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The DEEPWAVE experiment employed extensive airborne and ground-based 

measurements to provide new insights into gravity wave dynamics.

THE DEEP PROPAGATING 
GRAVITY WAVE EXPERIMENT 

(DEEPWAVE)
An Airborne and Ground-Based Exploration 

of Gravity Wave Propagation and Effects from 
Their Sources throughout the Lower and Middle 

Atmosphere

by DaviD C. Fritts, ronalD b. smith, miChael J. taylor, James D. Doyle, stephen D. eCkermann, 
anDreas DörnbraCk, markus rapp, biFForD p. Williams, p.-Dominique pautet, katrina bossert, 
neal r. CriDDle, Carolyn a. reynolDs, p. alex reineCke, miChael uDDstrom, miChael J. revell, 

riCharD turner, bernD kaiFler, Johannes s. Wagner, tyler mixa, Christopher g. kruse, 
alison D. nugent, Campbell D. Watson, sonJa gisinger, steven m. smith, ruth s. lieberman, 

brian laughman, James J. moore, William o. broWn, Julie a. haggerty, alison roCkWell, 
gregory J. stossmeister, steven F. Williams, gonzalo hernanDez, Damian J. murphy, 

anDreW r. klekoCiuk, iain m. reiD, anD Jun ma

T he Deep Propagating Gravity Wave Experiment  
 (DEEPWAVE) was the first comprehensive 
 measurement program devoted to quantifying 

the evolution of gravity waves (GWs) arising from 
sources at lower altitudes as they propagate, interact 
with mean and other wave motions, and ultimately 
dissipate from Earth’s surface into the mesosphere 
and lower thermosphere (MLT). Research goals 
motivating the DEEPWAVE measurement program 
are summarized in Table 1. To achieve our research 
goals, DEEPWAVE needed to sample regions having 
large horizontal extents because of large horizontal 
GW propagation distances for some GW sources. 

DEEPWAVE accomplished this goal through airborne 
and ground-based (GB) measurements that together 
provided sensitivity to multiple GW sources and 
their propagation to, and effects at, higher altitudes. 
DEEPWAVE was performed over and around the GW 
“hotspot” region of New Zealand (Fig.1, top) during 
austral winter, when strong vortex edge westerlies 
provide a stable environment for deep GW propaga-
tion into the MLT.

DEEPWAVE airborne measurements employed 
two research aircraft during a core 6-week airborne 
field program based at Christchurch, New Zealand, 
from 6 June to 21 July 2014. The National Science 
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Foundation (NSF)/National Center for Atmospheric 
Research (NCAR) Gulfstream V (GV) provided in 
situ, dropsonde, and microwave temperature profiler 
(MTP) measurements extending from Earth’s surface 
to ~20 km throughout the core field program (see 
Table 2). The GV also carried three new instruments 
designed specifically to address DEEPWAVE science 
goals: 1) a Rayleigh lidar measuring densities and tem-
peratures from ~20 to 60 km, 2) a sodium resonance 
lidar measuring sodium densities and temperatures 
from ~75 to 100 km, and 3) an advanced mesosphere 
temperature mapper (AMTM) measuring tempera-
tures in a horizontal plane at ~87 km with a field of 
view (FOV) of ~120 km along track and 80 km cross 
track. AMTM measurements were augmented by two 
side-viewing infrared (IR) airglow “wing” cameras 
also viewing an ~87-km altitude that extended the 
cross-track FOV to ~900 km. A second aircraft, the 
DLR Falcon, participated in DEEPWAVE during the 
last half of the GV measurement interval. It hosted 
in situ dynamics and chemistry measurements and a 
downward-viewing aerosol Doppler lidar measuring 
line-of-sight winds below the Falcon, where aerosol 
backscatter was sufficient (see Table 2).

Ground-based DEEPWAVE measurements were 
likewise extensive (see Table 2). Radiosondes were 
launched at multiple sites, with those at three sites 
[two on the South Island (SI) western coast and one 
in the lee of the Southern Alps] providing frequent 
soundings during intensive observing periods (IOPs), 
and others launched from Tasmania and Macquarie 
Island coordinated with research flights (RFs) to sup-
port GW and predictability objectives in those regions. 
A 449-MHz wind profiler (WP) on the South Island 
western coast measured three-component winds 
continuously from ~0.5 to ~3–6 km. Additional in-
struments in the lee of the Southern Alps included 
1) a ground-based AMTM measuring the horizontal 
temperature structure at ~87 km, 2) a Rayleigh lidar 
measuring temperatures from ~22 to 85 km, 3) two 
all-sky airglow imagers (ASIs) measuring airglow 
brightness at several altitudes from ~87 to 96 km, 
and 4) a Fabry–Perot interferometer (FPI) measuring 
winds and temperatures centered near ~87 and 96 km. 
For reference, the various airglow layers observed by 
the AMTMs, the ASIs, and the FPI all have full-width 
half maxima (FWHM) of ~7–10 km and may vary in 
altitude by several kilometers about their nominal 

Table 1. Science goals.

• Detailed measurements and modeling of GW sources, propagation, momentum fluxes, instabilities, and effects, 
from their sources in the troposphere into the MLT, in the GW hotspot over New Zealand and Tasmania, and the 
Southern Ocean.

• Understanding GW variations throughout the stratosphere and the implications for momentum flux divergence 
and drag.

• Studies of GW propagation, filtering by mean and large-scale motions, and nonlinear interactions and instabilities 
impacting GW penetration into the MLT, where GW momentum deposition has major influences on circulation, 
structure, and variability.

• Predictability studies of GW sources, propagation, breaking, and their influences on forecasting.

• Characterization of GW sources, scales, amplitudes, intermittency, and momentum transport throughout the 
atmosphere as inputs to improved GW parameterizations for NWP, climate, and general circulation models.
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altitudes. A second Rayleigh lidar and a meteor radar 
measuring winds from ~80 to 100 km were deployed 
at Kingston, Tasmania. Ground-based instrument 
sites are shown in Fig. 1 (bottom). Figure 2 shows the 
extent of all DEEPWAVE measurements in altitude 
and latitude.

DEEPWAVE began with a test f light-planning 
exercise from 1 to 10 August 2013 to gain experience 
with forecasting and flight planning and to assess the 
reliability of such forecasts in preparation for the real 
field program. This effort, which is summarized and 
archived online (see appendix A), was judged to be 
quite successful and led to confidence in the utility of 
a suite of forecasts and ancillary satellite products in 
guiding DEEPWAVE IOPs and flight plans.

The DEEPWAVE field program was supported by 
an extensive operations center at Christchurch Inter-
national Airport that coordinated all logistical and 
measurement activities (see appendix B). Forecasting 
and flight planning was supported by a suite of global, 
mesoscale, and regional models that proved to be 
highly valuable and often quite accurate on shorter 
time scales for final flight planning (see Table 3). 
These models are now being applied in concert with 
DEEPWAVE data analysis efforts to answer the sci-
ence questions posed in Table 1. To aid DEEPWAVE 
research, a comprehensive DEEPWAVE data archive 
and management plan has been developed (see ap-
pendix A).

MOTIVATIONS. GWs, or buoyancy waves, for 
which the restoring force is due to negatively (positive-
ly) buoyant air for upward (downward) displacements, 
play major roles in atmospheric dynamics, spanning 
a wide range of spatial and temporal scales. Vertical 
and horizontal wavelengths, λz and λh, respectively, 
for vertically propagating GWs are dictated by their 
sources and propagation conditions and range from 
meters to hundreds and thousands of kilometers, re-
spectively, with typical scales increasing by ~10 times 
or more from the troposphere to the MLT. Intrinsic 
frequencies (i.e., with respect to the local flow) vary 
from the inertial frequency to the buoyancy frequency. 
GWs at lower frequencies dominate the energy spec-
tra, but higher-frequency GWs have larger vertical 
group velocities and contribute disproportionately 
to vertical transports of energy and momentum. As 
a result, smaller-scale GWs (λh ~ 10–200 km) have 
larger impacts on atmospheric circulation, weather, 
and climate, but their effects are much more challeng-
ing to quantify. GW influences typically increase with 
altitude because decreasing density implies increasing 
GW amplitudes and effects. Large GW amplitudes 

drive nonlinear (NL) wave–wave and wave–mean flow 
interactions, instabilities, turbulence, and energy and 
momentum deposition that result in a strong evolu-
tion of the GW spectrum with altitude. These complex 
dynamics, and their significant dependence on GW 
sources and the environments through which they 
propagate, pose major challenges for their parameter-
izations in global weather and climate models.

Fig. 1. (top) DEEPWAVE region of airborne and 
ground-based measurements over New Zealand, 
Tasmania, the Tasman Sea, and the Southern Ocean. 
Colors show the GW hotspots in AIRS rms tempera-
ture for Jun–Jul 2003–11 at 2.5 hPa. (bottom) Ground-
based instruments contributing to DEEPWAVE in 
New Zealand and elsewhere (see legend). The major 
orographic features are Mt. Cook and Mt. Aspiring, 
and red lines show flight tracks MC1, MC2, MA1, and 
MA2, of which MC1 and MA2 were used for RF12 and 
RF22 measurements shown in Figs. 7, 9, and 10.
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Table 2. Instruments and capabilities.

