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Abstract

Let X be an elliptic curve and P the Riemann sphere. Since X is compact, it is

a deep theorem of Douady that the set O(X,P) consisting of holomorphic maps

X ! P admits a complex structure. If R
n

denotes the set of maps of degree n,

then Namba has shown for n � 2 that R
n

is a 2n-dimensional complex manifold.

We study holomorphic flexibility properties of the spaces R
2

and R
3

. Firstly, we

show that R
2

is homogeneous and hence an Oka manifold. Secondly, we present our

main theorem, that there is a 6-sheeted branched covering space of R
3

that is an

Oka manifold. It follows that R
3

is C-connected and dominable. We show that R
3

is Oka if and only if P
2

\C is Oka, where C is a cubic curve that is the image of a

certain embedding of X into P

2

.

We investigate the strong dominability of R
3

and show that ifX is not biholomorphic

to C/�
0

, where �
0

is the hexagonal lattice, then R
3

is strongly dominable.

As a Lie group, X acts freely on R
3

by precomposition by translations. We show

that R
3

is holomorphically convex and that the quotient space R
3

/X is a Stein

manifold.

We construct an alternative 6-sheeted Oka branched covering space of R
3

and prove

that it is isomorphic to our first construction in a natural way. This alternative

construction gives us an easier way of interpreting the fibres of the branched covering

map.

vi



Chapter 1

Introduction

1.1 Background and Context

Oka theory originates from the principle that certain problems in complex analysis

have only topological obstructions. The earliest work in this vein was done by Oka,

who showed in 1939 that the second Cousin problem on a domain of holomorphy

has a holomorphic solution if and only if it has a continuous solution. It follows

that the holomorphic and topological classifications of line bundles over domains of

holomorphy are equivalent. Grauert extended this result to G-bundles over Stein

spaces, where G is a complex Lie group.

The modern development of the theory began with the work of Gromov, who was

interested in what is now called the basic Oka property (BOP). A complex mani-

fold X is said to satisfy BOP if every continuous map S ! X, where S is a Stein

manifold, is homotopic to a holomorphic map S ! X. Grauert showed that every

homogeneous space satisfies BOP. Gromov defined elliptic manifolds as a generalisa-

tion of homogeneous spaces and proved that not only do they satisfy BOP, but also

stronger properties involving deforming continuous families of continuous maps to

continuous families of holomorphic maps, as well as approximating such maps.

1



CHAPTER 1. INTRODUCTION 2

For basic introductions to Oka theory, see [25] and [26]. For more comprehensive

references, see [10], [11] and [12].

To define an Oka manifold we will use a second approach to Oka theory which arises

from the classical theorems of Runge and Weierstrass. Weierstrass’ theorem gen-

eralises to Cartan’s extension theorem, which allows holomorphic functions defined

on closed subvarieties of Stein manifolds to be extended to the whole manifold.

Runge’s theorem, on the other hand, generalises to the Oka-Weil approximation

theorem: every holomorphic function on a compact holomorphically convex subset

K of a Stein manifold S can be approximated uniformly on K by functions that

are holomorphic on all of S. These two theorems are classically taken to be prop-

erties of Stein manifolds, but they can also been viewed as properties of the target

manifold C.

A complex manifold X is said to satisfy the interpolation property (IP) if for every

subvariety S of a Stein manifold Y , a holomorphic map S ! X has a holomorphic

extension to Y if it has a continuous extension.

A complex manifold X is said to satisfy the approximation property (AP) if for every

holomorphically convex compact subset K of a Stein manifold Y , a continuous map

Y ! X holomorphic on (a neighbourhood of) K can be uniformly approximated on

K by holomorphic maps Y ! X.

Cartan’s extension theorem and the Oka-Weil approximation theorem then become

the statements that C satisfies IP and AP respectively.

It is not di�cult to show that IP implies AP. It is a deep theorem of Forstnerič that

the converse is also true. Indeed, Forstnerič’s theorem proves the equivalence of a

whole family of related properties. The weakest of these is the convex approximation

property (CAP). We say that a complex manifoldX satisfies CAP if given any convex

compact subset K of Cn, every holomorphic map K ! C

n can be approximated

uniformly on K by holomorphic maps Cn ! X.



CHAPTER 1. INTRODUCTION 3

Any manifold X satisfying one of these equivalent properties is called an Oka man-

ifold.

Every elliptic manifold is Oka. Hence every homogeneous manifold is Oka. Fur-

thermore, every Oka manifold satisfies BOP. However, the converse is false. Indeed

the unit disc D is not Oka by Liouville’s theorem, but satisfies BOP because it is

contractible.

Proving that a manifold is Oka is generally quite di�cult. It is necessary to be able

to construct new Oka manifolds from old. A crucial result that we will use is a

deep theorem that a holomorphic fibre bundle with Oka fibres is Oka if and only

if the base is Oka. This result originates from the work of Gromov [16, Corollary

3.3C0]. See also [9, Theorem 1.2]. Note that a special case of this theorem is that an

unbranched covering space of a manifold is Oka if and only if the base is Oka.

There are several weaker flexibility properties that all Oka manifolds possess, but

are not known to be equivalent to the Oka property. It is often easier to establish

these properties than the full Oka property. We say that a complex manifold X is

C-connected if any two points in X can be joined by a holomorphic map C ! X.

We say a manifold of dimension n is dominable if for some x 2 X, there exists a

holomorphic map C

n ! X that is a local biholomorphism at 0, with f(0) = x. If we

can find such a map for every x 2 X, then we say that X is strongly dominable.

Now, let X and Y be complex manifolds with X compact. Let O(X, Y ) denote

the set of holomorphic maps X ! Y equipped with the compact-open topology.

It is a special case of a deep theorem of Douady [6, Section 10.2] that there exists

a natural complex structure on O(X, Y ). It is natural in the sense that if Z is

any complex space, a map g : Z ! O(X, Y ) is holomorphic if and only if the map

f : Z⇥X ! Y , f(z, x) = g(z)(x), is holomorphic. This gives a natural identification

between O(Z,O(X, Y )) and O(Z ⇥X, Y ). The complex geometry of such mapping

spaces is of intrinsic interest, but is particularly relevant to Oka theory when Y is
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taken to be Oka. In this case, the study of maps into O(X, Y ) reduces to the study

of the space O(Z⇥X, Y ), the elements of which can be considered to be holomorphic

families of holomorphic maps Z ! Y with compact parameter space X. However,

the study of Oka properties of such mapping spaces is di�cult. In particular, even

if X, Y are both manifolds, O(X, Y ) may be singular. See [31, Section 2.2] for an

example. This is problematic, as Oka properties do not generalise easily to singular

spaces [24].

The first work in this direction was done by Hanysz who studied the space O(P,P)

of rational functions in one complex variable [18]. Here, P denotes the Riemann

sphere. If R
n

denotes the set of holomorphic maps P ! P of degree n, then we can

write

O(P,P) = R
0

tR
1

tR
2

tR
3

t · · · .

The set R
0

is the set of constant maps, so is biholomorphic to P, which is well known

to be Oka. The set R
1

is the Möbius group, a complex Lie group, so is Oka. Hanysz

showed that R
2

is a homogeneous space, so is Oka. His main result, using geometric

invariant theory, was that R
3

is strongly dominable and C-connected.

Our work has been to study O(X,P), where X is an elliptic curve, that is, a compact

Riemann surface of genus 1.

1.2 Results of the Thesis

Let X be a compact Riemann surface of genus 1. Then O(X,P) denotes the set

of holomorphic maps X ! P. It is a special case of a theorem of Douady [6,

Section 10.2] that O(X,P) admits a complex structure, uniquely determined by a

universal property. Furthermore, if we let R
n

⇢ O(X,P) denote the set of degree n

holomorphic maps X ! P, then Namba has shown for n � 2, that R
n

is in fact a

2n-dimensional complex manifold [31, Proposition 1.1.4].
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As in Hanysz’s work, R
0

is biholomorphic to P, so is Oka. However R
1

= ?, as any

element in R
1

would be a biholomorphism.

Our first result is the following, analogous to the result of Hanysz in the genus 0 case.

Theorem 1. The complex manifold R
2

is a homogeneous space and hence Oka.

Our main theorem is the following.

Theorem 2. There exists a 6-sheeted branched covering space of R
3

that is an Oka

manifold.

It must be noted that it is not known whether the Oka property can be passed

down a branched covering map. Hence we are unable to conclude that R
3

is Oka.

However, our theorem does imply that R
3

is C-connected and dominable. Hence

our main theorem is similar to that of Hanysz in the degree 3 case, except that it

does not imply strong dominability.

The proof shall use the following commuting diagram:

N ⇥X (N ⇥X)/S W

P

2

\C ⇥X R
3

/M R
3

X X S3X

�⇥ id

X

 

⇣

⇤

�

⇡̃

s̃3

proj2 �

⇡

D0
�

s3

 

Let M denote the group of Möbius transformations. Then M is the automorphism

group of P and acts freely and properly on R
3

by postcomposition. The orbit

space R
3

/M is a complex manifold such that the projection ⇡ : R
3

! R
3

/M is a

holomorphic principal M -bundle.

Let S3X be the 3-fold symmetric product of X. Then S3X is a 3-dimensional
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complex manifold. For f 2 R
3

, let D
0

(f) 2 S3X be the divisor of zeroes of f . Then

the map D
0

: R
3

! S3X is holomorphic.

Recall that X may be given the structure of a complex Lie group by identifying

it with C/�, where � is a lattice in C. Let  : S3X ! X be the Jacobi map,

which takes the divisor p
1

+ p
2

+ p
3

2 S3X to the point p
1

+ p
2

+ p
3

2 X, where

the addition in S3X is the formal addition of points, and the addition in X is the

Lie group addition. Then  is holomorphic, and the composition � =  � D
0

is

M -invariant, so � induces a holomorphic map � : R
3

/M ! X.

Let s
3

: X ! X, z 7! 3z. Then s
3

is an unbranched 9-sheeted covering map.

Furthermore, s
3

is a normal covering. Namba [31] has shown that for a certain

smooth cubic curve C in the complex projective plane P

2

, biholomorphic to X,

there exists a map s̃
3

: P
2

\C ⇥ X ! R
3

/M such that the following is a pullback

square:

P

2

\C ⇥X R
3

/M

X X

s̃3

proj2 �

s3

where proj
2

is the projection onto the second component. Then s̃
3

is a 9-sheeted

unbranched covering map P

2

\C ⇥X ! R
3

/M . We might say that s
3

unravels the

map �.

Buzzard and Lu [3, Proposition 5.1] have shown that there exists a dominable 6-

sheeted branched covering space N of P
2

\C. Let � denote the 6-sheeted branched

covering map N ! P

2

\C. Hanysz [17, Proposition 4.10] has shown that N is in fact

Oka.

Then let  = s̃
3

� (� ⇥ id
X

). This map is a 54-sheeted branched covering map

N ⇥ X ! R
3

/M . Let S = s�1

3

(0) = {x 2 X : 3x = 0}. Then S is the group of

covering transformations of s
3

. The action of S on X lifts firstly to a free action on
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P

2

\C ⇥ X and then to a free action on N ⇥ X. The quotient map ⇣ : N ⇥ X !
(N ⇥X)/S is a 9-sheeted unbranched covering map. Since both N and X are Oka,

it follows that N ⇥ X and hence (N ⇥ X)/S are Oka. The map  is S-invariant

and so induces a 6-sheeted branched covering map ⇤ : (N ⇥X)/S ! R
3

/M .

Taking W to be the pullback of R
3

along ⇤, we obtain the following pullback

square:

W R
3

(N ⇥X)/S R
3

/M

�

⇡̃ ⇡

⇤

where ⇡̃ : W ! (N ⇥ X)/S is the pullback of ⇡ along ⇤ and � : W ! R
3

is

the pullback of ⇤ along ⇡. Then W is smooth since ⇡ is a submersion and W is a

6-sheeted branched covering space of R
3

.

Since ⇡ is a principal M -bundle, it follows that ⇡̃ is also a principal M -bundle. Since

M is a complex Lie group, M is Oka. Hence W is Oka.

Note that it is an open problem whether P
2

\C is Oka [12, Open Problem B, p. 20].

Our work shows that R
3

is Oka if and only if P
2

\C is Oka. Indeed, if R
3

is Oka,

since ⇡ is a principal bundle with Oka fibre M , then R
3

/M is Oka. Since s̃
3

is an

unbranched covering map, it follows that P

2

\C ⇥ X is Oka. Since a retract of an

Oka manifold is easily seen to be Oka, it follows that P

2

\C is Oka. Conversely, if

P

2

\C is Oka, then P

2

\C ⇥X is Oka since the complex Lie group X is Oka. Using

the maps s̃
3

and ⇡, it follows that both R
3

/M and R
3

are Oka.

Our result implies that R
3

is dominable and C-connected. We should note that

although this result is analogous to the result of Hanysz, who showed that R
3

is

strongly dominable in the genus 0 case, our method of proof is completely di↵erent.

Hanysz took the categorical quotient of R
3

by the action of M ⇥ M , acting via

pre- and post-composition. In our case, M acts freely on R
3

by post-composition,

which allows us to take the geometric quotient. This has helped us to obtain our



CHAPTER 1. INTRODUCTION 8

results.

The specific references most crucial to our work are those of Namba [31], Buzzard

and Lu [3], and Hanysz [17]. Namba’s work has been particularly vital. It was

Namba who first showed that R
3

is a manifold and constructed the map s̃
3

. Much

of Namba’s work is done in the more general case where X is a compact Riemann

surface of genus g � 1. In the genus g = 1 case, his proofs can be considerably

simplified, and we have done this to make our work as self-contained as possible.

We have also presented the details of the construction of the map � : N ! P

2

\C,

which was originally done by Buzzard and Lu and is a crucial ingredient to our

proof.

Besides our main theorem, we have proved several additional results.

Let �
0

denote the hexagonal lattice in C. Then by investigating the branching of

� : W ! R
3

we have shown the following.

Theorem 3. If X is not biholomorphic to C/�
0

, then R
3

is strongly dominable.

The Lie group X acts on R
3

by pre-composition. This action is free and so R
3

/X

is a complex manifold. It is easy to see that R
3

is not Stein because the orbits of

X are compact subvarieties of R
3

. However, R
3

is holomorphically convex and we

have shown the following.

Theorem 4. The complex manifold R
3

is holomorphically convex and its Remmert

reduction is R
3

/X.

Finally, by first taking the quotient by X we have constructed an alternate 6-sheeted

Oka branched covering space W 0 of R
3

. We have shown that W 0 is biholomorphic

to W in a natural way. This has allowed us to determine the fibres of the branched

covering map � : W ! R
3

and provide a geometric interpretation of them.



CHAPTER 1. INTRODUCTION 9

1.3 Further Directions

Let X be a compact Riemann surface of genus 1 and R
3

the complex manifold of

holomorphic maps X ! P of degree 3. Let C be a cubic curve in P

2

biholomorphic

to X.

The most immediate open question arising from our work is to determine whether

P

2

\C is strongly dominable in the case when X is biholomorphic to C/�
0

, where �
0

is the hexagonal lattice in C. Our proof of the strong dominability of P
2

\C fails in

this case because the map � : N ! P

2

\C has a special kind of branching for this

cubic. To resolve the problem, it is necessary to construct a new dominating map

C

2 ! P

2

\C, but it is not obvious how to do so. If P
2

\C can be shown to be strongly

dominable, then the associated R
3

would also likely be strongly dominable.

Another direction for further research that follows from our work is to study holo-

morphic flexibility properties of R
n

for n � 4. Recall that R
3

/M has a 9-sheeted

covering space P
2

\C⇥X. Now, for n � 4, fixD 2 SnX. The Riemann-Roch theorem

implies that dimH0(X,O
D

) = n. Let ⌘
1

. . . , ⌘
n

form a basis of H0(X,O
D

). Then

the mapX ! P

n�1

, x 7! [⌘
1

(x), . . . , ⌘
n

(x)], is an embedding ofX into P
n�1

. Call the

image of this embedding C
n

. Let S denote the open subspace of the Grassmannian

variety consisting of (n � 3)-dimensional linear subspaces of P
n�1

not intersecting

C
n

. Namba showed that S⇥X is an n2-sheeted unbranched covering space of R
n

/M

[31, Lemma 1.4.1]. Note that for n = 3, S = P

2

\C. It seems possible to construct

a manifold analogous to N . However, proving that this manifold is Oka is likely to

be di�cult.

Generalising our work to spaces of holomorphic maps X ! P, where X is a com-

pact Riemann surface of genus g � 2 is another more ambitious project. Letting R
n

denote the set of degree n maps X ! P, Namba has shown that R
n

/M is biholomor-

phic to a specific open subset of a Grassmannian variety [31, Corollary 1.3.13]. As

in the case of higher degree, constructing a manifold analogous to N seems possible,
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but it is not at all clear whether it will be Oka, particularly because X is no longer

Oka. It is not known whether X being hyperbolic is an obstruction to R
n

being

Oka.

