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Abstract 

Substantial quantities of costly nitrogen (N) fertilisers are applied to cereal crops each year to 

maximise yields, but only approximately half of the N is captured by cereals, providing scope 

to increase root N uptake. However, our understanding of how the nitrate (NO3
-) uptake 

system is regulated and how it could be improved is limited. Furthermore, the changes to root 

morphology in response to NO3
- supply are not well understood, in this case due to the 

difficulties associated with phenotyping roots in soil. 

To investigate how the NO3
- uptake system is up-regulated, maize (Zea mays var. B73 

and Mo17) was grown hydroponically with low or sufficient NO3
- supply, and a range of 

physiological parameters associated with NO3
- uptake were measured across the transition 

from seed N use, to external N capture. This transition provides an ideal system to clarify how 

the NO3
- uptake system up-regulates as this is when plants first rely on increasing root N 

capture to meet demand. Across both lines and treatments, concentrations of shoot N and free 

amino acids in roots and shoots rapidly decrease as seed N reserves exhaust. Once free amino 

acid concentrations decrease to a critical level, root NO3
- uptake capacity rapidly increased, 

corresponding with a rise in transcript levels of putative NO3
- transporter genes ZmNRT2.1 

and ZmNRT2.2. As NO3
- uptake capacity reached maximum levels, shoot N concentrations 

stabilised. Despite shoot N concentrations stabilising, B73 was unable to maintain net N 

uptake and shoot growth in low NO3
-, relative to sufficient NO3

-. Conversely, Mo17 

maintained shoot growth and net N uptake, and increased root mass in low NO3
- relative to 

sufficient NO3
-. The effects of NO3

- limitation on growth were reflected by an increased 

root:shoot, which emerged just prior to shoot N concentrations stabilising.  

In order to understand how root morphology may reflect the NO3
- treatments 

differences observed in growth and net N uptake, morphological root traits were quantified 
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across seedling development. Analysis showed that although B73 achieved greater absorption 

area per unit root mass than Mo17, its morphology was unresponsive to NO3
- supply. 

Conversely, Mo17 responded to NO3
- limitation by increasing lateral and axial root length 

before increasing root mass or volume. Subsequently, 11 putative quantitative trait loci (QTL) 

associated with morphological root traits corresponding with shoot growth or N uptake were 

detected across low and sufficient NO3
-, with one major QTL for lateral root length and 

surface area being identified in low NO3
- on chromosome 5.  

These results provide insight into the processes involved in up-regulating root NO3
- 

uptake capacity and how root morphology can adapt to NO3
- supply. These findings identify 

potential control points in the regulation of NO3
- uptake capacity and root morphology, which 

may be investigated further via global transcriptional analysis or fine-mapping of identified 

QTL respectively. Ultimately, this work may lead to identification of candidate regulatory 

genes that could be either manipulated to generate new lines with enhanced N uptake 

efficiencies, or allow the identification of germplasm with this trait. 
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