Instrument Variable Altitude

GV instruments

Avionics/GPS (x, y, z), (U, V, W) FL

Gust probe u, v, w at 25 Hz FL

279 dropsondes Vh(z), q(z), T(z) FL–ground

MTP T(z) FL ± ~5 km

Rayleigh lidar ρ(z), T(z) ~20–60+ km

Na resonance lidar ρNa(z), T(z) ~75–100 km

AMTM T(x, y), zenith ~87 km

Airglow cameras I(x, y), side views ~87 km

Falcon instruments

Avionics/GPS (x, y, z), (U, V, W) FL

Gust probe u, v, w at 25 Hz FL

Doppler lidar u(x, z), w(x, z) ~0–10 km

Ground-based instruments

WP: Hokitika (U, V, W)(z) ~0–4 km

Radiosondes: Haast (51), Hokitika (145), 
Lauder (98), and at Hobart and South Islands

Vh(z), T(z), q(z) ~0–30 km

Rayleigh lidars: Lauder and Kingston ρ(z), T(z) ~20–70 km

AMTM: Lauder T(x, y) ~87 km

ASIs: Lauder and MJO I(x, y) all sky ~87–96 km

FPI: MJO Vh, T ~87, 96 km

Meteor radar: Kingston Vh(z) ~80–100 km

climate models that are acknowledged to have 
major deficiencies.

The importance of GWs in multiple atmospheric 
processes has led to thousands of papers dealing with 
diverse GW topics including 1) sources; 2) propaga-
tion and refraction in variable environments; 3) linear 
and nonlinear behavior; 4) wave–wave and wave–
mean flow interactions; 5) instabilities and turbulence 
due to large GW amplitudes and superpositions; 6) 
energy, momentum, and tracer transports; 7) param-
eterizations of GW effects in large-scale (LS) models; 
and 8) GW influences on other processes such as con-
vection, cloud microphysics, chemical reactions, and 
plasma dynamics and instabilities in the ionosphere. 
Many other papers have addressed important GW 
roles in oceans, lakes, other planetary atmospheres, 
and stellar interiors.

PREVIOUS RESEARCH. The scope of GW dy-
namics and roles is reflected in the many seminal 
papers, reviews, and books describing these various 

Scientific interests and societal needs have mo-
tivated many previous studies of GWs from the 
stable boundary layer and troposphere, through the 
stratosphere and mesosphere, and into the thermo-
sphere. Among the more important of these are the 
following:

1)  GWs pose hazards to people and property; exam-
ples include sometimes severe downslope winds 
and severe turbulence at airline flight altitudes;

2)  GWs exhibit a wide range of dynamics and effects 
that play important roles in atmospheric weather 
and climate from the surface into the MLT, but 
many of these are poorly under stood at present;

3)  GW motions are incompletely resolved both in 
global satellite observations and in global nu-
merical weather prediction (NWP) and climate 
models, and so their effects in large-scale weather 
and climate models must be parameterized; and

4)  Inadequate understanding and characterization 
of GW dynamics and effects have resulted in 
parame terizations of their effects in NWP and 
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processes. Examples of those addressing atmospheric 
GW topics of most relevance to DEEPWAVE science 
include the following:

1)  GW linear dynamics, propagation, conservation 
properties, and fluxes (Hines 1960; Eliassen and 
Palm 1961; Bretherton 1969a,b; Booker and Breth-
erton 1967; Gossard and Hooke 1975; Smith 1980; 
Nappo 2013);

2)  GW sources, characteristics, and responses (Fritts 
1984; Fritts and Alexander 2003);

3)  GW refraction, mean flow interactions, and re-
sponses (Lindzen and Holton 1968; Holton 1982; 
Garcia and Solomon 1985; Haynes et al. 1991; 
Sutherland 2010; Bühler 2014);

4)  GW spectral properties, interactions, instabilities, 
and saturation (Yeh and Liu 1981; Smith et al. 
1987; Hines 1991; Lombard and Riley 1996; Son-
mor and Klaassen 1997; Fritts et al. 2009); and

5)  GW parameterizations for NWP and climate 
models (Lindzen 1981; Holton 1982; McFarlane 
1987; Warner and McIntyre 1996; Hines 1997a,b; 
Kim et al. 2003; Fritts and Alexander 2003).

Below we provide an overview of previous re-
search on atmospheric GWs, focusing on airborne 

measurement programs, but also noting contribu-
tions by other ground-based, in situ, and satellite 
measurements (a number of which were employed 
during DEEPWAVE). Numerous modeling studies 
have likewise addressed GW sources, propagation, 
linear and nonlinear dynamics, and their various ef-
fects. However, we will restrict our overview to those 

Fig. 2. North–south cross section showing the types of 
airborne and ground-based instruments contributing 
to DEEPWAVE measurements and their coverage in 
latitude and altitude.

Table 3. Forecasting and research models. FV = finite volume. DNS = direct numerical simulation and 
NCEP GFS = National Centers for Environmental Prediction Global Forecast System.

Model
Type,  
application

Horizontal Resolution

AltitudesOperational/ 
real time

Research

ECMWF IFS Global, FC TL1239 (~16 km) 0–80 km

NCEP GFS Global, FC T574 (~23 km) 0–65 km

NIWA/UKMO UM Global, FC N768 (~17 km) 0–80 km

NAVGEM Global, FC, RE T359 (~37 km) T119–T425 
(~30–110 km)

0–70 km

COAMPS adjoint Regional, FC, 
RE

35 km 5–35 km 0–30 km

COAMPS Regional, FC, 
RE

5 and 15 km 1–15 km 0–50 km

NZ Limited Area 
Model (NZLAM)

Regional, FC 12 km 0–80 km

NZ Convective Scale 
Model (NZCSM)

Regional, FC 1.5 km 0–40 km

WRF (various) Regional, FC, 
RE

6 km 2 km 0–45 km

FR linear Local, FC, RE 0.5–1 km any 0–100 km

FV DNS Local, RE 20 m–1 km 0–400 km

Spectral DNS Local, RE 1–10 m 0–10 km
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efforts performed specifically for comparisons with 
observational data or which offer a global perspective 
on resolved GW sources, propagation, and effects.

The earliest studies of mountain waves (MWs) in 
the 1930s employed balloons and gliders to sample 
MW flows in North Africa and Europe (e.g., Queney 
1936a,b; Küttner 1938, 1939; Manley 1945). These 
observations provided key insights into the structure 
of MWs and lee waves and, together with the Sierra 
Wave Project (see below), motivated initial theoreti-
cal advances (e.g., Queney 1947; Scorer 1949; Long 
1953, 1955; see also Grubišić and Lewis 2004). Other 
observations of plasma motions in the ionosphere 
(now called traveling ionospheric disturbances) 
motivated the seminal paper by Hines (1960) that 
provided the theoretical framework for GW propa-
gation throughout the atmosphere. Brief overviews 
of subsequent GW research using ground-based, in 
situ, and satellite measurements, accompanying more 
recent airborne programs, and employing mesoscale 
and global modeling are provided below.

Ground-based, in situ, and satellite measurements. 
Ground-based and in situ measurement capabilities 
have improved dramatically since the earliest MW 
studies. Radiosondes have provided evidence of GW 
sources, scales, amplitudes, intrinsic properties, and 
fluxes from the surface into the middle stratosphere for 
many years (e.g., Tsuda et al. 1994; Allen and Vincent 
1995; Sato and Dunkerton 1997; Sato and Yoshiki 2008; 
Geller et al. 2013). Stratospheric superpressure balloon 
measurements have likewise defined GW intrinsic 
properties and momentum fluxes (MFs) in the lower 
stratosphere and, in particular, their intermittency and 
potential for infrequent, but very strong, GW events to 
contribute a large fraction of the total momentum flux 
(e.g., Hertzog et al. 2008; Plougonven et al. 2008, 2013). 
Rocketborne falling spheres and newer ionization 
gauges, lidars, and other probes have measured winds, 
temperatures, and turbulence from ~30 to 100 km and 
enabled studies of energy dissipation rates due to GW 
breaking, MW filtering during a stratospheric warm-
ing, and anomalous MLT mean structure accompa-
nying strong planetary waves (PWs) in the Southern 
Hemisphere and other dynamics (e.g., Rapp et al. 2004; 
Wang et al. 2006; Goldberg et al. 2006).

Multiple types of radars have quantified GW am-
plitudes, scales, spectral character, momentum fluxes, 
and evidence of various interaction and instability 
processes from the troposphere to the MLT for about 
five decades (e.g., Gossard et al. 1970; Atlas et al. 1970; 
Woodman and Guillen 1974; Sato and Woodman 
1982; Vincent and Reid 1983; Balsley and Garello 

1985; Fritts and Rastogi 1985; Fritts and Vincent 1987; 
Smith et al. 1987; Tsuda et al. 1989, 1990; Sato 1994; 
Thomas et al. 1999; Pavelin et al. 2001; Luce et al. 
2008). Rayleigh and resonance lidars have likewise 
contributed to the definition of GW properties via 
measurements of temperatures, winds, and/or metallic 
species densities from very low altitudes to ~100 km or 
above (e.g., Chanin and Hauchecorne 1981; Gardner 
and Voelz 1987; She et al. 1991; Whiteway and 
Carswell 1994; Williams et al. 2006; Duck et al. 2001; 
Alexander et al. 2011; Lu et al. 2015). Other optical 
instruments, especially ASIs and the newer AMTMs, 
provide valuable information on GW horizontal wave-
lengths, orientations, phase speeds, and amplitudes, 
sometimes at multiple altitudes, that contribute greatly 
to quantification of GW character, propagation, and 
potential for instability and mean flow interactions 
(e.g., Gavrilov and Shved 1982; Taylor et al. 1995; 
Taylor and Hapgood 1988; Hecht et al. 1997, 2001; 
Walterscheid et al. 1999; Nakamura et al. 2003; Smith 
et al. 2009; Pautet et al. 2014; Hecht et al. 2014; Fritts 
et al. 2014).