There are several smaller problems that arise from our work, but are not directly

related to the study of holomorphic flexibility properties.

Firstly, it would be interesting to determine the covering transformations of the

map � : W ! R
3

to see if the branched covering map is normal. Our work shows

that this boils down to showing that the covering � : N ! P

2

\C is normal, so

determining the covering transformations of this map is of interest.

Secondly, letX
1

andX
2

be two compact Riemann surfaces of genus 1 and let R
3

(X
1

),

R
3

(X
2

) be the associated complex manifolds of degree 3 maps X
1

, X
2

! P. It seems

unlikely that R
3

(X
1

) and R
3

(X
2

) are isomorphic unless X
1

is isomorphic to X
2

. It

would be nice to be able to confirm this.

Thirdly, we show that the set of maps in R
3

with double critical points forms a

singular hypersurface of R
3

, whose singular points are the maps with two double

critical points. If X is biholomorphic to C/�
0

, then the singular points of this

hypersurface consists of maps that have three double critical points. To determine

the isomorphism classes of these special maps is an interesting problem related to

the theory of dessins d’enfants.

Finally, computing the fundamental group of R
3

seems possible because of the fibre

bundle structure established by Namba. The key ingredient will be computing the

fundamental group of P
2

\C.



Chapter 2

Proof of Main Theorem

2.1 Topology

Let X, Y be topological spaces and C(X, Y ) the set of all continuous maps X !
Y . The compact-open topology on C(X, Y ) is the smallest topology containing the

sets

{f 2 C(X, Y ) : f(K) ⇢ U} ,

where K ⇢ X is compact and U ⇢ Y is open.

The following results are well known [19, p. 530].

Proposition 5. If X is compact and Y is a metric space with metric d, then

the compact-open topology on C(X, Y ) is the metric topology given by the metric

d(f, g) = sup
x2X

d(f(x), g(x)), the topology of uniform convergence.

Proposition 6. If X is locally compact and Z is any topological space, then a

map g : Z ! C(X, Y ) is continuous if and only if the map f : Z ⇥ X ! Y ,

f(z, x) = g(z)(x), is continuous.

11
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Taking g = idC(X,Y )

in the above proposition implies that the evaluation map eC :

C(X, Y )⇥X ! Y , (f, x) 7! f(x), is continuous wheneverX is locally compact.

Let X be a compact Riemann surface, P the Riemann sphere and O(X,P) the set of

all holomorphic maps X ! P. Then O(X,P) is a closed subspace of C(X,P), whose

topology has a subbasis consisting of the sets

[K,U ] = {f 2 O(X,P) : f(K) ⇢ U} ,

where K ⇢ X is compact and U ⇢ P is open.

Let R
n

denote the subset of O(X,P) consisting of all maps of degree n. If the

genus of X is at least 1, R
1

= ?, since a map X ! P of degree 1 would be a

biholomorphism. For n � 2, R
n

may or may not be empty. In particular, R
2

6= ?

if and only if X is hyperelliptic. In general we can write

O(X,P) = R
0

tR
2

tR
3

t . . . .

Note that R
0

is just the set of constant maps. The following result is due to Namba

[31, Lemma 1.1.1]. The proof, however, is our own work.

Proposition 7 (Namba). Let X be a compact Riemann surface and R
n

denote the

space of holomorphic maps X ! P of degree n. For each n � 0, the set R
n

is both

open and closed in O(X,P).

Proof. It is su�cient to prove that R
n

is open. The set R
0

= [X,C] [ [X,P\ {0}]
is open. If f 2 R

n

, n � 1, then f has m distinct zeroes p
1

, . . . , p
m

2 X, where

1  m  n. For i = 1, . . . ,m, let U
i

be a relatively compact neighbourhood (we

take a neighbourhood to be open by definition) of p
i

in X such that:

1. Ū
1

, . . . , Ū
m

are pairwise disjoint,

2. each U
i

is a disc in some local coordinates,

3. each Ū
i

contains no poles of f .
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Let D =
m

S

i=1

Ū
i

. Then D is compact and @D =
m

S

i=1

@U
i

. Let " = min
@D

|f | > 0 and let

W =
n

g 2 [D,C] : max
@D

|g � f | < "
o

\ [X\D̊,P\ {0}].

It follows immediately that if g 2 W , then g has no zeroes on @D. Furthermore, the

conditions 1–3 above allow us to apply Rouché’s theorem on each @U
i

to conclude

that in each Ū
i

, every g 2 W has the same number of zeroes as f , counted with

multiplicity. Since g has no zeroes outside of D, it follows that g 2 R
n

. Hence

W ⇢ R
n

.

We shall now show that W contains a neighbourhood of f . Since f(D) is a compact

subset of C, there exist points y
1

, . . . , y
k

2 D such that the open discs B "

3
(f(y

1

)),. . . ,

B "

3
(f(y

k

)) cover f(D). Letting K
i

be the closure of f�1(B "

3
(f(y

i

))), we see that each

K
i

is compact, D ⇢
k

S

i=1

K
i

and f(K
i

) ⇢ B "

2
(f(y

i

)). Then setting V
i

= B "

2
(f(y

i

)) and

S =
k

T

i=1

[K
i

, V
i

]\ [X\D̊,P\ {0}] we see that f 2 S. Since S is open, it is su�cient to

show that S ⇢ W . If g 2 S and y 2 K
i

, then since g(y) 2 V
i

,

|g(y)� f(y
i

)| < "

2
.

Since f(y) 2 V
i

,

|f(y)� f(y
i

)| < "

2
,

so

|f(y)� g(y)| < ",

implying that g 2 W .

2.2 Complex Structure

2.2.1 The Universal Complex Structure

The following theorem is a special case of a deep result by Douady [6, Section 10.2].

A proof of this special case belongs to Kaup [23, Theorem 1]. This theorem is fun-
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damental to our work.

Theorem 8 (Douady). Let X be a compact complex manifold, let Y be a reduced

complex space and endow O(X, Y ) with the compact-open topology. Then O(X, Y )

can be given the structure of a reduced complex space satisfying the following uni-

versal property.

(⇤) If Z is any reduced complex space, then a map g : Z ! O(X, Y ) is holomorphic

if and only if the map f : Z ⇥X ! Y , f(z, x) = g(z)(x), is holomorphic.

Any complex structure on O(X, Y ) satisfying (⇤) is called a universal complex struc-

ture and is unique up to biholomorphism.

Instead of using property (⇤), Kaup defines a universal complex structure by the

following two properties.

(1) The evaluation map e : O(X, Y )⇥X ! Y , (f, x) 7! f(x), is holomorphic.

(2) If Z is any reduced complex space, then a map g : Z ! O(X, Y ) is holomorphic

if the map f : Z ⇥X ! Y , f(z, x) = g(z)(x), is holomorphic.

Kaup’s definition of a universal complex structure is equivalent to (⇤). To prove

this, firstly let Z = O(X, Y ) and g = id
Z

. Then (⇤) implies that the evaluation map

e is holomorphic and so (⇤) implies both (1) and (2). Conversely, in order for (1)

and (2) to imply (⇤) it must be shown that they imply the converse of (2). For Z a

reduced complex space and g : Z ! O(X, Y ) holomorphic, the map f : Z⇥X ! Y ,

f(z, x) = g(z)(x), is the map e�(g⇥ id
X

), a composition of holomorphic maps.

Throughout this thesis we shall verify (⇤) by verifying Kaup’s properties, as the

latter are almost always easier to check.

Property (⇤) allows the following lemma to be proved.

Lemma 9. Let X, Y be complex manifolds with X compact and let Aut(Y ) denote
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the group of holomorphic automorphisms of Y . Then if g 2 Aut(Y ) is fixed, the

map O(X, Y ) ! O(X, Y ), f 7! g � f , is a biholomorphism.

Proof. It is su�cient to show that the map is holomorphic. By property (⇤) in The-

orem 8, this holds if the map O(X, Y )⇥X ! Y , (f, z) 7! (g �f)(z), is holomorphic.

But this is just the map g � e, which is a composition of holomorphic maps.

Taking X to be a Riemann surface of genus g � 1 and Y = P, it follows immediately

from Theorem 8 and the previous section that

O(X,P) = R
0

tR
2

tR
3

t . . . ,

possesses a universal complex structure. Furthermore, R
n

possesses a universal

complex structure in the sense that it satisfies property (⇤) with R
n

substituted for

O(X, Y ). Namba [31, Chapter 1] studied the universal complex structure on R
n

and

proved the following theorem. See [31, Proposition 1.1.4].

Theorem 10 (Namba). If n � g, then R
n

is a complex manifold of dimension

2n+ 1� g.

For n < g, R
n

may be singular. Namba provides an explicit example in [31, Section

2.2]. The main goal of this section is to prove Theorem 10 when X has genus 1

(Theorem 16). Our proof of this special case is simpler than Namba’s original proof,

which covers the general case.

We shall finish this subsection by considering the complex structure of some basic

examples of mapping spaces.

For our first example, we shall show that the natural identification of R
0

with P gives

R
0

the universal complex structure. To show this, fix x
0

2 X and identify R
0

with

R
0

⇥ {x
0

}. The map R
0

⇥ {x
0

} ! P, (f, x
0

) 7! f(x
0

), is obviously a bijection and is

holomorphic when R
0

is given the universal complex structure. Kaup’s property (2)
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implies that the inverse map P ! R
0

⇥ {x
0

} is holomorphic if the map P⇥X ! P,

(z, x) 7! z, is holomorphic, which is obviously true.

In a similar vein, we shall show that the usual complex structure on the Möbius

group M (the group of holomorphic automorphisms of P) is the universal complex

structure. The usual complex structure on M is obtained by identifying it with

PGL
2

(C). However, M also is the set of degree 1 holomorphic maps P ! P, so

comes equipped with Douady’s universal complex structure. To show that these

two complex structures are the same, it su�ces to check Kaup’s properties (1) and

(2) when X = Y = P and PGL
2

(C) is substituted for O(X, Y ).

Firstly, we will verify property (1). Let e : PGL
2

(C) ⇥ P ! P, (f, z) 7! f(z), and

ẽ : GL
2

(C) ⇥ C

2\ {0} ! C

2\ {0}, (f, z) 7! f(z), be the evaluation maps and let

⇧ : GL
2

(C)⇥C

2\ {0} ! PGL
2

(C)⇥ P and ⇡ : C2\ {0} ! P be the projectivisation

maps. Then the following diagram commutes.

GL
2

(C)⇥ C

2\ {0} C

2\ {0}

PGL
2

(C)⇥ P P

ẽ

⇧

⇡

e

It is obvious that the map ẽ is holomorphic. Then if � is a local holomorphic section

of ⇧, it is clear that locally e is the composition ⇡� ẽ��, which is holomorphic.

To show property (2), let Z be a reduced complex space and g : Z ! PGL
2

(C) such

that f : Z ⇥X ! P, f(z, x) = g(z)(x), is holomorphic. Using a local holomorphic

section of the projectivisation map GL
2

(C) ! PGL
2

(C), we can find a local lifting of

g to a map g̃ : U ! GL
2

(C), where U is a member of a su�ciently fine open cover of

Z. Then let f̃ : U ⇥ C

2\ {0} ! C

2\ {0}, f̃(z, x) = g̃(z)(x), and let ⇡ : C2\ {0} ! P

be the projectivisation map. Then the following diagram commutes.
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U ⇥ C

2\ {0} C

2\ {0}

U ⇥ P P

˜

f

id

U

⇥ ⇡

⇡

f

Since f is holomorphic, by taking local holomorphic sections of ⇡ we see that f̃ is

holomorphic. Now, the map g̃ is matrix-valued, so is holomorphic if and only if its

component functions are holomorphic. Taking x = (1, 0), (0, 1), the holomorphic-

ity of the map f̃(·, x) : U ! C

2\ {0} implies that these component functions are

holomorphic. Then g̃ is holomorphic, so g is holomorphic on U .

2.2.2 Symmetric Products

This subsection is drawn from [14, Section 3.a] and [22, Example 49 A.17 i].

Let X be a Riemann surface and let S
n

denote the symmetric group of permutations

of the set {1, . . . , n}. Then S
n

acts on the n-fold product Xn by

�(z
1

, . . . , z
n

) = (z
�(z1), . . . , z�(zn)), � 2 S

n

.

The n-fold symmetric product of X is the orbit space SnX = Xn/S
n

. Then SnX is

naturally identified with the set of positive divisors on X of degree n. Since S
n

is

a finite group, it follows that SnX is a complex space such that the quotient map

⇡ : Xn ! SnX is holomorphic [22, Proposition 49A.16]. The universal property of

the quotient is that if Y is any complex space, a holomorphic map Xn ! Y factors

as ⇡ followed by a holomorphic map SnX ! Y if and only if it is S
n

-invariant.

Note that ⇡ is an open map. Indeed, if V ⇢ Xn is open, then ⇡(V ) is open if and

only if the saturation of V by S
n

is open. Since S
n

acts on Xn via homeomorphisms,

the saturation of V is a union of open sets, hence open.

We shall now construct explicit charts on SnX. They will be used later. They show

that SnX is in fact a complex manifold. Consider the divisorD = k
1

p
1

+· · ·+k
m

p
m

2
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SnX, where p
1

, . . . , p
m

2 X are distinct and k
1

, . . . , k
m

> 0, k
1

+· · ·+k
m

= n. Let U
i

be a neighbourhood of p
i

in X such that U
i

\U
j

= ? whenever i 6= j. Furthermore,

assume there are local coordinates '
i

: U
i

! C. Let U = Uk1
1

⇥ · · · ⇥ Uk

m

m

. Then

⇡(U) is a neighbourhood of D in SnX.

If � 2 S
n

, either �(U) = U or �(U)\U = ?. The set G of all permutations � 2 S
n

such that �(U) = U is a subgroup of S
n

. Then ⇡(U) = U/G.

Define ⇢
i

: Ck

i ! C

k

i , ⇢
i

(z) =

✓

k

i

P

l=1

z1
l

, . . . ,
k

i

P

l=1

zki
l

◆

. Then let

' =

0

@⇢
1

� ('
1

⇥ · · ·⇥ '
1

)
| {z }

k1 times

1

A⇥ · · ·⇥
0

@⇢
m

� ('
m

⇥ · · ·⇥ '
m

)
| {z }

k

m

times

1

A .

Then ' is a holomorphic map U ! C

n and is clearly G-invariant, so induces a

holomorphic map '̃ : ⇡(U) ! C

n. We wish to show that the image of '̃ is open and

'̃ is a biholomorphism onto the image.

Firstly, we shall show that SnX is of pure dimension n. Let ⌦ ⇢ Xn be the subset

of (x
1

, . . . , x
n

) in Xn such that for i, j = 1, . . . , n, x
i

6= x
j

whenever i 6= j. Then ⌦ is

open and dense in Xn. Furthermore, S
n

acts freely (and, since S
n

is finite, properly

discontinuously) on ⌦, implying that ⌦/S
n

⇢ SnX is an n-dimensional connected

complex manifold. Then the image of '̃ is open and '̃ is a biholomorphism onto the

image if it is injective [22, Proposition 46A.1].

We shall show that '̃ is injective by showing for i = 1, . . . ,m that if ⇢
i

(z) = ⇢
i

(z0),

then z0 is a permutation of z. For j = 1, . . . , k
i

, let

s
j

: Ck

i ! C, s
j

(z
1

, . . . , z
k

i

) =
X

1l1<l2<···<l

j

k

i

z
l1zl2 · · · zl

j

.

Then s
j

is the jth elementary symmetric function in k
i

variables. It is well known

that the polynomial

(x� z
1

)(x� z
2

) · · · (x� z
k

i

)

= xk

i � s
1

(z
1

, . . . , z
k

i

)xk

i

�1 + · · ·+ (�1)kis
k

i

(z
1

, . . . , z
k

i

)
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shows that the values z
1

, . . . , z
k

i

are determined uniquely up to permutation by the

values s
1

(z
1

, . . . , z
k

i

), . . . , s
k

i

(z
1

, . . . , z
k

i

). One of Newton’s identities [28] states that

for 1  r  k
i

,

k

i

X

l=1

zr
l

+
r�1

X

j=1

 

(�1)js
j

k

i

X

l=1

zr�j

l

!

+ (�1)rrs
r

= 0.

It follows that s
1

, . . . , s
k

i

are uniquely determined by
k

i

P

l=1

z1
l

, . . . ,
k

i

P

l=1

zki
l

, so z
1

, . . . , z
k

i

are determined up to permutation by
k

i

P

l=1

z1
l

, . . . ,
k

i

P

l=1

zki
l

. It follows that '̃ is injective

and hence is a chart on SnX.

