̂k over time, where

αk ≤ βk ≤ γ̂k . (4.13)

The method of BnB progressively raises the value of the lower bound αk

by solving the corresponding LP relaxation (4.12) on recursive subdivisions
of the parameter space. If an exact solution to the original MILP (4.5) is
desired, BnB is executed until αk = γ̂k, which determines the exact value of
βk. For the purpose of GORE, however, BnB can simply be executed until
one of the following two conditions is satisfied

αk > û (Condition 1) or γ̂k ≤ û (Condition 2) , (4.14)

or until a pre-determined time budget c is exhausted. Achieving Condition 1
implies that {ak, bk} is an outlier, whereas achieving Condition 2 indicates
that Condition 1 will never be met. Satisfying Condition 2 also indicates that
a better solution has been identified (one that involves identifying {ak, bk}
as an inlier) has been discovered, and thus û should be updated accordingly.
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4.3 Main Algorithm

Algorithm 2 MILP-based GORE

Require: Data X = {ai, bi}Ni=1, inlier threshold ε, number of rejection tests
T , maximum duration per test c.

1: Execute RANSAC to obtain an upper bound û (4.11).
2: Order X increasingly based on RANSAC residuals.
3: for k = N,N − 1, . . . , N − T + 1 do
4: Run BnB to solve (4.5) on X until one of the following is satisfied:

• αk > û (Condition 1);

• γ̂k ≤ û (Condition 2);

• c seconds have elapsed.

5: if Condition 1 was satisfied then
6: X ← X \ {ak, bk}
7: end if
8: if Condition 2 was satisfied then
9: û← γ̂k

10: end if
11: end for
12: return Reduced data X .

Algorithm 2 summarises our method for GORE. Again, RANSAC is used
to obtain the upper bound û, and to re-order X such that datums more likely
to be outliers are first tested for removal. In our experiments, we apply the
Gurobi Optimiser1 to derive the lower bound αk. The parameters crucial to
the success of GORE are T and c, where the former is the number of datums
we attempt to reject, and the latter is the maximum allowable duration
devoted to rejecting a particular datum. The total runtime of GORE is thus
T × c. As we will show in a later section, for many real-life scenarios setting
T and c to small values (e.g. T ≈ 0.1N , c ∈ [5s, 15s]) is generally sufficient
to reduce X to a subset X ′ that significantly speeds up global optimisations.

1http://www.gurobi.com/
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4.4 GORE with Quasiconvex Residuals

Thus far, the problems we have discussed are all linear in form and can be
handled using the linear regression residual (2.3) which is strictly convex.
However, many applications in computer vision result in geometric resid-
uals, meaning that those problems can not be solved directly using (3.3).
In this section, we will show how the MILP formulation of maximum con-
sensus can be generalised to solve a particular class of geometric residuals
that are quasiconvex, which is involved in many common computer vision
applications including triangulation, homography estimation and camera re-
sectioning [27].

Quasiconvex residuals are error functions of the form

ri(θ) =
‖Aiθ + bi‖p
cTi θ + di

with cTi θ + di ≥ 0 , (4.15)

where θ ∈ Rn is a column vector consisting of the unknown variables,
Ai ∈ R2×n is a 2 × n matrix, bi ∈ R2 and ci ∈ Rn are column vectors,
di is a scalar constant, and the dataset X = {Ai,bi, ci, di}Ni=1. In this case,
X would contain additional information in tandem to the coordinates of key-
point matches, e.g. camera matrices. Residual (4.15) is quasiconvex for all
Lp-norms with p ≥ 1, where the general form of the Lp-norm is

‖u‖p = (|u1|p + |u2|p + . . .+ |un|p)
1
p for u ∈ Rn . (4.16)