Multi-instrument measurement programs per-
formed at facilities having extensive ground-based 
instrument capabilities, such as those that often 
accompany large radar and/or rocket facilities, have 
made especially valuable contributions to GW stud-
ies. This is because no single instrument can define all 
of the atmospheric properties and spatial and tempo-
ral variability needed to fully quantify the local GW 
field. Examples of these facilities include the Arctic 
Lidar Observatory for Middle Atmosphere Research 
in Norway (69.3°N); the Poker Flat Research Range in 
Alaska (65.1°N); the Bear Lake Observatory in Utah 
(42°N); the middle- and upper-atmosphere (MU) 
radar in Japan (34.9°N); the National Atmospheric 
Research Laboratory in India (13.5°N); the Equatorial 
Atmosphere Radar (EAR) in Indonesia (0°); the Jica-
marca Radio Observatory in Peru (12°S); the Andes 
Lidar Observatory in Chile (30.2°S); Buckland Park in 
Australia (35°S); the Davis (Australia) and Syowa (Ja-
pan) Antarctic stations (68.6° and 69°S, respectively); 
and additional facilities having valuable correlative 
instrument capabilities in Antarctica, Argentina, 
Australia, Brazil, Canada, China, France, Germany, 
India, Puerto Rico, Sweden, and elsewhere.

Measurements of radiances and inferred tem-
peratures by multiple satellite instruments employing 
limb, sublimb, and nadir viewing have been used to 
estimate GW temperature variances and momentum 
fluxes from the lower stratosphere into the MLT for 
many years. These have provided enticing insights 
into GWs arising from various sources. In many 
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cases, however, satellite measurements exhibit strong 
observational constraints because of line-of-sight 
averaging or weighting-function depths comparable 
to, or greater than, the smaller, but important, GW 
scales. Such measurements nevertheless reveal the 
larger-scale responses to multiple sources, define the 
global hotspots of GW activity and their seasonal 
variations, and on occasion capture very strong GW 
responses under ideal viewing conditions (e.g., Dewan 
et al. 1998; Eckermann and Preusse 1999; Ern et al. 
2004; Eckermann et al. 2007; Wu and Eckermann 
2008; Alexander et al. 2009, 2010; Eckermann and 
Wu 2012; Geller et al. 2013; Hendricks et al. 2014). 
Figure 3 shows the measurement capabilities of various 
satellite viewing geometries compared to DEEPWAVE 
and the GW wavelengths expected to account for the 
major GW momentum fluxes. Nadir measurements 
[e.g., Atmospheric Infrared Sounder (AIRS)] extend to 
relatively small GW λh, but these often fail to capture 
the smaller-λh GW responses inferred to contribute 
the largest local momentum fluxes (Fritts et al. 2002, 
2014; Hertzog et al. 2012). Nadir measurements also 
often fail to capture larger-λh GWs when the GW 
λz is comparable to or smaller than the depth of the 
weighting function (e.g., Eckermann et al. 2009; Gong 
et al. 2012).

More recent airborne measurement programs. The next 
significant airborne measurement program following 
those in the 1930s was the Sierra Wave Project. This 
project employed two gliders in 1951/52 and two glid-
ers and two powered aircraft in 1955, together with 
radiosondes and ground measurements, and yielded 
a significantly improved understanding of MW struc-
ture and related theoretical advances (Grubišić and 
Lewis 2004). Subsequent MW and lee-wave studies 
over the Rockies in the 1960s and 1970s used improved 
instrumentation aboard various aircraft to sample the 
MW, lee wave, and turbulence environments accompa-
nying MW breaking. These provided more complete 
descriptions of the flow structures and evolutions 
and motivated initial modeling of these events (e.g., 
Kuettner and Lilly 1968; Lilly and Kennedy 1973; 
Brinkmann 1974; Clark and Peltier 1977; Lilly 1978; 
Klemp and Lilly 1978; Lilly et al. 1982).

More recent MW airborne studies benefitted 
from further expanded measurement capabilities, 
including dropsondes, GPS positioning, and/or the 
MTP, ground-based instruments, and associated 
modeling, for example, over the Welsh mountains 
(Whiteway et al. 2003); over the Alps during the 
Alpine Experiment (ALPEX), Pyrénées Experiment 
(PYREX), and Mesoscale Alpine Programme (MAP) 

(e.g., Bougeault et al. 1990, 2001; Smith et al. 2002; 
Doyle and Smith 2003; Doyle and Jiang 2006); over 
the Sierra Nevada during the Terrain-Induced Rotor 
Experiment (T-REX) (e.g., Grubišić et al. 2008; Smith 
et al. 2008; Doyle et al. 2011); and elsewhere (e.g., 
Brown 1983; Whiteway et al. 2003; Doyle et al. 2005). 
Additional airborne studies explored the influences of 
MWs on the formation of polar stratospheric clouds 
at Arctic and Antarctic latitudes (e.g., Carslaw et al. 
1998; Eckermann et al. 2006b).

Other airborne programs targeted more general 
GW responses. The Global Atmospheric Sampling 
Program (GASP) employed commercial aircraft for 
global in situ measurements that enabled comparisons 
of GW responses to various sources (e.g., Nastrom and 
Fritts 1992; Fritts and Nastrom 1992). The Airborne 
Lidar and Observations of Hawaiian Airglow 1990 
(ALOHA-90) and the Airborne Lidar and Observa-
tions of Hawaiian Airglow/Arctic Noctilucent Cloud 
Campaign 1993 (ALOHA/ANLC-93) measure-
ment programs employed a lidar and ASI to sample 
GWs extending from the stratosphere into the MLT 
(Hostetler et al. 1991; Hostetler and Gardner 1994; 
Swenson et al. 1995). Several airborne measurements 

Fig. 3. Schematic of the sensitivity of various satellite 
measurement techniques to GW horizontal and verti-
cal wavelengths (after Preusse et al. 2008) relative to 
the GW scales expected to contribute most to GW 
momentum fluxes throughout the atmosphere (pink). 
The instrument categories include microwave limb and 
sublimb (e.g., MLS), infrared limb [e.g., High Resolution 
Dynamics Limb Sounder (HIRDLS) and SABER], and 
nadir [e.g., AIRS and Advanced Microwave Sounding 
Unit (AMSU)]. The range of scales resolved by GV 
lidars (dashed line) is determined by the altitude cover-
age of each lidar separately (~30–40 km) and together 
(~80 km), the length of individual flight segments 
(~500–2000 km), and the minimum temporal and verti-
cal averaging required for a particular measurement.
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Table 4. IOP and research flight focuses and summaries. TW = trailing wave, PF = predictability 
flight, FL = flight level, SI = South Island, CW = convective waves, FWs = frontal waves, SO = South-
ern Ocean.

IOP RF Date Primary/secondary 
targets

Flight summary

1 1 6 Jun MWs/TWs/PF Weak GWs/sources expected/verified

2 2 11 Jun MWs, Tasmania Weak FL GWs, large amplitudes in MLT

3 3 13 Jun PF, Tasman Sea Successful PF

4 14 Jun MWs/TWs SI MA2 MWs/TWs at FL, MLT MWs

4 5 16 Jun MWs/TWs SI MC2 Weak MWs at FL, in stratification and MLT

5 6 18 Jun MWs over Tasmania Weak FL responses, possible MWs in MLT

6 7 19 Jun MWs/CWs/FWs, eastern 
ocean

Significant/diverse FL/MLT GW activity

7 8 20 Jun MWs/TWs SI MA1 Weak MWs, FL and MLT

8 9 24 Jun PF Tasman Sea, MC2 PF, FL MW breaking/turbulence in MLT

10 25 Jun MWs/TWs SI MC2 Significant MWs, MLT MWs/CWs

9 11 28 Jun PF Tasman Sea, SI MC2 CWs, jet stream GWs, MLT GWs/MWs

12 29 Jun MWs/TWs SI MC2/MA2 Strong MWs/breaking, MWs in MLT

F1 30 Jun MWs SI MA2 Strong, transient MWs; immediately after 
RF12

13 30 Jun MWs/TWs SI MC2/MA2 Similar to RF12, MWs and GWs in MLT

F2 30 Jun MWs SI MA2 As for F1, but weaker MWs

14 1 Jul MWs/TWs SI MC1 Weak FL MWs, stronger in MLT

CF F3 2 Jul Tropopause fold over SI Moderate GWs near the jet and tropical 
fold

15 3 Jul Lee of SI Daytime flight, FL measurements only

10 F4 4 Jul MWs SI MA1 Strong MWs; immediately before RF16

16 4 Jul MWs/TWs SI MA1 Largest FL MWs, also MLT MWs

F5 4 Jul MWs/TWs SI MA1 Strong MWs; together with RF16

11 17 5 Jul SO waves (east and south) Large-scale, large-amplitude GWs in MLT

12 18 7 Jul PF SO/Tasman Sea Good jet stream FL and MLT GWs

19 8 Jul SO waves Large-scale, large-amplitude GWs in MLT

13 20 10 Jul PF/MWs SO SI MC2 Joint with F6, significant MLT GWs

F6 10 Jul Intercomparison flight with 
RF20

Ongoing analysis

F7 11 Jul MWs SI MC2 Moderate MWs

21 11 Jul MWs/TWs SI MC2 With F7 and F8, FL and MLT MW re-
sponses

F8 11 Jul MWs SI MC2 Moderate MWs

F9 12 Jul MWs SI MC2 and north Varying/moderate GW responses over SI

F10 13 Jul MWs SI MC2 and north Varying/moderate GW responses over SI

22 13 Jul MWs SI MC1 Large-scale/amplitude GWs/MWs in MLT

14 23 14 Jul SO/island waves Strong/variable MLT MWs Auckland Island

24 15 Jul SO/island waves Significant GWs in AIRS and MLT

15 F12 16 Jul MWs SI MC2 and north Weak MWs, FL and MLT

16 25 18 Jul SO waves Strong SI GWs, SO GWs AIRS/MLT

26 20 Jul MWs SI along mountains Weak FL GWs, strong AIRS and MLT

F13 20 Jul MWs SI along mountains Moderate FL GWs; after RF26
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also provided evidence of GWs generated by deep con-
vection and their momentum fluxes at flight altitudes 
(e.g., Kuettner et al. 1987; Pfister et al. 1993; Alexander 
and Pfister 1995).