2.2.3 The Jacobi Map

Now assume that X is a compact Riemann surface of genus 1. Then there is a lattice

� in C such that X is biholomorphic to C/�. This allows us to identify X with the

complex Lie group C/�. The Lie group structure on X thus obtained is auxiliary

and none of the results in this thesis depend on the choice of structure. For points

p
1

, . . . , p
n

2 X we can consider the divisor p
1

+ · · · + p
n

2 SnX, where here the

symbol + denotes the formal addition of points. Alternatively, we can consider the

point p
1

+ · · · + p
n

2 X, where + denotes the Lie group addition in X. We trust

that using the same symbol + for both will not cause confusion. The Jacobi map is

the map

 : SnX ! X, k
1

p
1

+ · · ·+ k
m

p
m

7! k
1

p
1

+ · · ·+ k
m

p
m

,

where  maps the divisor k
1

p
1

+ · · ·+k
m

p
m

to the Lie group sum k
1

p
1

+ · · ·+k
m

p
m

.

The map  is holomorphic, as it is induced by the map Xn ! X, (z
1

, . . . , z
n

) 7!
z
1

+ · · ·+ z
n

, which is holomorphic and S
n

-invariant.

It is well known that the map  is a P

n�1

-bundle over X. We have been unable to

track down a good reference for this fact, so will present our own argument.
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We shall firstly show that  is a bundle. Let s
n

: X ! X, z 7! nz. Then s
n

is

a holomorphic n2-sheeted unbranched covering map. Fix p 2 X and let U be an

evenly covered neighbourhood of p. Then there exists a local section � : U ! X of

s
n

. Let

h : U ⇥  �1(0) !  �1(U), (x, p
1

+ · · ·+ p
n

) 7! (p
1

+ �(x)) + · · ·+ (p
n

+ �(x)).

We claim that h gives a local trivialisation of  .

To show that h commutes with the projection U ⇥  �1(0) ! U , note that for all

(x, p
1

+ · · ·+ p
n

) 2 U ⇥  �1(0), we have  (h(x, p
1

+ · · ·+ p
n

)) = n�(x) = x.

The map h is clearly bijective, with inverse

h�1 :  �1(U) ! U ⇥  �1(0), d
1

+ · · ·+ d
n

7!
✓

 (d
1

+ · · ·+ d
n

),

(d
1

� �( (d
1

+ · · ·+ d
n

))) + · · ·+ (d
n

� �( (d
1

+ · · ·+ d
n

)))

◆

.

Since the map U ⇥ Xn ! Xn, (x, p
1

, . . . , p
n

) 7! (p
1

+ �(x), . . . , p
n

+ �(x)), is

holomorphic, postcomposing it with the projection map Xn ! SnX, we obtain

an S
n

-invariant holomorphic map Xn ! SnX. This induces the map h, which is

holomorphic by the universal property of the quotient. A similar argument shows

that h�1 is holomorphic and so is a trivialisation of  . Hence  is a bundle over X.

Finally, we determine its fibre.

Fix p 2 X and D 2  �1(p). Then since deg(D) = n > 0, we have H1(X,O
D

) = 0.

By the Riemann-Roch theorem, dimH0(X,O
D

) = n, so PH0(X,O
D

) is biholomor-

phic to P

n�1

. Let {⌘
1

, . . . , ⌘
n

} be a basis of H0(X,O
D

). The following proposition

is well known. See [15, V.4 Proposition 4.3].

Lemma 11. The map

 : P
n�1

!  �1(p), [a
1

, . . . , a
n

] 7! (a
1

⌘
1

+ · · ·+ a
n

⌘
n

) +D,

is a biholomorphism.
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It follows immediately that  is a P

n�1

-bundle over X. Since both P

n�1

and X are

Oka,  is a fibre bundle with Oka fibre and Oka base. So we have the following.

Proposition 12. Let X be a compact Riemann surface of genus 1. Then for n � 1,

SnX is an Oka manifold.

For f 2 R
n

, let D
0

(f) = max {0, (f)} 2 SnX be the divisor of zeroes of f , and let

D1(f) = max {0,�(f)} be the divisor of poles of f .

The following lemma is part of the proof of Theorem 1.2.1 in [31]. We present a

simplified version of Namba’s proof.

Lemma 13 (Namba). The maps D
0

, D1 : R
n

! SnX are holomorphic.

Proof. We shall show that D
0

is holomorphic. Fix f 2 R
n

and let D
0

(f) = k
1

p
1

+

· · · + k
m

p
m

, where k
1

+ · · · + k
m

= n and p
1

, . . . , p
m

2 X are distinct. Then, as in

the proof of Proposition 7, we can take a neighbourhood W of f in R
n

, such that

there exist pairwise disjoint neighbourhoods U
1

, . . . , U
m

of p
1

, . . . , p
m

respectively,

such that every g 2 W has the same number of zeroes as f in each U
i

, and g has

no poles in any of the sets Ū
1

, . . . , Ū
m

. Furthermore, we can assume that in local

coordinates, U
1

, . . . , U
m

are discs.

Since R
n

is a reduced complex space, we can takeW so small that it can be identified

with a subvariety of an open subset ⌦ of Ck for some k. Shrinking ⌦ if necessary,

we can ensure that for every i = 1, . . . ,m, the evaluation map e
i

: W ⇥ U
i

! C

extends to a holomorphic map

ẽ
i

: ⌦⇥ U
i

! C.

For y 2 ⌦, let ẽ
i,y

: U
i

! C, ẽ
i,y

(w) = ẽ
i

(y, w). It follows from the proof of

Proposition 7 that we may assume that ⌦ is so small that if " = min
@U

i

|f | > 0, then
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for all y 2 ⌦,
max
@U

i

|ẽ
i,y

� f | < ✏.

Then Rouché’s theorem implies that ẽ
i,y

has k
i

zeroes in U
i

. Let these zeroes in

local coordinates be denoted z
i1

(y), . . . , z
ik

i

(y), where
P

i

k
i

= m. It is a well-known

application of the argument principle [1, p. 153–154] that

k

i

X

j=1

z
ij

(y)p =
1

2⇡i

Z

@U

i

@ẽ
i

@w
(y, w) · wp

ẽ
i

(y, w)
dw

for p = 1, . . . , k
i

. So
k

i

P

j=1

z
ij

(y)p defines a holomorphic function ⌦ ! C. But if

y 2 W , then
 

k1
X

j=1

z
1j

(y), . . . ,
k1
X

j=1

z
1j

(y)k1 , . . . ,
k

m

X

j=1

z
mj

(y), . . . ,
k

m

X

j=1

z
mj

(y)km

!

are the local coordinates ofD
0

(y) under the standard chart on SnX centred atD
0

(f)

(see Subsection 2.2.2). Hence D
0

is holomorphic. The map D1 can be shown to

be holomorphic by applying the above argument to the reciprocal of the evaluation

map.

2.2.4 The Theta Function

A reference for this subsection is [29, p. 34–35, p. 50].

Let � be a lattice in C. We may assume that � = Z+ ⌧Z, for ⌧ 2 C with Im(⌧) > 0.

Then let

✓(z) =
1
X

n=�1
e⇡i[n

2
⌧+2nz].

This series converges absolutely and uniformly on compact subsets of C and so

defines an entire function ✓ : C ! C, the Jacobi theta function of �.

The function ✓ is classical with well-understood properties. For every z 2 C,

✓(z + 1) = ✓(z) and ✓(z + ⌧) = e�⇡i(⌧+2z)✓(z).
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Furthermore, ✓ has a simple zero at 1

2

(1 + ⌧). The translation properties of ✓ imply

that ✓ has a simple zero at each point on the translated lattice 1

2

(1 + ⌧) + �. These

are the only zeroes of ✓.

For x 2 C, let ✓(x)(z) = ✓(z� 1

2

(1+⌧)�x). Then ✓(x) has simple zeroes on x+�.

The following theorem relates theta functions with elliptic functions. For the proof,

see [29, p. 34–35, p. 50].

Theorem 14. If x
1

, . . . , x
n

, y
1

, . . . , y
n

2 C such that
n

P

i=1

(x
i

� y
i

) 2 �, then

f(z) =
n

Y

i=1

✓(xi

)(z)

�

n

Y

i=1

✓(yi)(z),

is a �-periodic meromorphic function on C. Conversely, suppose that g is a �-

periodic meromorphic function on C with zeroes x
1

, . . . , x
n

modulo � and poles

y
1

, . . . , y
n

modulo �, counted with multiplicity. Then
n

P

i=1

(x
i

� y
i

) 2 � and there

exists c 2 C

⇤ such that g = cf , where f is the meromorphic function defined above.

The above theorem is essentially an explicit version of Abel’s theorem for the torus

[8, Section 20.8]. Indeed, let X be a compact Riemann surface of genus 1. Recall the

zero and polar divisor mapsD
0

, D1 : R
n

! SnX and the Jacobi map  : SnX ! X.

Then Abel’s theorem for the torus states that if D
1

, D
2

2 SnX have no common

points, then there exists a holomorphic map f : X ! P with D
0

(f) = D
1

and

D1(f) = D
2

if and only if  (D
1

) =  (D
2

).

Let

B
n

= {(D
1

, D
2

) 2 SnX ⇥ SnX : D
1

and D
2

have no points in common}

for n � 2. Then B
n

is an open subset of SnX ⇥ SnX. Let

C
n

= {(D
1

, D
2

) 2 SnX ⇥ SnX :  (D
1

) =  (D
2

)} .

Then C
n

is a (2n� 1)-dimensional subvariety of SnX ⇥ SnX. Also, Q
n

= B
n

\ C
n

is a (2n� 1)-dimensional subvariety of B
n

.
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By Lemma 13 the map (D
0

, D1) : R
n

! Q
n

is holomorphic. By Abel’s theorem,

its image lies in Q
n

. We will now provide a holomorphic section of this map on a

neighbourhood of each point of Q
n

. This is needed for Theorem 15 below.

LetD
1

= p
1

+· · ·+p
n

andD
2

= q
1

+· · ·+q
n

be divisors onX such that (D
1

, D
2

) 2 Q
n

.

Then we can take neighbourhoods U
i

, V
i

around each p
i

, q
i

respectively, such that

U
i

\ V
j

= ?, U
i

= U
j

if p
i

= p
j

, V
i

= V
j

if q
i

= q
j

, U
i

\ U
j

= ? if p
i

6= p
j

and

V
i

\ V
j

= ? if q
i

6= q
j

. Furthermore, we may assume that there exist holomorphic

sections ⇠
i

: U
i

! C and ⌘
i

: V
i

! C of the quotient map ⇡ : C ! C/�.

If (p0
1

, . . . , p0
n

) 2 U
1

⇥ · · · ⇥ U
n

and (q0
1

, . . . , q0
n

) 2 V
1

⇥ · · · ⇥ V
n

, such that (p0
1

+

· · ·+ p0
n

, q0
1

+ · · ·+ q0
n

) 2 Q
n

, then
n

P

i=1

(⇠
i

(p
i

)� ⌘
i

(q
i

)) 2 �. We can define a function

⇥ : (U
1

⇥ · · ·⇥ U
n

⇥ V
1

⇥ · · ·⇥ V
n

) \ ⇡�1(Q
n

) ! R
n

by

⇥(p0
1

, . . . , p0
n

, q0
1

, . . . , q0
n

) =
n

Y

i=1

✓(⇠i(p
0
i

))

�

n

Y

i=1

✓(⌘i(q
0
i

)),

where ⇡ : Xn⇥Xn ! SnX⇥SnX is the projection. The map⇥ is invariant under the

action of S
n

⇥S
n

, so it induces a local section of the map (D
0

, D1) : R
n

! Q
n

.

By the universal property (⇤) in Theorem 8, the local section is holomorphic if the

map ⇥ is holomorphic. But the map ⇥ is holomorphic if the map

(U
1

⇥ · · ·⇥ U
n

⇥ V
1

⇥ · · ·⇥ V
n

)⇥X ! P,

((p
1

, . . . , p
n

, q
1

, . . . , q
n

), z) 7! ⇥(p
1

, . . . , p
n

, q
1

, . . . , q
n

)(z),

is holomorphic. But this follows from the fact that

✓(⇠i(p
0
i

))(z) = ✓(z � 1

2
(1 + ⌧)� ⇠

i

(p0
i

)),

which varies holomorphically with p0
i

and z. Similarly, ✓(⌘i(q
0
i

))(z) varies holomorphi-

cally with q0
i

and z.
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2.2.5 The Divisor Map

The following theorem and its proof can be found in the work of Namba [31, proof

of Theorem 1.2.1]. Our proof is simpler than Namba’s proof, as it only covers the

special case when X has genus 1.

Theorem 15. The map (D
0

, D1) : R
n

! Q
n

, n � 2, is a holomorphic principal

C

⇤-bundle.

Proof. Lemma 13 implies that the map (D
0

, D1) is holomorphic. Given any pair

of divisors (D
1

, D
2

) 2 Q
n

, there exists a neighbourhood U of (D
1

, D
2

) in Q
n

with a

holomorphic section ⇥ : U ! R
n

defined as above.

Let h : C⇤ ⇥ U ! R
n

,

h(↵, (D0
1

, D0
2

)) = ↵⇥(D0
1

, D0
2

).

Theorem 14 implies that h is a bijection C

⇤ ⇥ U ! (D
0

, D1)�1(U). We claim that

h is holomorphic. Let �
1

: C⇤ ⇥ R
n

! R
n

, (↵, g) 7! ↵g. Then h = �
1

� (id
C

⇤ ⇥⇥),
so h is holomorphic if �

1

is. By the universal property (⇤) in Theorem 8, �
1

is

holomorphic if the map �
2

: C⇤ ⇥ R
n

⇥X ! P, (↵, g, x) 7! ↵g(x), is holomorphic.

But �
2

= �
3

� (id
C

⇤ ⇥ e), where e is the evaluation map and �
3

: C⇤ ⇥ P 7! P,

(↵, z) 7! ↵z. Since �
3

is clearly holomorphic, it follows that h is as well.

We now show that h�1 is holomorphic and hence is a local trivialisation of (D
0

, D1).

For any f 2 (D
0

, D1)�1(U), ⇥(D
0

(f), D1(f)) is a meromorphic function with

the same zeroes and poles as f . Hence f/⇥(D
0

(f), D1(f)) is a nonzero constant

function. We can then define a map

 : (D
0

, D1)�1(U) ! C

⇤, (f) = f/⇥(D
0

(f), D1(f)).

So h�1 = (, (D
0

, D1)).

It remains to show that  is holomorphic. Fixing f 2 (D
0

, D1)�1(U), choose a 2 X
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such that f(a) 2 C

⇤. Take the neighbourhood

W = {g 2 R
n

: g(a) 2 C

⇤} \ (D
0

, D1)�1(U)

of f . On W , (g) = g(a)/⇥(D
0

(g), D1(g))(a) is holomorphic in g.

2.2.6 Nonsingularity of Rn

As before, let X be a compact Riemann surface of genus 1 and for n � 2, let R
n

de-

note the set of degree n holomorphic maps X ! P. We can now prove the following

theorem, a special case of Theorem 10. See [31, Proposition 1.1.4].

Theorem 16 (Namba). For n � 2, the complex space R
n

is a complex manifold of

dimension 2n.

Proof. Choose f 2 R
n

. We shall show that f has a smooth neighbourhood. Since

f has finitely many branch points, Lemma 9 allows us to assume that D
0

(f) and

D1(f) each consist of n distinct points. Theorem 15 implies that it is su�cient to

prove that Q
n

is nonsingular in a neighbourhood of the point (D
0

(f), D1(f)). Let

D
0

(f) = p
1

+ · · · + p
n

and D1(f) = q
1

+ · · · + q
n

where p
i

6= p
j

and q
i

6= q
j

when

i 6= j. Take pairwise disjoint neighbourhoods U
1

, . . . , U
n

and V
1

, . . . , V
n

of p
1

, . . . , p
n

and q
1

, . . . , q
n

respectively such that there are local coordinates, x
i

: U
i

! C and

y
i

: V
i

! C at p
i

and q
i

respectively. Then we know from Subsection 2.2.2 that the

map x
1

⇥ · · ·⇥ x
n

⇥ y
1

⇥ · · ·⇥ y
n

induces a chart on SnX ⇥ SnX at (D
1

, D
2

). This

chart provides a biholomorphism of Q
n

with the set of points (x
1

, . . . , x
n

, y
1

, . . . , y
n

)

in U
1

⇥ · · ·⇥U
n

⇥V
1

⇥ · · ·⇥V
n

such that
n

P

i=1

x
i

� y
i

2 �. This set is the intersection
of a union of disjoint hyperplanes in C

2n with an open subset and so is smooth.

It follows that Q
n

is a manifold of dimension 2n � 1. Then by Theorem 15, R
n

is

nonsingular of dimension 2n.
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2.2.7 The Space Rn/M

This subsection is drawn from the work of Namba [31, Section 1.3]. Let R
n

be as

before, with n � 2, and let M be the group of Möbius transformations. Recall

that M acts on R
n

by postcomposition. Clearly the action is free. Our goal in this

subsection is to show that the orbit space R
n

/M is a complex manifold such that

the projection map ⇡ : R
n

! R
n

/M is a principal M -bundle. For this we shall use

the following special case of a theorem of Holmann [20, Satz 21, 24].

