Utilising CYP199A4 from Rhodopseudomonas palustris HaA2 for Biocatalysis and Mechanistic Studies

Rebecca Chao

Supervisors: Dr. Stephen G. Bell Prof. Andrew D. Abell

Thesis submitted for the degree of Master of Philosophy

July 2016 School of Physical Sciences

Contents

A۱	bstra	ct		iv
De	eclara	ation		vi
A	cknov	vledgem	ients	vii
Al	bbrev	viations		viii
Li	st of	Figures		xii
Li	st of	Tables		xiii
1	Intr	oduction	n	1
	1.1	Cytochr	ome P450s \ldots	1
	1.2	Reaction	ns Catalysed by P450s	4
		1.2.1 H	Iydroxylation	5
		1.2.2 H	Intervation Dealkylation	7
		1.2.3 A	Alkene and Alkyne Oxidation	8
		1.2.4 I	Desaturation	10
		1.2.5 A	Aldehyde Oxidations	11
		1.2.6	The Potential of P450s for Biocatalysis	12
	1.3	CYP199	A4 from <i>Rhodopseudomonas palustris</i> HaA2	13
	1.4	Thesis (Dbjectives	15
2	\mathbf{Exp}	eriment	al	17
	2.1	General		17
	2.2	Enzyme	s and Molecular Biology	17
		2.2.1 F	Production and Purification of CYP199A4 Enzymes	18
		2.2.2 F	Production and Purification of HaPux	19
		2.2.3	Construction of the In Vivo Systems	19
	2.3	Substrat	e Binding Assays	20
	2.4	In Vitro	NADH Activity Assays	20
	2.5	In Vivo	Activity Assays	22
	2.6	Analysis	s of Metabolites	22
	2.7	Chiral P	Product Synthesis	24
3	Rea	ctions C	Catalysed by CYP199A4	25
	3.1	Introduc	etion	25
	3.2	Results		27