Mesoscale and global modeling of GWs. Modeling 
capabilities for mesoscale and global GW studies 
have improved dramatically in recent years because 
of ever-increasing computational resources. As a re-
sult, various models have been employed in support 
of GW measurement programs and to identify GW 
sources and key dynamics spanning larger spatial 
scales. Mesoscale models have aided the interpre-
tation of MAP, T-REX, and other airborne MW 
programs, been employed for intermodel compari-
sons for several events (e.g., Dörnbrack et al. 2001; 
Smith et al. 2002; Doyle and Smith 2003; Doyle and 
Jiang 2006; Doyle et al. 2000, 2011), and assessed the 
dynamical responses and resolution dependence of 
airflow over small islands (e.g., Vosper 2015). Global 
forecast and research models (REs) now achieve 
spatial resolutions of ~25 km or better that enable 
direct modeling, rather than parameterization, 
of GWs extending to horizontal scales as small as 
~100 km. As examples, Yamashita et al. (2010) showed 
that the European Centre 
for Medium-Range Weather 
Forecasts (ECMWF) T799 
model described GWs hav-
ing λx > 100 km that agreed 
reasonably w it h a much 
higher-resolution Weather 
Research and Forecasting 
(WRF) Model simulation and 
AIRS observations of GWs 
due to a typhoon, exhibited 
similar GW variance distribu-
tions as the Microwave Limb 
Sounder (MLS), but under-
estimated GW amplitudes 
by ~2 t imes compared to 
Sounding of the Atmosphere 
using Broadband Emission 
Radiometry (SABER) mea-
surements. Shutts and Vosper 
(2011) employed the Met Of-
fice (UKMO) and ECMWF 
global models and a very-
high-resolution (4 km) uni-
fied model to examine the 
MW energy and momentum 
fluxes over the southern An-
des. They found a peak in the 

fluxes at λx ~ 400 km, with approximately half the 
fluxes at λx < 200 km. Sato et al. (2012) used a high-
resolution middle-atmosphere general circulation 
model (GCM) to explore the stratospheric dynamics 
of MWs having λx ~ 200 km and larger arising from 
the southern Andes. They found that the MWs refract 
strongly into the polar vortex because of horizontal 
wind shears and yield downward-propagating re-
sponses below ~40 km because of nonlinear dynamics 
at higher altitudes. Similar improvements in charac-
terization of MW and more general GW influences 
at higher spatial resolution were also found to occur 
in the Community Atmosphere Model, version 4.0 
(CAM4), and the Whole Atmosphere Community 
Climate Model (WACCM) (Bacmeister et al. 2014; 
Liu et al. 2014).

FIELD PROGRAM AND EPO OVERVIEW. 
The DEEPWAVE field program was complex and was 
made possible by the participation of a large number 
of individuals from the NSF principal investigator 
(PI) teams, NCAR, Naval Research Laboratory (NRL), 
DLR, National Institute of Water and Atmosphere 
Research (NIWA), Australian Antarctic Division 
(AAD), and other colleagues and students in New 

Fig. 4. DEEPWAVE IOPs (red rectangles with white labels) shown with 
respect to (top) the large-scale ECMWF horizontal winds and potential 
temperatures (contours) and (bottom) the Hokitika WP eastward 6-h mean 
winds throughout the DEEPWAVE field program.
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Table 5. GB–IOP (no coincident RF) Lauder lidar/AMTM GW summaries. T' = temperature fluctua-
tions, MF = momentum flux, I' = intensity fluctuations, and SS = small scale.

GB–IOP Date GW responses, MW forcing, and large-scale influences

GB1 30 May ~20–60-km MWs and other GWs, apparent correlation with T

GB2 31 May Slow ~60-km GWs with strong, sharp “front” and cooling/brightening

GB3 1 Jun MWs ~80 km moderated by larger-scale wave with large T', U ' ~ 10 m s−1

GB4 2 Jun Very strong MWs ~ 15–80 km, large MFs, little evidence of instabilities

GB5 11 Jun Apparent bore or NL wave train with sharp T increase thereafter

GB6 12 Jun Strange behavior in MLT

GB7 15 Jun Strong AMTM I' and T' modulation in MLT

GB8 18 Jun MWs and other responses in MLT

GB9 19 Jun Lots of MLT GWs, MWs not dominant—coordinate with RF7

GB10 21 Jun Very strong MWs ~ 15–80 km, large MFs, instabilities, weak MW forcing

GB11 22 Jun Lots of GW responses, multiple SS events in MLT

GB12 23 Jun Lots of GW responses, multiple SS events in MLT

GB13 26 Jun Large linear/nonlinear MWs, SS instabilities in MLT

GB14 28 Jun Strong SS MWs and instabilities in MLT

GB15 4 Jul Strong complex GWs in MLT, mostly westward propagation

GB16 10 Jul Large-amplitude, transient SS MWs ~ 10–100 km, very large SS MFs

GB17 14 Jul Large-amplitude, transient SS MWs ~ 30–40 km, very large MFs, north-
west–southeast alignment

GB18 16 Jul Significant SS GW activity, some MWs

GB19 17 Jul Strong, coherent, sustained SS MWs ~ 20–30 km, north-northwest–south-
southeast alignment

GB20 18 Jul Significant, persistent SS and LS MWs, north-northwest–south-southeast 
alignment

GB21 31 Jul–2 Aug Very large MW event in Lauder–Rayleigh lidar observations

GB22 14–15 Aug Very large MW event in Lauder–Rayleigh lidar observations

Zealand, Australia, and Austria. Altogether, over 100 
people contributed to various aspects of the program. 
DEEPWAVE participants and their roles are listed 
in appendix D. The various tasks included aircraft 
logistics, operations and maintenance, ground-based 
instrument installations, weather forecasting and up-
dates, flight planning and debriefs, personnel schedul-
ing, education and public outreach (EPO) activities, 
and local outreach. Most activities were performed 
during daytime, but, because of the extensive use of 
the new GV lidars and imagers, most research flights 
and all ground-based optical measurements were 
performed at night. The major components of the 
program are discussed further below.

Weather forecasting, briefings, and updates. Daily 
weather forecasting began each morning, with efforts 
coordinated by a lead forecaster and contributed to 
by a team including scientists, students, and NIWA 
staff using local weather observations and forecasts 

and mesoscale and global forecast models (FCs; see 
Table 3). The forecast models often proved to be 
quite accurate on short time scales and hence very 
valuable for these purposes. The focus was on events 
having GW responses expected to penetrate into the 
stratosphere and MLT and weather impacting GV 
operations. Weather briefings occurred each day at 
1300 local time (LT) [0100 univeral time (UT)] and 
typically reviewed the weather for that day (if there 
was a research flight scheduled) and 1–3 days out for 
flight planning purposes. On days having research 
flights scheduled, an additional weather update was 
also provided ~2 h before flight departure.

Flight planning. Flight planning typically involved 
submission of flight proposals by individuals or teams 
designed to address specific DEEPWAVE science 
questions. Occasionally, flight plans looked farther 
ahead and anticipated a combination of flights, for 
example, predictability and verification or successive 
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jet associated with frontal systems exhibits episodic 
maxima of ~30–50 m s−1 at ~8–12 km on similar 
time scales. Also seen in the second half of July are 
two intervals in which the polar night jet decreases, 
first to ~60 m s−1 (~15–20 July) and then to ~30 m s−1 
(beginning ~29 July). These intervals accompany 
significant enhancements in the zonal wavenumber 
1-PW amplitude that yield both a weak stratospheric 
warming and westward wind perturbations that ac-
count for the weaker ECMWF winds at these times.

Ground-based measurements. As noted above, DEEP-
WAVE was supported by extensive ground-based 
measurements. The WP operated continuously 

Fig. 5. (bottom) Radiosonde zonal wind and temperature profiles at Hokitika 
(blue) and Lauder (red) at 2307 UT 20 Jun (as best available data for 21 Jun), 
1053 and 1129 UT 29 Jun (RF7), 1403 and 1440 UT 4 Jul (RF16), and 1059 and 
0238 UT 13 Jul (RF22), respectively. (top) RF-mean and/or nightly mean tem-
peratures obtained with the GV airborne and Lauder ground-based Rayleigh 
lidars from 13 Jun to 20 Jul that reveal the variability of mean temperatures 
and atmospheric stability over South Island during DEEPWAVE. Note the 
code at bottom that specifies which lidar(s) contributed each day. Winds and 
temperatures on successive days are offset by 50 m s–1 and 20°C, respectively.

sampling of a multiday event. Often, alternative flight 
proposals were merged to optimize the expected 
results and/or address common measurement goals. 
A subcommittee of scientists that changed weekly 
determined the final flight plan in the event of com-
peting proposals. The selected flight plan was then 
sent to the Earth Observing Laboratory (EOL) team 
for review and feedback.

