Genetic and physiological studies of heat tolerance in hexaploid wheat (*Triticum aestivum* L.)

By

Hamid Shirdelmoghanloo

Thesis submitted for the degree of Doctor of Philosophy

School of Agriculture, Food and Wine Discipline of Plant Breeding and Genetics Australian Centre for Plant Functional Genomics (ACPFG)

November 2014

Table of contents

Table of contents	ii
List of tables	vii
List of figures	xi
List of appendices	xvii
Abbreviations	xix
Abstract	xxi
Declaration	xxiii
Acknowledgements	xxiv
Specific contribution to the research	XXV
Dedication	xxvi
Chapter 1: General introduction	1
Chapter 2: Literature review	3
2.1 Wheat as an important crop	3
2.2 Impact of heat on the wheat industry	3
2.3 Mechanisms of growth rate responses	5
2.4 Mechanism of grain size reduction	6
2.5 Mechanisms of dough quality effects	7
2.6 Mechanisms of fertility effects	9
2.7 Traits and parameters for evaluation of heat tolerance	9
2.8 Stay-green and stress tolerance	10
2.9 Quantitative trait loci (QTL) mapping	12
2.10 Non-destructive imaging methods for phenotyping	13
2.11 Mapping populations	14
2.12 Molecular markers	14
2.13 Methods for QTL analysis	14
2.14 Genetics of heat tolerance/responses in wheat	15
2.15 Aims of the thesis	17
Chapter 3: Genetic variation for grain-filling response to a brief post-anthesis heat stress in <i>aestivum</i> L.): Relationships to flag leaf senescence, plant architecture, and development	wheat (<i>Triticum</i> 19
3.1 Introduction	19
3.2 Materials and Methods	21
3.2.1 Plant materials	21
3.2.2 Experimental design, plant growth and heat stress conditions	21
3.2.3 Data collection	22
3.2.4 DNA extraction	24
3.2.5 Markers for Rht-B1 and Rht-D1 loci (previously known as Rht1 and Rht2)	24
3.2.6 Data analysis	25
3.3 Results	25
3.4.1 Anthesis date	26

3.3.2 Grain weight spike ⁻¹ and single grain weight	26
3.3.3 Spikelet and grain number	28
3.3.4 Chlorophyll responses	29
3.3.5 Grain-filling duration	31
3.3.6 Culm length, shoots weight, and harvest index	31
3.3.7 Associations of traits within each treatment	32
3.3.8 Associations between heat responses of traits	36
3.3.9 Relationships between trait potentials and heat responses of traits	37
3.3.10 Relationship to Rht genes (Rht-B1 and Rht-D1)	38
3.4 Discussion	39
3.5 Concluding remarks	46
Chapter 4: Effects of a brief episode of post-anthesis heat stress on grain growth, chlorophyll loss and stem w soluble carbohydrates in wheat (<i>Triticum aestivum</i> L.)	vater 47
4.1 Introduction	47
4.2 Materials and methods	49
4.2.1 Plant material	49
4.2.2 Experimental design, plant growth and heat stress conditions	50
4.2.3 Data collection	50
4.2.4 Data analysis	54
4.3 Results	54
4.3.1 Grain number spike ⁻¹ (GNS) and grain number spikelet ⁻¹ (GNSp) at maturity	54
4.3.2 Single grain weight at maturity (SGW)	55
4.3.3 Grain growth attributes	56
4.3.4 Chlorophyll fluorescence	59
4.3.5 Chlorophyll content	60
4.3.6 Stem water soluble carbohydrate (WSC) content	65
4.3.7 Maximum and minimum water soluble carbohydrate content (WSC _{max} and WSC _{min}), W mobilization (MWSC) and WSC mobilization efficiency (WSCME)	VSC 68
4.3.8 Associations between heat responses of traits	70
4.3.9 Relationships between trait potentials and heat responses of traits	71
4.4 Discussion	74
4.4.1 Grain number	74
4.4.2 Grain growth and development	74
4.4.3 Photosynthesis and stay-green	77
4.4.4 Water soluble carbohydrates (WSC)	80
4.5 Concluding remarks	82
Chapter 5: The Drysdale/Waagan molecular marker genetic map	84
5.1 Introduction	84
5.2 Materials and Methods	86
5.2.1 Plant material (narents and DH population)	
5.2.1 Finit indefinit (parents and DTI population)	86

5.2.3 Markers for flowering time and height loci	86
5.2.3.1 Vrn-A1	86
5.2.3.2 Vrn-B1	
5.2.3.3 Vrn-D1	
5.2.3.4 <i>Ppd-B1</i>	87
5.2.3.5 <i>Ppd-D1</i>	
5.2.3.6 Rht-B1 and Rht-D1 (previously known as Rht1 and Rht2)	
5.2.3.7 <i>Rht</i> 8-linked <i>gwm261</i> microsatellite marker	
5.2.3.8 SNP data	
5.2.4 Map construction	
5.3 Results and Discussion	
5.3.1 Markers in flowering time and dwarfing genes	
5.3.2 Initial 9K SNPs data processing	94
5.3.3 Parent Heterogeneity	96
5.3.4 Markers with segregation distortion and genotype frequencies	
5.3.5 Map construction	
5.3.6 Mapping of markers for Ppd-B1, Rht-B1 and Rht-D1	
5.3.7 The map	
5.3.8 Segregation distortion	
5.4 Concluding remarks	110
Chapter 6: QTL mapping of heat tolerance in wheat (<i>Triticum aestivum</i> L.) under a brief episod grain-filling	le of heat stress at111
6.1 Introduction	111
6.2 Materials and methods	113
6.2.1 Plant material	113
6.2.2 Plant growth, heat stress conditions and phenotype data collection	113
6.2.3 Molecular marker analysis	116
6.2.4 Construction of the molecular marker map	116
6.2.5 Experimental design and statistical analysis	117
6.2.6 Comparing physical location of 3BS QTLs from this and previous studies	118
6.3 Results	118
6.3.1 Phenotypic analysis	118
6.3.1.1 Parental lines	118
6.3.1.2 DH lines	119
6.3.2 Heritability	121
6.3.3 Correlations	
6.3.4 The molecular marker map	126
6.3.5 HSI QTL (heat responses of the traits)	126
6.3.6 QTL for absolute trait values	130
6.3.6.1 DTA and PH	130
6.3.6.2 Yield components (GNS, GWS and SGW)	130
iv	

6.3.6.3 GFD and DTM	131
6.3.6.4 Flag leaf chlorophyll retention related traits (ChlC, ChlR, and FLSe)	132
6.3.6.5 ShW and HI	133
6.3.6.6 FL and FW	134
6.4 Discussion	144
6.4.1 QTL mapping	144
6.4.2 Co-localisation with previously reported QTL	150
6.5.3 Comparison to results of screening 36 wheat genotypes for heat tolerance during grain-filling	153
6.5 Concluding remarks	154
Chapter 7: Development of automated plant imaging and SPAD measurements for heat tolerance screening vegetative stage of wheat development	g at the 156
7.1 Introduction	156
7.2 Materials and Methods	157
7.2.1 Plant material	158
7.2.2 Plant establishment	158
7.2.3 Subsequent plant growth	159
7.2.3.1 Experiment 1	159
7.2.3.2 Experiments 2 and 3	159
7.2.3.3 Experiments 4 and 5	161
7.2.3.4 Experiments 6 and 7	161
7.2.4 Measurements	162
7.2.4.1 Growth	162
7.2.4.2 Proportion of senescent area (PSA)	162
7.2.4.3 Relative chlorophyll content	163
7.2.4.4 Stomatal conductance	163
7.2.4.5 Water use efficiency (WUE)	163
7.2.4.6 Leaf water potential (LWP)	163
7.2.4.7 Relative water content (RWC)	164
7.2.5 Experimental design and data analysis	164
7.3 Results	164
7.3.1 Experiment 1	164
7.3.2 Experiments 2 and 3	167
7.3.3 Experiments 4 and 5	172
7.3.4 Experiments 6 and 7	176
7.3.5 Associations between heat responses of traits within each experiment	179
7.3.6 Associations between Experiments 2, 3, 6, and 7	180
7.3.7 Association of traits and trait responses in genotypes common between Experiments 2, 3, 6 and	7.182
7.3.8 Associations of heat responses between vegetative and grain-filling stages of development	183
7.4 Discussion	184
7.5 Concluding remarks	191
Chapter 8: Conclusions, contribution to knowledge, and future work	192

References	
Appendices	213

List of tables

Table 5. 1 Alleles carried by single plant selections of Drysdale and Waagan for phenology lo	ci, determined
using diagnostic molecular markers at Vrn-A1, Vrn-B1, Vrn-D1, Ppd-B1, Ppd-D1, Rht-B1 and I	Rht-D1 loci or
inferred using a marker linked to Rht8	93
Table 5. 2 Groups of highly similar DH lines. Each group contains lines which were identical fo	or >98% of the
polymorphic markers. In each group, the individual listed first is the one that was kept for map con	struction95
Table 5. 3 Summary of markers that segregated in only 1 to 4 subpopulations. Marker positions ar	e according to
the consensus map deposited on the website of The Australian Wheat & Barley Molecular Ma	rkers Program
(www.markers.net.au)	98
Table 5. 4 Summary of markers that segregated in only 5 to 11 subpopulations. Marker positions	are according
to the consensus map	98
Table 5. 5 Summary of the map by chromosome	108
Table 5. 6 Summary of the map by genome and homoeologous chromosome groups	109