In the context of maximum consensus, applying a threshold ε to (4.15) yields

‖Aiθ + bi‖p ≤ ε(cTi θ + di) , (4.17)

and thus the formulation of maximum consensus in (3.3) becomes

min
θ,z

∑
i

zi (4.18a)

subject to ‖Aiθ + bi‖p ≤ ε(cTi θ + di) + ziM , (4.18b)

zi ∈ {0, 1} . (4.18c)

Historically, quasiconvex residuals have been investigated using the L2-norm,
where p = 2 [24, 27]. The condition cTi θ+di > 0 can thus be dropped since it
is implied by (4.17) for any ε ≥ 0 [27, Sec. 4.2]. This is because ‖Aiθ + bi‖2
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will always be ≥ 0, and inequality (4.17) will not hold if cTi θ + di < 0.
However, the usage of p = 2 turns (4.18) into a problem of the form

min
u

f(u)

subject to ‖Aiu + bi‖2 ≤ cTi u + di ,
(4.19)

where f(u) is a linear objective function. Convex optimisation problems
of the form (4.19) is called Second-Order Cone Programming (SOCP), and
constraint (4.18b) becomes a nonlinear second-order cone constraint under
the L2-norm, which is not applicable to MILP.

Of course, the L2-norm is not the only possible norm we can use. Other
commonly used norms include the L1-norm and the L∞-norm, which will
both yield linear constraints that can be applied in MILP. Let

Ai =

[
ai,1

ai,2

]
and bi =

[
bi,1
bi,2

]
,

where ai,j is a row vector corresponding to the j-th row of Ai, and bi,j is a
scalar value corresponding to the j-th entry of bi. The L1-norm is the sum
of all absolute values in a vector, and hence applying p = 1 to (4.18b) gives

|ai,1θ + bi,1|+ |ai,2θ + bi,2| ≤ ε(cTi θ + di) + ziM .

By recursively applying the rule of absolute values, we find that the above is
equivalent to the four linear constraints

(ai,1 + ai,2)θ + bi,1 + bi,2 ≤ ε(cTi θ + di) + ziM ,

(ai,1 − ai,2)θ + bi,1 − bi,2 ≤ ε(cTi θ + di) + ziM ,

−(ai,1 − ai,2)θ − bi,1 + bi,2 ≤ ε(cTi θ + di) + ziM ,

−(ai,1 + ai,2)θ − bi,1 − bi,2 ≤ ε(cTi θ + di) + ziM .

Note how a single indicator variable zi “chains” the four constraints together
to the same datum {Ai,bi, ci, di}.

Likewise, the L∞-norm is the vector entry with the largest absolute value,
and hence applying p =∞ to (4.18b) gives

max{|ai,1θ + bi,1|, |ai,2θ + bi,2|} ≤ ε(cTi θ + di) + ziM ,
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which is equivalent to imposing the following two constraints simultaneously

|ai,1θ + bi,1| ≤ ε(cTi θ + di) + ziM ,

|ai,2θ + bi,2| ≤ ε(cTi θ + di) + ziM .

We again apply the rule of absolute values to yield the following four linear
constraints

ai,1θ + bi,1 ≤ ε(cTi θ + di) + ziM ,

−ai,1θ − bi,1 ≤ ε(cTi θ + di) + ziM ,

ai,2θ + bi,2 ≤ ε(cTi θ + di) + ziM ,

−ai,2θ − bi,2 ≤ ε(cTi θ + di) + ziM .

Note again how the variable zi connects all four constraints to the i-th datum.
And hence we have a method of solving the quasiconvex residual (4.15) as a
MILP formulation of maximum consensus (3.3) with four linear constraints
instead of two using the linear regression residual.