Research flights and large-scale context. All research 
flights [RFs and Falcon research flights (FFs)] for the 
GV and the Falcon were part of an IOP ranging from 1 
to 4 days to facilitate coordination with ground-based 
measurements. GV flight durations ranged up to ~9 h 
and flight distances ranged 
up to ~8,000 km. Falcon 
flights had maximum dura-
tions and lengths of ~3.5 h 
and ~3,000 km, respectively. 
The large majority of RFs 
and FFs were performed at 
high altitudes, ~12–13.7 km 
for the GV and ~10–11 km 
for the Falcon. For the GV, 
this was done for fuel effi-
ciency and because the GV 
lidars were not allowed to 
operate at lower altitudes. 
Both aircraft also performed 
a number of flight segments 
at lower altitudes to sample 
interesting events on vari-
ous occasions. MW flights 
targeted strong and weak 
forcing to span a range of re-
sponses at higher altitudes. 
The IOPs, dates, research 
targets, and flight summa-
ries for all RFs flown during 
DEEPWAVE are listed in 
Table 4.

IOPs are shown in the 
context of the large-scale 
ECMWF horizontal winds 
from 0 to 80 km in Fig. 4 
(top). The dominant fea-
ture is the polar night jet 
with a maximum wind of-
ten exceeding 100 m s−1 at 
~50–60 km that is presum-
ably modulated in strength 
by PWs on time scales of 
~5–10 days. The poleward 
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from 28 May to 28 July. Radiosondes were launched 
daily at Hokitika from 24 May to 18 July, at Lauder 
from 13 June to 1 August, at a higher cadence during 
IOPs at these sites and at Haast, and at Hobart and 
Macquarie Island to support flights or predictability 
objectives in those areas. The AMTM, ASIs, and 
FPI at Lauder and Mt. John Observatory (MJO) per-
formed routine nighttime observations spanning the 
DEEPWAVE core measurement interval. The DLR 
lidar at Lauder operated from 19 June to 6 November. 
The Kingston lidar operated in coordination with 
GV flights over Tasmania and the Tasman Sea, and 
the meteor radar at Kingston operated continuously 
beginning 10 June. The altitudes sampled by these 
various instruments are shown with vertical bars in 
Fig. 2. Additional ground-based IOPs were desig-
nated on nights for which interesting responses were 
observed that correlated with the forecast models 
and measurements at lower 
altitudes. These events are 
listed in Table 5.

Four examples of radio-
sonde measurements at Hoki-
tika and Lauder relevant to 
specific cases discussed fur-
ther below are shown in Fig. 
5 (bottom). Shown in Fig. 5 
(top) are RF-mean or nightly 
mean temperatures obtained 
with the GV airborne and 
Lauder Rayleigh lidars for 
each available measurement 
over South Island. These il-
lustrate some of the diversity 
of GW propagation environ-
ments from the surface to 
60 km during the DEEP-
WAVE program.

EPO activities. DEEPWAVE 
EPO efforts had two prima-
ry objectives: 1) to increase 
the awareness of students 
in kindergarten–grade 12 
of the field of atmospheric 
science by exposing them to 
research methods through 
engaging presentations and 
interactions with early-career 
scientists and 2) to increase 
publ ic awareness of t he 
DEEPWAVE science objec-
tives and societal benefits 

Fig. 6. (top) Flight-level vertical energy fluxes ‹p'w'› computed for each GV 
MW flight segment over South Island throughout the DEEPWAVE field pro-
gram. Note the large variability accompanying the largest RF mean energy 
fluxes and largest-amplitude MWs. (bottom) Regional vertical energy fluxes 
over South Island computed from WRF constrained by ECMWF IFS initial 
conditions at 4, 12, and 30 km as a guide to MW dissipation with altitude due 
to variable MW forcing and environments. Numerical designations along 
the x axis in the bottom panel show the RFs for which GV flight-level energy 
fluxes are displayed in the top panel.

on an international level. The program consisted of 
targeted student enrichment activities including 10 
presentations to 565 middle and high school students; 
Internet-based outreach efforts that included 11 edu-
cational web pages with 2,000 views in a 104-day pe-
riod, 15 Facebook posts, blog posts, and tweets from 
postdoctoral scholars in the field; a research aircraft 
public open house with over 250 visitors; media vis-
its resulting in several high-profile pieces broadcast 
in New Zealand; and various printed information. 
Additionally, 26 undergraduate and graduate (grad) 
students from eight organizations and universities 
were directly involved with DEEPWAVE research 
and operations, gaining valuable experience in ob-
servational fieldwork.

INITIAL MEASUREMENTS AND RESULTS. 
Initial DEEPWAVE data analysis efforts are addressing 
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a number of topics and yielding a variety of tantalizing 
results. Example “first results” that will be discussed 
briefly below include 1) strong variability of MW 
energy fluxes among, and within, the various MW 
flights; 2) evidence of MW breaking at flight altitudes; 
3) predictability targeting and influences; 4) MWs 
arising from weak forcing attaining large amplitudes 
at higher altitudes; 5) strong three-dimensional (3D) 
MW responses at high altitudes over Auckland Island; 
6) GWs in the stratosphere apparently generated 
within the jet stream; 7) responses to weak MW forc-
ing over several days that yielded intermittent MW 
breaking in the MLT; and 8) comparisons of DEEP-
WAVE measurements with model forecasts and AIRS 
temperature observations.

MW flight-level responses and predictability. An initial 
assessment of MW propagation employing GV flight-
level (FL) MW energy flux estimates 〈p'w'〉 (where p' 
and w' are the in situ GV measurements of pressure 
and vertical velocity perturbations, and brackets de-
note horizontal averaging) for each MW RF is shown 
in Fig. 6 (top). WRF Model estimates of these fluxes at 
4, 12, and 30 km for initial conditions specified by the 
ECMWF Integrated Forecasting System (IFS) model 
are shown in Fig. 6 (bottom) and were computed fol-
lowing Kruse and Smith (2015). The WRF GW energy 
f lux maxima typically accompany frontal systems 
that bring strong lower-level flow over South Island. 
RF energy f luxes are posi-
tive (negative) for upward 
(downward) MW propa-
gation, suggesting strong 
variability in MW strength 
and propagation within in-
dividual MW events. Mod-
eled energy f luxes suggest 
variable MW propagation 
and dissipation at higher 
altitudes depending on the 
MW forcing strengths and 
propagation environments. 
The numbered circles on the 
x axis in Fig. 6 (bottom) are 
the RFs for which computed 
energy f luxes are shown in 
the top panel.

One of the strongest MW 
events during DEEPWAVE 
occurred during RF12 on 
29 June. The GV flew a box 
pattern with repeated flight 
segments over Mt. Aspiring 

Fig. 7. GV flight-level gust-probe data from RF12 on 29 Jun. Two flight seg-
ments over Mt. Aspiring along MA2 (see Fig. 1) are shown: segment 14 at z = 
12.2 km (black) and segment 22 at z = 13.7 km (red). Shown are (a) vertical 
velocities, (b) along-track cross-mountain wind speed, and (c) terrain height. 
Note that the GV passed through a region of MW breaking on segment 22 
where the MW velocity exactly cancelled the along-track mean wind.

and Mt. Cook. Data from segments 14 and 22 along 
Mt. Aspiring f light-track 2 (MA2; see Fig. 1) are 
shown in Fig. 7. Most notable are the very different 
responses separated by only 1.5 km in altitude. At 
12.2 km, the along-track wind accelerated to 25 m s−1 
and then decelerated to 12 m s−1 over the high terrain. 
At 13.7 km, the disturbance was stronger and decel-
erated to ~0 m s−1, which is expected to accompany 
wave breaking. The vertical velocity fields (top panel) 
were also different at the two levels. At 12.2 km, these 
mostly showed a quasi-periodic train of small-scale 
(SS) waves downwind of the highest orography. 
These were likely trapped waves having small energy 
and momentum fluxes. At 13.7 km, a burst of high-
frequency turbulence occurred over the high terrain, 
likely accompanying wave breaking.