Table 6. 1 Measured temperatures (°C) across the growing periods in greenhouses in Experiments 1 and 2. Anthesis and maturity occurred May-June and July-August in the first trial and in September-October and **Table 6.3** Means \pm S.E. for traits measured in the two experiments of the Drysdale \times Waagan population and its parents. DTA, days from sowing to anthesis; GWS, grain weight spike⁻¹ (g); GNS, grain number spike⁻¹; SGW, single grain weight (mg); GFD, grain-filling duration (days from anthesis to 95% senescence of spike); DTM, days to maturity (days from sowing to 95% senescence of spike); ChlC10DAA, chlorophyll content 10 days after anthesis (corresponding to the measurement before treatment in heat-treated plants; SPAD units); ChlC13DAA, chlorophyll content 13 days after anthesis (corresponding to first measurement after treatment in heat-treated plants; SPAD units); AUSC, area under SPAD curve; ChlR13, linear rate of chlorophyll loss between SPAD at 10 and 13 DAA (SPAD units day⁻¹), representing the loss during the treatment time interval; ChlR27, linear rate of chlorophyll loss considering all of the three SPAD measurements (10, 13 and 27 DAA; SPAD units day⁻¹) which incorporates losses during and after the treatment time interval; FLSe, days from anthesis to 95% flag leaf senescence; ShW, shoot dry weight (g); PH, plant height (cm); HI, harvest index (%); FL, flag leaf length (cm) and FW, flag leaf width (cm).....120 **Table 6. 4** Heritability (H^2) of the traits for each treatment/experiment. DTA, days from sowing to anthesis; GWS, grain weight spike⁻¹; GNS, grain number spike⁻¹; SGW, single grain weight; GFD, grain-filling duration; DTM, days to maturity; ChlC10DAA, chlorophyll content 10 days after anthesis; ChlC13DAA, chlorophyll content 13 days after anthesis; AUSC, area under SPAD curve; ChlR13, linear rate of chlorophyll loss between SPAD at 10 and 13 DAA; ChlR27, linear rate of chlorophyll loss considering all of the three SPAD measurements (10, 13 and 27 DAA); FLSe, days from anthesis to 95% flag leaf senescence; ShW, shoot dry Table 6. 5 Genotypic correlations between heat susceptibility indices (HSIs) of traits in Experiment 1 (below diagonal) and Experiment 2 (above diagonal). GWS, grain weight spike⁻¹; GNS, grain number spike⁻¹; SGW, single grain weight; GFD, grain-filling duration; DTM, days to maturity; ChlC13DAA, chlorophyll content 13 days after anthesis; AUSC, area under SPAD curve; ChlR13, linear rate of chlorophyll loss between SPAD at 10 and 13 DAA; ChlR27, linear rate of chlorophyll loss considering all of the three SPAD measurements (10, 13 and 27 DAA); FLSe, days from anthesis to 95% flag leaf senescence; ShW, shoot dry weight; HI, harvest index.

Table 6.7 Summary of heat susceptibility index (HSI) QTLs detected in the Drysdale × Waagan DH population. Linkage group, position of each OTL, experiment (Exp) that the OTL was detected, closest marker(s), LOD score, percentage of explained variation (R^2), additive effect, and high value allele (Drysdale, D; Waagan, W) are presented. Red highlights indicate QTLs detected for response of grain weight (GWS and SGW), and QTLs for responses of other traits that co-localized with them. Hgws, HSI of grain weight spike⁻¹; Hgns, HSI of grain number spike⁻¹; Hsgw, HSI of single grain weight; Hgfd, HSI of grain-filling duration; Hdtm, HSI of days from sowing to maturity; Hchlc13, HSI of chlorophyll content 13 days after anthesis; Hchlc27, HSI of chlorophyll content 27 days after anthesis; Hausc, HSI of area under SPAD curve; Hchlr13, HSI of linear rate of chlorophyll loss between SPAD 10 and 13 DAA points; Hchlr27, HSI of linear rate of chlorophyll loss considering all of the three SPAD measurements (10, 13 and 27 DAA); Hflse, HSI of days from anthesis to 95% flag leaf senescence; Table 6.8 Summary of QTLs detected in the Drysdale × Waagan DH population for absolute trait values, in control (C) or heat-treated (H) plants. Linkage group, position of each QTL, experiment (Exp) that the QTL was detected, closest marker(s), their LOD score, percentage of explained variation (R²), additive effect, and high value allele (Drysdale, D; Waagan, W) are presented. For DTA, ChlC10DAA, FL, and FW the pooled mean of control and heat-treated plants was used for QTL analysis since the measurement was taken before the heat treatment. Red highlights indicate QTL co-localized with QTL for HSIs for grain weight (GWS or SGW). Dta, days from sowing to anthesis; Gws, grain weight spike⁻¹; Gns, grain number spike⁻¹; Sgw, single grain weight; Gfd, grain-filling duration; Dtm, days from sowing to maturity; Chlc10, chlorophyll content 10 days after anthesis; Chlc13, chlorophyll content 13 days after anthesis; Chlc27, chlorophyll content 27 days after anthesis; Ausc, area under SPAD curve; Chlr13, linear rate of chlorophyll loss between SPAD 10 and 13 DAA points; Chlr27, chlorophyll loss rate determined by a linear regression of the three SPAD measurements (10, 13 and 27 DAA); Flse, days from anthesis to 95% flag leaf senescence; Shw, shoot dry weight; Ph, Plant height; Hi,

number. C, H or R following trait names indicate traits measured in control or heated plants, or trait responses, Table 7. 9 Correlations between studied traits in control and heat-treated plants and heat responses among genotypes common between Experiments (Exp.) 2, 3, 6, and 7. RGRBT, relative growth rate before treatment; RGRDT, relative growth rate during treatment; RGRAT, relative growth rate after treatment; RSA25DAS, relative senescent area 25 days after sowing (before treatment); RSA28DAS, relative senescent area after Table 7. 10 Genotypic correlations between response ratios of traits ($R_{H/C}$ = Mean trait value_{Heat treatment} / Mean trait value_{Control}) measured at grain-filling (listed on x axis) and at the vegetative stage of development (listed on y axis). Trait responses of 32 genotypes that were common to the grain-filling experiment (Chapter 3) and vegetative stage analyses (current Chapter) were used to perform the correlation test. For genotypes that were evaluated at the vegetative stage across several experiments, the analysis was based on average values over the experiments. GWS, grain weight spike⁻¹; SGW, single grain weight; GFD, grain-filling duration; ChC13-16DAA, chlorophyll content before treatment at grain-filling stage; AUSC, area under SPAD curve; FlSe, days from anthesis to 95% flag leaf senescence; ShW, shoot dry weight of plants heated at grain-filling stage; HI, harvest index; RGRBT, relative growth rate before treatment; RGRDT, relative growth rate during treatment; RGRAT, relative growth rate after treatment; RSA25DAS, relative senescent area 25 days after sowing (before treatment); RSA28DAS, relative senescent area after treatment; RSA39DAS, relative senescent area at the end