4.4.1 MILP Formulation

For completeness, the subproblem analogous to (4.5) is

min
θ,z

∑
i 6=k

zi (4.20a)

subject to ‖Aiθ + bi‖p ≤ ε(cTi θ + di) + ziM , (4.20b)

zi ∈ {0, 1} , (4.20c)

‖Akθ + bk‖p ≤ ε(cTk θ + dk) . (4.20d)

By applying either the L1-norm or the L∞-norm in (4.20b) and (4.20d) and
following the derivations discussed in section 4.4 to convert them to linear
inequalities, a lower bound αk for (4.20) can similarly be obtained using
MILP solvers. Algorithm 2 can thusly be applied as a preprocessor to conduct
GORE for quasiconvex problems.
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4.5 Applications in Computer Vision

4.5.1 Triangulation

The process of determining a point in 3D given its projection onto two or
more 2D images is known as triangulation. Say we have set of N images of
similar scenes (Fig. 4.2) photographed in different angles and positions using
cameras of known calibration and pose.

Figure 4.2: Photos of the Notre Dame cathedral taken and uploaded by
various users to the website http://www.flickr.com1.

Using feature detection and matching methods (e.g. SIFT - section 3.5),
we can find and match keypoints between pairs of photographs. Matching
keypoints between each pair are then organised into tracks, where a track is a
set of connected images containing corresponding keypoint matches. Ideally,
matched feature points in the same track should all converge to the same
object point in real world 3D coordinates (Fig. 4.3). Realistically, there
will always exist mismatches and false positives due to automated processes,
and rays back-projected from the 2D image points are not guaranteed to
converge. With maximum consensus, we can rebuild the 3D structure of

1Photo collage taken from http://phototour.cs.washington.edu.
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the scene captured in those tracks by estimating the coordinates of each 3D
object point projected onto the track (Fig. 1.8).

Image 1

Image 2

Image 3

Object point in 3D

2D image point

2D image point

2D image point

Figure 4.3: Ideal track with back-projected rays converging at a single point.

In this context, the model we wish to estimate is the coordinates of a
single 3D object point θ ∈ R3 corresponding to a single matched keypoint
in a track of N images. The data available to us is X = {xi, Pi}Ni=1, where
xT
i = (xi, yi) refers to the 2D coordinates of the matched keypoint in the i-th

image, while Pi ∈ R3×4 are matrices containing information on the cameras
used to capture each image in the track. Readers are referred to [27, Chap. 6
& 7] and [47] for more on camera matrices. A camera matrix Pi models the
intrinsics and extrinsics of each shot, such as the relative location, orientation,
and the focal length of the camera. It is used to map (reproject) the estimated
3D point onto the 2D image plane

x̃i = Piθ̃ , (4.21)

where x̃i ∈ P2 and θ̃ ∈ P3 are column vectors in homogeneous coordinates,
with θ̃ = (θT , 1)T . We can model the rows of camera matrix Pi using vectors

Pi =

 ai

bi

ci

 ,

where ai, bi, and ci are all row vectors in R4. Thus from (4.21) we get

x̃i = (aiθ̃ , biθ̃ , ciθ̃)T .
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Converting x̃i into Euclidean coordinates x̂i ∈ R2 gives

x̂T
i =

(
aiθ̃

ciθ̃
,

biθ̃

ciθ̃

)
. (4.22)

The triangulation residual thus involves the error between x̂i and x̃i

ri(θ) = ‖x̂i − xi‖p =
‖ ( aiθ̃ − xi · ciθ̃ , biθ̃ − yi · ciθ̃ )T‖p

ciθ̃
, (4.23)

where ciθ̃ is constrained to be strictly positive to ensure that the estimated
3D object point θ lies in front of the camera. This is known as the cheirality
constraint. Observe that (4.23) is a special case of the quasiconvex residual in
(4.15). The triangulation residual (4.23) is known as the reprojection error,
which is the normed difference between the measured image point xi and the
reprojected point x̂i from the estimated θ onto the camera image plane.

Estimated 3D point �

Reprojection error

Measured 2D image point

2D image point reprojected from �

Figure 4.4: Reprojection error using the L2-norm.

