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Abstract

Maximum consensus is fundamentally important in computer vision as a cri-
terion for robust estimation, where the goal is to estimate the parameters of
a model of best fit. It is computationally demanding to solve such problems
exactly. Instead, conventional methods employ randomised sample-and-test
techniques to approximate a solution, which fail to guarantee the optimal-
ity of the result. This thesis makes several contributions towards solving
the maximum consensus problem exactly in the context of Mixed Integer
Linear Programming. In particular, two preprocessing techniques aimed at
improving the speed and efficiency of exact methods are proposed.
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