Figure 3.1 Means for days from sowing to anthesis (DTA). The vertical bar indicates the LSD value ($\alpha = 0.05$) **Figure 3. 2** Single grain weight (SGW, a) and grain weight spike⁻¹ (GWS, b) in control and heat-treated plants. The vertical bars indicate the LSD values ($\alpha = 0.05$) for within genotype mean comparisons between control and heat-treated plants (black bar), and for mean comparisons between genotypes within control (green bar) or heat Figure 3. 3 Association between single grain weight (SGW) responses of florets in different positions within the Figure 3. 4 a) Means of each genotype for control and heat-treated plants for spikelet number spike⁻¹ (SpNS; a). Genotype-by-treatment interaction was significant for this trait; the vertical bars indicate the LSD values ($\alpha =$ 0.05) for within genotype mean comparisons between control and heat-treated plants (black bar), and for mean comparisons between genotypes within control (green bar) or heat (red bar) treatment. b and c) Means for grain number spike⁻¹ (GNS; b) and grain number spikelet⁻¹ (GNSp; c). These traits were not significantly affected by heat, so the combined means of control and heat-treated plants are shown; the vertical bars indicate the LSD Figure 3. 5 Means for chlorophyll content 7-10 days after anthesis (ChlC7-10DAA; a). The trait was measured before heat treatment, so the combined means of control and heat-treated plants are shown; the vertical bar indicate the LSD value ($\alpha = 0.05$) for mean comparisons. Means for control and heat-treated plants for chlorophyll content 13-16 days after anthesis (ChlC13-16DAA; b), area under SPAD curve (AUSC; c), and days from anthesis to 95% flag leaf senescence (FLSe; d). ChlC13-16DAA, AUSC, and FLSe showed significant genotype-by-treatment effects. Bars indicate the LSD values ($\alpha = 0.05$) for within genotype mean comparisons between control and heat-treated plants (black bar), and for mean comparisons between genotypes within control Figure 3. 6 Relative chlorophyll content of flag leaves (means and 95% confidence intervals of SPAD readings; n=4) in heat-treated and control plants, before the period of brief heat treatment (represented by the horizontal Figure 3. 7 Means for grain-filling duration (GFD) in control and heat-treated plants. Bars indicate LSDs ($\alpha =$ Figure 3. 8 Means for culm length (CL; a). CL was not significantly affected by the heat treatment, so the combined means of control and heat treated plants are shown; the vertical bar represents LSD ($\alpha = 0.05$) for mean comparisons. Means for shoot dry weight (ShW; b) and harvest index (HI; c). For ShW, G and T but not genotype-by-treatment effects were significant and LSDs ($\alpha = 0.05$) are shown for mean comparison between genotypes within control (green vertical bar) or heat treatment (red vertical bar). HI showed a significant genotype-by-treatment interaction and therefore the LSD (vertical bar; $\alpha = 0.05$) is shown for within genotype mean comparisons between control and heat-treated plants (black bar), and for mean comparisons between Figure 3. 9 Projection of trait variables in principal component analysis (PCA), showing traits in control plants (a), traits in heat-treated plants (b) and heat/control ratios of traits (c). DTA, days from sowing to anthesis; GWS, grain weight spike⁻¹; SGW, single grain weight; GNS, grain number spike⁻¹; GNSp, grain number spikelet⁻¹; SpNS, spikelet number spike⁻¹; GFD, grain-filling duration; ChlC7-10DAA, chlorophyll content 7-10 days after anthesis (corresponding to the measurement before treatment in heat treated plants); ChlC13-16DAA, chlorophyll content 13-16 days after anthesis (corresponding to first measurement after treatment in heat treated plants; normalized for the 1st SPAD measurement); AUSC, area under SPAD curve (SPAD data were normalized for the first measurement); FLSe, days from anthesis to 95% flag leaf senescence; CL, culm length; ShW, shoot

Figure 4. 3 Time courses of single grain weight (SGW) of control (green circles) and heat-treated plants (red triangles) of 9 bread wheat genotypes (mean \pm S.E.). Asterisks indicate a significant difference between treatments at p < 0.05. Lines represent logistic regressions with 3 parameters (c, b, m) on control (green) and Figure 4. 4 Grain growth characteristics of control and heat-treated plants of nine wheat varieties. Sustained grain growth rate (SGR; A), maximum growth rate (MGR; B), time to inflection point (TIP; C), grain-filling duration (GFD; D), and final grain weight (FGW; E). SGR was estimated using linear regression while the other parameters were estimated using a logistic model. Bars indicate mean + S.E. Means with the same letter were Figure 4. 5 Chlorophyll fluorescence ratio (Fv/Fm) of flag leaves (mean \pm S.E.) in heat-treated (red triangles) and control plants (green circles), before, during and after a period of brief heat treatment (red bar), in 8 bread wheat genotypes. Asterisks indicate a significant difference between treatments at p < 0.05......60 Figure 4. 6 Total chlorophyll content (TotChl_{av}, mg g⁻¹FW) averaged over all time points in control and heat-**Figure 4. 7** Time courses of total chlorophyll content (TotChl, mg g^{-1} FW) of control (green circles) and heattreated plants (red triangles) of 9 bread wheat genotypes (mean \pm S.E.). Asterisks indicate a significant difference between treatments at p < 0.05. The red bar on the x axis represents the period of brief heat treatment. Figure 4.8 Flag leaf chlorophyll a and b content averaged over all time points (Chl a_{av} , mg g⁻¹FW, A; Chl b_{av} , mg g⁻¹FW, B) in control and heat-treated plants of 9 bread wheat genotypes. Bars indicate mean + S.E.63 **Figure 4.9** Time courses of total chlorophyll (A), chlorophyll a (B) and b (C) content (mg g^{-1} FW) of control (green circles) and heat-treated plants (red triangles) averaged across all genotypes within each time point (mean Figure 4. 10 Time courses of flag leaf chlorophyll a content (Chla) of control (green circles) and heat-treated plants (red triangles) of 9 bread wheat genotypes (mean ± S.E.). Asterisks indicate a significant difference Figure 4. 11 Time courses of flag leaf chlorophyll b content (Chlb) of control (green circles) and heat-treated plants (red triangles) of 9 bread wheat genotypes (mean \pm S.E.). Asterisks indicate a significant difference Figure 4. 12 Water soluble carbohydrate content averaged over all harvest times (WSC_{cont.av.} mg; harvest times: 10 to 53 DAA), in peduncle and in penultimate and lower internodes of the main culm of 9 bread wheat varieties Figure 4. 13 Time courses of water soluble carbohydrate content (WSCcont. mg) of peduncle and penultimate and lower internodes of the main stem from control (green circles) and heat-treated plants (red triangles) of 9 bread wheat genotypes (mean \pm S.E.). Asterisks indicate a significant difference between treatments at p < 0.05. The Figure 4. 14 Maximum water soluble carbohydrate content (WSC_{max}, mg; A), minimum water soluble carbohydrate content (WSCmin, mg; B), Mobilized WSC (MWSC, mg; C) and WSC mobilization efficiency (WSCME, %; D) of different segments of main culm (peduncle, penultimate and lower internodes) of 9 bread wheat varieties in control and heat-treated (3 days at 37/27 °C at 10 DAA) plants. Bars indicate mean + S.E.....70 Figure 4. 15 Conceptual model of heat tolerance mechanisms in plants exposed to a 3-day heat stress at 37/27 °C day/night in a growth chamber, 10 days after anthesis. For description refer to text. WSC, water soluble

Figure 5. 3 Fluorescence data for a Ppd-D1 KASP marker scored on Drysdale and Waagan single plant selections. Primers specific for the insensitive and sensitive alleles were labelled with FAM (fluorescence peak at wavelength 465-510 nm, blue) and VIC (fluorescence peak at wavelength 533-580 nm, green), respectively. Each dot represents a single plant and each single plant selection was tested 1-2 times (on separate plants). All Figure 5. 4 A 3% agarose gel showing PCR marker fragments of the gwm261 microsatellite marker, amplified from single plant selections of Drysdale and Waagan. CM18 has been reported to contain the Rht8 dwarfing allele and to give the 192 bp gwm261 fragment which is associated with Rht8 dwarfing allele (Ellis et al. 2007). Chara and Halberd were also included as controls that give previously reported gwm261 fragment sizes of 165 and 174 bp, respectively (Ellis et al. 2007). All of the Drysdale and Waagan selections showed a ~165 bp fragment, suggesting that they carried non-dwarfing Rht8 alleles. In Chapter 5, no QTL for plant height mapped to this position on chromosome 2D, confirming lack of segregation for this gene in the DH population. The size Figure 5. 5 A 1.5% agarose gel showing Vrn-D1 PCR marker fragments from single plant selections of Drysdale and Waagan. Expected fragment sizes were 997 bp (winter allele) or 1,671 bp (spring allele). The Drysdale selections carried the spring allele while the Waagan selections were heterogeneous for winter/spring alleles at Vrn-D1. -ve control (contains ultrapure water instead of template DNA), and Janz (winter allele) and Sokoll (spring allele) were used as controls. The size marker lanes contain the 1kb HyperLadder I DNA size marker Figure 5. 6 Fluorescence data for a Ppd-B1 KASP marker scored on Drysdale and Waagan single plant selections (a) and the DH population (b). Primers specific for the *Ppd-B1c* vs. other alleles were labelled with FAM (fluorescence peak at wavelength 465-510 nm, blue) and VIC (fluorescence peak at wavelength 533-580 nm, green), respectively. Each dot represents a single plant and each single plant selection was tested 2 times (on separate plants). All Drysdale selections, except Drysdale 1 which was heterogeneous for this locus, carried Ppd-B1b allele (green triangles) while all Waagan selections, except Waagan 5 which was heterogeneous for this locus, carried a *Ppd-B1c* allele (blue triangles). Each DH line was scored only once. Lines were assigned as Figure 5. 7 Fluorescence data for Rht-B1 (a) and Rht-D1 (b) KASP markers scored on Drysdale and Waagan single plant selections. Primers specific for the wild type and mutant (dwarf) alleles were labelled with FAM (fluorescence peak at wavelength 465-510 nm, blue) and VIC (fluorescence peak at wavelength 533-580 nm, green), respectively. Each dot represents a single plant and each single plant selection was tested 2 to 3 times (on separate plants). Designations shown by blue or green were assigned based on the fluorescence intensities of the signal in the two wavelength ranges and the clustering patterns. The Drysdale selections carried the wild type allele for *Rht-B1* (blue triangles, a) and dwarfing allele for the *Rht-D1* (green triangles, b), while the reverse was Figure 5. 8 Fluorescence data for Rht-B1 (a) and Rht-D1 (b) KASP markers scored on the DH lines of the mapping population. Each line was scored only once. Lines were assigned as having the wild-type allele (blue) Figure 5. 9 Frequency histogram showing numbers of pairwise combinations of DH lines showing certain proportions of shared marker scores. The red circle indicates the DH line pairs that had identical allele scores for Figure 5. 10 Plot of missing scores. Black dots indicate missing scores. The three doubled-haploid (DH) lines Figure 5. 11 Plot of number of typed doubled-haploid (DH) lines for each marker. Markers below the red line were omitted from the analysis. Number of DH lines = 141; 3 lines having large number of missing data were Figure 5. 12 Genotype frequencies by individual. The frequency of BB is simply 1 minus the frequency of AA. Figure 5. 13 Heatplot indicating recombination fractions (upper-left half of figure) and LOD scores for linkage (lower-right half of figure) for all pairs of markers. Markers are arranged in numbered linkage groups from the largest to the smallest linkage group. Markers are located randomly within the linkage groups, as they have not been ordered at this stage. LOD score increases and recombination fraction decreases with progression through the colour series blue-green-yellow-red. The lack of green, yellow or red signals in the lower-right half of the