As illustrated in Fig. 4.4, the L2-norm takes the shortest straight-line
(Euclidean) distance between x̂i and xi as the reprojection error. However,
the L2-norm results in a SOCP constraint, which can not be solved using
MILP. Viable alternatives include the L1-norm, which takes as the error the
sum of differences in the vertical and horizontal components between x̂i and
xi (i.e. the Manhattan distance); and the L∞-norm, which takes the largest
of differences in either the horizontal or the vertical component. Fig. 4.5
illustrates the differences in unit circles between the three vector norms.
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x 1x 2
x ∞

Figure 4.5: Unit circles of the three most commonly used vector norms1.

The successful triangulation of 3D object points from 2D images is con-
tingent on knowing the camera matrices for each photograph. However, in
the case where the only thing we have are a batch of photographs of similar
scenes, it is still possible to recover information on the camera poses by solv-
ing the Structure from Motion problem (SfM). Interested readers can refer
to [1], which addresses in further detail the challenges of 3D reconstruction.

Figure 4.6: A sparse 3D reconstriction of the Notre Dame Cathedral using
photos sourced from photo sharing sites2.

1Adapted from http://en.wikipedia.org/wiki/Lp_space.
2Image taken from http://phototour.cs.washington.edu.
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4.5.2 Image Matching

Given two images or photographs of the same scene taken from different
distances, angles, and orientation, we perform feature detection and matching
(e.g. SIFT - section 3.5) to obtain a set of keypoint matches xi ↔ x′i, where
xi = (xi, yi)

T is the Euclidean coordinates of the i-th keypoint in the first
image, and x′i = (x′i, y

′
i)
T is the Euclidean coordinates of the corresponding

keypoint match from the second image. Apart from epipolar geometry, the
two images are also related by an affine transformation T ∈ R2×3, which is
what we aim to estimate. T aligns the two images

x′i = Tx̃i , (4.24)

where the vector x̃T
i = (xi, yi, 1) ∈ P2 is xi in homogeneous coordinates, and

T is a 2× 3 matrix with 6 degrees of freedom

T =

[
θ1 θ2 θ3

θ4 θ5 θ6

]
.

The matching error for the i-th correspondence is thus

ri(T) = ‖Tx̃i − x′i‖p . (4.25)

Let the vector θ = (θ1,θ2,θ3,θ4,θ5,θ6)
T ∈ R6 be the vectorised form of T.

Thus the error in (4.25) can be rewritten as

ri(θ) = ‖ ( aiθ − x′i , biθ − y′i )T‖p (4.26)

for row vectors ai = (x̃T
i ,01×3) ∈ R6 and bi = (01×3, x̃

T
i ) ∈ R6. Clearly,

(4.26) is yet another special case of (4.15), and it can again be converted
into four MILP constraints using either the L1-norm or the L∞-norm.

Fig. 4.7 illustrates the correspondences that form the dataset X = {xi,x
′
i}Ni=1,

which is detected and matched using SIFT. The results of estimating the
affine transformation matrix T using MILP is shown in Fig. 4.8, where only
the inlying correspondences are displayed. An alternate way of illustrating
the inliers is shown in Fig. 4.9, which is a composite image created by over-
laying the two photographs in red-cyan, and then superimposing the inlying
correspondences on top of the composite. The “flow” of the inlying points
seen in Fig. 4.9 can be interpreted as a combination of the rotational, shear,
and translational components of the affine transformation.
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More on the uses of affine transformations such as in medical image reg-
istration and feature detection and matching can be found in [54, 56].

Figure 4.7: Putative pairwise correspondences for image matching1.

Figure 4.8: Inliers to the affine transformation T estimated using MILP.

Figure 4.9: A red-cyan overlay with superimposed inliers.

1Photos taken from http://www.robots.ox.ac.uk/~vgg/research/affine/.
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4.6 Experimental Results

Several experiments were performed to examine the efficacy of GORE in
speeding up maximum consensus. In particular, we compared the runtime of
exactly solving (2.17) on input data X (we call this EXACT), with the total
runtime of running GORE to reduce X to X ′ and then exactly solving (2.17)
on X ′ (we call this GORE+EXACT). To solve (2.17) exactly, the industry
grade Gurobi Optimiser is applied to exactly solve the MILP formulation
(4.2). Of course, the GORE preprocessor is also implemented using Gurobi;
a combination that enables a cogent test of the benefits of GORE.