Theorem 17 (Holmann). Let X be a complex space and let G be a complex Lie group

acting freely and properly on X. Then the orbit space X/G possesses a complex

structure such that the quotient map ⇡ : X ! X/G is a holomorphic principal

G-bundle. Furthermore, if X is a complex manifold, then so is X/G.

Note that since a principal G-bundle always possesses local holomorphic sections, it

follows that X/G has the universal property of the quotient: if Y is any complex

space, a holomorphic map X ! Y factors as ⇡ followed by a holomorphic map

X/G ! Y if and only if it is G-invariant.

Let X and Y be compact complex manifolds. Let O(X, Y ) denote the set of all

open holomorphic maps X ! Y . Then O(X, Y ) is an open subset of O(X, Y ) [30,

Proposition 1] and so is naturally equipped with Douady’s complex structure as in

Theorem 8. Furthermore, it is well known that the group Aut(Y ) is a complex Lie

group and acts holomorphically on O(X, Y ) by postcomposition [4, Theorem D].

Namba [30, Theorem 1] used the previous theorem to prove the following result.

Theorem 18 (Namba). The orbit space O(X, Y )/Aut(Y ) admits a complex struc-

ture such that the quotient map ⇡ : O(X, Y ) ! O(X, Y )/Aut(Y ) is a holomorphic

principal Aut(Y )-bundle.

We shall prove Theorem 18 in our special case, when X is a compact Riemann
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surface and Y = P. This allows our proof to be more elementary than Namba’s

proof. Then O(X, Y ) is just the set of nonconstant holomorphic maps X ! Y .

Furthermore, Aut(Y ) is the group M of Möbius transformations. Lemma 9 implies

that M acts holomorphically on O(X, Y ). By Theorem 17 it remains to show the

map

� : M ⇥O(X,P) ! O(X,P)⇥O(X,P), (g, f) 7! (g � f, f),

is proper. Let K ⇢ O(X,P) ⇥ O(X,P) be compact. Let (g
k

, f
k

) be a sequence in

��1(K). Since K is compact, we may assume that (g
k

� f
k

, f
k

) converges to (h, f)

in K. Furthermore, Proposition 7 allows us to assume that the f
k

, f and h are all

of the same degree n � 1.

We can identify M with PGL
2

(C). If M
n

(C) denotes the vector space of n ⇥ n

matrices with complex entries, there is a natural inclusion map ◆ : PGL
2

(C) !
PM

2

(C). Since PM
2

(C) is compact, by passing to a subsequence, we can assume

there exists A 2 PM
2

(C) such that g
k

! A in PM
2

(C). If det(A) 6= 0, then A 2 M

and so g
k

! A in M and we are done.

Otherwise det(A) = 0. Then ker(A) corresponds to a unique point z
0

2 P. We

claim that for some L 2 P, g
k

(z) ! L for every z 2 P\ {z
0

}. Indeed, we claim that

g
k

! L uniformly on compact subsets of P\ {z
0

}. To show this, we can assume

that z
0

= 1. Take a
k

, b
k

, c
k

, d
k

2 C with a
k

d
k

� b
k

c
k

6= 0 such that for all z 2 P,

g
k

(z) = (a
k

z+b
k

)/(c
k

z+d
k

). We can assume that |a
k

|2+|b
k

|2+|c
k

|2+|d
k

|2 = 1. Then,

passing to a subsequence, we can assume that a
k

, b
k

, c
k

, d
k

converge to a, b, c, d 2 C

respectively, where |a|2+ |b|2+ |c|2+ |d|2 = 1. Since z
0

= 1, it follows that a = c = 0

and so |b|2 + |d|2 = 1. Hence L = b/d.

If d 6= 0, let K̃ ⇢ C be compact and let C = sup
z2 ˜

K

|z|. Then for all z 2 K̃,

�

�

�

�

a
k

z + b
k

c
k

z + d
k

� b

d

�

�

�

�

=

�

�

�

�

(da
k

� bc
k

)z + (b
k

d� bd
k

)

d(c
k

z + d
k

)

�

�

�

�

 |da
k

� bc
k

| · C
|d| · |c

k

z + d
k

| +
|b

k

d� bd
k

|
|d| · |c

k

z + d
k

| .
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Let " > 0. Then for k large enough, |da
k

�bc
k

| < " and |b
k

d�bd
k

| < ". Furthermore,

since |c
k

z|  |c
k

| · C, for k large enough, |c
k

z| < |d|/4 6= 0 and |d
k

| > 3|d|/4.
Then

|c
k

z + d
k

| � ||c
k

z|� |d
k

|| > |d|
2
,

and so |c
k

z + d
k

|�1 < 2/|d|. Then
�

�

�

�

a
k

z + b
k

c
k

z + d
k

� b

d

�

�

�

�

 2C"

|d|2 +
2"

|d|2 .

This shows that (after passing to a subsequence) the sequence (g
k

) converges to the

constant map L = b/a uniformly on compact subsets of C = P\ {z
0

}.

If d = 0, then the above argument shows that 1/g
k

converges uniformly on compact

subsets of C to 0.

It follows that h is constant, contradicting h having degree n � 1.

Since the action of M on O(X,P) maps R
n

to R
n

, it follows that R
n

/M is a com-

plex manifold such that the projection map ⇡ : R
n

! R
n

/M is a holomorphic

principal M -bundle. Furthermore, R
n

/M possesses the universal property of the

quotient.

2.3 Elliptic Functions of Degree 2

2.3.1 Elliptic Curves

Let X be a compact Riemann surface of genus 1. As before, let R
n

denote the set

of degree n holomorphic maps X ! P. The goal of this section is to show that R
2

is an Oka manifold. In fact, we will show that R
2

is a homogeneous space.

For this section we will represent X as the quotient of C by a lattice �. We will

begin by reviewing some basics.
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Let !
1

,!
2

2 C be linearly independent over R. Then � = !
1

Z+!
2

Z is a lattice in C.

We say that � is square if !
1

= ei⇡/2!
2

and that � is hexagonal if !
1

= ei⇡/3!
2

.

The quotient C/� is a Riemann surface of genus 1, a 1-dimensional complex torus.

Furthermore, C/� is a complex Lie group and the quotient map ⇡ : C ! C/� is

holomorphic, a Lie group homomorphism and the universal covering map.

For two lattices �,�0 in C, every non-constant holomorphic map f : C/� ! C/�0

fixing 0 lifts to a holomorphic map of the form f̃ : C ! C, z 7! ↵z, where ↵ 2 C

⇤

and ↵� ⇢ �0. It follows that f is a homomorphism of Lie groups. Furthermore, f is

a biholomorphism if and only if ↵� = �0. Let A
�

denote the group of automorphisms

of C/� that fix 0. The following result is proved in [29, p. 64].

Proposition 19. If f 2 A
�

lifts to z 7! ↵z, then:

1. ↵ 2 {±1,±i} if � is a square lattice,

2. ↵ 2
n

±1, e±i

⇡

3 , e±i

2⇡
3

o

if � is a hexagonal lattice,

3. ↵ 2 {±1} otherwise.

Thus A
�

contains 4 elements if � is a square lattice, 6 elements if � is hexagonal

and 2 elements otherwise.

If t 2 C/�, let ⌧
t

: C/� ! C/�, z 7! z + t, be the translation map. Then ⌧
t

is

a holomorphic automorphism of C/�. Let T
�

= {⌧
t

: t 2 C/�}, a subgroup of the

full automorphism group Aut(C/�). Then Aut(C/�) = T
�

o A
�

. Note that T
�

is

naturally identified with C/� itself; however we find it convenient to distinguish the

two.

For the Riemann sphere P, consider O(C/�,P), the set of holomorphic functions

f : C/�! P. If f 2 O(C/�,P) is not equal to the constant function 1, we say f is

an elliptic function with respect to �. A meromorphic function g : C ! P is said to

be doubly periodic with respect to � if for all ! 2 � and z 2 C, f(z) = f(z + !). It
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is clear that the set of elliptic functions and doubly periodic meromorphic functions

with respect to � are in bijective correspondence via the equality g = f�⇡. The set of
elliptic functions with respect to � then forms a field under the usual multiplication

and addition of meromorphic functions.

Recall that the automorphism group of P is M , the Möbius group of transformations

g : P ! P given by the formula

g(z) =
az + b

cz + d
,

for a, b, c, d 2 C with ad� bc 6= 0. A Möbius transformation is determined uniquely

by where it takes three distinct points. The group M acts on O(C/�,P) via post-

composition, with g · f = g � f , f 2 O(C/�,P), g 2 M . Similarly, Aut(C/�)

acts on O(C/�,P) via precomposition with f · ⌧ = f � ⌧�1, for ⌧ 2 Aut(C/�).

The product group M ⇥ Aut(C/�) then acts on O(C/�,P) in the obvious way:

(g, ⌧) · f = g � f � ⌧�1. Since the elements of M and Aut(C/�) are of degree 1, it

follows that R
n

is invariant under the action of M ⇥ Aut(C/�).

2.3.2 The Weierstrass }-function

We shall use [13] as a general reference for this subsection.

Letting �0 = �\ {0} and k 2 Z, define the Eisenstein series G
k

(�) by

G
k

(�) =
X

!2�0
!�k.

The series converges absolutely for k � 3.

The Weierstrass }-function is the map } : C\�! C defined by

}(z) =
1

z2
+
X

!2�0

1

(z � !)2
� 1

!2

.

This series converges uniformly on compact subsets of C\� and thus is a meromor-

phic function on C with poles of order 2 precisely on the lattice �. Furthermore,
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} is an even function with }(�z) = �}(z) for all z 2 C. Di↵erentiating term by

term, we see that

}0(z) = �2
X

!2�

1

(z � !)3
.

It is clear that }0 is doubly periodic with respect to � and an odd function, with

}0(�z) = �}0(z) for all z 2 C. Since } is even, it follows that } is also doubly

periodic with respect to �.

The functions }, }0 induce elliptic functions and hence members of O(C/�,P). The

}-function is of degree 2, while }0 is of degree 3. These two functions are related by

the following theorem.

Theorem 20. Let g
2

= 60G
4

and g
3

= 140G
6

. Then } and }0 satisfy the Weierstrass

equation

(}0)2 = 4}3 � g
2

}� g
3

.

The functions } and }0 generate the field of elliptic functions over C.

Theorem 21. The field of elliptic functions on C/� is C(},}0).

2.3.3 Degree 2 Case

Let !
3

= !
1

+!
2

2 �, and for i = 1, 2, 3, let b
i

= ⇡(!i

2

) 2 C/�. Then if z 2 C/� and

z = �z, it follows that either z = 0 or z = b
i

for some i. Now }0 is an odd function

of degree 3, implying that }0 has a simple zero at b
1

, b
2

, b
3

. Then 0, b
1

, b
2

, b
3

are

branch points of }.

Recall the Hurwitz formula [8, Section 17.14] for an n-sheeted branched covering of

the Riemann sphere by a genus g surface:

g =
b

2
� n+ 1,
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where b is the branching order of the covering. In the case g = 1 we obtain

b = 2n.

Since } is of degree 2, this implies that 0, b
1

, b
2

, b
3

are the only branch points of

}.

Recall that the action of M ⇥ Aut(C/�) on O(C/�,P) leaves R
d

invariant. Since

C/� is a subgroup of Aut(C/�), there is an induced action of M ⇥ C/� on R
2

. It

is shown in [21] that this action is transitive.

Proposition 22. The action of M ⇥ C/� on R
2

is transitive.

We provide a short proof for the convenience of the reader.

Proof. If f 2 R
2

, then there exists (g
1

, t) 2 M⇥C/� such that f
1

= g
1

�f �⌧�1

t

2 R
2

has a double pole at 0 and is zero at b
1

. There also exists g
2

2 M such that

f
2

= g
2

� } 2 R
2

has a double pole at 0 and a double zero at b
1

. Then the quotient

f
1

/f
2

is an elliptic function with a pole of order at most 1 at b
1

and is holomorphic

elsewhere. Since R
1

= ?, it follows that f
1

= cf
2

for some c 2 C

⇤. Taking

g = g�1

1

� cg
2

, we see that f = g � } � ⌧�1

�t

and so the action is transitive.

We shall now determine the stabiliser of } under the action of M ⇥ C/�. Recall

that } has a double pole at 0. Let y 2 C/� be a zero of }. Since } is even, the

other zero of } is at �y (which is equal to y only if � is the square lattice).

Now, if (g, t) 2 M ⇥ C/� such that

g � } � ⌧�1

t

= }, (2.3.1)

then the set of branch points of g �} � ⌧�1

t

is S = {0, b
1

, b
2

, b
3

}. This implies that ⌧
t

acts as a permutation on S and so t 2 S. Hence t = �t, which implies that } � ⌧�1

t

is even, since

} � ⌧�1

t

(�z) = }(�z � t) = }(z + t) = }(z � t) = } � ⌧�1

t

(z).
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Let h 2 M such that h�}�⌧�1

t

(0) = 1 and h�}�⌧�1

t

(y) = 0. Then h�}�⌧�1

t

(�y) = 0

and so f = h �} � ⌧�1

t

has the same zeroes and poles as }. Hence }/f is a constant

c 2 C

⇤. Choosing h to be the unique Möbius transformation for which this constant

is 1, we have shown that for any t 2 S, there exists a unique g = g
t

2 M satisfying

(2.3.1). We have proved the following proposition.

Proposition 23. The stabiliser of } under the action of M ⇥ C/� on R
2

is

Stab(}) = {(g
t

, t) : t 2 S} .

This group is isomorphic to Z

2

⇥ Z

2

.

Now equip the set R
2

with the universal complex structure as in Theorem 8. We

wish to show that R
2

is biholomorphic to (M ⇥ C/�)/Stab(}).

Firstly, we shall show M ⇥ C/� acts holomorphically on R
2

. By property (⇤) in

Theorem 8, the map M ⇥ C/�⇥ R
2

! R
2

, (g, t, f) 7! g � f � ⌧�t

, is holomorphic if

the mapM⇥C/�⇥R
2

⇥C/�! P, (g, t, f, x) 7! g(f(x�t)), is holomorphic. But this

follows from the fact that the evaluation map e : R
2

⇥C/�! P is holomorphic.

Now, consider the map � : M ⇥ C/� ! R
2

, (g, t) 7! g � } � ⌧�t

. It is holomorphic

and surjective. Furthermore, � is invariant under the action of Stab(}) and so de-

scends to a holomorphic bijection �̃ : (M ⇥C/�)/ Stab(}) ! R
2

. Since M ⇥C/� is

connected, R
2

is connected and so has pure dimension. It follows that �̃ is a biholo-

morphism [22, Proposition 49.13]. Hence we have proved the following theorem.

Theorem 24. Let X be a compact Riemann surface of genus 1 and R
2

the complex

manifold of degree 2 maps X ! P. Then R
2

is a homogeneous space and hence is

an Oka manifold. Moreover, R
2

is biholomorphic to (M ⇥X)/(Z
2

⇥ Z

2

).

See [10, Proposition 5.5.1] for the proof that every homogeneous space is Oka.
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2.4 A 9-sheeted Covering of R3/M

The goal of this section is to show that there is a smooth cubic curve C in P

2

such

that P

2

\C ⇥ X is a 9-sheeted unbranched covering space of R
3

/M . This result is

due to Namba and we draw upon his work [31, Sections 1.3, 1.4].

In this chapter, it is more natural for us to think of C as a curve in the dual

projective plane P

_
2

, which is of course biholomorphic to P

2

. We shall let [a, b, c]

denote the homogeneous coordinates of the point in P

_
2

corresponding to the line

ax
1

+ bx
2

+ cx
3

= 0 in P

2

.

Let X be a compact Riemann surface of genus 1. Let  : SnX ! X, n � 2, be

the Jacobi map and D
0

, D1 the maps R
n

! SnX taking a function to its divisor of

zeroes and poles respectively. Let � =  �D
0

: R
n

! X. Then � is holomorphic and

M -invariant, so by the universal property of the quotient, it induces a holomorphic

map � : R
n

/M ! X such that the following diagram commutes.

R
n

SnX

R
n

/M X

D0

�

⇡

 

�

From now on, we shall take n = 3. Fixing p 2 X and D 2  �1(p), since X has

genus g = 1 and deg(D) = 3 > 2g � 2 = 0, it follows that H1(X,O
D

) = 0 [8, The-

orem 17.16]. The Riemann-Roch theorem implies that dimH0(X,O
D

) = 3. Thus

PH0(X,O
D

) is biholomorphic to P

_
2

. Let {⌘1, ⌘2, ⌘3} be a basis of H0(X,O
D

). Then

the map ⌘
p

: X ! P

_
2

, x 7! [⌘1(x), ⌘2(x), ⌘3(x)], is a holomorphic embedding of X

in P

_
2

[8, Theorem 17.22]. We shall denote the image of X under this map by C
p

.