Figure 5. 14 Figure 5.14 Heatplot indicating the recombination fractions (upper-left half of figure) and LOD scores for linkage (lower-right half of figure) for all pairs of markers after the markers had been ordered. LOD score increases and recombination fraction decreases with progression through the colour series blue-greenyellow-red. Alignment of the red signals along the diagonal indicates that the marker orders are largely correct. Figure 5. 15 Marker scores for 3 doubled-haploid (DH) lines on linkage group 1 with potential erroneous marker scores flagged by red squares. White and black circles correspond to AA and BB marker scores, respectively. Figure 5. 16 Number of observed crossovers in each doubled-haploid (DH) line. DH lines with more than 40 Figure 5. 17 Heatplot indicating the recombination fractions (upper-left half of figure) and LOD scores (lowerright half of figure) for all pairs of genetically non-redundant markers. Markers are arranged in order and by chromosome or chromosome fragment, from chromosome 1A (left) to 7D (right). LOD score increases and recombination fraction decreases with progression through the colour series blue-green-yellow-red. The irregular pattern on chromosome 6B probably reflects the large amount of parent heterogeneity (Table 4) and resulting Figure 5. 18 The genetic linkage map made from 139 Drysdale/Waagan DH lines and 550 genetically nonredundant markers. An R in parenthesis after the marker name indicates that the marker is the representative of a group of genetically redundant markers. Linkage groups were ordered and oriented along each chromosome by aligning to the wheat consensus SNP map, so that the end of the short arm was at the top. The numbers to the left of each linkage group indicate cM distances from the top of each linkage group. Markers in Bold were segregating in only 5 to 11 subpopulations and may therefore identify chromosome segments that were heterogeneous within a parent variety. Markers that showed a significant (*, ** and *** indicate p < 0.05, p <0.01 and p < 0.001, respectively) segregation distortion are in blue or red to indicate an excess of Drysdale or Figure 5. 19 Summary of segregation distortion across the Drysdale/Waagan molecular marker genetic map. a) – log₁₀ P-values from test of 1:1 segregation at each marker. Dashed horizontal lines represent significance at levels p < 0.05, p < 0.01, and p < 0.001 from the bottom to the top, respectively. b) Genotype frequency at each

Figure 6. 1 Schematic of relative chlorophyll (SPAD) readings taken from the flag leaf of one hypothetical plant over time using a SPAD chlorophyll meter, defining chlorophyll loss/retention parameters. The red bar represents the period of heat treatment, and the black circles indicate the SPAD readings taken 10, 13 and 27 DAA. The slopes of the black dashed and solid lines represent chlorophyll loss rates between 10 and 13 DAA, and between 10 and 27 DAA (linear regression of the three points), respectively. The grey shaded area represents the area under the SPAD progress curve (AUSC), which is an estimate of absolute chlorophyll content Figure 6. 2 Molecular marker linkage map and QTL detected for HSIs and absolute trait values in the Drysdale \times Waagan DH population. The numbers to the left of each linkage group indicate cM distances from the top. QTL are presented as 1.5 LOD intervals. Blue: QTL for HSIs; black: QTL for DTA and PH; green, red, and brown: QTL detected for the absolute trait values under control, heat, and both control and heat conditions, respectively. Solid and hashed bars indicate QTL detected in both experiments or in one experiment only, respectively. QTL at wsnp_Ku_c40759_48907151(R) on chromosome 1A, QHchlr27.aww-3B, QChlr27.aww-3B, QHi.aww-3B, and QShw.aww-3B1on chromosome 3B, and QFl.aww-7B1 on chromosome 7B were expressed in one experiment, but could not be presented with hashed bars due to the small size of the bars. Other QTL details are presented in Tables 7 and 8. Dta, days from sowing to anthesis; Gws, grain weight spike⁻¹; Gns, grain number spike⁻¹; Sgw, single grain weight; Gfd, grain-filling duration; Dtm, days from sowing to maturity; Chlc10, chlorophyll content 10 days after anthesis; Chlc13, chlorophyll content 13 days after anthesis; Chlc27, chlorophyll content 27 days after anthesis; Ausc, area under SPAD curve; Chlr13, linear rate of chlorophyll loss between SPAD 10 and 13 DAA points; Chlr27, chlorophyll loss rate determined by a linear regression of the three SPAD measurements (10, 13 and 27 DAA); Flse, days from anthesis to 95% flag leaf senescence; Shw, shoot dry weight; Ph, Plant height; Hi, harvest index; Fl, flag leaf length and Fw, flag leaf width; Hgws, HSI of grain weight spike⁻¹; Hgns, HSI of grain number spike⁻¹; Hsgw, HSI of single grain weight; Hgfd, HSI of grainfilling duration; Hdtm, HSI of days from sowing to maturity; Hchlc13, HSI of chlorophyll content 13 days after anthesis; Hchlc27, HSI of chlorophyll content 27 days after anthesis; Hausc, HSI of area under SPAD curve;

Hchlr13, HSI of linear rate of chlorophyll loss between SPAD 10 and 13 DAA points; Hchlr27, HSI of linear rate of chlorophyll loss considering all of the three SPAD measurements (10, 13 and 27 DAA); Hflse, HSI of days from anthesis to 95% flag leaf senescence; Hshw, HSI of shoot dry weight; Hhi, HSI of harvest index....139 **Figure 6. 3** Physical position of markers from the current study (black) and from previous studies (red) on the chromosome 3B reference sequence. Bars indicate QTL positions described for heat tolerance related traits in this and previous studies. The numbers to the left indicates Mbp distances from the top of the chromosome. For QTL detected by Wang et al. (2009), Kumar et al. (2010), and Bennett et al. (2012) flanking marker sequences were not available, and hence the most closely associated markers (in which the markers sequence were available) were examined.

Figure 7. 1 Plants in the greenhouse (a), the Smarthouse (b) and a growth chamber under heat stress (c). For further explanation refer to Materials and Methods......161 Figure 7. 2 Instantaneous growth rate of Excalibur (a, c, e and g) and Lyallpur-73 (b, d, f and h) plants grown under control conditions or with brief heat treatments: a, b) 40/30°C day/night for 6 hours, c, d) 40/30 °C day/night for 2 days, e, f) 44/30 °C day/night for 6 hours, and g, h) 44/30 °C day/night for 2 days. Horizontal red bars on x-axes represent the periods of high temperature treatment. Error bars represent S.E. (n=5 to 6). Asterisks indicate a significant difference between treatments at p < 0.05......166 Figure 7. 3 Growth of Excalibur (a) and Lyallpur-73 (b) plants grown under control conditions (green circles), and exposed to heat treatments of 40/30°C day/night for 6 hours (blue triangles), 40/30 °C day/night for 2 days (orange squares), 44/30 °C day/night for 6 hours (inverted navy-blue triangles) and 44/30 °C day/night for 2 days (red diamonds). Bars represent LSD ($\alpha = 0.05$). n=5 to 6 plants per gentype/treatment. Horizontal bars on the x-Figure 7. 4 Proportion of senescent area in Excalibur (a) and Lyallpur-73 (b) plants grown under control conditions (green circles) and exposed to heat treatments of 40/30°C day/night for 6 hours (blue triangles), 40/30 °C day/night for 2 days (orange squares), 44/30 °C day/night for 6 hours (inverted navy-blue triangles) and 44/30 °C day/night for 2 days (red diamonds). Bars represent LSD ($\alpha = 0.05$). n=5 to 6 plants per gentype/treatment. Horizontal bars on the x-axes represent the periods of high temperature treatment......167 Figure 7. 5 Chlorophyll content of 3rd fully expanded leaf of Excalibur (a) and Lyallpur-73 (b) plants grown under control conditions (green circles) or exposed to heat treatments 40/30°C day/night for 6 hours (blue triangles), 40/30 °C day/night for 2 days (orange squares), 44/30 °C day/night for 6 hours (inverted navy-blue triangles) and 44/30 °C day/night for 2 days (red diamonds). Bars represent LSD ($\alpha = 0.05$). n=5 to 6 plants per Figure 7. 6 Growth of a tolerant (Young; a) and an intolerant (Reeves; b) variety grown under control conditions (green circles), and with heat treatments of 40/30°C day/night for 2 days (red triangles) in Experiment 2. Error bars represent S.E.. Lines represent fitted growth models on control (green) and heat-treated plants (red). Figure 7. 7 Relative growth rate (RGR) of control and heat-treated plants of three wheat genotypes during treatment (RGRDT; A) and after treatment (RGRAT; B) in Experiment 4. Error bars show S.E. (n =11 to12). Means with the same letter were not significantly different (p > 0.05) in LSD tests......173 Figure 7. 8 Chlorophyll content of the 3rd fully expanded leaf at 28 days after sowing (ChC28DAS; A), area under SPAD curve (AUSC, B), proportion of senescent area (PSA) at 28 DAS (PSA28DAS; C) and 34 DAS (PSA34DAS; D) in heat-treated and control plants of three wheat genotypes. Error bars show S.E. (n =11 to 12 Figure 7. 9 Leaf relative water content (RWC; A and B), leaf water potential (LWP; C and D) and stomatal conductance (g; E and F) in Drysdale, Waagan, and Gladius wheat varieties at first (A, C, E) and second day (B, D, F) of the heat treatment. Error bars show S.E. (n = 6 to 12). Means with the same letter were not significantly Figure 7. 10 Water use efficiency (WUE, pixels/mlw, ml of water) during treatment (A) and after treatment (B) in Drysdale, Waagan, and Gladius wheat varieties. Error bars show S.E. (n =11 to 12). Means with the same Figure 7. 11 Principal component analysis plot of genotypes in Experiments 2, 3, 6 and 7 based on the traits common between experiments. The first 2 principal components, which accounted for the highest proportion of Figure 7. 12 Projection of trait variables from principal component analysis (PCA), using traits in control plants (C suffix), traits in heat-treated plants (H suffix), and heat/control ratios of traits (R suffix). RGRBT, relative