 4 The Active Oxidant(s) in CYP199A4 Catalysis 4.1 Introduction						
 4.1.1 The Conserved Alcohol Residue of P450s 4.1.2 The Conserved Acidic Residue of P450s 4.2 Results 4.2 Results 4.2.1 Investigation of the Activity of T252A_{CYP199A4} 4.2.2 Investigation of the Activity of D251N_{CYP199A4} 4.3 Discussion 5 The Oxidation of para-Substituted Cinnamic Acid Derivatives I CYP199A4 5.1 Introduction 5.2 Results 5.2.1 Substrate Binding Studies on Cinnamic Acid Derivatives 5.2.2 Activity and Product Formation Assays with Cinnamic Acid Derivatives 5.2.3 Whole-cell Oxidations of Cinnamic Acid Derivatives by CYP19 5.3 Discussion 6 Expanding the Substrate Range of CYP199A4 6.1 Introduction 6.2 Results 6.2.1 In Vivo Screening of CYP199A4 Mutants 6.2.2 Activity and Product Formation Assays with the S244D a S244N Mutants of CYP199A4 	3					
 4.1.2 The Conserved Acidic Residue of P450s						
 4.2 Results	4	lue of P450s $\ldots \ldots \ldots \ldots 37$				
 4.2.1 Investigation of the Activity of T252A_{CYP199A4}		$10 \text{ of } P450\text{s} \dots \dots$				
 4.2.2 Investigation of the Activity of D251N_{CYP199A4} 4.3 Discussion	4					
 4.3 Discussion	4	of T252A _{CYP199A4} 42				
 5 The Oxidation of para-Substituted Cinnamic Acid Derivatives I CYP199A4 5.1 Introduction	4	of $D251N_{CYP199A4}$				
CYP199A4 5.1 Introduction 5.2 Results 5.2.1 Substrate Binding Studies on Cinnamic Acid Derivatives 5.2.2 Activity and Product Formation Assays with Cinnamic Acid Derivatives 5.2.3 Whole-cell Oxidations of Cinnamic Acid Derivatives by CYP19 5.3 Discussion 6 Expanding the Substrate Range of CYP199A4 6.1 Introduction 6.2 Results 6.2.1 In Vivo Screening of CYP199A4 Mutants 6.2.2 Activity and Product Formation Assays with the S244D a S244N Mutants of CYP199A4 S244N Mutants of CYP199A4	4					
 5.1 Introduction	by	Cinnamic Acid Derivatives by				
 5.2 Results	5	54				
 5.2.1 Substrate Binding Studies on Cinnamic Acid Derivatives	5					
 5.2.2 Activity and Product Formation Assays with Cinnamic Activity Derivatives 5.2.3 Whole-cell Oxidations of Cinnamic Acid Derivatives by CYP19 5.3 Discussion 6 Expanding the Substrate Range of CYP199A4 6.1 Introduction 6.2 Results 6.2.1 In Vivo Screening of CYP199A4 Mutants 6.2.2 Activity and Product Formation Assays with the S244D a S244N Mutants of CYP199A4 	5					
Derivatives 5.2.3 5.2.3 Whole-cell Oxidations of Cinnamic Acid Derivatives by CYP19 5.3 Discussion 6 Expanding the Substrate Range of CYP199A4 6.1 Introduction 6.2 Results 6.2.1 In Vivo Screening of CYP199A4 Mutants 6.2.2 Activity and Product Formation Assays with the S244D a S244N Mutants of CYP199A4	5	Cinnamic Acid Derivatives 57				
5.2.3 Whole-cell Oxidations of Cinnamic Acid Derivatives by CYP19 5.3 Discussion	cid	ation Assays with Cinnamic Acid				
 5.3 Discussion	6					
 6 Expanding the Substrate Range of CYP199A4 6.1 Introduction	99A4 6	namic Acid Derivatives by CYP199A4 68				
 6.1 Introduction	7					
 6.2 Results	Expanding the Substrate Range of CYP199A4 73					
 6.2.1 In Vivo Screening of CYP199A4 Mutants						
6.2.2 Activity and Product Formation Assays with the S244D a S244N Mutants of CYP199A4						
S244N Mutants of CYP199A4		9A4 Mutants				
	ınd	ation Assays with the S244D and				
	7	4				
6.2.3 Activity and Product Formation Assays with S244D CYP199	A4 8	tion Assays with S244D CYP199A4 82				
6.3 Discussion	8					
7 The Oxidation of Methyl- and Ethyl-modified Substrates by Wil	ld-	-modified Substrates by Wild-				
type and S244D CYP199A4	8	89				
7.1 Introduction						
7.2 Results	g					
7.2.1 Binding Studies and Activity Assays with Methyl-modified Su		Assays with Methyl-modified Sub-				
strates	ıb-					
7.2.2 Substrate Binding Studies on Ethyl-modified Substrates	Ç					
7.2.2 Substrate Binding Studies on Ethyl-modified Substrates7.2.3 Activity and Product Formation Assays with Ethyl Substrate	g	Ethyl-modified Substrates 97				

8 Conclusions and Future Directions	109
References	126
Appendices	127
Appendix A Data for Chapter 3	127
Appendix B Data for Chapter 4	131
Appendix C Data for Chapter 5	135
Appendix D Data for Chapter 6	148
Appendix E Data for Chapter 7	154

Abstract

The cytochrome P450 enzyme CYP199A4 from *Rhodopseudomonas palustris* strain HaA2 is highly specific for the regioselective oxidation of *para*-substituted benzoic acids. A selection of these compounds was tested with the enzyme with the aim of investigating the mechanism of different P450-catalysed reactions. These studies revealed that the binding affinity and oxidative activity of CYP199A4 is influenced by the substituent at the *para*-position, and that to the enzyme's known oxidative activities (demethylation, hydroxylation, heteroatom oxidation and desaturation) can be added alkene epoxidation, alkyne oxidation and aldehyde oxidation.