We emphasise that GORE is a preprocessing routine that is indepen-
dent of any exact algorithm for maximum consensus [10, 20, 29, 35, 61],
and therefore should not be treated as “competitors” of these algorithms.
While GORE is expected to significantly speed up the computation of the
aforementioned methods, the lack of mature implementations for each of
those algorithms hamper accurate evaluations. More relevant competitors
are [6, 51]. However these methods are highly specialised (for 2D rigid trans-
forms and 3D rotations), where the associated maximum consensus problems
do not have generalised MILP formulations, making direct comparisons with
GORE infeasible.

To evaluate the practicality of GORE+EXACT, we compared it against
the following approximate methods:

• RANSAC [22];
• L∞ outlier removal [46]; and
• L1 outlier removal [36].

Note that RANSAC is also used in the GORE (Algorithm 2) for estimating
an upper bound û.

The experiments were applied on several problems common in computer
vision. The experiments were carried out on a standard 2.70 GHz machine
with 128 GB of RAM. A slack value of M = 1000 was used in all the MILP in-
stances for solving computer vision problems, and a slack value of M = 10000
was used to solve synthetic data.

4.6.1 Synthetic Data

Synthetic data in the form X = {Ai,bi, ci, di}Ni=1 (4.15) was produced for
testing GORE. For the sake of simplicity, we chose to set ci = 0 and di = 1
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for all i. The ground truth was generated uniformly in [−1, 1]n. Each Ai

was drawn uniformly from the range [−50, 50]2×n, and bi was obtained as
bi = −Aiθ. This justifies the residual

ri(θ) = ‖Aiθ + bi‖p , (4.27)

which is a special case of (4.15). Note that this generation method is different
from the one that produced the dataset illustrated in Fig. 4.1. To simulate
outliers, 55% of the dependent measurements {bi}Ni=1 (i.e. the “response”,
see section 2.1) were perturbed with independent and identically distributed
(i.i.d.) uniform noise in the range of [−50, 50], while the rest were perturbed
with i.i.d. normal inlier noise with σ = 1. This produces datasets with an
outlier rate of 50% ∼ 60%.

Combinations of (n,N) tested were (3, 140), (4, 120), (5, 100), (6, 80),
(7, 70), and (8, 50). N was reduced correspondingly for higher dimensions of
n to avoid excessively long runtimes. This does not invalidate our assessment
of GORE since we are primarily interested in the speed-up ratio. For each
(n,N) pair, we created 20 data instances X . On each X , we executed EXACT
and GORE+EXACT with a threshold of ε = 2. For GORE, the number of
rejection tests T was varied from 1 to d0.15Ne, while the maximum duration
per test was fixed to a maximum of 15s.

The computational gain achieved by GORE+EXACT on input data X
can be expressed as the ratio

1− runtime of GORE+EXACT

runtime of EXACT
. (4.28)

The median gain across varying T (expressed as a ratio of N) are shown in
Fig. 4.10. The gain is negative for n = 3, since EXACT was very fast on
such a low dimension and preprocessing with GORE inflated the runtime
needlessly. Again, note that the data used in this experiment is different
from the one shown in Fig. 4.1. For n = 4 to 7, the gain increases with T ,
implying that as more true outliers were removed, the runtime of EXACT
was reduced quickly when X is preprocessed with GORE. We note that the
gain increases very slowly beyond T ≈ 0.1N . For n = 8, however, the gain is
negative; this was because GORE was unable to reject sufficient number of
outliers within the time limit of c = 15s for the preprocessing procedure to
pay off. This suggests that there exists a lower and upper limit on n where
GORE can be useful.