List of appendices

Appendix 4. 1 Water soluble carbohydrate concentration (WSC_{conc}, mg g⁻¹ dry weight) in a chosen reference set of 125 wheat stem samples determined using anthrone method, plotted against WSC content of the samples predicted using attenuated total reflectance midinfrared spectroscopy. Dashed line represents the theoretical Appendix 4. 2 Time courses of water soluble carbohydrates concentration (WSC_{conc.} mg g⁻¹ dry weight) of peduncle, penultimate and lower internodes of the main stem from control (green circles) and heat-treated plants (red triangles) of 9 bread wheat genotypes (mean \pm S.E.). The red bar on the x axis represents the period of brief Appendix 4. 3 Time courses of subtracted stem dry weight from water soluble carbohydrates content (WSC_{cont}) (DW - WSC_{cont}, mg) of peduncle, penultimate and lower internodes of the main stem from control (green circles) and heat-treated plants (red triangles) of 9 bread wheat genotypes (mean \pm S.E.). The red bar on the x Appendix 4. 4 Time courses of stem dry weight (DW, mg) of peduncle, penultimate and lower internodes of the main stem from control (green circles) and heat-treated plants (red triangles) of 9 bread wheat genotypes (mean Appendix 4. 5 Association between trait potentials (value under control conditions) and response ratios of traits (Mean trait value_{Heat treatment} / Mean trait value_{Control}). Trait potentials and response ratios are listed on horizontal and vertical axes, respectively. FGW, final grain weight; GFD, grain-filling duration; TIP, time to inflection point; MGR, maximum growth rate; SGR, sustained grain growth rate; TotChlav, total chlorophyll content averaged over all time points; Chlaav, and Chlbav, chlorophyll a and b content averaged over all time points; WSC_{max}, maximum water soluble carbohydrate content; WSC_{min}, minimum water soluble carbohydrate content; WSC_{cont.av}, water soluble carbohydrate content averaged over all harvest times; MWSC, mobilized WSC; WSCME, WSC mobilization efficiency; DW_{av}, stem dry weight averaged over all harvest times......220 Appendix 4. 6 Time courses of flag leaf chlorophyll *a/b* ratio of all genotypes in control (green circles) and heattreated plants (red triangles) (mean \pm S.E.). The red bar on the x axis represents the period of brief heat Appendix 4. 7 Time courses of flag leaf chlorophyll *a/b* ratio of control (green circles) and heat-treated plants (red triangles) of 9 bread wheat genotypes (mean \pm S.E.). The red bar on the x axis represents the period of brief Appendix 4.8 Time courses of water soluble carbohydrates content (WSC_{cont}, mg) in peduncle (A), penultimate internode (B) and lower internodes (C) of control (green circles) and heat-treated plants (red triangles) averaged across all genotypes within each time point (mean \pm S.E.). The red bar on the x axis represents the period of brief

Appendix 6. 1 Single grain weight (SGW, A) and area under SPAD curve (AUSC, B) in control and heat-treated plants. AUSC measured on normalized SPAD readings at 10, 13, and 27 DAA, which appeared to be informative according to the results presented in Chapter 3. Numbers under the dashed lines indicate contrast percentage between pairs of parents (Gladius and Drysdale, and Drysdale and Waagan) for heat response of the

corresponding trait. Bars indicate mean + S.E. (n=12 per genotype/treatment). Means with the same letter	were
not significantly different at p > 0.05 (LSD test).	222

Appendix 7. 1 Response ratio (+ S.E.) of relative growth rate during treatment (from 25 to 28 days after sowing; a), relative growth rate from 28 to 39 days after sowing (b), and proportion of senescent area at 28 (directly after treatment, c) and 39 days after sowing (d), of genotypes common between Experiments 2, 3, 6, and 7. Cadoux, Appendix 7. 2 Rank of the genotypes common between Experiments 2, 3, 6, and 7 for response ratios of relative growth rate during treatment (from 25 to 28 days after sowing, RGRDT; a), relative growth rate from 28 to 39 days after sowing (RGRAT; b), proportion of senescent area at 28 (PSA28DAS; c) and 39 (PSA39DAS; d) days after sowing. Cadoux, Drysdale, Gladius, Reeves and Waagan were not assayed in Experiment 3. Higher rank (smaller number) indicates genotypes with greatest tolerance. Genotypes were ordered by average tolerance rank Appendix 7. 3 Response ratio (+ S.E.) of relative growth rate during treatment (from 25 to 28 days after sowing, RGRDT; a), relative growth rate from 28 to 39 days after sowing (RGRAT; b), proportion of senescent area at 28 (PSA28DAS; c) and 39 days after sowing (PSA39DAS; d) of 77 genotypes. Where genotypes were used in multiple experiments, the mean across experiments were used. Genotypes were sorted from those showing the greatest positive response (increase) to the ones showing the greatest negative response (decrease) for RGRDT. Appendix 7. 4 Water use (i.e., water transpired by plants; mg, a and b) and absolute growth (pixels, c and d) of 3 wheat varieties from 25 to 28 (during treatment; a and c, respectively) and 28 to 34 (after treatment; b and d, Appendix 7. 5 Response ratio (+ S.E.) of relative growth rate during treatment (from 25 to 28 days after sowing, RGRDT; a), relative growth rate from 28 to 39 days after sowing (RGRAT; b), proportion of senescent area at 28 (PSA28DAS; c) and 39 (PSA39DAS; d) days after sowing. Mapping parents used to make a population are paired, and pairs are ordered by highest to lowest contrast for RGRDT. Genotypes assayed in the absence of a