The active oxidants involved in these CYP199A4-catalysed oxidations were investigated using two active site mutants at the conserved acid-alcohol pair, T252A_{CYP199A4} and D251N_{CYP199A4}, which should disrupt different steps of the catalytic cycle. There was a general increase in hydrogen peroxide uncoupling in the T252A_{CYP199A4} mutant but significant levels of product formation were observed with each substrate. The D251N mutation reduced the activity of the enzyme dramatically in all but one case, suggesting that this mutation interferes with proton delivery as expected. The elevated rate of 4-ethynylbenzoic acid oxidation by T252A_{CYP199A4} when compared to the wild-type enzyme suggested the involvement of Cpd 0 in alkyne oxidation, while a reduction in activity with 4-methoxybenzoic acid implicated Cpd I in demethylation. Additionally, the notable increase in product formation and coupling efficiency of D251N_{CYP199A4} with 4-formylbenzoic acid suggested the involvement of the peroxo-anion in aldehyde oxidation.

Larger cinnamic acids and closely related substrates were also investigated with CYP199A4. The binding affinity and oxidative activity of the enzyme decreased in the order 4-methoxybenzoic acid > 4-methoxycinnamic acid > 3-(4-methoxyphenyl)propionic acid > 4-methoxyphenylacetic acid, highlighting its selectivity for a planar, benzoic acid- or cinnamic acid-like framework. The exclusive oxidation of cinnamic acids and related derivatives at the *para*-position further demonstrated the high regioselectivity of CYP199A4.

While CYP199A4 exhibited low oxidation activity towards *para*-methoxy substituted benzene derivatives, considerably higher levels of activity reminiscent of the demethylation of 4-methoxybenzoic acid were observed for the Ser244 \rightarrow Asp244 (S244D) mutant of CYP199A4. The exclusive demethylation of the *para*-methoxy substituted benzenes by S244D revealed that the regioselectivity of CYP199A4 oxidation is maintained in this mutant. The regioselectivity of the S244D mutant was further investigated using a selection of methyl- and ethyl-substituted derivatives. The methyl analogues were exclusively oxidised at the *para*-position to a single α -hydroxylation product. α -Hydroxylation and C_{α} - C_{β} desaturation products were generated in the turnovers of the ethyl derivatives. The alcohol was formed with high stereoselectivity. The electronic properties of the ethyl substrates were found to influence the ratio of hydroxylation/desaturation product, with the more electron donating substrates giving rise to a greater proportion of the latter. This suggested the involvement of a cationic intermediate in CYP199A4catalysed desaturation.

Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

> Rebecca Chao July 2016

Acknowledgements

First and foremost, I must begin by thanking Dr. Stephen G. Bell for his careful guidance and tireless efforts in drafting my thesis, without whom you would not be reading this right now. I don't think there are too many supervisors out there who could knock off five chapters in a single sitting!

I would like to say a big thank you to each member of the Bell group (and Pyke group), both past and present, for all of the help and fun times over the last two years; I wouldn't have made it this far without you guys! Thank you also to Prof. Andrew D. Abell, and a special mention goes to Stella Child and Nick Wells for agreeing to the arduous task of proof-reading my thesis.

Finally of course, thank you to all of my readers!

Abbreviations

AcCN	acetonitrile
BA	benzoic acid
BSTFA-TMCS	${\rm N,O}\xspace{-bis}-$
	trimethylchlorosilane (TMCS)
CA	cinnamic acid
DCM	dichloromethane
DMSO	dimethyl sulfoxide
DTT	dithiothreitol
EMM	E. coli minimal media
GC-MS	gas chromatography-mass spectrometry
HCl	hydrochloric acid
HPLC	high performance liquid chromatography
IPTG	isopropyl $\beta\text{-D-thiogalactopyranoside}$
K_2CO_3	potassium carbonate
LB	Luria-Bertani medium
NADH	Reduced form of nicotinamide adenine dinucleotide
$NaHCO_3$	sodium bicarbonate
NCS	N-chlorosuccinimide
NMR	Nuclear magnetic resonance
SOC	Super Optimal broth with Catabolite repression
TBACl	tetrabutylammonium chloride
TEMPO	2,2,6,6-tetramethyl-1-piperidinyloxy
TFA	trifluoroacetic acid
WT	wild-type