An example of the predictability component of 
DEEPWAVE is illustrated in Fig. 8 for 13 June 2014 
(RF3). The Coupled Ocean–Atmosphere Mesoscale 
Prediction System (COAMPS) forecast and adjoint 
models (Amerault et al. 2008; Doyle et al. 2014) 
were used to compute the forecast sensitivity to the 
initial state, and these regions of high sensitivity 
were targeted for additional dropwindsonde (DWS) 
observations. As an example, the color shading in the 
Tasman Sea (Fig. 8a) highlights the upstream regions 
where the 24-h COAMPS forecast kinetic energy in 
the lowest 1 km above the surface in the gray box is 
most sensitive to the initial-state 700-hPa u-wind 
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Fig. 8. (a) The sensitivity of the 24-h COAMPS forecast kinetic energy in the 
lowest 1 km above the surface (gray box) to the initial-state 700-hPa U-wind 
component at 0600 UTC 13 Jun 2014 (color scale with interval of 2 × 10−3 m s−1). 
(b) The evolved perturbations (m s−1) based on the scaled sensitivity after 
24 h of integration at 800 hPa near the crest-level height for the U-wind 
component valid at 0600 UTC 14 Jun. The GV flight track and DWSs (green 
dots) are shown in (a). The 700-hPa geopotential height analysis is shown in 
(a) with an interval of 30 m. The sensitivities in (a) are scaled by 105 km−3.

component. The sensitive regions most strongly influ-
ence MW launching and amplitudes over South Island 
24 h later. Green dots along the flight track show the 
DWS deployments for this assessment. The evolved 
perturbations (24 h) based on the sensitivity scaled 
to a maximum of 1 m s−1 at the initial time (Fig. 8b) 
exhibit a maximum over South Island with growth of 
~10 times for the u-wind component perturbations in 
this case. The GV flight the following day on 14 June 
served as the verification flight to assess the degree to 
which the targeted DWSs improve the prediction of 
MWs over South Island.

MW responses in the strato-
sphere and MLT accompa-
nying weak surface forcing. 
A major surprise during the 
DEEPWAVE field program 
was the observation of large-
amplitude, breaking MWs in 
the MLT on a night that the 
f light planning team had 
elected not to fly a MW mis-
sion because of the forecast 
of weak MW forcing condi-
tions. This quickly sensitized 
the team to conditions for 
which weak surface forc-
ing can nevertheless lead to 
large MW amplitudes at high 
altitudes potentially because 
of the largely linear MW 
propagation and an absence 
of instabilities and breaking 
in the stratosphere, in con-
trast to strong forcing events 
(e.g., Fig. 7).

One example of these 
MW dynamics was observed 
during RF22 (13 July), a case 
having weak cross-mountain 
f low and MW forcing but 
favorable vertical propaga-
tion conditions with strong 
eastward winds through 
the stratosphere and above. 
A subset of observations 
from the GV lidars and the 
AMTM and wing cameras 
is shown in Figs. 9 and 10. 
Figures 9c and 9d show two 
successive cross sections 
along Mt. Cook flight-track 
1 (MC1; see Fig. 1) of strato-

spheric temperatures from 20 to 60 km and sodium 
density perturbations obtained with the GV lidars. 
Figures 9a and 9b show corresponding cross sec-
tions of sodium mixing ratios for the same two cross 
sections. Rayleigh lidar temperatures are shown 
together with perturbation temperature contours 
from the ECMWF  IFS that contributed significantly 
to DEEPWAVE f light planning and were inter-
polated to the GV location in space and time for 
this comparison. Note, in particular, the very close 
agreement of the MW scales and phase structures 
between the GV lidar data and a composite of IFS 
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Fig. 9. GV lidar along-track vertical cross sections for the final two South 
Island flight segments of RF22 along MC1 (see Fig. 1) on 13 Jul. Seen are large-
scale, λh ~ 200–300 km, MWs in the stratosphere and other smaller-scale, 
λh ~ 30–80 km, MWs and GWs in the upper stratosphere and MLT accompa-
nying weak orographic forcing. (c),(d) Rayleigh lidar T' from 20 to 60 km and 
sodium lidar densities from 70 to 88 km. (a),(b) Sodium mixing ratios that 
clearly reveal vertical air parcel displacements. The Rayleigh lidar T' fields 
are shown with T' contours predicted by the ECMWF IFS and interpolated 
to the GV locations and measurement times.

analyses and 1-h predic-
tions, including the MW 
growth with altitude and 
the changing MW vertical 
wavelength λz accompanying 
the stronger winds extending 
to ~60 km and above. The 
major differences are that the 
IFS results underpredict (by 
~2–5 times) the large-scale 
MW amplitudes, and they 
appear not to capture some 
of the smaller-scale MWs 
contributing to the l idar 
temperature perturbations 
above ~40 km.

At higher altitudes, so-
dium mixing ratios measured 
by the GV sodium lidar reveal 
very large vertical displace-
ments because of the smaller-
scale MWs and other GWs. 
Peak-to-peak displacements 
as large as ~3–8 km imply 
these smaller-scale GWs have 
T' ~ 5–20 K or more and 
very large momentum fluxes. 
Rough estimates based on the 
observed GW scales and am-
plitudes measured on RF22 
are ~100–500 m2 s−2 or larger, 
which are ~1–2 decades larger 
than the expected mean val-
ues at these altitudes (e.g., 
Fritts and Alexander 2003; 
Fritts et al. 2014).

An example of a combined GV AMTM and wing 
camera cross-mountain image of OH airglow bright-
ness is shown in Fig. 10a for the vertical cross section 
shown in Fig. 9d. This reveals the same λh ~ 200–
300-km MW seen by the Rayleigh lidar and multiple 
additional MWs and other GWs at smaller horizontal 
wavelengths, λh ~ 30–80 km, at ~87 km. Additional 
horizontal cross sections of the IFS horizontal diver-
gence at 2 hPa (~43 km) at 0900 UT (Fig. 10b), and 
AIRS brightness temperature (radiance) perturbations 
at 2 hPa (Figs. 10c and 10d) suggest that the GV imag-
ers observed the upward extension of the larger- and 
smaller-scale MW field seen by the GV lidars. The IFS 
vertical and horizontal cross sections in Figs. 9 and 10 
captured both the vertical and horizontal structures of 
the large-scale MW and the associated trailing waves 
(TWs) for this event quite well.

Jet stream GW responses. Jet streams also represented 
a significant source of larger-scale GWs predicted by 
the NWP models during DEEPWAVE. Thus, several 
flights over the Southern Ocean (SO) specifically tar-
geted these GWs. An example of one cross section 
through an apparent jet-generated GW, and its predic-
tion by the IFS model, is shown in Fig. 11. As seen in 
the MW observations on RF22 (Fig. 9), Rayleigh lidar 
temperature measurements again reveal surprising 
agreement in the GW spatial structures and refraction 
with altitude with the changing environment. But 
again, GW amplitudes tended to be underestimated 
by the model fields interpolated to the GV locations 
and measurement times by up to ~2 times or more. 
While our initial comparisons employed only the IFS 
model, we note that other global and regional models 
supporting DEEPWAVE achieved similar successes in 
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Fig. 10. (a) Full GV AMTM and wing camera flight segment image of airglow 
brightness at ~87 km for the final east–west flight segment over Mt. Cook 
obtained between 0833 and 0911 UT 13 Jul during RF22 along MC1 (see Fig. 
1). Note the large-scale (λh ~ 200–300 km) MW having phases aligned slightly 
north-northwest–south-southeast and the smaller-scale GWs that are most 
evident in the brighter regions of the large-scale MW. ECMWF IFS horizontal 
divergence at 2 hPa (~43 km) at (b) 0900 UT (red positive, blue negative) and 
AIRS brightness temperature (radiance) perturbations (K) in swath nadir 
geometry from AIRS channel 74 at 2 hPa on 13 Jul during the (c) ascending 
and (d) descending Aqua overpasses of South Island. At these times, South 
Island lies between the outer scan edges of the AIRS swath imagery from 
successive satellite overpasses, separated by ~98 min and occurring at ~0141 
and ~0319 UT (ascending) and ~1248 and 1427 UT (descending).

characterizing GW responses to the various sources for 
which the GW spatial scales were well resolved. These 
comparisons will be highlighted in future papers.

MW responses over small islands. Given the poten-
tially strong MW responses at higher altitudes to 
flow over small SO island orography (e.g., Alexander 

and Grimsdell 2013), several 
DEEPWAVE flights overflew 
SO islands when deep MW 
forcing was expected. An 
example of these measure-
ments over and in the lee 
of Auckland Island by the 
GV imagers on RF23 with 
strong surface flow from the 
northwest is shown in Fig. 
12a. This image reveals ship 
wave temperature structure 
at ~87 km having a dominant 
λh ~ 40 km and evidence of 
a stronger trailing wave re-
sponse to the north, likely re-
sulting from filtering by the 
intervening winds. The GV 
AMTM also revealed a peak 
amplitude of T' ~ 20 K or 
larger immediately in the lee 
of Auckland Island. A MW 
response computed with 
the NRL Fourier–Ray (FR) 
linear model (Eckermann 
et al. 2006a) using upstream 
forcing profiles from NWP 
models and GV DWSs for 
this day captures some key 
features of the observed MLT 
MW field (wavelength and 
approximate amplitude) in 
Fig. 12b. Three GV passes 
over Auckland Island ~3–4 h 
later revealed breaking and 
instabilities that destroyed 
the MW field at ~87 km. As 
for RF22 (Fig. 9), the large 
amplitude and small λh of 
this response also imply a 
very large, but spatially local-
ized, MW momentum flux.

MW breaking observed on 21 
June. Finally, we illustrate 
ground-based MW observa-

tions that alerted the team to the importance of weak 
forcing events at high altitudes. This event occurred 
near the end of an interval of sustained weak MW 
forcing first observed on RF7 on 19 June to the south-
east of South Island (e.g., AIRS images show continu-
ous large-scale MW and trailing wave responses in 
the middle stratosphere throughout this interval). 
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Fig. 11. As in Figs. 9c and 9d, except showing apparent stratospheric GW 
responses to a jet stream observed on RF25 on 18 Jul. ECMWF horizontal 
winds (m s−1) are shown with colored contours below 15 km.