Abbreviations

ANOVAAnalysis of varianceATR-MIRAttenuated total reflectance mid infraredAUSCArea under SPAD curveChIC10DAAChlorophyll content 10 DAAChIC13-16DAAChlorophyll content 13 DAAChIC23DAAChlorophyll content 25 DASChIC23DAAChlorophyll content 27 DAAChIC27DAAChlorophyll content 27 DAAChIC27DAAChlorophyll content 27 DAAChIC27DAAChlorophyll content within the range from 7 to 10 DAAChIR13Chlorophyll content within the range from 7 to 10 DAAChIR27Chlorophyll loss rate from 10 to 13 DAAChIR27Chlorophyll loss rate from 10 to 13 DAACLCulm lengthcMCentimorganDDrysdaleDAADays after anthesisDASDays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonucleic aciddNTPDeoxyribonucleic aciddNTPDays from sowing to anthesisDTMDays from anthesis to maturityDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG x TGenotype-ty-treatment effectGFDGrain number spike ¹⁴ GNSpGrain number spike ¹⁴ GNSpGrain number spike ¹⁴ GNSpGrain weight spike ³ H ² Broad-sense heritabi	Symbol	Definition
ATR-MIRAttenuated total reflectance mid infraredAUSCArea under SPAD curveChIC10DAAChlorophyll content 10 DAAChIC1316DAAChlorophyll content 25 DASChIC23DASChlorophyll content 25 DASChIC27DAAChlorophyll content 27 DAAChIC28DASChlorophyll content 27 DAAChIC27DAAChlorophyll content 28 DASChIC7-10DAAChlorophyll content 27 DAAChIC7-10DAAChlorophyll content 28 DASCLCCulm lengthcMCCentimorganDDrysdaleDAADays after anthesisDAADays after anthesisDAADays after anthesisDAADays after anthesisDAADays from sowing to anthesisDTADays from sowing to anthesisDTADays from sowing to anthesisDTMDays from sowing to 95% sensecnec of spikeFLFlag leaf lengthFLSe95% flag leaf sensecnecFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGrain number spikel ¹⁴ GNSGrain number spike ¹⁴ H ¹⁷ Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLICLight harvesting complex proteins associated with PSIILIDLight harvesting component analysisPCVFProdiction of senescent areaFVFPlant heightFSAProportion of senescent area 25 DAS <td>ANOVA</td> <td>Analysis of variance</td>	ANOVA	Analysis of variance
AUSCArea under SPAD curveChIC 10DAAChlorophyll content 10 DAAChIC 13-16DAAChlorophyll content within the range from 13 to 16 DAAChIC 13DAAChlorophyll content 25 DASChIC 25DASChlorophyll content 27 DAAChIC 25DASChlorophyll content 27 DAAChIC 25DASChlorophyll content 27 DAAChIC 25DASChlorophyll content within the range from 7 to 10 DAAChIR 13Chlorophyll content within the range from 7 to 10 DAAChIR 13Chlorophyll loss rate from 10 to 13 DAAChIR 27Chlorophyll loss rate from 10 to 27 DAACLCulm lengthcMCentimorganDDrysdaleDAADays after anthesisDASDays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonuclecic aciddNTPDeoxyribonuclecic acid attribosphateDTADays from anthesis to maturityDTMDays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf lengthGNSpGrain number spike1 ⁴ GNSpGrain number spike1 ⁴ GNSpGrain number spike1 ⁴ GGenotype-by-treatment effectGFDGrain number spike1 ⁴ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility index<	ATR-MIR	Attenuated total reflectance mid infrared
ChIC10DAAChlorophyll content 10 DAAChIC131-16DAAChlorophyll content 13 DAAChIC13DAAChlorophyll content 13 DAAChIC23DASChlorophyll content 25 DASChIC27DAAChlorophyll content 27 DAAChIC28DASChlorophyll content 28 DASChIC7-10DAAChlorophyll content 28 DASChIC7Chlorophyll content 28 DASChIC7Chlorophyll loss rate from 10 to 13 DAAChIR27Chlorophyll loss rate from 10 to 27 DAACLCulm lengthcMCentimorganDDrysdaleDAADays after anthesisDASDays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonucleotide triphosphateDTADays from sowing to anthesisDTMDays from sowing to 95% sensecence of spikeFLFlag leaf lengthFLSe95% flag leaf sensecnceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGrain-filling durationGNSpGrain number spike ⁻¹ GNSGrain number spike ⁻¹ GNSGrain number spike ⁻¹ SaStomatal conductanceGWSGrain number spike ⁻¹ LODLogarithm of oddsLSDLeast significant differenceLWYLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal componentPSAPro	AUSC	Area under SPAD curve
ChIC13-16DAAChlorophyll content within the range from 13 to 16 DAAChIC13DAAChlorophyll content 13 DAAChIC23DAAChlorophyll content 25 DASChIC24DAAChlorophyll content 27 DAAChIC27DAAChlorophyll content within the range from 7 to 10 DAAChIC31DAAChlorophyll content within the range from 7 to 10 DAAChIR13Chlorophyll loss rate from 10 to 13 DAAChIR27Chlorophyll loss rate from 10 to 27 DAACLCulm lengthcMCentimorganDDrysdaleDAADays after anthesisDASDays after sowingDHDoubled haploidDMSODimethyl sulfxoideDNADeoxyribonucleic aciddNTPDays from anthesis to maturityDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFV/FmFlourescence variable/flourescence maximumFWFlag leaf withGGenotypeG×TGenotype-by-treatment effectGFDGrain number spikel ⁻¹ GNSpGrain number spikel ⁻¹ gsStomatal conductanceGWSGrain number spikel ⁻¹ gsStomatal conductanceGWSGrain mumber spikel ⁻¹ GNSpCrain number spikel ⁻¹ gsStomatal conductanceGWSGrain number spikel ⁻¹ gsStomatal conductanceGWSGrain mumber spikel ⁻¹ HTHarest indexHSIHeat s	ChlC10DAA	Chlorophyll content 10 DAA
ChIC13DAAChlorophyll content 13 DAAChIC23DASChlorophyll content 25 DASChIC27DAChlorophyll content 27 DAAChIC28DASChlorophyll content 28 DASChIC7-10DAAChlorophyll content 27 DAAChIR13Chlorophyll loss rate from 10 to 13 DAAChIR27Chlorophyll loss rate from 10 to 27 DAACLCulm lengthcMCentimorganDDrysdaleDAADays after anthesisDAADays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonucleic aciddNTPDeoxyribonucleic deit phosphateDTADays from sowing to 95% senescence of spikeFLFlag leaf lengthFLS95% flag leaf senescenceFVFmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG × TGenotype-ly-treatment effectGFDGrain number spike ¹⁻¹ gsStomatal conductanceGWSGrain number spike ¹⁻¹ gsStomatal conductanceGWSGrain wight spike ¹⁻¹ H ² Heat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvestinge complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWRPoportion of senescent ar	ChlC13-16DAA	Chlorophyll content within the range from 13 to 16 DAA
ChIC25DASChlorophyll content 25 DASChIC27DAAChlorophyll content 25 DASChIC27DAAChlorophyll content 28 DASChIC27DAAChlorophyll content 28 DASChIC7-10DAAChlorophyll content 28 DASChIC7-10DAAChlorophyll loss rate from 10 to 13 DAAChIR27Chlorophyll loss rate from 10 to 27 DAACLCulm lengtheMCentimorganDDrysdaleDAADays after anthesisDASDays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonuclecia cidMTPDeoxyribonuclecia cidMTPDeoxyribonucleotide triphosphateDTADays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFV/FmFlag leaf vidthGG cenotypeG × TGenotype-by-treatment effectGFDGrain number spike ⁻¹ GNSpGrain number spike ⁻¹ GNSpGrain number spike ¹⁴ H ² Heat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRL	ChlC13DAA	Chlorophyll content 13 DAA
ChiC27DAAChiOrophyll content 27 DAAChiC28DASChiOrophyll content 28 DASChiC7-10DAAChiOrophyll cost rate from 10 to 13 DAAChiR13ChiOrophyll loss rate from 10 to 13 DAACLR27ChiOrophyll loss rate from 10 to 27 DAACLCulm lengthcMCentimorganDDrysdaleDAADays after anthesisDAADays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonuclecic aciddNTPDeoxyribonuclecic aciddNTPDays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFV/FmFlourescence variable/flourescence maximumFWFlag leaf widthGG canin number spikel ⁻¹ GNSpGrain number spikel ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ dSNSCompetitive allele-specific PCRLHCIILight harvest ing complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWSMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPlaymerase chain reactionPHPlaymerase chain reactionPHPlaymerase chain reactionPHPlaymerase chain reactionPHPlaymerase chain reaction	ChlC25DAS	Chlorophyll content 25 DAS
ChiC28DASChiOrophyll content 28 DASChiC7-10DAAChiOrophyll content vithin the range from 7 to 10 DAAChiR13ChiOrophyll loss rate from 10 to 13 DAAChIR27ChiOrophyll loss rate from 10 to 27 DAACLCulm lengthcMCentimorganDDrysdaleDAADays after anthesisDAADays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonuclecic aciddNTPDeoxyribonuclecic aciddNTPDays from sowing to anthesisDTMDays from sowing to anthesisDTMDays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLSe95% flag leaf senescenceFV/FmFlourescence variable/flourescence maximumFWFlag leaf lengthGSSpGrain number spike ¹⁻¹ GNSpGrain number spike ¹⁻¹ GNSpGrain number spike ¹⁻¹ gsStomatal conductanceGWSGrain weight spike ¹⁻¹ HiHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAProportion of senescent area 25 DASPSA28DASProport	ChlC27DAA	Chlorophyll content 27 DAA
ChiCo-10DAAChlorophyll content within the range from 7 to 10 DAAChiR13Chlorophyll loss rate from 10 to 13 DAAChiR27Chlorophyll loss rate from 10 to 27 DAACLCulm lengthcMCentimorganDDrysdaleDAADays after anthesisDASDays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonucleotide triphosphateDTADays from sowing to anthesisDTADays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFV/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGrain-filling durationGNSGrain number spike1"gsStomatal conductanceGWSGrain number spike1"HIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaxinum grain growth rateMWSCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPath heightPSAProportion of senescent area 25 DASPSA3DDASProportion of senescent area 39 DASPSIIPhotosystem I <td>ChlC28DAS</td> <td>Chlorophyll content 28 DAS</td>	ChlC28DAS	Chlorophyll content 28 DAS
ChiR13Chlorophyll loss rate from 10 to 13 DAAChIR13Chlorophyll loss rate from 10 to 27 DAACLCulm lengtheMCentimorganDDrysdaleDAADays after anthesisDASDays after sowingDHDoubled haploidDMADeoxyribonuclecic acidMNSODimethyl sulfoxideDTADays from sowing to anthesisDTADays from sowing to anthesisDTMDays from sowing to anthesisDTMDays from sowing to 95% sensecnee of spikeFLFlag leaf lengthFLSE95% flag leaf sensecneeFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG×TGenotype-by-treatment effectGFDGrain-filling durationGNSpGrain number spike ⁻¹ GNSpGrain number spike ¹² GNSpGrain weight spike ² H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaxinum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAProportion of senescent area 25 DASPSA28DASProportion of senescent area 25 DASPSA39DASProport	ChlC7-10DAA	Chlorophyll content within the range from 7 to 10 DAA
ChildrenChildren phylios rate from 10 to 27 DAACLCulm length cM CentimorganDDrysdaleDAADays after anthesisDAADays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonucleotide triphosphateDTADays from sowing to anthesisDTADays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFV/FmFlourescence variable/flourescence maximumFWFlag leaf widthGG cenotypeG × TGenotype floutescenceGNSpGrain number spike1 ⁻¹ gsStomatal conductanceGWSGrain weight spike1 ⁻¹ gsStomatal conductanceGWSGrain weight spike1 ⁻¹ H ² Harvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent area 25 DASPSA39DASProportion of senescent area 25 DASPSA39DASProportion of senescent	ChIR13	Chlorophyll loss rate from 10 to 13 DAA
CLCulm lengthcMCentimorganDDrysdaleDAADays after anthesisDASDays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonucleotide triphosphateDTADays from sowing to anthesisDTMDays from anthesis to maturityDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSE95% flag leaf senescenceFV-FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG×TGenotype-by-treatment effectGPDGrain-filling durationGNSpGrain number spikelt ⁻¹ g,Stomatal conductanceGWSGrain weight spike ⁻¹ GWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILigh tharvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent area 25 DASPSA39DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DAS	ChIR27	Chlorophyll loss rate from 10 to 27 DAA