List of Figures

1	A selection of reactions catalysed by P450s	1
2	The catalytic cycle of P450s	2
3	The electronic structure of Cpd I	4
4	The radical rebound mechanism of P450s	5
5	Bicyclo[2,1,0]pentane as a radical clock substrate for microsomal P450s.	5
6	Energy profile for alkyl hydroxylation.	6
7	The mechanisms of P450-catalysed dealkylation reactions	7
8	Concerted mechanism of alkene epoxidation by Cpd I	8
9	Alkene oxidation via cationic/radical mechanisms, and by Cpd 0. \ldots	9
10	The mechanism of alkyne oxidation by P450s	9
11	The mechanism of P450-catalysed desaturation reactions	10
12	Mechanisms for aldehyde oxidation	11
13	Demethylation of 4-methoxybenzoic acid by CYP199A4	13
14	The active site of 4-methoxybenzoic acid-bound CYP199A4	14
15	Different reactions catalysed by CYP199A4	14
16	The different types of substrates to be tested with CYP199A4	15
17	Substrates of CYP199A4 and CYP199A2.	16
18	Example plot of an <i>in vitro</i> NADH turnover	21
19	Examples of calibration curves.	23
20	A selection of substrates tested with CYP199A4.	25
21	Benzoic acid substrates of CYP199A4.	26
22	Spin-state shifts of CYP199A4 with benzoic acid substrates	28
23	Dissociation constant analyses of CYP199A4 with benzoic acid substrates.	29
24	HPLC analysis of 4-formylbenzoic acid oxidation by CYP199A4	31
25	HPLC analysis of 4-ethynylbenzoic acid oxidation by CYP199A4	32
26	GC-MS analysis of 4-vinylbenzoic acid oxidation by CYP199A4	33
27	HPLC analysis of 4-acetylbenzoic acid oxidation by CYP199A4	33
28	Baeyer-Villiger rearrangement step in lanosterol 14α -demethylation	34
29	The mechanism of Dakin oxidation.	35
30	The reactive iron-species of P450s.	37
31	The interaction of the conserved threenine with Cpd 0. \ldots \ldots \ldots	38
32	Alkene substrates of $T252A_{cam}$, $T303A_{CYP2E1}$ and $T302A_{CYP2B4}$.	39
33	Substrates tested with the T306A mutant of CYP17A1	40
34	4-Acetyl- and 4-formyl-benzoic acid oxidation by $T252A_{CYP199A4}$	43
35	4-Ethynyl- and 4-vinyl-benzoic acid oxidation by $T252A_{CYP199A4}$	44
36	Binding of 4-acetylbenzoic acid to D251N _{CYP199A4}	46