60



Figure 4.10: Computational gain of GORE on synthetic data for dimensions
n = 3, · · · , 8 and increasing number of rejection tests T as a ratio of problem
size N . Time per test c is fixed at a maximum of 15s.

4.6.2 Image Matching

We tested GORE on images that have been previously used for affine image
matching: Wall, Graffiti, Boat, and Bark from the affine covariant features
dataset6, and Tissue and Dental from a medical image registration dataset
[55, 56]. The images were resized before SIFT features were detected and
matched using VLFeat2 to yield ≈ 100 point matches per image pair.

For GORE (Algorithm 2), the upper bound û was obtained by running
RANSAC for 10,000 iterations, T was set to 10, and c was set to 15s. In this
experiment, we used p =∞ (i.e. the L∞-norm) on the matching error (4.25)
for outlier rejection using GORE.

Table 4.1 shows the results, where for each method or pipeline, we recorded
the obtained consensus size and total runtime; the size of the reduced input
X ′ by GORE is also shown. As expected, although the approximate meth-
ods were fast, they did not return the globally optimal result. GORE was
able to reduce X by 5 to 10 outliers with the given runtime. However, this
was sufficient to significantly reduce the runtime of solving (2.17) such that

6http://www.robots.ox.ac.uk/~vgg/research/affine/index.html
2http://www.vlfeat.org
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Wall Graffiti Boat
N = 85, ε = 1 N = 92, ε = 1 N = 98, ε = 1

Methods |I| |X ′| time(s) |I| |X ′| time(s) |I| |X ′| time(s)

l∞ method [46] 9 0.04 25 0.04 8 0.05
l1 method [36] 14 0.02 20 0.02 3 0.02
RANSAC [22] 27 0.88 42 0.89 34 0.91
EXACT 31 1028.07 47 472.90 34 603.55
GORE 75 45.25 82 70.08 88 129.39
GORE+EXACT 31 226.45 47 100.41 34 262.58

Bark Tissue Dental
N = 121, ε = 1 N = 110, ε = 2 N = 101, ε = 2

Methods |I| |X ′| time(s) |I| |X ′| time(s) |I| |X ′| time(s)

l∞ method [46] 11 0.04 2 0.05 21 0.04
l1 method [36] 5 0.02 0 0.02 16 0.02
RANSAC [22] 44 0.92 35 0.89 48 0.89
EXACT 46 1077.89 37 284.07 49 258.34
GORE 115 138.79 100 90.82 91 64.41
GORE+EXACT 46 508.66 37 185.59 49 96.33

Table 4.1: Results of affine image matching. N = size of input data X , ε =
inlier threshold (in pixels) for maximum consensus, |I| = size of optimised
consensus set, |X ′| = size of reduced data by GORE.

GORE+EXACT was much faster than EXACT on all of the data instances
shown (respectively 78%, 79%, 57%, 53%, 35% and 63% gain).

4.6.3 Epipolar Geometry Estimation

Please refer to a previous discussion in section 3.5.1 on the affine fundamental
matrix for affine epipolar geometry estimation and how it can be achieved
using maximum consensus using the linear regression residual. We tested
GORE with datasets from similar groups that was used in a previous ex-
periment on M-bisection in section 3.6.2. The images were previously used
in other works for affine epipolar geometry estimation [3], such as Dinosaur
(frames 7 and 8), Kapel, and Valbonne Church from the multi-view recon-
struction dataset3, Notre Dame from the Paris dataset4, and All Souls from

3http://www.robots.ox.ac.uk/~vgg/data/data-mview.html
4http://www.robots.ox.ac.uk/~vgg/data/parisbuildings/
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the Oxford Buildings dataset1. All images mentioned were provided by the
Oxford Visual Geometry Group.