CMCentimorganDDrysdaleDAADays after sowingDASDays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonuclecic aciddMSODimethyl sulfoxideDTADays from sowing to anthesisDTADays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSE95% flag leaf senescenceFV/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG × TGenotypeG×TGenotypeG×TGenotypeGssStomatal conductanceGWSGrain number spikelt ⁻¹ gsStomatal conductanceGWSGrain number spikelt ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSII <td>CL</td> <td>Culm length</td>	CL	Culm length
DDrysdaleDDrysdaleDAADays after anthesisDASDays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonuclecic aciddNTPDeoxyribonuclecide triphosphateDTADays from sowing to anthesisDTMDays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSE95% flag leaf senescenceFV/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG × TGenotype-by-treatment effectGFDGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spike ⁻¹ GNSpGrain number spike ⁻¹ GWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent area 28 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IPSI	cM	Centimorgan
DAADays after anthesisDAADays after anthesisDASDays after anthesisDASDays after anthesisDMSODimethyl sulfoxideDNADeoxyribonucleic aciddNTPDeoxyribonucleotide triphosphateDTADays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSE95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWHag leaf widthGGenotypeG × TGenotype-by-treatment effectGFDGrain-filling durationGNSpGrain number spike ¹ GNSpGrain number spike ¹ gsStomatal conductanceGWSGrain weight spike ¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IIQILLQuantitative trail loci	D	Drysdale
DASDays after sowingDASDays after sowingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonuclectide triphosphateDTADays from sowing to anthesisDTADays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGG cenotypeG × TGenotype-by-treatment effectGFDGrain-filling durationGNSpGrain number spike ⁻¹ GNSpGrain number spike ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal componentPCAPrincipal componentPCAProportion of senescent areaPSA25DASProportion of senescent areaPSA39DASProportion of senescent areaPSA39DASProportion of senescent areaPSIPhotosystem IIPOILQuantitative		Days after anthesis
DidDays and solvingDHDoubled haploidDMSODimethyl sulfoxideDNADeoxyribonucleic aciddNTPDeoxyribonucleic acidDTADays from sowing to anthesisDTMDays from anthesis to maturityDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG × TGenotype-hy-treatment effectGFDGrain-filling durationGNSpGrain number spike ⁻¹ GNSpGrain number spike ¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLKIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAProportion of senescent areaPSA25DASProportion of senescent areaPSA25DASProportion of senescent areaPSA39DASProportion of senescent areaPSA1Photosystem IPSIIPhotosystem IPSIIPhotosystem IPSIPhotosystem IP	DAS	Days after sowing
DMSODoubled happoindDMSODimethyl sulfoxideDNADeoxyribonucleic acidMTPDeoxyribonucleotide triphosphateDTADays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG×TGenotype-by-treatment effectGFDGrain number spikelt ⁻¹ GNSpGrain number spikelt ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCPolymerase chain reactionPHPlant heightPSA Proportion of senescent areaPSA25DASProportion of senescent areaPSA25DASProportion of senescent areaPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIPhotosystem IPSIPhotosystem IPSIPhotosystem IPSIPhotosystem IPSIPhotosystem IPSIPhotosystem I	DH DH	Doubled haploid
DNADensity structureDNADeoxyribonucleic aciddNTPDeoxyribonucleic acidDTADays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG×TGenotype-by-treatment effectGFDGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spike ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlat heightPSAProportion of senescent areaPSA28DASProportion of senescent areaPSA39DASProportion of senescent area 39 DASPSA1Photosystem IPSIIPhotosystem IPSIPhotosystem IPSIPhotosystem IPSIPhotosystem IPSIPhot	DMSO	Dimethyl sulfovide
DrADeoxylibonucleotide triphosphateDTADays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG×TGenotype-by-treatment effectGNSGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spike ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAProportion of senescent area 25 DASPSA28DASProportion of senescent area 39 DASPSA1Photosystem IPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	DNA	Denveribenueleie acid
arrDeckynonic for anthesisDTADays from sowing to anthesisDTMDays from anthesis to maturityDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG × TGenotype-by-treatment effectGFDGrain-filling durationGNSpGrain number spike ¹¹ GNSpGrain number spike ¹² gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 28 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem I <tr< td=""><td>ANTD</td><td>Deoxyribonucleic acid</td></tr<>	ANTD	Deoxyribonucleic acid
DTADays from sowing to anthesisDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG×TGenotype-by-treatment effectGFDGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spike ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent areaPSA28DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IIPSIIPhotosystem IPSIIPhotosystem I		Deve from coving to enthesis
DTMDays from animets to maturityDTMDays from sowing to 95% senescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG × TGenotype-by-treatment effectGFDGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spike ¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H^2 Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 28 DASPSA25DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IIPSIIPhotosystem II	DTM	Days from onthosis to maturity
DTMDays from Solving to 59% selescence of spikeFLFlag leaf lengthFLSe95% flag leaf senescenceFV/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG \times TGenotype-by-treatment effectGFDGrain-filling durationGNSpGrain number spike ⁻¹ GNSpGrain number spikelet ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H^2 Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent area 25 DASPSA28DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci		Days from acquire to 05% acressence of anily
FLFrag leaf lengthFLSe95% flag leaf senescenceFV/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG \times TGenotype-by-treatment effectGFDGrain-filling durationGNSpGrain number spike ⁻¹ GNSpGrain number spikelet ¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent area 25 DASPSA28DASProportion of senescent area 39 DASPSA1Photosystem IPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci		Elas lasf lag sth
FLSe95% hag lear senescenceFv/FmFlourescence variable/flourescence maximumFWFlag leaf widthGGenotypeG \times TGenotype-by-treatment effectGFDGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spikelet ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent area 25 DASPSA28DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantiative trait loci		Fiag leaf length
FV/FMFlourescence Variable/Hourescence maximumFWFlag leaf widthGGenotypeG \times TGenotype-by-treatment effectGFDGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spikelet ⁻¹ g_s Stomatal conductanceGWSGrain weight spike ⁻¹ H^2 Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA28DASProportion of senescent area 28 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantiative trait loci	FLSe	95% hag leaf senescence
FWFlag lear WithGGenotypeG \times TGenotype-by-treatment effectGFDGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spikelet ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H^2 Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	FV/Fm	Flourescence variable/flourescence maximum
GGenotype $G \times T$ Genotype-by-treatment effectGFDGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spikelet ⁻¹ g_s Stomatal conductanceGWSGrain weight spike ⁻¹ H^2 Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	FW	Flag leaf width
G x TGenotype-by-treatment effectGFDGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spiket ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	G	Genotype
GFDGrain-filling durationGNSGrain number spike ⁻¹ GNSpGrain number spikelet ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	G×T	Genotype-by-treatment effect
GNSGrain number spike ⁻¹ GNSpGrain number spikelet ⁻¹ gsStomatal conductanceGWSGrain weight spike ⁻¹ H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IQTLQuantitative trait loci	GFD	Grain-filling duration
GNSpGrain number spikelet"gsStomatal conductanceGWSGrain weight spike ⁻¹ H2Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	GNS	Grain number spike
gsStomatal conductanceGWSGrain weight spike ⁻¹ H²Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	GNSp	Grain number spikelet ⁻¹
GWSGrain weight spike1 H^2 Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	gs	Stomatal conductance
H ² Broad-sense heritabilityHIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	GWS	Grain weight spike ⁻¹
HIHarvest indexHSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIPhotosystem IIQTLQuantitative trait loci	H^2	Broad-sense heritability
HSIHeat susceptibility indexKASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	HI	Harvest index
KASPCompetitive allele-specific PCRLHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	HSI	Heat susceptibility index
LHCIILight harvesting complex proteins associated with PSIILODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	KASP	Competitive allele-specific PCR
LODLogarithm of oddsLSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	LHCII	Light harvesting complex proteins associated with PSII
LSDLeast significant differenceLWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	LOD	Logarithm of odds
LWPLeaf water potentialMGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	LSD	Least significant difference
MGRMaximum grain growth rateMWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	LWP	Leaf water potential
MWSCMobilized WSCPCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA28DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	MGR	Maximum grain growth rate
PCPrincipal componentPCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA28DASProportion of senescent area 28 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	MWSC	Mobilized WSC
PCAPrincipal component analysisPCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA28DASProportion of senescent area 28 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	PC	Principal component
PCRPolymerase chain reactionPHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA28DASProportion of senescent area 28 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	PCA	Principal component analysis
PHPlant heightPSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA28DASProportion of senescent area 28 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	PCR	Polymerase chain reaction
PSAProportion of senescent areaPSA25DASProportion of senescent area 25 DASPSA28DASProportion of senescent area 28 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	PH	Plant height
PSA25DASProportion of senescent area 25 DASPSA28DASProportion of senescent area 28 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	PSA	Proportion of senescent area
PSA28DASProportion of senescent area 28 DASPSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	PSA25DAS	Proportion of senescent area 25 DAS
PSA39DASProportion of senescent area 39 DASPSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	PSA28DAS	Proportion of senescent area 28 DAS
PSIPhotosystem IPSIIPhotosystem IIQTLQuantitative trait loci	PSA39DAS	Proportion of senescent area 39 DAS
PSII Photosystem II QTL Quantitative trait loci	PSI	Photosystem I
QTL Quantitative trait loci	PSII	Photosystem II
	QTL	Quantitative trait loci