By the degree-genus formula, C
p

is a cubic curve [29, Section V.3, Proposition 2.15].
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Now Lemma 11 states that the map

 : P
2

!  �1(p), [a
1

, a
2

, a
3

] 7! (a
1

⌘1 + a
2

⌘2 + a
3

⌘3) +D,

is a biholomorphism. Let ⌫ = �1.

Proposition 25. Let x
1

, x
2

, x
3

2  �1(p). Then x
1

+ x
2

+ x
3

= p if and only if

there is a line passing through ⌘
p

(x
1

), ⌘
p

(x
2

), ⌘
p

(x
3

) that intersects C
p

at ⌘
p

(x
i

) with

multiplicity equal to the multiplicity of x
i

in x
1

+ x
2

+ x
3

, for i = 1, 2, 3.

Proof. Let x
1

+x
2

+x
3

= p. Then Abel’s theorem implies that there exists f 2 ��1(p)

such that D
0

(f) = x
1

+x
2

+x
3

. We claim that the point [a
1

, a
2

, a
3

] = ⌫(D
0

(f)) 2 P

2

is dual to the desired line passing through ⌘
p

(x
1

), ⌘
p

(x
2

), ⌘
p

(x
3

). Indeed,

D
0

(f) = (a
1

⌘1 + a
2

⌘2 + a
3

⌘3) +D.

Now if D does not contain the point x
i

, then a
1

⌘1(x
i

)+a
2

⌘2(x
i

)+a
3

⌘3(x
i

) = 0 with

multiplicity equal to the multiplicity of x
i

in D
0

(f) and we are done. Otherwise, we

can assume that D contains the point x
1

with multiplicity n, and D
0

(f) contains x
1

with multiplicity m, for 1  n,m  3. Then a
1

⌘1 + a
2

⌘2 + a
3

⌘3 has order m� n at

x
1

. Now, we know that H0(X,O
D

) is globally generated as X has genus g = 1 and

deg(D) = 3 � 2g = 2 [8, Theorem 17.19]. Hence one of ⌘1, ⌘2, ⌘3 will have a pole at

x
1

of order n. Then in local coordinates z on X about x
1

we can find holomorphic

functions ⌘̃j, for j = 1, 2, 3, such that locally ⌘j(w) = ⌘̃j(w)/(w � z(x
1

))n. Then

⌘
p

(x
1

) = [⌘̃1(x
1

), ⌘̃2(x
1

), ⌘̃3(x
1

)]. We have

a
1

⌘̃1(w) + a
2

⌘̃2(w) + a
3

⌘̃3(w) = (w � z)n(a
1

⌘1(w) + a
2

⌘2(w) + a
3

⌘3(w)).

It follows that the above expression has order m at x
1

and so we are done.

Conversely, suppose [a
1

, a
2

, a
3

] defines a line in P

_
2

which intersects C
p

at the points

⌘
p

(x
1

), ⌘
p

(x
2

), ⌘
p

(x
3

) with the desired multiplicities, where x
1

, x
2

, x
3

2 X are taken

appropriately. Then for i = 1, 2, 3, it is easy to use the computations above to show
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that (a
1

⌘1 + a
2

⌘2 + a
3

⌘3) +D = x
1

+ x
2

+ x
3

. Then x
1

+ x
2

+ x
3

2  �1(p) and we

are done.

Now, any cubic curve in P

_
2

can be given a group law by choosing an inflection point

to be the identity 0 and then defining all collinear triples of points to sum to 0.

Proposition 25 shows that when p = 0, the group structure induced by X on C
0

by the embedding ⌘
0

is such a group law. Indeed, ⌘
0

necessarily maps 0 2 X to an

inflection point of C
0

as the divisor 0+0+0 2  �1(0) determines a line intersecting

C
0

at ⌘
0

(0) with multiplicity 3.

We shall now construct a 9-sheeted unbranched covering map P

_
2

\C
0

⇥X ! R
3

/M .

The construction relies on the following result of Namba [31, Lemma 1.3.6].

Proposition 26 (Namba). For all p 2 X, there exists a biholomorphism ��1(p) !
P

_
2

\C
p

.

Namba’s original proof covered the case when X was a Riemann surface of higher

genus. We shall present our own proof of this result as it is significantly simpler

when X is of genus 1.

Proof. Consider the following commuting diagram:

��1(p) ( �1(p)⇥  �1(p))\S (P
2

⇥ P

2

)\�

��1(p) P

_
2

µ

(D0, D1)

⇡

⌫ ⇥ ⌫

L

µ̃

If x, y 2 P

2

are distinct points, there exists a unique line L(x, y) 2 P

_
2

passing

through x and y. Furthermore, L depends holomorphically on x and y. Letting �

denote the diagonal of P
2

⇥P

2

, we obtain a holomorphic map L : (P
2

⇥P

2

)\�! P

_
2

.

Let S denote the set of pairs of divisors in  �1(p)⇥  �1(p) that share at least one

point. Then Abel’s theorem implies that (D
0

, D1) maps ��1(p) onto ( �1(p) ⇥



CHAPTER 2. PROOF OF MAIN THEOREM 38

 �1(p))\S. Lemma 11 implies that the map

 : P
2

!  �1(p), [a
1

, a
2

, a
3

] 7! (a
1

⌘
1

+ a
2

⌘
2

+ a
3

⌘
3

) +D,

is a biholomorphism. Then taking ⌫ = �1, we see that ⌫ ⇥ ⌫ maps ( �1(p) ⇥
 �1(p))\S biholomorphically onto an open subset of (P

2

⇥P

2

)\� (it is not easy, nor

necessary for us, to explicitly describe this open subset).

Let µ = L�(⌫⇥⌫)�(D
0

, D1)|��1(p). Then µ is a holomorphic map ��1(p) ! P

_
2

. We

shall show that µ is M -invariant. Take f 2 ��1(p) and g 2 M . Let r
0

= D
0

(g � f),
r1 = D1(g � f) and let L

f

= µ(f). Then it is su�cient to show that the points

⌫(r
0

), ⌫(r1) are both on L
f

.

We shall firstly show that ⌫(r
0

) is on L
f

. If ⌫(D
0

(f)) = [a
1

, a
2

, a
3

] and ⌫(D1(f)) =

[b
1

, b
2

, b
3

], it is su�cient to show that for some �,�0 2 C, ⌫(r
0

) = [�a
1

+ �0b
1

,�a
2

+

�0b
2

,�a
3

+ �0b
3

]. We can assume that D = D1(f), so f 2 H0(X,O
D

). Then take

a, b, c, d 2 C with ad � bc 6= 0 such that g � f = (af + b)/(cf + d). Then if a = 0,

r
0

= D1(f), and we are done. Otherwise a 6= 0 and for z 2 X, (g � f)(z) = 0 if

f(z) = �b/a. Now, for some h 2 H0(X,O
D

) we have r
0

= (h) + D1(f). Since

r
0

is disjoint from D1(f), then D1(f) = D1(h) and r
0

= D
0

(h). The function

af + b also has the same poles and zeroes as h, implying that for some C 2 C

⇤,

h = C(af + b). But

af + b = a(a
1

⌘
1

+ a
2

⌘
2

+ a
3

⌘
3

) + b(b
1

⌘
1

+ b
2

⌘
2

+ b
3

⌘
3

),

which implies that ⌫(r
0

) = ⌫(D
0

(af + b)) = [aa
1

+ bb
1

, aa
2

+ bb
2

, aa
3

+ bb
3

], which

is what we wanted to show. A similar argument using D1 shows that r1 is also on

L
f

.

Note that for each p 2 X, M acts on ��1(p), so ��1(p)/M = ��1(p). Since µ is

M -invariant, it induces a holomorphic map µ̃ : ��1(p) ! P

_
2

.

We shall now prove that µ̃ yields the desired biholomorphism in Proposition 26.

Firstly, we shall show that µ̃(��1(p)) = P

_
2

\C
p

. This is equivalent to µ(��1(p)) =
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P

_
2

\C
p

. Take (a, b) 2 P

2

⇥ P

2

such that L(a, b) 2 C
p

and let a = [a
1

, a
2

, a
3

],

b = [b
1

, b
2

, b
3

]. Then for some z 2 X, L(a, b) = [⌘
1

(z), ⌘
2

(z), ⌘
3

(z)]. Then a
1

⌘
1

(z) +

a
2

⌘
2

(z) + a
3

⌘
3

(z) = 0 and b
1

⌘
1

(z) + b
2

⌘
2

(z) + b
3

⌘
3

(z) = 0. For fixed D 2  �1(p),

(a) = (a
1

⌘
1

+a
2

⌘
2

+a
3

⌘
3

)+D and (b) = (b
1

⌘
1

+b
2

⌘
2

+b
3

⌘
3

)+D. But the functions

a
1

⌘
1

+ a
2

⌘
2

+ a
3

⌘
3

and b
1

⌘
1

+ b
2

⌘
2

+ b
3

⌘
3

in H0(X,O
D

) share the zero z 2 X. Hence

(a) and (b) share the point z and so ((a),(b)) 2 S. Hence µ(��1(p)) ⇢ P

_
2

\C
p

.

Now to show that each L(a, b) 2 P

_
2

\C
p

is in µ(��1(p)), Abel’s theorem implies

that it is su�cient to show that (a) and (b) are disjoint. Let a = [a
1

, a
2

, a
3

],

b = [b
1

, b
2

, b
3

]. Then it is equivalent to show that the functions a
1

⌘
1

+ a
2

⌘
2

+ a
3

⌘
3

and b
1

⌘
1

+ b
2

⌘
2

+ b
3

⌘
3

have no common zeroes. But if for some z 2 X, (a
1

⌘
1

+a
2

⌘
2

+

a
3

⌘
3

)(z) = 0 = (b
1

⌘
1

+ b
2

⌘
2

+ b
3

⌘
3

)(z), then L(a, b) = [⌘
1

(z), ⌘
2

(z), ⌘
3

(z)] 2 C
p

.

Hence µ(��1(p)) = P

_
2

\C
p

.

To show that µ̃ is injective, it is su�cient to show that if x 2 P

_
2

\C
p

and f
1

, f
2

2
µ�1(x), then there exists g 2 M such that f

1

= g�f
2

. Let ⌫(D
0

(f
1

)) = a = [a
1

, a
2

, a
3

]

and ⌫(D1(f
1

)) = b = [b
1

, b
2

, b
3

]. We can assume that D = D1(f
1

). Then f
1

2
H0(X,O

D

) and D
0

(f
1

) = (f
1

)+D. Then for some C 2 C

⇤, a
1

⌘
1

+a
2

⌘
2

+a
3

⌘
3

= Cf
1

and b
1

⌘
1

+ b
2

⌘
2

+ b
3

⌘
3

is a constant function. Then if ⌫(D
0

(f
2

)) = [↵
1

,↵
2

,↵
3

] and

⌫(D1(f
2

)) = [�
1

, �
2

, �
3

], there exist coe�cients c
1

, c
2

, c
3

, c
4

2 C such that

↵
1

⌘
1

+ ↵
2

⌘
2

+ ↵
3

⌘
3

= c
1

(a
1

⌘
1

+ a
2

⌘
2

+ a
3

⌘
3

) + c
2

(b
1

⌘
1

+ b
2

⌘
2

+ b
3

⌘
3

)

= c
1

f
1

+ c
2

and �
1

⌘
1

+�
2

⌘
2

+�
3

⌘
3

= c
3

f
1

+c
4

. Since D
0

(f
2

), D1(f
2

) are distinct, c
1

c
4

�c
2

c
3

6= 0,

and g(z) = (c
1

z + c
2

)/(c
3

z + c
4

) is a Möbius transformation. Moreover it is easily

seen that g � f
1

has the same zeroes and poles as f
2

and so there exists a Möbius

transformation taking f
1

to f
2

.

To show that µ̃�1 is holomorphic, we shall show that for any x 2 P

_
2

there is a local

holomorphic section of µ on some neighbourhood of z. It is clear that there is a

neighbourhood U of x on which a local holomorphic section �
1

of L can be defined.



CHAPTER 2. PROOF OF MAIN THEOREM 40

As in the proof of Theorem 15, there also exists a local holomorphic section �
2

of the

map (D
0

, D1) in a neighbourhood of any point in ( �1(p)⇥  �1(p))\S. Shrinking
U if necessary, we see that �

2

� (⇥ )⇥ �
1

is the desired local holomorphic section

of µ.

We shall continue to take µ : ��1(p) ! P

_
2

to be as in the proof of Proposition 26.

The following proposition reveals the relationship between the geometry of P_
2

\C
p

and ��1(p).

Proposition 27. Let q 2 P

_
2

\C
p

and x
1

, x
2

, x
3

2 X such that x
1

+ x
2

+ x
3

= p.

Then q is on the line that intersects C
p

at the points ⌘
p

(x
1

), ⌘
p

(x
2

), ⌘
p

(x
3

) counted

with multiplicity if and only if {x
1

, x
2

, x
3

} is a fibre of every map in µ�1(q).

Proof. Suppose that [a
1

, a
2

, a
3

] defines a line through ⌘
p

(x
1

), ⌘
p

(x
2

), ⌘
p

(x
3

) and q

with the right multiplicity. Then we know from the proof of Proposition 25 that

[a
1

, a
2

, a
3

] = x
1

+x
2

+x
3

. Now q 2 P

_
2

\C
p

is a line in P

2

passing through [a
1

, a
2

, a
3

].

If [b
1

, b
2

, b
3

] is a point on q, distinct from [a
1

, a
2

, a
3

], then we claim that [b
1

, b
2

, b
3

]

is a divisor distinct from x
1

+ x
2

+ x
3

. Indeed, if [a
1

, a
2

, a
3

] and [b
1

, b
2

, b
3

] shared

x
1

, say, then the corresponding lines in P

_
2

would intersect at ⌘
p

(x
1

) 2 C
p

. Since

these lines already intersect at q, it follows that they are the same line, which

contradicts the fact that they are distinct. Abel’s theorem implies that there is a

meromorphic function f 2 ��1(p) such that D
0

(f) = [a
1

, a
2

, a
3

] = x
1

+ x
2

+ x
3

and D1(f) = [b
1

, b
2

, b
3

]. Indeed it is clear from the definition of µ that µ(f) = q.

Moreover, in the proof of Proposition 26 we showed that µ�1(q) is the M -orbit of

f . Hence {x
1

, x
2

, x
3

} is a fibre of every f 2 µ�1(q).

Conversely suppose that q is such that {x
1

, x
2

, x
3

} is a fibre of every f 2 µ�1(q).

Then we can choose f 2 µ�1(q) such that D
0

(f) = x
1

+ x
2

+ x
3

. Let [a
1

, a
2

, a
3

] =

⌫(x
1

+x
2

+x
3

). Then the definition of µ implies that q is a line in P

2

passing through

[a
1

, a
2

, a
3

]. The dual statement is that the line defined by [a
1

, a
2

, a
3

] passes through
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q in P

_
2

. The proof of Proposition 25 implies that this line intersects C
p

at the points

⌘
p

(x
1

), ⌘
p

(x
2

), ⌘
p

(x
3

) with the right multiplicity and we are done.

Having proved Proposition 26, we will now construct a covering map P

_
2

\C
0

⇥X !
R

3

/M . Let s
3

: X ! X, x 7! 3x. Then s
3

is a holomorphic 9-sheeted unbranched

covering map. The following lemma is due to Namba [31, Lemma 1.4.1]. Our proof

is simpler and more straightforward than Namba’s original proof.

Proposition 28 (Namba). There exists a map s̃
3

: P_
2

\C
0

⇥ X ! R
3

/M , which

makes the following diagram commute:

P

_
2

\C
0

⇥X R
3

/M

X X

s̃3

proj2 �

s3

where proj
2

is the projection onto the second factor. Furthermore, this diagram is a

pullback square.

Proof. By Proposition 26 we can identify P

_
2

\C
0

with ��1(0). For notational conve-

nience we will suppress this isomorphism. Let P denote the pullback of R
3

/M along

s
3

. Then it is enough to show that P is biholomorphic to ��1(0)⇥X. By definition,

P = {( , x) 2 (R
3

/M)⇥X : �( ) = s
3

(x)} .

If ⇡ : R
3

! R
3

/M is the projection map, then since ⇡ is an M -bundle, about any

 2 R
3

/M we can find a neighbourhood U on which there exists a local holomorphic

section � : U ! R
3

of ⇡. For p 2 X, let ⌧
p

: X ! X, x 7! x + p. Then we can

define the map

� : ��1(0)⇥X ! P, ( , x) 7! (⇡(�( ) � ⌧�x

), x).