Three images of OH (~87 km) 
temperatures obtained with 
t he A MTM at Lauder at 
30-min intervals are shown 
in Figs. 13a–c. These reveal 
relatively stationary MWs 
exhibiting λh ~ 10–70 km, 
phases oriented largely north 
(N)–south (S), and maximum 
T' > 20 K. The images also ex-
hibit pronounced “sawtooth” 
patterns in the temperature 
f ields seen as gradual de-
creases in temperature from 
warm to cold followed by 
sudden transitions back to 
warm in progressing from 
east to west that are indicative 
of GW nonlinearity, including 
steepening, overturning, and 
breaking. The Lauder AMTM 
images cover only a portion of 
the larger-scale MW response 
also seen simultaneously by 
the Lauder ASI (Fig. 13d) 
and by AIRS ~2 h later (Fig. 
13e), both of which indicate 
that these MWs extend well 
upstream and downstream 
of the orographic source. They also appear for only 
~1 h on this day, suggesting that filtering by variable 
winds at these or lower altitudes must modulate 
these MLT responses, given that the AIRS responses 
are essentially continuous throughout ~4 days. As 
noted for the MWs seen on RF22 and RF23 discussed 
above, these strong breaking MWs over Lauder must 
likewise have very large momentum fluxes extending 
in this case over a large area.

SUMMARY. The DEEPWAVE field program was 
successfully executed because of the major efforts by 
many people and organizations (see appendix D) and 
an unprecedented and comprehensive suite of airborne 
and ground-based instrumentation (see Figs. 1 and 
2; Table 2). DEEPWAVE was also the first research 
program to systematically measure GW dynamics 
arising from various sources in the troposphere and 
stratosphere to altitudes of dissipation extending up to 
~100 km. DEEPWAVE measured GWs generated by 
orography, jet streams, frontal systems, deep convec-
tion, and secondary generation processes and spanned 
a range of forcing, propagation, and dissipation condi-
tions. The various DEEPWAVE measurements led to 

the initial identification of a large number of anticipated 
research targets (see Tables 4 and 5) and also yielded 
a number of surprises. These include the following:

1)  highly variable MW energy fluxes at flight alti-
tudes for weak and strong forcing;

2)  the interruption of ver tical MW propagation and 
result ing absence or strong attenuation of MWs 
at higher altitudes in cases of strong forcing and 
break ing in the stratosphere;

3)  the detection of secondary GW generation in 
regions of strong MW breaking;

4)  the potential for MWs due to weak forcing to 
penetrate to very high alti tudes and achieve very 
large amplitudes and momen tum fluxes;

5)  the penetration of MWs having very small hori-
zontal wavelengths of λh ~ 10–30-km to ~80–
100-km altitudes under weak forcing conditions;

6)  the generation of ship wave patterns due to small 
islands at small scales and large amplitudes in the 
MLT;

7)  the ubiquitous presence of larger-scale GWs from 
nonorographic sources in the stratosphere and 
mesosphere;
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Fig. 12. As in Fig. 10a, but for (a) the first flight seg-
ment across Auckland Island on RF23. Note the strong 
MW and trailing wave responses in the lee and largely 
north of the orography. The dominant response occurs 
at λh ~ 40 km and the peak amplitude is T' > 20 K. (b) 
An example of the FR model prediction of this MW 
response at 85.5 km in an environment provided by 
the Navy Global Environmental Model (NAVGEM), 
which agrees reasonably with the observed MW phase 
structure and amplitude.

8)  strong and coherent responses to orography and 
other GW sources at larger scales that were often 
remarkably consistent with the predictions of 
mesoscale and global models employed in DEEP-
WAVE forecasting and analysis efforts; and

9)  regions of initial condition sensitivity diagnosed 
from adjoint models were nearly always in areas 
of very active weather including jet streaks, fronts, 
and convection that played a prominent role in 
GW launching the following day.

Initial conclusions from our DEEPWAVE mea-
surements include confirmation of 1) the important 
roles of multiple sources of larger-scale large-
amplitude GWs (λh ~ 200–300 km or larger) that 
readily penetrate to higher altitudes; 2) the frequent 
refraction of larger-scale GWs into the polar vortex, 
including large-scale trailing MWs; 3) the importance 
of environmental wind and temperature fields in 
defining their evolving characteristics and the alti-
tudes to which they penetrate; and 4) links between 
GW sources and characteristics at higher altitudes. 
Initial DEEPWAVE observations and analyses also 
suggest that smaller-scale GWs 1) arise preferentially 
from orography, deep convection, and secondary GW 
generation in the stratosphere; 2) readily penetrate 
into the stratosphere and mesosphere under suitable 
propagation conditions; 3) are less likely to exhibit 
strong refraction into the polar vortex; 4) often at-
tain very large amplitudes at higher altitudes; and 
5) typically dominate the total momentum fluxes in 
these regions.

DEEPWAVE measurements also have implications 
for modeling of GWs arising from various sources. 
The high-resolution mesoscale and global models 
that supported DEEPWAVE appear to capture im-
portant aspects of MW generation and propagation 
when the MW scales are well resolved. The global 
models also perform well in defining the character 
of GW responses to various sources for larger-scale 
GWs. Compared to FL and lidar stratospheric 
measurements, however, these models typically un-
derestimated the measured GW amplitudes in the 
stratosphere and above.

Specific questions suggested by initial DEEP-
WAVE observations and modeling that further 
studies will attempt to resolve include the following:

1)  How do environmental conditions modulate the 
deep propagation of GWs from various sources?

2)  What roles do nonlinear dynamics and instabil-
ities play in interrupting GW penetration to 
higher altitudes?
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Fig. 13. Lauder AMTM images (180 km × 144 km) of MW breaking at ~82 km 
at (a) 1100, (b) 1130, and (c) 1200 UT 21 Jun under weak orographic forcing 
conditions (see the first radiosonde profile in Fig. 5). The AMTM images re-
veal MW responses at λh ~ 10–70 km that vary on time scales of ~5–10 min. 
The larger-scale MWs achieve temperature amplitudes of T' ~ 20 K or larger; 
the smaller-scale MWs exhibit amplitudes of T' ~ 5–10 K. (d) A coincident 
OH brightness image from the Boston University ASI at Lauder at ~82 km 
from the Lauder airglow imager that reveals that the AMTM images (dashed 
red rectangle with Lauder at the center) show only a portion of a large-scale 
MW response extending over a region larger than the southern South Island. 
(e) AIRS brightness temperature (radiance) perturbations in swath nadir 
imagery from channel 74 at ~2 hPa or 43 km at 1325 UT on descending Aqua 
overpass of South Island (red rectangle shows AMTM image location). Lauder 
AMTM and AIRS images show very similar large-scale MW responses and 
suggest coherent propagation of these MWs from the surface into the MLT.

3)  Which GW sources and 
spatial scales contribute 
most to total momentum 
f luxes as a function of 
altitude, and can these 
be quantified by current 
models and satellite mea-
surements?

4)  Which GW sources and 
spatial scales account for 
the largest latitudinal 
transport of momentum?

5)  What dynamics account 
for the spatial and tem-
poral intermittency of 
energy and momentum 
f luxes at different alti-
tudes?

6)  What are the dynam-
ics and consequences of 
multiscale GW superpo-
sitions throughout the 
lower and middle atmo-
sphere?

Our DEEPWAVE research 
team is actively pursuing 
multiple research topics and 
we anticipate that a number 
of results will be available to 
the community in the near 
future.
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Fig. A1. Catalog maps tool display of NSF/NCAR GV and DLR Falcon flight 
information during flights on Jul 11. The background is from the Multifunctional 
Transport Satellite-2 (MTSAT-2) satellite channel 2 IR image. Flight tracks for 
each aircraft are overlaid with aircraft icons indicating their current positions 
as of 0835 UTC. Wind barbs (black) are depicted at 10-min intervals along 
the GV flight track indicating measured flight-level winds. The blue and white 
circles indicate the position of DWS launch points and the white wind barbs 
indicate DWS winds at 250 hPa. The green and white circle south of Dunedin 
indicates a Constellation Observing System for Meteorology, Ionosphere and 
Climate (COSMIC) radio occultation sounding point. Skew T plots for DWSs 
and COSMIC data are viewable by clicking on the location circles.

APPENDIX A: DATA MANAGEMENT, FIELD 
CATALOG, AND ACCESS. Development and 
maintenance of a comprehensive data archive is a criti-
cal step in meeting the scientific objectives of DEEP-
WAVE. The goal is to make the dataset and documen-
tation available to the scientific community as soon as 
possible following the DEEPWAVE field program via 
a permanent DEEPWAVE web page. This web page 

is available online (at www 
.eol.ucar.edu/field_projects 
/deepwave). The web page 
includes information on op-
erations, logistics, facilities, 
instrumentation, mailing lists, 
meetings and presentations, 
education and outreach, and 
data management throughout 
the DEEPWAVE program.

EOL w i l l  maint a in  a 
DEEPWAVE data manage-
ment portal that provides a 
long-term archive and access 
to DEEPWAVE datasets for 
the DEEPWAVE PIs and the 
scientific community (http://
data.eol.ucar.edu/master 
_list/?project=DEEPWAVE), 
including the main archive 
at EOL and DEEPWAVE ar-
chives at other organizations. 
EOL will also ensure that 
“orphan” datasets (i.e., smaller 
regional and local networks) 
will remain available through 
the EOL DEEPWAVE archive. 
DEEPWAVE data will be 
available to the scientific com-
munity through a number of 
designated DEEPWAVE Data 
Archive Centers (DDACs), 
coordinated by NCAR/EOL 
and the main archive website 
noted above.