The results are shown in Table 4.2. Despite having a lower degree of
freedom than an affine transform, solving maximum consensus (2.17) exactly
on the affine fundamental matrix generally takes a longer time. Unlike in
image matching using affine transforms, GORE was less prolific in removing
outliers; on average GORE is only able to remove 2 outliers out of T = 10
attempts, an indication that GORE is not suited for preprocessing problems
in higher dimensions with the linear regression residual, e.g. n ≥ 4. interest-
ingly, however, we can observe that simply rejecting 2 outliers from X allows
for a significant speed-up in the overall runtime of GORE+EXACT for at
least 3 of the chosen image pairs.

Dinosaur Kapel Notre Dame
N = 115, ε = 1 N = 107, ε = 2 N = 69, ε = 2

Methods |I| |X ′| time(s) |I| |X ′| time(s) |I| |X ′| time(s)

l∞ method [46] 30 0.03 42 0.03 14 0.03
l1 method [36] 38 0.01 43 0.01 7 0.01
RANSAC [22] 68 1.04 62 0.99 28 1.00
EXACT 71 3924.57 65 5538.66 31 515.08
GORE 113 135.95 104 148.27 68 150.92
GORE+EXACT 71 1237.90 65 1263.25 31 634.98

All Souls Valbonne
N = 76, ε = 2 N = 63, ε = 2

Methods |I| |X ′| time(s) |I| |X ′| time(s)

l∞ method [46] 31 0.02 13 0.03
l1 method [36] 15 0.01 20 0.01
RANSAC [22] 39 0.99 29 0.98
EXACT 42 2795.35 32 593.34
GORE 72 75.25 62 59.58
GORE+EXACT 42 858.06 32 470.91

Table 4.2: Results of affine epipolar geometry estimation. N = size of input
data X , ε = inlier threshold (in pixels) for maximum consensus, |I| = size
of optimised consensus set, |X ′| = size of reduced data by GORE.

1http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
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4.6.4 Triangulation

For the purpose of testing GORE we made use of the Photo Tourism dataset
from [48] containing a set of image observations and camera matrices. We
specifically chose 6 of the given 3D points with over 100 views (i.e. N > 100)
to triangulate; the index of these points are listed in Table 4.3. With a
threshold of ε = 1 (i.e. one pixel), these problem instances will have an
outlier ratio between 40% ∼ 60%. Note that our triangulation model given in
(4.23) ignores the radial distortion error, and thus the actual outlier rate may
be much lower when it is taken into account. Nonetheless, it is sufficient for
the purpose of testing the potential speed-ups we achievable by preprocessing
with GORE. In this experiment we used p = ∞ (i.e. the L∞-norm) for the
residual given in (4.23). For GORE, T was set to 10 and c was set to 15s.

The results are shown in Table 4.3. For 5 of the 6 points tested, pre-
processing with GORE provided a considerable reduction in total runtime,
especially for cases with a high outlier rate.

Point 1 Point 2 Point 36
N = 167, ε = 1 N = 105, ε = 1 N = 175, ε = 1

Methods |I| |X ′| time(s) |I| |X ′| time(s) |I| |X ′| time(s)

l∞ method [46] 96 1.93 23 1.83 63 2.17
l1 method [36] 111 0.03 33 0.03 73 0.04
RANSAC [22] 114 1.16 36 1.12 84 1.15
EXACT 115 17.80 38 112.83 90 956.35
GORE 157 14.65 95 11.02 165 20.09
GORE+EXACT 115 27.80 38 75.67 90 771.32

Point 594 Point 682 Point 961
N = 159, ε = 1 N = 153, ε = 1 N = 129, ε = 1

Methods |I| |X ′| time(s) |I| |X ′| time(s) |I| |X ′| time(s)

l∞ method [46] 53 1.42 79 1.78 58 1.81
l1 method [36] 67 0.02 87 0.03 61 0.03
RANSAC [22] 85 1.12 96 1.13 69 1.12
EXACT 87 812.81 97 56.44 70 110.90
GORE 149 17.72 143 16.12 119 8.55
GORE+EXACT 87 56.35 97 35.40 70 25.86