To show that � is well defined, we must show that it is independent of the choice of

the section � and show that the image of ��1(0) ⇥X is contained in P . Take  2
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��1(0) and two local holomorphic sections �
1

, �
2

of ⇡ defined on some neighbourhood

U of  . Then if ' 2 U , there exists g 2 M such that �
2

(') = g � �
1

('). Then

⇡(�
2

(') � ⌧�x

) = ⇡(g � �
1

(') � ⌧
x

) = ⇡(�
1

(') � ⌧�x

),

so the map is independent of the choice of section. To show that the image is

contained in P , note that if the zeroes of �( ) are p
1

, p
2

, p
3

, then the zeroes of

�( ) � ⌧�x

are p
1

+ x, p
2

+ x, p
3

+ x. Then �(�( ) � ⌧�x

) = 3x = s
3

(x) and so � is

well defined.

The map � is clearly a bijection with inverse

��1 : P ! ��1(0)⇥X, ( , x) 7! (⇡(�( ) � ⌧
x

), x).

Both � and ��1 are obviously holomorphic and so P is biholomorphic to ��1(0)⇥
X.

If we identify P

_
2

\C
0

with ��1(0) as in the proof above, then every element of P_
2

\C
0

can be written as ⇡(f), where f 2 R
3

is chosen appropriately. Unravelling the

construction of s̃
3

in the proof above, we get s̃
3

(⇡(f), x) = ⇡(f � ⌧�x

). This formula

will be used later.

Since s̃
3

is surjective and P

_
2

\C
0

, X and M are connected, we can finally conclude

that R
3

is connected.

Corollary 29. The complex manifold R
3

is connected.

Proposition 28 also implies that R
3

is Oka if and only if P_
2

\C
0

is Oka. Indeed

M is Oka and ⇡ : R
3

! R
3

/M is a principal M -bundle. Then R
3

is Oka if and

only if R
3

/M is Oka. Since s̃
3

is an unbranched covering map, R
3

/M is Oka if and

only P

_
2

\C
0

⇥X is Oka. SinceX is Oka, P_
2

\C
0

⇥X is Oka if and only if P_
2

\C
0

is Oka.

Corollary 30. The complex manifold R
3

is Oka if and only if the cubic complement

P

_
2

\C
0

is Oka.



CHAPTER 2. PROOF OF MAIN THEOREM 43

Whether the complement of a smooth cubic curve in P

2

is Oka or not is a well-known

open problem in Oka theory [12, Open Problem B, p. 20]. Hence, we are unable to

conclude whether R
3

is Oka or not.

From now on, we will blur the distinction between P

2

and P

_
2

.

2.5 Oka Branched Covering Space of P2\C

Let F : C3 ! C be a homogeneous polynomial of degree 3. Then the equation

F (x, y, z) = 0 (2.5.1)

defines a projective curve C in P

2

. We shall assume that the partial derivatives

F
x

, F
y

, F
z

have no common zeroes on C, so C is smooth. Then C is biholomorphic

to a complex torus C/�, for some lattice � in C. We may assume that F is written

in the standard form

F (x, y, z) = y2z � 4x3 + g
2

xz2 + g
3

z3, (2.5.2)

where g
2

, g
3

2 C depend on �. Then if } is the Weierstrass elliptic function asso-

ciated to �, the map C/� ! P

2

, ⇣ 7! [}(⇣),}0(⇣), 1], is a biholomorphism onto C,

where [}(0),}0(0), 1] is interpreted as [0, 1, 0]. Since C/� is a complex Lie group,

this biholomorphism induces a complex Lie group structure on C.

In this section we shall prove the following theorem.

Theorem 31. There exists a 6-sheeted connected branched covering space N of

P

2

\C that is an Oka manifold.

Recall that a complex manifold X of dimension m is dominable if for some x 2 X,

there exists a holomorphic map C

m ! X taking 0 to x that is a local biholomorphism

at 0. This property passes down branched covering maps. Since every Oka manifold

is dominable, it follows that P
2

\C is dominable.
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The branched covering space N was first constructed by Buzzard and Lu [3, Section

5.1] as the graph complement of a meromorphic function. They showed that N is

dominable, implying that P
2

\C is dominable. Hanysz [17, Theorem 4.6] improved

this result by showing that N is Oka. Many of the details of the proof are omitted

from both [3] and [17]. We will present a detailed proof of this result here based on

Buzzard and Lu’s original construction.

If L is any line in P

2

, then Bezout’s theorem implies that L intersects C at three

points, counted with multiplicity. The group law on the cubic implies that if p
1

, p
2

,

p
3

are the intersection points and

p
1

= [}(⇣
1

),}0(⇣
1

), 1], p
2

= [}(⇣
2

),}0(⇣
2

), 1], p
3

= [}(⇣
3

),}0(⇣
3

), 1],

then ⇣
1

+ ⇣
2

+ ⇣
3

= 0, where this addition is the group addition on C/�. Conversely,

given ⇣
1

, ⇣
2

, ⇣
3

2 C/� such that ⇣
1

+ ⇣
2

+ ⇣
3

= 0, then the points p
1

, p
2

, p
3

defined as

above are the intersection points of some line L in P

2

with C. See [13, Section V.4]

for details.

If L is tangent to C at p = [x, y, z], then L intersects C at p with multiplicity at

least 2. Furthermore, L is the set of points [X, Y, Z] 2 P

2

such that

F
x

(x, y, z)X + F
y

(x, y, z)Y + F
z

(x, y, z)Z = 0. (2.5.3)

If L intersects C at p with multiplicity 3, then p is an inflection point. The inflection

points of C occur where the determinant of the Hessian of F vanishes. In particular,

C has 9 distinct inflection points [7, Section 4.5].

Let E be the set of points ([x, y, z], [X, Y, Z]) 2 P

2

⇥ P

2

satisfying both (2.5.1) and

(2.5.3). Then (p, q) 2 E if and only if p 2 C and q is on the tangent line to C at p.

Proposition 32. The set E is a smooth, connected, 2-dimensional, closed algebraic

subvariety of P
2

⇥ P

2

.
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Proof. Let

A = {([x, y, z], [X, Y, Z]) 2 P

2

⇥ P

2

: z, Z 6= 0} .

Then A is a chart on P

2

⇥P

2

and can be identified with C

2⇥C

2 by setting z, Z = 1.

Let H : A ! C be defined by

H(x, y,X, Y ) = F
x

(x, y, 1)X + F
y

(x, y, 1)Y + F
z

(x, y, 1).

Then E \ A is the zero set of the function G : A ! C

2,

G(x, y,X, Y ) = (F (x, y, 1), H(x, y,X, Y )).

The Jacobian matrix of G is

J(G) =

0

@

F
x

F
y

0 0

H
x

H
y

H
X

H
Y

1

A =

0

@

F
x

F
y

0 0

H
x

H
y

F
x

F
y

1

A .

We claim that J(G) has full rank at every point ([x, y, 1], [X, Y, 1]) 2 E\A. Indeed,

since F
x

X + F
y

Y + F
z

= 0, both F
x

and F
y

cannot vanish at [x, y, 1]; otherwise F
z

would also vanish and C would be singular. So we are done.

Let ⇡ : E ! C, (p, q) 7! p, be the projection onto C. Then ⇡ is holomorphic and

the fibre over p 2 C is the tangent line of C at p.

Let U
x

be the open subset of C on which F
x

does not vanish. Let h
x

: ⇡�1(U
x

) !
U
x

⇥ P, (p, [X, Y, Z]) 7! (p, [Y, Z]). Then h
x

is a biholomorphism and hence a local

trivialisation of ⇡. The subsets U
y

, U
z

and the corresponding biholomorphisms h
y

,

h
z

are defined analogously. Since F
x

, F
y

, F
z

never vanish simultaneously, we see

that the sets ⇡�1(U
x

), ⇡�1(U
y

), ⇡�1(U
z

) form an open cover of E. Thus E is a

holomorphic P-bundle over C.

Let L be tangent to C at p and let p0 = �2p 2 C. Then p0 = p if and only if p is an

inflection point. Otherwise, p0 6= p and L intersects C with multiplicity 2 at p and

1 at p0.
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Let �
1

, �
2

: C ! E, �
1

(p) = (p, p), �
2

(p) = (p, p0). Then �
1

, �
2

are holomorphic

sections of ⇡.

Let u : C ! C be the universal covering map. Then the pullback bundle Ẽ of E by

u is

Ẽ = {(⇣, w) 2 C⇥ E : u(⇣) = ⇡(w)} .

Then Ẽ is a complex manifold. Let ũ : Ẽ ! E, (⇣, w) 7! w, and ⇡̃ : Ẽ ! C,

(⇣, w) 7! ⇣, be the projection maps. Then ũ and ⇡̃ are holomorphic and form the

following commuting square:

Ẽ
ũ���! E

?

?

y

⇡̃

?

?

y

⇡

C

u���! C

Now, u�1(U
x

), u�1(U
y

), u�1(U
z

) form an open cover of C. We see that the map

h̃
x

: ⇡̃�1(u�1(U
x

)) ! u�1(U
x

)⇥P, (⇣, w) 7! (⇣, proj
2

(h
x

(w))), is a local trivialisation

of ⇡̃. Defining the maps h̃
y

, h̃
z

analogously, we see that Ẽ is a holomorphic P-bundle

over C. The structure group of Ẽ is the Möbius group, which is connected. Then Ẽ is

a trivial bundle, since every holomorphic fibre bundle over a non-compact Riemann

surface whose structure group is connected is holomorphically trivial [32, Theorem

1.0].

Let s
1

, s
2

: C ! Ẽ, s
1

(⇣) = (⇣, �
1

(u(⇣))), s
2

(⇣) = (⇣,�
2

(u(⇣))). Then s
1

, s
2

are

well-defined holomorphic sections of ⇡̃. The triviality of Ẽ implies that s
1

(C), s
2

(C)

may be identified with the graphs of meromorphic functions on C.

We shall now show that Ẽ\s
1

(C) is an a�ne bundle over C. Let h : Ẽ ! C⇥P be a

global trivialisation of Ẽ. Let y = proj
2

�h�s
1

: C ! P. Let B
0

= {⇣ 2 C : y(⇣) 6= 0}
and B1 = {⇣ 2 C : y(⇣) 6= 1}. Then the maps

�
0

: (B
0

⇥ P)\h � s
1

(B
0

) ! B
0

⇥ C, (⇣, w) 7!
 

⇣,
w

1� w

y(⇣)

!

,

and

�1 : (B1 ⇥ P)\h � s
1

(B1) ! B1 ⇥ C, (⇣, w) 7!
✓

⇣,
1

w � y(⇣)

◆

,
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are biholomorphisms. It follows that the maps �
0

� h|⇡̃�1(B
0

)\s
1

(B
0

) and �1 �
h|⇡̃�1(B1)\s

1

(B1) are local trivialisations of Ẽ\s
1

(C). The transition maps are

easily checked to be a�ne.

Thus Ẽ\s
1

(C) is a C-bundle over C with connected structure group, hence is a trivial

bundle. We can then identify Ẽ\s
1

(C) with C

2. Then C

2\s
2

(C) is the complement

of the graph of a meromorphic function.

Hanysz [17, Theorem 4.6] proved the following theorem.

Theorem 33 (Hanysz). Let X be a complex manifold, and let m : X ! P be a

holomorphic map with graph �. Suppose m can be written in the form m = f + 1/g

for holomorphic functions f and g. Then (X⇥C)\� is Oka if and only if X is Oka.

It is well known that C is Oka. Furthermore, Buzzard and Lu [3, Propositon 5.1]

use the theorems of Mittag-Le✏er and Weierstrass to prove that every holomorphic

map m : C ! P can be written in the form m = f + 1/g. Hence the manifold

Ẽ\(s
1

(C) [ s
2

(C)) is biholomorphic to C

2\s
2

(C) and satisfies the hypothesis of the

theorem and so is Oka.

The map ũ is the pullback of an infinite covering map along a continuous map and so

is an infinite covering map Ẽ ! E. Recall that �
1

(C) = {(p, p) 2 P

2

⇥ P

2

: p 2 C},
�
2

(C) = {(p, p0) 2 P

2

⇥ P

2

: p 2 C}. By definition of the pullback bundle, the preim-

age ũ�1(�
1

(C)[�
2

(C)) consists of pairs (⇣, (p, p)) or (⇣, (p, p0)), where u(⇣) = p. But

by definition of s
1

, s
2

, if u(⇣) = p, then s
1

(⇣) = (⇣, (p, p)) and s
2

(⇣) = (⇣, (p, p0)),

implying ũ�1(�
1

(C)) = s
1

(C) and ũ�1(�
2

(C)) = s
2

(C). Hence the restriction

ũ|Ẽ\(s
1

(C) [ s
2

(C)) is an infinite covering map Ẽ\(s
1

(C) [ s
2

(C)) ! E\(�
1

(C) [
�
2

(C)). It follows that N = E\(�
1

(C)[�
2

(C)) is Oka [10, Proposition 5.5.2]. Since

E is connected, so is N .

Let � : E ! P

2

, (p, q) 7! q. Then � is holomorphic and, since E is compact, is

proper. The preimage ��1(C) consists precisely of those (p, q) 2 P

2

⇥P

2

such that q
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is in the intersection of the tangent line to C at p with C itself. Hence either q = p

or q = p0. Therefore ��1(C) = �
1

(C) [ �
2

(C) and the restriction �|N is a proper

holomorphic map from an Oka manifold into P

2

\C.

We shall now show that �|N ! P

2

\C is a surjective finite map. Given [q
1

, q
2

, q
3

] 2
P

2

\C, the curve defined by

q
1

F
x

+ q
2

F
y

+ q
3

F
z

= 0

is of degree 2 and by Bezout’s theorem intersects C at 6 points, counted with

multiplicity. It is clear that these 6 intersection points are precisely the points on

C whose tangents pass through q. Then � is surjective and finite. Furthermore, the

fibres generically contain 6 points [7, Section 5.7] and so � is a 6-sheeted branched

covering of P
2

\C by an Oka manifold. Note that � does have branching as the

curve

q
1

F
x

+ q
2

F
y

+ q
3

F
x

= 0

intersects C with multiplicity 2 precisely at the inflection points of C. It follows

that the set of critical values of � is the union of the 9 inflection tangents of C with

the inflection points removed. Indeed Bezout’s theorem implies that each inflection

tangent intersects C only at its corresponding inflection point. Then the intersection

of any two inflection tangents occurs in P

2

\C and so the set of critical values forms

a singular hypersurface of P
2

\C whose singular locus consists of the intersection

points of the inflection tangents.

2.6 The Main Theorem

Let X be a compact Riemann surface of genus 1 and R
3

the space of holomorphic

maps X ! P of degree 3. Recall that R
3

is a connected 6-dimensional complex

manifold. We can now state our main result.
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Theorem 34. There exists a 6-sheeted connected branched covering space of R
3

that

is an Oka manifold.

To prove this theorem, we will make use of the following construction. Recall that

the map s
3

: X ! X, x 7! 3x, is a 9-sheeted unbranched covering map. Let � be

the map R
3

/M ! X induced by the map � : R
3

! X, f 7!  (D
0

(f)), where  is

the Jacobi map S3X ! X, p
1

+ p
2

+ p
3

7! p
1

+ p
2

+ p
3

, and D
0

: R
3

! S3X takes

f to its divisor of zeroes. Proposition 28 implies that, for a certain smooth cubic C

in P

2

biholomorphic to X (called C
0

before), there exists an unbranched 9-sheeted

covering map s̃
3

: P
2

\C ⇥X ! R
3

/M such that the following diagram is a pullback

square.

P

2

\C ⇥X R
3

/M

X X

s̃3

proj2 �

s3

Furthermore, Proposition 26 allows us to identify P

2

\C with ��1(0). Let ⇡ : R
3

!
R

3

/M be the quotient map. Then ⇡(��1(0)) = ��1(0). Recall that if f 2 ��1(0),

then s̃
3

(⇡(f), x) = ⇡(f � ⌧�x

). For the remainder of this section we shall use this

identification to denote all elements in P

2

\C by ⇡(f), where the representative

f 2 ��1(0) is chosen appropriately. As in Section 2.5, let

N = {(p, q) 2 C ⇥ P

2

\C : q is in the tangent to C at p} ,

and take � : N ! P

2

\C, (p, q) 7! q. Then by Theorem 31, N is an Oka manifold

and � is a 6-sheeted branched covering map.

Let S be the 9-element subgroup {x 2 X : 3x = 0}, isomorphic to Z

3

⇥ Z

3

. (Note

that if ⌘
0

: X ! C is the embedding defining C = C
0

as in Section 2.4, then ⌘
0

(S)

consists of the inflection points of C.) Then S acts on P

2

\C⇥X via the action

S ⇥ P

2

\C ⇥X ! P

2

\C ⇥X, t · (⇡(f), x) = (⇡(f � ⌧
t

), x+ t).

It is clear that this action realises S as the group of covering transformations of

s̃
3

.
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We will now lift the above action of S on P

2

\C ⇥X to an action on N ⇥X. Recall

that C is the image of an embedding p of X into P

2

. We claim that the map

S ⇥N ⇥X ! N ⇥X, t · ((p(y), ⇡(f)), x) = ((p(y � t), ⇡(f � ⌧
t

)), x+ t),

is an action of S on N ⇥X such that whenever t 2 S,

(�⇥ id
X

)(t · ((p, q), x)) = t · ((�⇥ id
X

)((p, q), x)).