Symbol	Definition
RFLP	Restriction fragment length polymorphism
RGR	Relative growth rate
RGRAT	Relative growth rate after treatment
RGRBT	Relative growth rate before treatment
RGRDT	Relative growth rate during treatment
R _{H/C}	Heat-treated/control ratio
RWC	Relative water content
S.E.	Standard error
SGR	Sustained grain growth rate
SGW	Single grain weight
ShW	Shoot dry weight
SNP	Single nucleotide polymorphism
SpNS	Spikelet number spike ⁻¹
SSR	Simple sequence repeat
SSS	Soluble starch synthase
Т	Treatment
TIP	Time from anthesis to the inflection point
TN	Tiller number
TotChl	Total chlorophyll content (chlorophyll a + b) measured by destructive method
W	Waagan
WSC	Water soluble carbohydrate
WSCME	WSC mobilization efficiency
WUE	Water use efficiency
ZGS	Zadoks' growth stage

Abstract

High temperature is one of the major environmental constraints for wheat production globally. It puts significant pressure on the wheat industry around the world, compromising both the quantity and quality of wheat grain produced. The current study focussed on the impact of brief episodes of very high temperatures during vegetative and grain-filling stages of wheat development using a combined approach of plant physiology and quantitative trait loci (QTL) mapping.

At grain-filling stage, wheat plants were exposed to a brief heat stress (3 days, 37/27 °C) 10 days after anthesis and the plants evaluated for a number of morphological and physiological traits (Chapters 3, 4, and 6). At the vegetative stage (~ 4 weeks after sowing) plants were challenged with a brief heat treatment (2 days, 40/30 °C), and growth and senescence related characters were monitored using automated imaging facilities and a SPAD chlorophyll meter (Chapter 7).

In total, 37 bread wheat genotypes were evaluated for different heat responses during the grain-filling stage. Genetic variation was observed among wheat genotypes for various heat responses, particularly for single grain weight, chlorophyll retention, rate and duration of grain-filling, and water soluble carbohydrate content and mobilization (Chapters 3 and 4). Overall, the findings suggested that more than one adaptation process contributed to tolerance. Generally, genotypes with more stable grain weight under heat tended to have particular traits under stress, including the ability to maintain chlorophyll content and rate and duration of grain-filling, and stronger water soluble carbohydrate mobilization efficiency (Chapters 3 and 4). Therefore, these traits may provide appropriate selection criteria for improving heat tolerance in wheat.

A genetic linkage map of a Drysdale/Waagan population was constructed using a 9K SNP array (Chapter 5) and used for QTL analysis (Chapter 6) of heat responses (evaluated using heat susceptibility index) at the grain-filling stage. A region on chromosome 3BS strongly affected heat responses of grain weight, stay-green related traits, grain-filling duration, shoot dry weight and harvest index, explaining 10 to 40% of the phenotypic variation, with Waagan contributing the tolerance allele. Most notably, the results indicated a strong genetic link between stay-green and grain weight maintenance under brief episodes of terminal high temperatures but a lack of a significant association between the *Rht-B1* and *Rht-D1* dwarfing loci and heat tolerance.

Using high-throughput automated imaging facilities in The Plant Accelerator, considerable variation among 77 bread wheat genotypes was observed for growth rate and senescence

responses to a brief heat stress at the vegetative stage (Chapter 7). A subset of 32 genotypes was also screened at the grain-filling stage (Chapter 3) which allowed a comparison of heat responses at these two developmental stages. Growth rate and senescence responses at the vegetative stage showed significant associations with grain weight maintenance and senescence responses at the grain-filling stage. These results suggested a physiological/genetic link between heat responses at the different growth stages, with implications for developing more efficient heat tolerance screening methods.

The present work contributes to the understanding of physiological mechanisms of heat tolerance and its genetic basis in hexaploid wheat, and identifies assays with potential to assist heat tolerance studies and in breeding programs.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Hamid Shirdelmoghanloo, and to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Hamid Shirdelmoghanloo

Signature.....

Date.....

Acknowledgements

I would like to take this opportunity to acknowledge people who helped me through my PhD and contributed to this work.

I would like to acknowledge Drs. Michael Francki, Dion Bennett, Dan Mullan, Bertus Jacobs, Hugh Wallwork, the Australian Winter Cereals Collection, the Australian Centre for Plant Functional Genomics (ACPFG), and New South Wales Department of Primary Industries (NSW-DPI) Wagga Wagga for providing seeds of lines used in this study. Thanks to Drs. Livinus Emebiri and Peter Martin for providing the Drysdale × Waagan DH mapping population and the 9K array SNP data. I am also grateful to Assoc. Prof. Ken Chalmers (my post-graduate co-ordinator), Dr. Glenn McDonald (my independent advisor), Dr. Monica Ogierman (ACPFG Education Manager), and Mrs. Ruth Harris (ACPFG English tutor). I would also like to thank all staff and researchers at the ACPFG, the molecular marker laboratory and The Plant Accelerator who helped me through this project and provided a friendly working environment.

I would like to express my gratitude to the organizations that provided core funding to the ACPFG (Australian Research Council, Government of South Australia and the Grains Research and Development Corporation, GRDC) and to the University of Adelaide and ACPFG for my scholarship. The GRDC also provided specific project funding for parts of this work (Chapters 3, 4, and 7) and a travel award which allowed me to attend an international conference.

I would like to express my sincerest gratitude to my principal supervisor Dr. Nicholas Collins for providing me the opportunity to do a PhD program and for his excellent guidance, encouragement, and patience during the entire program. In fact, none of this work could be done without his excellent support and there is no way I could ever thank him enough for his immense contribution. I would like also to thank my co-supervisors Prof. Diane Mather and Dr. Boris Parent for their great guidance and support.

Thanks to my parents, brother, and sister who inspired and encouraged me to pursue my PhD. I am very grateful for their unconditional love, encouragement, and support.

I would like to acknowledge people who contributed specifically to the research presented here. Many thanks to:

Dr. Nicholas Collins for his constructive suggestions for data analysis, interpretation, and suggestions on thesis text.

Prof. Diane Mather for her constructive suggestions for molecular marker genetic map construction (Chapter 5) and suggestions on thesis text.

Dr. Boris Parent for his suggestions how to carry out and analyse the vegetative growth experiments (Chapter 7).

Mr. Iman Lohraseb for his help with the experiment presented in Chapter 3. He sowed the experiment, helped with watering, threshed 188 out of the 648 plants and collected the shoot dry weight data.

Dr. Huwaida Rabie who provided a spatial design for experiments in Chapter 3, 6 and 7 (Experiments 2, 3, 6 and 7) and performed linear mixed model analyses in Chapters 3 and 7 (Experiments 2, 3 and 6).

Dr. Julian Taylor who devoted his precious time to help me with some complex statistical issues and to develop a linear mixed model for data analysis and to provide critical evaluation of thesis text (experimental design and statistical analysis section) in Chapter 6.

Dr. Andy Timmins for providing suggestions for map construction (Chapter 5).

Dr. Daniel Cozzolino who provided access to the ATR-MIR instrument and helped model water soluble carbohydrate content of stem samples (Chapter 4).

Dedication

To my

father "Ali" and mother "Maryam"