Table 4.3: Results of triangulation. N = size of input data X , ε = inlier
threshold (in pixels) for maximum consensus, |I| = size of optimised consen-
sus set, |X ′| = size of reduced data by GORE.
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4.7 Summary

We proposed GORE as a way to speed up the computation of exact solutions
to the maximum consensus problem. GORE achieves this by preprocessing
the data to identify and remove instances that are guaranteed to be outliers
to the globally optimal solution. The proposed methods works by inspecting
data instances that are most likely outliers to the globally optimal solution,
and prove using contradiction that it is indeed an outlier. The rejection test
is based on comparing upper and lower bound values derived using MILP.
We also showed how GORE can be extended to deal with geometric residuals
that are quasiconvex. The fact that GORE is formulated as a MILP allows
it to be easily implemented using any off-the-shelf optimisation software.

GORE is experimentally evaluated on both synthetically generated and
real data, based on common computer vision applications. While there are
limitations to GORE in terms of the range of model dimensions it can handle,
we demonstrate that it is still very useful and effective on a wide range of
practical computer vision applications.
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Chapter 5

Conclusion

In this work we are focused on the problem of parameter estimation and
how it can be applied to various problems in computer vision. The first
two chapters are devoted to discussions on how parameter estimation can be
achieved, in particular

• A brief introduction is given on the problem parameter estimation and
how it is applicable in the field of computer vision. We discussed the
challenges in discovering suitable model parameters in the presence of
noise and outliers in the data. Various minimisation criterias are then
presented with a focus on consensus maximisation, which is one of the
more popular robust estimation criterion in the field of computer vision.

• The more common techniques for parameter estimation are reviewed,
devoting particular attention to the robustness of various techniques
and where each of the methods fall short. Techniques that approxi-
mates the optimal solution are usually efficient but are non-deterministic
and offers no guarantees to the optimality of its solution; whereas tech-
niques that compute the exact solution to any particular problem will
generally incur a high computational cost. Current applications favour
the use of highly efficient approximation methods, and the present work
is focused on improving the efficiency of exact methods in an attempt
of provide a more deterministic alternative.

In the following chapters, two preprocessing methods are proposed for im-
proving the efficiency and reliability of a particular class of exact parameter
estimation techniques based on linear programming known as the Big-M
method. In particular:
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• A M-bisection method is proposed to optimise M by means of reduc-
tion. While it can potentially speed up the computation of an exact
solution, the method itself is rather unstable and can also potentially
result in an overall slowdown instead of a speedup. However, the idea
of decreasing M by means of bisection holds merit and it may be possi-
ble to improve the viability of this approach with further investigation
and refinement.

• A Guaranteed Outlier Removal scheme (GORE) is proposed to speed
up the computation of Big-M by finding and removing data points that
are guaranteed to be outliers. Experiments show that removing a mere
5% of the data can yield an overall decrease in runtime by up to 80%.
The GORE method has been verified to work with general quasiconvex
problems in the range of 4 to 7 dimensions, which makes it applica-
ble to a good range of applications. Unfortunately, the preprocessing
procedure itself is also rather expensive to compute, and current ap-
proximation methods render this class of approaches unattractive for
general use. However, GORE represents a step forward in the area of
exact robust estimation, and brings us one step closer to that goal.

We have demonstrated in this thesis that it is indeed possible to reduce
the computational cost of Big-M by preprocessing the data using either M-
bisection or GORE. However, there remain many opportunities for extend-
ing the findings of this thesis, with one possibility being the use of both
M-bisection and GORE in conjunction with each other. With further in-
vestigation and analysis, it may be possible to develop a new preprocessing
algorithm as a combination of the core concepts of the two aforementioned
methods. Another possible extension for future research involves investi-
gating the possibilities of using a specialised, binary based MILP solver for
improving the efficacy of GORE. We hope that the ideas brought forth can
provide new insight into the problem of parameter estimation and act as a
spark towards further discussions in the community.
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