To check this, it is enough to know that whenever t 2 S and (p(y), ⇡(f)) 2 N ,

t · (p(y), ⇡(f)) 2 N . To show that t · (p(y), ⇡(f)) = (p(y� t), ⇡(f � ⌧
t

)) 2 N , we must

firstly show that f�⌧
t

2 ��1(0). This follows from the fact that �(f�⌧
t

) = �(f)�3t =

0� 0 = 0. It remains to show that ⇡(f � ⌧
t

) is on the tangent to C at p(y � t). We

know that ⇡(f) is on the tangent to C at p(y). Then by Proposition 27, y+y+(�2y)

is a divisor corresponding to a fibre of f . But then (y� t) + (y� t) + (�2(y� t)) is

a divisor corresponding to a fibre of f � ⌧
t

and so ⇡(f � ⌧
t

) is on the tangent to C at

p(y � t). Hence we have defined an action of S on N ⇥X.

Note that it is generally not possible to lift a group action up a branched covering

map. It works in our special case because N ⇢ C ⇥ P

2

\C, so lifting an action from

N ⇥X to C ⇥ P

2

\C ⇥X amounts to choosing an action on C that restricts to an

action on N ⇥X. Indeed we have the following commuting diagram.

N ⇥X C ⇥ (P
2

\C)⇥X

P

2

\C ⇥X

�⇥ id

X

proj

We will now use the action of S on N ⇥X to construct a 6-sheeted Oka branched

covering space of R
3

/M . Indeed, the action of S on X is free so the action of S

on N ⇥ X is free. It follows that the quotient (N ⇥ X)/S is a complex manifold

such that the quotient map ⇣ : N ⇥ X ! (N ⇥ X)/S is a holomorphic 9-sheeted

unbranched covering. Since N and X are Oka, so is N ⇥ X. Then (N ⇥ X)/S is

also Oka.
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Let  = s̃
3

� (�⇥ id
X

) : N ⇥X ! R
3

/M . Then  is the composition of a 6-sheeted

branched covering followed by a 9-sheeted unbranched covering map. We now claim

that  is S-invariant. Indeed,

 (t · ((p(y), ⇡(f)), x)) = s̃
3

((�⇥ id
X

)(t · ((p(y), ⇡(f)), x)))
= s̃

3

(t · ((�⇥ id
X

)((p(y), ⇡(f)), x)))

= s̃
3

((�⇥ id
X

)((p(y), ⇡(f)), x)).

Thus  induces a holomorphic map ⇤ : (N⇥X)/S ! R
3

/M such that the following

diagram commutes.

N ⇥X (N ⇥X)/S

P

2

\C ⇥X R
3

/M

 

⇣

�⇥ id

X

⇤

s̃3

Since  is a finite map, ⇤ is also a finite map. Moreover, it is clear that S acts freely

on the fibres of  , which generically contain 54 points. It follows that the fibres of

⇤ generically contain 6 points and so ⇤ is a 6-sheeted branched covering map.

To prove Theorem 34, let W be the pullback of R
3

along ⇤. Then we obtain the

following pullback square:

W R
3

(N ⇥X)/S R
3

/M

�

⇡̃ ⇡

⇤

where ⇡̃ : W ! (N ⇥ X)/S is the pullback of ⇡ along ⇤ and � : W ! R
3

is the

pullback of ⇤ along ⇡. Then W is smooth since ⇡ is a submersion and is a 6-sheeted

branched covering space of R
3

. By Theorem 18, ⇡ is a principal M -bundle, which

implies that ⇡̃ is also a principal M -bundle. Since M,N and X are connected, so

is W . Now, since M is a complex Lie group, M is Oka. Then since (N ⇥M)/S is

Oka it follows that W is Oka and the theorem is proved.

Note that � has branching because � has branching, as mentioned at the end of

Section 2.5. The set of critical points of � will be described in Section 3.3.
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Recall that a complex manifold of dimension m is dominable if for some x 2 X,

there is a holomorphic map C

m ! X taking 0 to x that is a local biholomorphism

at 0. We say X is C-connected if given any two points x, y 2 X there exists a

holomorphic map C ! X whose image contains both x and y. It is clear that

both properties pass down branched covering maps. Every Oka manifold is known

to be both dominable and C-connected. It follows that R
3

is both dominable and

C-connected.

Corollary 35. The complex manifold R
3

is dominable and C-connected.



Chapter 3

Further Results

3.1 Strong Dominability

Recall that a complex manifold Y of dimension n is strongly dominable if for every

y 2 Y , there is holomorphic map f : Cn ! Y such that f(0) = y and f is a local

biholomorphism at 0.

Let X be a compact Riemann surface of genus 1 and R
3

the corresponding complex

manifold of holomorphic maps X ! P of degree 3. Recall that X is biholomorphic

to a torus C/�, where � is a lattice in C. Let �
0

denote the hexagonal lattice. Then

Proposition 19 implies that C/�
0

is the unique torus whose group of automorphisms

fixing the identity has order 6. The goal of this section is to show that if X is not

biholomorphic to C/�
0

, then the complex manifold R
3

is strongly dominable.

Let C be a smooth cubic curve in P

2

biholomorphic toX and defined by the equation

F (x, y, z) = 0. Let N be the set of (p, q) 2 P

2

⇥ (P
2

\C) such that p 2 C and q is on

the line tangent to C at p. We know from Section 2.5 that N is an Oka manifold.

Furthermore, the map � : N ! P

2

\C, (p, q) 7! q, is a 6-sheeted branched covering

map.

53
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Suppose that X is not biholomorphic to C/�
0

. We will show that R
3

is strongly

dominable by showing that P

2

\C is strongly dominable. To prove the latter, it

is su�cient to know that every fibre of � contains a regular point. To see why

this implies that R
3

is strongly dominable, let S be the set of x 2 X such that

3x = 0 and M be the Möbius group. Recall from the proof of Theorem 34 the

maps  : N ⇥X ! R
3

/M and ⇤ : (N ⇥X)/S ! R
3

/M . Recall that  is �⇥ id
X

postcomposed by a 9-sheeted unbranched covering map. Every fibre of � contains

a regular point if and only if every fibre of  contains a regular point. The map

⇤ is a 6-sheeted branched covering map from Section 2.6, while the quotient map

⇣ : N⇥S ! (N⇥S)/S is a 9-sheeted unbranched covering map such that ⇤�⇣ = �.
Hence every fibre of ⇤ contains a regular point if and only if every fibre of  contains

a regular point. Let W and � : W ! R
3

be as in the proof of Theorem 34. Then

� is the pullback of ⇤ along the quotient map ⇡ : R
3

! R
3

/M , so every fibre of

� contains a regular point if and only if every fibre of ⇤ contains a regular point.

Hence both R
3

and P

2

\C will be strongly dominable if we can show every fibre of �

contains a regular point.

Lemma 36. A point (p, q) 2 N is a critical point of � if and only if p is an inflection

point of C.

Proof. Fix (p, q) 2 N and let [x, y, z] denote homogeneous coordinates on P

2

. Using

a projective transformation we can assume that p = [0, 0, 1] and q = [1, 0, 0] and so

the tangent line to C at p is the line y = 0. Then F
x

(p) = F
z

(p) = 0 and F
y

(p) 6= 0.

Let A ⇢ P

2

be the a�ne chart obtained by setting z = 1. It follows by the implicit

function theorem that there exists a neighbourhood ⌦ of p in A, a neighbourhood

U of 0 in C and a holomorphic map f : U ! C such that C \ ⌦ is the graph of f

via the embedding U ! ⌦, t 7! (t, f(t)). Then f(0) = 0 and, since y = 0 is tangent

to C at p, f 0(0) = 0.

We claim that (p, q) is a critical point of � if and only if f 00(0) = 0. Indeed, if
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f 00(0) = 0, then f 0 is not injective on any neighbourhood of p. It follows that for

every neighbourhood V of p in ⌦, there exist two distinct points in V \ C whose

tangent lines are parallel in the a�ne chart A and hence intersect on the line at

infinity. Then given any neighbourhood V 0 of q in P

2

we can choose V su�ciently

small that the tangent line of every point in V intersects the line at infinity in V 0.

Then we can find two distinct points in V whose tangent lines intersect in V 0. Hence

given any neighbourhood of the form V ⇥V 0 of (p, q) in N , we can find two distinct

points in V ⇥ V 0 in the same fibre of � and so (p, q) is a critical point of �.

Conversely, suppose that f 00(0) 6= 0. Then shrinking U and ⌦ if necessary, we can

assume that f 0 is injective on U . It is easy to check that for distinct points t
1

, t
2

2 U ,

the tangent lines to t
1

, t
2

intersect in the a�ne chart A at the point

(X, Y ) =

✓

f 0(t
1

)t
1

� f 0(t
2

)t
2

+ f(t
2

)� f(t
1

)

f 0(t
1

)� f 0(t
2

)
, f 0(t

1

)X + f(t
1

)� f 0(t
1

)t
1

◆

.

To show that (p, q) is a regular point of �, it is su�cient to find a neighbourhood on

which � is injective. To show this, it is enough to know that given ✏ > 0 we can find

� > 0 such that |X| < ✏ whenever |t
1

| < � and |t
2

| < �. Indeed, since Y depends

continuously on X, this will show that given two sequences (r
n

), (s
n

) of points on

C converging to p such that r
n

6= s
n

for all n, the sequence of intersection points

(X
n

, Y
n

) will also converge to p. Take ✏ > 0. We see that

|X| =
�

�

�

�

f 0(t
1

)t
1

� f 0(t
2

)t
1

+ f 0(t
2

)t
1

� f 0(t
2

)t
2

+ f(t
2

)� f(t
1

)

f 0(t
1

)� f 0(t
2

)

�

�

�

�

 |t
1

|+ |f 0(t
2

)|
�

�

�

�

t
1

� t
2

f 0(t
1

)� f 0(t
2

)

�

�

�

�

+

�

�

�

�

f(t
2

)� f(t
1

)

f 0(t
1

)� f 0(t
2

)

�

�

�

�

.

Restrict t
1

such that |t
1

| < ✏. Since f 0(0) = 0, for |t
2

| su�ciently small, |f 0(t
2

)| < ✏.

Furthermore, since f 0 is injective on U , f 00(0) 6= 0 and, restricting t
1

, t
2

further if

necessary, we see that |t
1

� t
2

|/|f 0(t
1

) � f 0(t
2

)| is bounded above by some M > 0.

Finally,
�

�

�

�

f(t
2

)� f(t
1

)

f 0(t
1

)� f 0(t
2

)

�

�

�

�

=

�

�

�

�

t
1

� t
2

f 0(t
1

)� f 0(t
2

)

�

�

�

�

·
�

�

�

�

f(t
1

)� f(t
2

)

t
1

� t
2

�

�

�

�

< M✏,

where t
1

, t
2

are restricted so that |f(t
1

)� f(t
2

)|/|t
1

� t
2

| < ✏. Then we see that

|X| < ✏+ 2M✏,
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which implies that � is injective on a neighbourhood of (p, q), so (p, q) is a regular

point.

To complete the proof of the lemma, we must show that p is an inflection point of C

if and only if f 00(0) = 0. Observe that for all t 2 U , F (t, f(t), 1) = 0. Di↵erentiating

twice, we see that

F 00(t, f(t), 1) = F
xx

(t, f(t), 1) + F
xy

(t, f(t), 1)f 0(t)

+ (F
xy

(t, f(t), 1) + F
yy

(t, f(t), 1)f 0(t))f 0(t) + F
y

(t, f(t), 1)f 00(t) = 0.

Since f 0(0) = 0, evaluating at t = 0 yields f 00(0) = �F
xx

(p)/F
y

(p) and we are done

if we can show that p is an inflection point if and only if F
xx

(p) = 0.

Let G(x) = F (x, 0, 1). Then G has the following Taylor expansion about the point

p:

G(x) = F (p) + xF
x

(p) + x2F
xx

(p) + · · · .

Since C is of degree 3, the point p is an inflection point of C if and only if G(x) has

a zero of order 3 at 0 [7, Section 2.5]. Since p 2 C, F (p) = 0. Furthermore, since

the line y = 0 is tangent to C, F
x

(p) = 0. Thus p is an inflection point if and only

if F
xx

(p) = 0.

It follows from the above lemma that if q 2 P

2

\C, then ��1(q) contains no regular

point only if there exist three inflectional tangents to C that meet at q. The existence

of three inflectional tangents with a common point depends on the cubic C. We have

been unable to find a reference that explains for which cubics this occurs, so we will

summarise our own work.

The following lemma is well known [2, Lemma 2.1].

Lemma 37. Every smooth cubic in P

2

is projectively equivalent to a cubic defined

by the equation x3 + y3 + z3 + txyz = 0, for some t 2 C.
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Let C
t

denote the cubic defined by the equation x3+y3+z3+txyz = 0. Precomposing

� by a projective transformation, we can assume that C = C
t

for some t 2 C. Let

" = e2i⇡/3. The inflection points of C
t

are independent of t and are as follows [2, p.

238]:

[0, 1,�1] [0, 1,�"] [0, 1,�"2]
[1, 0,�1] [1, 0,�"2] [1, 0,�"]
[1,�1, 0] [1,�", 0] [1,�"2, 0].

The tangents to C
t

at the above inflection points have dual coordinates as fol-

lows:

[�t, 3, 3] [3,�t, 3] [3, 3,�t]

[�t", 3, 3"2] [3,�t"2, 3"] [3.3"2,�t"]

[�t"2, 3, 3"] [3,�t", 3"2] [3, 3",�t"2]

Three inflectional tangents intersect in a point if and only if the corresponding dual

points are collinear. Considering each of the 84 cases, the only values of t for which

this occurs are the following:

t = 0 t = 6

t = 6"

t = 6"2

t = �3

t = �3"

t = �3"2

The cubics corresponding to t = �3,�3",�3"2 are singular. These are the only

values of for which C
t

is singular [2, p. 241].

Two cubics in P

2

are projectively equivalent if and only if they are biholomorphic

[5, p. 127]. Two values of t give the same cubic up to biholomorphism if and only if

they are in the same fibre of the map

j : C ! P, t 7! [23t3(1� t3/63)3, 33(1 + t3/33)3]

[5, Equation 3.11, p. 133]. This map is the well-known j-invariant. It is evident

that j(t) = j("t). Futhermore, it is clear that that j(6) = j(0) and so up to biholo-
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morphism, there is only one smooth cubic with three inflectional tangents sharing a

point. This cubic, C
0

, is biholomorphic to C/�
0

, where �
0

is the hexagonal lattice,

and is called the equianharmonic cubic [5, Theorem 3.1.3, Definition 3.1.2].

We have proved the following theorem.

Theorem 38. Let C be a smooth cubic curve in P

2

that is not the equianharmonic

cubic. Then P

2

\C is strongly dominable.

Let X be a compact Riemann surface of genus 1 and R
3

the complex manifold of

degree 3 holomorphic maps X ! P. Then if X is not biholomorphic to the equian-

harmonic cubic, R
3

is strongly dominable.

Note that if C is biholomorphic to the equianharmonic cubic, it is an open problem

whether P
2

\C is strongly dominable.

3.2 The Remmert Reduction of R3

Let X be a compact Riemann surface of genus 1 and R
3

the complex manifold of

degree 3 holomorphic maps X ! P. Identify X with C/�, for some lattice � in C,

making X a complex Lie group. The main goal of this section is to show that R
3

is

holomorphically convex and to determine its Remmert reduction.

If Y is a holomorphically convex manifold, and we define an equivalence relation on

Y by setting x ⇠ y whenever f(x) = f(y) for all f 2 O(Y ), then Y/⇠ is a Stein

space such that every holomorphic map from Y to a holomorphically separable

space Z admits a unique factorisation through the quotient map ⇧ : Y ! Y/⇠ by

a holomorphic map Y/⇠! Z [22, Theorem 57.11]. The space Y/⇠ is called the

Remmert reduction of Y . The map ⇧ is proper with connected fibres and induces

an isomorphism O(Y/⇠) ! O(Y ).

Recall that X acts on R
3

by precomposition of translations. That is, if t 2 X and
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⌧
t

: X ! X, x 7! x + t, then if f 2 R
3

, we define t · f = f � ⌧�t

. This action is

holomorphic by Theorem 8, as the map X ⇥ R
3

⇥ X ! P, (t, f, x) 7! f(x � t), is

obviously holomorphic in x and t, and is holomorphic in f because the evaluation

map e : R
3

⇥ X ! P is holomorphic. It is obvious that R
3

is not holomorphically

separable because it contains the compact X-orbits.