General users will have free 
and open access to all DEEP-
WAVE data, subject to proce-
dures at the various DDACs 
and the terms of the DEEP-
WAVE data policy. Key ele-
ments of this policy include the 
following: 1) timely submission 
of preliminary and final data to 
an archive; 2) exclusive access 

to the DEEPWAVE datasets by DEEPWAVE science 
team members from 29 January 2015 to 29 January 
2016; 3) full public data access on 1 February 2016; 
4) prompt notification of data providers and offers of 
coauthorship or attribution by data users; and 5) proper 
dataset citation using digital object identifiers (DOIs) 
and acknowledgment of DEEPWAVE data including 
the project name, data providers, and funding agencies.
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Table C1. DEEPWAVE participants and their roles. GATS = Global Atmospheric Technologies and 
Sciences. USU = Utah State University. ASPEN = Atmospheric Sounding Processing Environment. 
AVAPS = Airborne Vertical Atmospheric Profiling System.

Organization Participants DEEPWAVE roles

GATS Inc. Dave Fritts Lead PI, NSF/NCAR GV

Bifford Williams GV lidar PI and operator

Katrina Bossert Grad student, GV lidar 
operator

Tyler Mixa Grad student, Integrated 
Sounding System (ISS)/FC

Ruth Lieberman PW analyses

Brian Laughman GW modeling

Yale University Ron Smith Co-PI, NSF/NCAR GV

Alison Nugent, Chris Kruse, and Campbell 
Watson

Grad student, FC

Azusa Takeishi Grad student, ISS support

Christine Tsai Undergrad student

USU Mike Taylor Co-PI, GV, PI AMTM

Dominique Pautet Instrument scientist, 
AMTM

Neal Criddle Grad student, Lauder 
AMTM

Yucheng Zhao Scientist, GW analyses

NRL, Monterey Jim Doyle Co-PI, FC/modeling

Carolyn Reynolds Scientist, FC/modeling

Alex Reinecke Scientist, FC/modeling

NRL, Washington D.C. Steve Eckermann Co-PI, modeling

DLR, Germany Markus Rapp DLR PI, Falcon and GB

Andreas Dörnbrack DLR co-PI, Falcon and GB

NIWA, New Zealand Michael Uddstrom NIWA co-PI, FC

NCAR/EOL Jim Moore and Vidal Salazar NCAR operations director

Lou Lussier and Pavel Romashkin GV project manager

Scotty McClain, Bo LeMay, Lee Baker, and 
Ed Ringleman

GV pilot

Stuart Beaton, Al Cooper, and Jorgen Jensen GV instrument scientist/
QC

Kip Eagan, Kyle Holden, Bill Irwin, Brent 
Kidd, Jason Morris, and Aaron Steinbach

GV aircraft mechanic

John Cowan and John Munnerlyn GV aircraft technician

Julie Haggerty GV MTP scientist

Kelly Schick GV MTP specialist

Chris Webster GV software engineer

Kate Young GV ASPEN specialist

Clayton Arendt, Terry Hock, Nick Potts, 
and Laura Tudor

GV AVAPS engineer/techni-
cian

Bill Brown ISS project manager

John Militizer, John Sobtzak, and Charlie 
Martin

ISS engineer
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Table C1. Continued.

Organization Participants DEEPWAVE roles

NCAR/EOL Timothy Lim, Jennifer Stanbridge, and Lou 
Verstraete

ISS technician

Gary Granger ISS support

Chrissy Fladung RAF administrator

Greg Stossmeister Field catalog manager

Janine Aquino and Erik Johnson Field catalog support

Mike Paxton, Ted Russ, and Brandon Slaten System administrator

Steve Williams Data management

Alison Rockwell EPO specialist

DLR, Germany Andrea Hausold DLR Falcon project manager

Florian Gebhardt, Andreas Giez, Michael 
Grossrubatcher, Nico Hannemann, Chris-
tian Mallaun, Philipp Weber, Roland Welser, 
Alexander Wolf, and David Woudsma

DLR Falcon operations

DLR, University of Mainz 
(*)

Fernando Chouza-Keil, Sonja Gisinger, Peter 
Hoor (*), Stefan Kaufmann, Mareike Ken-
ntner, Teresa Klausner, Michael Lichtenstern, 
Stefan Müller (*), Stephan Rahm, Anja Reiter, 
Philipp Reutter (*), Monika Scheibe, Romy 
Schlage, Hans Schlager, Patrick Vrancken, 
Christiane Voigt, and Benjamin Witschas

DLR Falcon science team

DLR Christian Büdenbender, Bernd Kaifler, Nata-
lie Kaifler, and Benedikt Ehard

Lauder–Rayleigh lidar

University of Innsbruck, 
University of Munich (Δ), 
DLR (*)

Martina Bramberger, Markus Garhammer 
(Δ), Sonja Gisinger (*), Tanja Portele, and 
Maria Siller

Lauder radiosonde team

NIWA Mike Revelle and Richard Turner Forecasting

Tony Bromley Haast sounding support

University of Innsbruck Johannes Wagner Grad student, FC/modeling

Computational Physics Inc. Jun Ma and Dave Broutman Scientist, FC

University of Canterbury Joe Chen, Ben Jolly, Jordan Miller, Simon 
Parson, David Stevens, and Kate Walsh

Student, ISS support

Australian Antarctic Divi-
sion

Damian Murphy, Andrew Klekociuk, and 
Peter Love

Kingston meteor radar and 
lidar

Boston University Steve Smith Lauder and MJO ASIs

University of Washington Gonzalo Hernandez and Michael McCarthy MJO FPI

University of Adelaide Iain Reid, Andrew Mackinnon, and Andrew 
Spargo

Kingston meteor radar

St. Cloud State University Brian Billings Scientist, surface observa-
tions/photography

Tashiana Osborne Grad Student, ISS support

New Zealand Meteoro-
logical Service

Peter Kreft and Tony Qualye

Millersville University Mike Charnick Grad student, FC

Australian Bureau of Me-
teorology

Michael Joyce, David Nottage, Greg Roff, 
and Keon Stevenson

Radiosondes, Hobart, Tas-
mania, and Macquarie Island
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An online DEEPWAVE field catalog (http://catalog 
.eol.ucar.edu/deepwave) was hosted by EOL dur-
ing the DEEPWAVE field program to support 
mission planning, product displays, documenta-
tion of activities, and “browse” tools for use in 
postfield analyses. The DEEPWAVE field catalog 
can access and replay flight missions and supports 
real-time mission coordinator and  geographical 
information system (GIS) catalog maps display 
tools. The 2013 DEEPWAVE flight planning exer-
cise is documented online (http://catalog.eol.ucar 
.edu/deepwave_2013). An example of the field catalog 
maps display is shown for reference in Fig. A1.

APPENDIX B: DEEPWAVE FIELD OPERA-
TIONS. Operational support for the DEEPWAVE 
field program included several major components. 
The DEEPWAVE Operations Center and aircraft 
support were located at the U.S. Antarctic Program 
(USAP) Christchurch International Airport (CHC). 
Major logistical support was provided by PAE Ltd., 
the local New Zealand contractor funded by NSF. The 
project occupied two buildings and adjacent ramp 
space and served as the focus for aircraft support, 
forecasting and in-field science analyses, logistics, 
and communications. Broadband Internet access 
facilitated communications with remote participants 
in New Zealand and elsewhere.

The major deployments of ground-based instru-
ments and aircraft for DEEPWAVE occurred over the 
period from late May to early August 2014, though 
several instruments or capabilities remained up to 
several months longer at Lauder. More information 
on these efforts and related activities can be found 
online (www.eol.ucar.edu/field_projects/deepwave).

The science leadership, operations coordinators, 
and facility project managers were key components of 
the DEEPWAVE in-field management team. DEEP-
WAVE had a daily planning meeting (DPM) 7 days a 
week to discuss relevant operations issues, resources 
and status, science objective status, current weather 
and outlook, and PI science mission proposals. An in-
teresting aspect of DEEPWAVE was that all GV flights 
but one were conducted at night to allow the new GV 
optical instruments to perform optimally. The DPM 
was convened at 0100 UTC (1300 LT) 7 days a week 
to allow participation by as many groups as possible 
across 10 time zones. ReadyTalk web conferencing 
linked participants with full audio and video capabili-
ties. The DPMs led to the definitions of the various 
IOPs and RF and GB measurement scheduling.

Real-time support for the project including track-
ing of, and interactions with, the GV utilizing the 

DEEPWAVE field catalog and the EOL/Research 
Aviation Facility (RAF) Aeros and catalog maps 
tools for displaying real-time aircraft position, flight-
level data displays, satellite and model data overlays, 
dropsonde launches and plots, and lidar and AMTM 
data sharing.

A unique aspect of DEEPWAVE was the ability to 
make real-time dropsonde deployment decisions at 
specific points over New Zealand and widely over the 
Southern Ocean. These data were relayed via satellite 
to the ground for quality control and processing by 
EOL-trained student participants before forwarding 
to the Global Telecommunications System for as-
similation into global weather center model forecasts.

APPENDIX C: DEEPWAVE PARTICIPANTS 
AND ROLES. Table C1 shows the DEEPWAVE 
participants and their roles during the experiment.
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