37	HPLC analysis of $WT_{CYP199A4}$ and $D251N_{CYP199A4}$ turnovers	47
38	Product formation and uncoupling pathways in P450 catalysis	49
39	An additional coupling pathway in $T252A_{cam}$	50
40	Potential substrates of CYP199A4.	53
41	The active site of substrate-bound CYP199A4	54
42	Cinnamic acid derivatives tested with CYP199A4	56
43	Binding of 4-methoxycinnamic acid to CYP199A4.	57
44	Dissociation constant analyses of CYP199A4 with cinnamic acids	58
45	Binding of 4-methyl- and 4-isopropyl-cinnamic acid to CYP199A4	60
46	HPLC analysis of 4-methoxycinnamic acid oxidation by CYP199A4	62
47	HPLC analysis of 3,4-(methylenedioxy)CA oxidation by CYP199A4	63
48	HPLC analysis of 3-hydroxycinnamic acid oxidation by CYP199A4. $\ .$.	64
49	GC-MS analysis of 3,5-dimethoxycinnamic acid oxidation by CYP199A4.	65
50	GC-MS analysis of 2,3,4-trimethoxycinnamic acid oxidation	65
51	HPLC analysis of 4-methylcinnamic acid oxidation by CYP199A4	66
52	GC-MS analysis of 4-isopropyl cinnamic acid oxidation by CYP199A4	67
53	Whole-cell oxidation of 3-(4-methoxyphenyl)propionic and 3-hydroxy-4-	
	methoxycinnamic acid	69
54	Whole-cell oxidation of 2,4- and 3,4-dimethoxycinnamic acid	69
55	Whole-cell oxidation of 4-hydroxy- and 3,5-dimethoxy-cinnamic acid. $% \mathcal{A}^{(1)}$.	70
56	The active site of CYP199A4	74
57	Whole-cell oxidation of 4-methoxybenzoic acid by CYP199A4 mutants.	75
58	Whole-cell oxidation of 4-methoxyacetophenone by CYP199A4 mutants.	76
59	Whole-cell oxidation of 4-methoxyphenol by CYP199A4 mutants	76
60	UV/V is spectra of 4-nitroanisole oxidation by CYP199A4 mutants. $\ .$.	77
61	Carboxy-modified substrates of WT, S244D and S244N CYP199A4	77
62	4-Methoxy -benzamide and -phenol oxidation by S244D and S244N	79
63	Activity of WT and S244D CYP199A4 with carboxy-modified substrates.	80
64	4-Nitroanisole oxidation by WT and S244D CYP199A4	81
65	Carboxy-modified substrates of WT and S244D CYP199A4. \ldots .	82
66	4-Methoxy benzonitrile oxidation by WT and S244D CYP199A4	82
67	4-Methoxy anisole oxidation by WT and S244D CYP199A4	84
68	Binding of 4-methoxyphenol, 4-methoxybenzaldehyde and 4-	
	aminoanisole to S244D	86
69	Methyl-modified substrates of WT and S244D CYP199A4	89
70	4-Isopropylbenzoic acid oxidation by CYP199A4.	90
71	Mechanisms of hydroxylation and desaturation of benzoic acids	90
72	Ethyl-modified substrates of WT and S244D CYP199A4	91

73	Binding and oxidation of 4-methylbenzaldehyde	93
74	Binding and oxidation of 4-methylphenol	94
75	4-Methylanisole oxidation by WT and S244D CYP199A4	95
76	Activity of WT and S244D CYP199A4 with methyl substrates. \ldots .	96
77	Binding of 4-ethylbenzoic acid and 4-ethyphenol to S244D	97
78	The oxidation of 4-ethylbenzoic acid by $WT_{CYP199A4}$.	99
79	HPLC analysis of 4-ethylbenzoic acid oxidation by S244D	100
80	GC-MS analysis of 4-ethylnitrobenzene oxidation	100
81	HPLC analysis of 4-ethylphenol oxidation.	101
82	GC-MS analysis of 4-ethylanisole oxidation.	102
83	Activity of WT and S244D CYP199A4 with ethyl substrates, and S244D	
	with benzaldehyde and phenol derivatives	103
84	Chiral GC analysis of selected S244D turnovers	104
85	Chiral HPLC analysis of selected S244D turnovers	105
A1	HPLC analysis of 4-acetoxybenzoic acid substrate control	127
A2	HPLC analysis of CYP199A4 with 4-acetamidobenzoic acid	127
A3	Turnover controls for 4-ethynylbenzoic acid.	128
A4	Mass spectra of 4-vinyl benzoic acid and its oxidation products	128
A5	¹ H NMR for 4-(oxiran-2-yl)benzoic acid. $\dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	129
A6	¹ H NMR for 4-(hydroxyacetyl) benzoic acid	130
B1	Spin-state shifts of T252A _{CYP199A4} with benzoic acids	131
B2	Spin-state shifts of $D251N_{CYP199A4}$ with benzoic acids	132
B3	Dissociation constant analyses of $T252A_{CYP199A4}$.	133
B4	Dissociation constant analyses of $D251N_{CYP199A4}$.	134
C1	Spin-state shifts of CYP199A4 with cinnamic acids	135
C2	Spin-state shifts of CYP199A4 with 3-(4-methoxyphenyl)propionic and	
	4-methoxyphenylacetic acid	136
C3	Dissociation constant analyses of CYP199A4 with propionic and pheny-	
	lacetic acids	136
C4	Oxidation of cinnamic acids by CYP199A4.	137
C5	Oxidation of cinnamic acid derivatives by CYP199A4	138
C6	Whole-cell oxidation of cinnamic acid derivatives by CYP199A4	139
C7	¹ H NMR for 4-methoxycinnamic acid	140
C8	¹ H NMR for 2,4-dimethoxycinnamic acid	141
C9	$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR for 2-methoxy-4-hydroxycinnamic acid. $~$	142
C10	$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR for 4-(hydroxymethyl)cinnamic acid	143
C11	¹ H NMR for 4-(2-hydroxy isopropyl)cinnamic acid	144
C12	¹³ C NMR for 4-(2-hydroxyisopropyl)cinnamic acid.	145