We now claim that the action of X on R
3

is free. Indeed, suppose that f 2 R
3

and

t 2 X such that f = f � ⌧�t

. If b 2 X is a branch point of f , then b+ t is a branch

point of f � ⌧�t

. But then f also has a branch point at b + t and f(b + t) = f(b).

So either t = 0 or f attains the value f(b) with multiplicity at least four, which is

impossible if f is of degree 3. Finally, since X is compact, it acts properly on R
3

.

Thus applying Theorem 17 we obtain the following result.

Theorem 39. The orbit space R
3

/X is a complex manifold such that the quotient

map R
3

! R
3

/X is a principal X-bundle.

We now claim that the quotient R
3

/X is Stein. Recall from Section 2.4 that � :

R
3

! X is the map taking f 2 R
3

to the sum of its zeroes in the Lie group X,

counted with multiplicity. Let ⇡ : R
3

! R
3

/M be the quotient map, where M

is the Möbius group. Theorem 18 implies that ⇡ is a principal M -bundle. It is

clear that M acts on each fibre of �. Let 0 be the identity element in X. Then

⇡|��1(0) ! ��1(0)/M is also a principal M -bundle. By Proposition 26, ��1(0)/M

is biholomorphic to P

2

\C for some smooth cubic curve C biholomorphic to X, so

��1(0)/M is Stein. Since M is Stein, ⇡|��1(0) is a principal bundle with Stein

fibre and Stein base, and so ��1(0) is a 5-dimensional Stein manifold [27, Théorème

4].

Now, let S be the set containing 0 and all elements in X of order 3. Then S is

a 9-element subgroup of X and S acts on ��1(0). Since the action of X on R
3

is

free, it follows that S acts freely (and properly discontinuously) on ��1(0) and so

the quotient map ⇧0 : ��1(0) ! ��1(0)/S is a holomorphic 9-sheeted covering map.
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Since ��1(0) is a Stein manifold, so is ��1(0)/S.

Let ◆ : ��1(0) ,! R
3

be the inclusion map and ⇧ : R
3

! R
3

/X the quotient map.

Then each fibre of ⇧ � ◆ is a single S-orbit in ��1(0). Indeed, if [f̃ ] 2 R
3

/X, then

there is f 2 ��1(0) with (⇧ � ◆)(f) = [f̃ ]. If g 2 ��1(0) such that (⇧ � ◆)(g) = [f̃ ],

then for some t 2 X, g = f � ⌧�t

. But �(g � ⌧�t

) = 3t = 0, which implies that g is

in the S-orbit of f . Thus ⇧ � ◆ is an S-invariant holomorphic map ��1(0) ! R
3

/X

and so, by the universal property of the quotient, induces a bijective holomorphic

map ' : ��1(0)/S ! R
3

/X such that the following diagram commutes:

��1(0) R
3

��1(0)/S R
3

/X

◆

⇧

0
⇧

'

Thus, R
3

/X is Stein, and we have proved the following theorem.

Theorem 40. The complex manifold R
3

is holomorphically convex. Furthermore,

its Remmert reduction is R
3

/X.

3.3 An Alternative Proof of the Main Theorem

Let X be a compact Riemann surface of genus 1, and R
3

be the complex manifold

of holomorphic maps X ! P of degree 3. Let M be the Möbius group and identify

X with C/� for � a lattice in C, making X a Lie group. Then M and X act freely

and properly on R
3

and so by Theorem 17 the quotient maps ⇡ : R
3

! R
3

/M and

⇧ : R
3

! R
3

/X are principal bundles with fibres M and X respectively. We know

from Proposition 28 that there is a cubic curve C in P

2

biholomorphic to X and a

9-sheeted unbranched covering map s̃
3

: P
2

\C ⇥ X ! R
3

/M . Theorem 31 states

that there is a 6-sheeted branched covering map � : N ! P

2

\C such that N is an

Oka manifold. In Section 2.6 we constructed an Oka manifold W and a 6-sheeted
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branched covering map � : W ! R
3

.

In this section we shall construct an alternative 6-sheeted branched covering space

of R
3

, before showing that it is isomorphic to W in a natural way. We will then

determine the critical values of both 6-sheeted branched covering maps.

Let � : R
3

! X be the map taking f 2 R
3

to the Lie group sum of its zeroes, counted

with multiplicity. We showed in Section 3.2 that the quotient map ' : ��1(0) !
R

3

/X is a 9-sheeted unbranched covering map. We know from Proposition 26 that

��1(0)/M is biholomorphic to P

2

\C. The quotient map ��1(0) ! ��1(0)/M is the

map ⇡0 = ⇡|��1(0) and is a principal M -bundle. Let Y be the pullback of ��1(0)

along the map �. Then we have the following commuting diagram:

Y ��1(0)

N P

2

\C

�

0

⇡

0

�

where �0 is the pullback of � along ⇡0. Then Y is a principal M -bundle over N .

Since M and N are Oka, so is Y .

Let S ⇢ X be the 9-element subgroup {x 2 X : 3x = 0}. We know from Section

2.6 that S acts freely on N ⇥ X, and that W is an M -bundle over (N ⇥ X)/S.

It can be easily shown that this action defines an action on N by projecting onto

the first component. Also, S acts on Y . Namely, for (n, f) 2 Y ⇢ N ⇥ ��1(0), let

t · (n, f) = (t · n, f � ⌧
t

). Since t 2 S it follows that f � ⌧
t

2 ��1(0). To show that

this defines an action of S on Y it is enough to show that t · (n, f) 2 Y . This is

equivalent to showing that �(t · n) = ⇡(f � ⌧
t

), which is clear from the definition of

the action of S on N ⇥X in Section 2.6. Hence S acts on Y and because the action

of S on ��1(0) is free (as the action of X on R
3

is free), we see that the quotient map

Y ! Y/S is a 9-sheeted unbranched covering map and so Y/S is an Oka manifold.

Now ' � �0 is a 54-sheeted branched covering map Y ! R
3

/X. Furthermore, ' � �0

is S-invariant as '(f � ⌧
t

) = '(f) for all t 2 S and f 2 ��1(0). It follows that ' � �0
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induces a finite holomorphic map ⇤0 : Y/S ! R
3

/X. It is easy to see that S acts

freely on the fibres of ' � �0. Hence ⇤0 is a 6-sheeted branched covering map.

Let W 0 be the pullback of Y/S along the quotient map ⇧ and �0 : W ! R
3

be the

pullback of ⇤0 along ⇧. Then we have the following commuting diagram:

W 0 R
3

Y/S R
3

/X

�

0

⇧

⇤

0

and �0 is 6-sheeted branched covering mapW 0 ! R
3

. Furthermore, W 0 is a principal

X-bundle over the Oka manifold Y/S, so is Oka.

The following commuting diagram of complex manifolds and holomorphic maps

shows the relationships between W and W 0. Branched and unbranched covering

maps are labelled with the number of sheets. The unbranched coverings are precisely

the maps with 9 sheets. Furthermore we label principal M - and X-bundles with

their corresponding fibre.

N ⇥X (N ⇥X)/S W

P

2

\C ⇥X R
3

/M

N P

2

\C R
3

��1(0) R
3

/X

Y Y/S W 0

�⇥ id

X

6

X

9

6

⇤

M

6

�s̃3

9

X

proj1

�

6

⇡

M

X⇧

⇡

0
M

'

9

�

0

6

9

M

⇤

0
6

�

0
6

X

We shall now prove the following.
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Theorem 41. There is a biholomorphism F : W ! W 0 such that the following

diagram commutes.

W W 0

R
3

F

�

�

0

Proof. The proof mainly consists of unravelling definitions. Recall that

N = {(p, q) 2 C ⇥ P

2

\C : q is on the tangent line to C at p} .

It follows from the definitions of W and W 0 that

W = {(f, [(p, q), x]) 2 R
3

⇥ (N ⇥X)/S : ⇡(f) = s̃
3

(q, x)} ,
W 0 =

�

(f, [(p, q), h]) 2 R
3

⇥ (N ⇥ ��1(0))/S : ⇧(f) = '(h), q = ⇡0(h)
 

.

Using Proposition 26, we can identify P

2

\C with ��1(0) = ��1(0)/M and define the

map

F : W ! W 0, (f, [(p, q), x]) 7! (f, [(p, ⇡(f � ⌧
x

)), f � ⌧
x

]).

To show that this is a well-defined map intoW 0, we shall firstly show that it is defined

independently of the choice of representatives. Let (f, [(p, q), x]), (f, [(p0, q0), x0]) 2
W such that [(p, q), x] = [(p0, q0), x0]. Then the action of S on N ⇥ X defined in

Section 2.6 is such that for some t 2 S, x = x0 + t. Then we have

F (f, [(p, q), x]) = (f, [(p, ⇡(f � ⌧
x

)), f � ⌧
x

])

= (f, [(p, ⇡(f � ⌧
x

0
+t

)), f � ⌧
x

0
+t

])

= (f, [(p0, ⇡(f � ⌧
x

0)), f � ⌧
x

0 ])

= F (f, [(p0, q0), x0]).

Hence F is independent of the representative chosen.

To finish showing that F is well defined, we must show that F (W ) ⇢ W 0. We shall

begin by showing that f � ⌧
x

2 ��1(0) if (f, [(p, q), x]) 2 W . Indeed, �(f � ⌧
x

) =
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�(f)� 3x. Let � : R
3

/M ! X be the map induced by the M -invariant map �, let

s
3

: X ! X, x 7! 3x, and let ⇡̃ be the projection W ! N ⇥X. Then the following

commuting diagram shows that �(f) = 3x.

N ⇥X (N ⇥X)/S W

P

2

\C ⇥X R
3

/M R
3

X X

�⇥ id

X

⇤

�

⇡̃

s̃3

proj2 �

⇡

�

s3

Indeed, the diagram shows that �(f) = �(⇡(f)). Also, since ⇡(f) = s̃
3

(q, x), it

follows that �(s̃
3

(q, x)) = 3x. Hence f � ⌧
x

2 ��1(0) and ⇡(f � ⌧
x

) can be identified

with a point in P

2

\C. It follows that F (W ) ⇢ R
3

⇥ N ⇥ ��1(0). Checking the

conditions defining W , obviously '(f � ⌧
x

) = ⇧(f) and ⇡(f � ⌧
x

) = ⇡(f � ⌧
x

), so

F (W ) ⇢ W 0.

By taking local holomorphic sections of the covering map N ⇥X ! (N ⇥X)/S we

can show that F is holomorphic by showing that the map

R
3

⇥N ⇥X ! R
3

⇥N ⇥R
3

, (f, (p, q), x) 7! (f, (p, ⇡(f � ⌧
x

)), f � ⌧
x

)

is holomorphic. But this follows from the fact that X acts holomorphically on R
3

and the map ⇡ is holomorphic.

Now, it is clear that �0�F = �. Since both W and W 0 are manifolds, to show that F

is a biholomorphism, it su�ces to show that F is bijective [22, Proposition 46 A.1].

We shall do this by constructing an inverse for F (it is not obvious that this inverse is

holomorphic). Since X acts freely on R
3

, given (f, (p, q), h) 2 R
3

⇥N ⇥��1(0) such

that (f, [(p, q), h]) 2 W 0, there exists a unique x(f, h) 2 X such that h = f � ⌧
x(f,h)

.

Furthermore, given f 2 R
3

and x 2 X, the construction of the map s̃
3

in the proof

of Proposition 28 shows that s̃
3

(⇡(f), x) = ⇡(f � ⌧�x

). Then the preimage of ⇡(f)

under s̃
3

is the set

{(⇡(f � ⌧
x

i

), x
i

) 2 P

2

\C ⇥X : i = 1, . . . , 9} ,



CHAPTER 3. FURTHER RESULTS 65

where x
1

, . . . , x
9

are the 9 distinct points on X such that 3x
1

= · · · = 3x
9

= �(f).

We claim that the map

G : W 0 ! W, (f, [(p, q0), h]) 7! (f, [(p, ⇡(f � ⌧
x(f,h)

)), x(f, h)]),

is the inverse of F . Indeed, G can be shown to be well defined analogously to F .

Furthermore,

(F �G)(f, [(p, q0), h])) = (f, [(p, ⇡(f � ⌧
x(f,h)

)), f � ⌧
x(f,h)

])

= (f, [(p, ⇡(h)), h])

= (f, [(p, q0), h]),

(G � F )(f, [(p, q), x]) = (f, [(p, ⇡(f � ⌧
x(f,f�⌧

x

)

)), x(f, f � ⌧
x

)])

= (f, [(p, q), x]).

Hence F is a biholomorphism.

We shall now explicitly describe the fibres and determine the critical values of � and

�0. Note that the above theorem implies that it is enough to do the latter for �0 only.

In order to proceed, we will need to know more about the fibres of � : N ! P

2

\C.

Let S3X denote the three-fold symmetric product of X and let

 : S3X ! X, p
1

+ p
2

+ p
3

7! p
1

+ p
2

+ p
3

,

be the Jacobi map, where the + sign in S3X denotes the formal sum of points in

X, and the + sign in X denotes the Lie group sum in X. If f 2 R
3

, then every

fibre of f , consisting of points p
1

, p
2

, p
3

counted with multiplicity, has an associated

divisor p
1

+ p
2

+ p
3

2 S3X. When the points p
1

, p
2

, p
3

are not distinct, the fibre is

the preimage of a critical value of f , and we will call the associated divisor a branch

divisor of f . As above, identify P

2

\C with ��1(0)/M . Also, since C is the image of

an embedding of X in P

2

, for each p 2 C, we shall denote by x(p) the unique point

in X corresponding to p under this embedding.
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Proposition 42. Let f 2 ��1(0). Then the branch divisors of f are of the form

x(p) + x(p) + (�2x(p)), where (p, q) 2 N and q = ⇡(f).

This proposition is an immediate consequence of the following rephrasing of Propo-

sition 27.

Proposition 43. Let f 2 ��1(0) and q = ⇡(f). Then D 2  �1(0) is a divi-

sor corresponding to a fibre of f if and only if D = x(p
1

) + x(p
2

) + x(p
3

), where

p
1

, p
2

, p
3

2 C are the intersection points of a line passing through q with C, counted

with multiplicity.

We are now ready to determine the fibres of �0. The definition of W 0 and Proposi-

tion 42 give the following proposition.

Proposition 44. Let f 2 R
3

, (p, q) 2 N and h 2 ��1(0). Then (f, [(p, q), h]) 2
(�0)�1(f) if and only if all of the following conditions are met.

(1) x(p) + x(p) + (�2x(p)) is a branch divisor of h.

(2) q = ⇧(h).

(3) There exists t 2 X such that h = f � ⌧�t

.

The maps f 2 R
3

whose fibres consist of fewer than 6 points are those that have a

translate h 2 ��1(0) with fewer than six branch divisors. But then f will have fewer

than six branch divisors. By the Riemann-Hurwitz formula, f has a total branching

order of 6. Since f is of degree 3, this implies that f is a critical value of �0 if and

only if f has a singleton fibre. By Proposition 42, this corresponds to the case when

q = ⇡(h) is on the tangent line to an inflection point p of C, in which case (p, q) is

a branch point of the map � : N ! P

2

\C.

If (f, [(p, q), h]) 2 (�0)�1(f), then the equivalence class [(p, q), h] essentially deter-

mines a branch divisor of f , in that each representative contains the data for a
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branch divisor of a translate of f , and any two representatives in the same class give

translates of the same branch divisor. Hence we can loosely interpret the map �0 as

associating to each f 2 R
3

its generically six branch divisors.

Corollary 45. The critical values of � and �0 are those f 2 R
3

that have a singleton

fibre. Equivalently, f has a double critical point.

In particular, the set of functions in R
3

with a double critical point forms a hy-

persurface H in R
3

. This hypersurface, consisting of the critical values of � (or

equivalently of �0), is invariant under the action of M and the action of X. Let T

be the set of critical values of �. Then H is a ‘twisted version’ of M ⇥X ⇥ T . The

hypersurface H is singular because T is singular, being the union of nine distinct

lines in P

2

\C with no intersection points on C (see the end of Section 2.5). Hence

we have the following proposition.

Proposition 46. The singular points of H are those functions with at least two

double critical points.

Now, Theorem 41 and Proposition 44 allow us to explicitly describe the fibres of �.

Proposition 47. Let f 2 R
3

, (p, q) 2 N and x 2 X. Then (f, [(p, q), t]) 2 ��1(f)

if and only if the following conditions are met.

(1) x(p) + x(p) + (�2x(p)) is a branch divisor of f � ⌧
t

.

(2) q = ⇡(f � ⌧
t

).

(3) 3t = �(f).

The fibres of � can be interpreted in the same way as the fibres of �0. Indeed if

(f, [(p, q), t]) 2 ��1(f), then the equivalence class [(p, q), t] corresponds to a branch

divisor of f , in that every representative provides the data for a translate of this

branch divisor.
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Finally, it follows from Proposition 42 and Section 3.1 that R
3

contains maps with

three double critical points if and only if X is biholomorphic to the equianharmonic

cubic.
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