C13	¹ H NMR for 4-(1,2-epoxyisopropyl)cinnamic acid	145
C14	$^{13}\mathrm{C}$ NMR for 4-(1,2-epoxyisopropyl)cinnamic acid	146
C15	Mass spectra of oxidation products of cinnamic acids	147
D1	Oxidation of carboxy-modified substrates by WT, S244D and S244N. $\ .$	148
D2	Oxidation of carboxy-modified substrates by WT and S244D CYP199A4.	149
D3	Spin-state shifts of $WT_{CYP199A4}$ with carboxy-modified substrates	150
D4	Spin-state shifts of S244D with 4-methoxybenzoic acid and 4-	
	methoxybenzyl alcohol	150
D5	Spin-state shifts of S244D with carboxy-modified substrates	151
D6	Dissociation constant analyses of WT with carboxy-modified substrates.	152
D7	Dissociation constant analyses of S244D with 4-methoxybenzoic acid	
	and 4-methoxybenzyl alcohol	152
D8	Dissociation constant analyses of S244D with carboxy-modified substrates.	153
E1	Spin-state shifts of S244D with methyl substrates	154
E2	Spin-state shifts of S244D with ethyl substrates	155
E3	Dissociation constant analyses of $\mathrm{WT}_{\mathrm{CYP199A4}}$ with methyl substrates	156
E4	Dissociation constant analyses of S244D with methyl substrates	156
E5	Dissociation constant analyses of $\mathrm{WT}_{\mathrm{CYP199A4}}$ with ethyl substrates	157
E6	Dissociation constant analyses of S244D with ethyl substrates	157
$\mathrm{E7}$	Oxidation of methyl substrates by WT and S244D CYP199A4	158
E8	Oxidation of ethyl substrates by WT and S244D CYP199A4	159
E9	Mass spectra of 4-methylanisole and its oxidation products	159
E10	Mass spectra of 4-methylbenzal dehyde and its oxidation product. $\ . \ .$	160
E11	Mass spectra of 4-methylace tophenone and its oxidation product. $\ . \ .$	160
E12	Mass spectra of 4-(trifluoromethoxy)toluene and its oxidation product.	160
E13	Mass spectra of 4-ethylanisole and its oxidation products	161
E14	Mass spectra of 4-ethylnitrobenzene and its oxidation products. \ldots	162
E15	Mass spectra of 4-ethylbenzal dehyde and its oxidation products	162
E16	Mass spectra of 4-ethylace tophenone and its oxidation products	163

List of Tables

1	Growth media constituents.	18
2	Binding and turnover data for CYP199A4 with benzoic acid substrates.	30
3	Binding and turnover data for $T252A_{CYP199A4}$.	42
4	Binding and turnover data for $D251N_{CYP199A4}$.	45
5	Product formation and uncoupling in $WT_{CYP199A4}$ and $T252A_{CYP199A4}$.	49
6	Binding and turnover data for CYP199A4 with cinnamic acid derivatives.	59
7	Turnover data for CYP199A4 with cinnamic acid derivatives	61
8	Turnover data for WT, S244D and S244N CYP199A4 with carboxy-	
	modified substrates	78
9	Turnover data for WT and S244D with carboxy-modified substrates	83
10	Binding data for WT and S244D with carboxy-modified substrates. $\ .$.	85
11	Binding and turnover data for methyl-modified substrates	92
12	Binding data for WT and S244D CYP199A4 with ethyl substrates. $\ .$.	98
13	Distribution of α -hydroxylation and C_{α} - C_{β} desaturation products	107