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Abstract

With the rapid development of microwave and millimetre-wave systems, the perfor-

mance requirements for passive band-pass filters and diplexers, as essential parts in

these systems, are steadily increasing. Both rectangular waveguide and substrate-

integrated waveguide technologies help to satisfy various high-performance require-

ments. Rectangular waveguides offer the advantages of low loss and high power han-

dling capabilities, while substrate-integrated waveguides have the advantages of low

cost and easy integration into planar circuit technology. Besides, the miniaturisation of

electronic devices is of great importance, especially for microwave or millimetre-wave

systems whose volume is limited by system considerations. Hence, the two main aims

of this thesis are firstly to develop efficient methods which can improve the design re-

liability and reduce the design cycle of such passive devices, and secondly to present

novel structures of band-pass filters and diplexers whose dimensions are reduced.

In the first part of the thesis, a method based on the mode-matching technique is devel-

oped to rigorously and efficiently analyse the negative influence introduced by micro-

machining errors on the performance of band-pass H-plane iris filter. This analysis

includes the effect on the centre frequency and 3 dB bandwidth caused by the round

angles between waveguide walls and H-plane irises, or by the bevel angles on the H-

plane irises. To remove these undesired influences, three approaches are proposed and

verified with simulations performed with the finite-element method.

In the next part, efficient approximation approaches are investigated in the framework

of the mode-matching method to analyse the characteristics of cylindrical posts placed

in the cross-section of a rectangular waveguide or substrate-integrated waveguide.

Compared with the H-plane irises in rectangular waveguides, cylindrical posts are

more promising for realising band-pass rectangular waveguide filters, because the ge-

ometries are easier to manufacture and less prone to machining errors. Thus, a general

design procedure for band-pass post filters in rectangular waveguides and substrate-

integrated waveguides is developed and verified with finite-element simulations and

measurements on prototypes. The tolerance analysis for the band-pass filters is also

explored quickly and accurately with the developed method, while the influence of re-

alistic material losses on the insertion loss of various structures, is also quantitatively
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Abstract

analysed with a full-wave simulation solver.

Next, the characteristics of a shielded microstrip line for single-mode operation is in-

vestigated rigorously based on the mode-matching method. The research focuses on

the influence of the metal enclosure dimensions on the fundamental mode, and the

relationships between the cutoff frequency of the 2nd-order mode and the geometri-

cal variables of the cross-section of the shielded transmission line. A similar method is

then applied to an E-type folded substrate-integrated waveguide. The analysis demon-

strates that the propagation characteristics for the first twenty modes in the E-type

folded substrate-integrated waveguide and its corresponding equivalent rectangular

waveguide are almost identical if the width of the middle metal vane in the E-type

folded substrate-integrated waveguide is chosen reasonably. Exploiting this similarity

property, a novel concept of band-pass post filter in E-type folded substrate-integrated

waveguide technology is developed to reduce the band-pass filter dimension further,

together with an efficient specific design procedure. The validity of the approach is

verified via finite-element simulations and measurements on a fabricated prototype.

Finally, to reduce the sizes of common diplexers, four types of novel three-port junc-

tions are proposed, including two improved Y-junctions in substrate-integrated wave-

guide technology, a double-layer junction in substrate-integrated waveguide technol-

ogy, a Y-junction in T-type folded substrate-integrated waveguide technology, and a

junction with stairs in T-type and E-type folded substrate-integrated waveguide tech-

nology. Exploiting the flexibility of the in-house developed mode-matching code or a

commercial finite-element simulation solver, the characteristics for all presented junc-

tions are shown to satisfy the constraints for optimum performance of diplexers when

adjusting the relevant variables in the corresponding structures. Three types of these

junctions are then utilised in realising diplexers whose performance is verified over

the required operation bands with either numerical simulations or measurements on

fabricated prototypes.

In summary, this thesis has introduced novel concepts and realisations of compact

band-pass filters and diplexers in unfolded or folded substrate-integrated waveguide

technology, as well as related structures. One of the crucial aspects emphasised

throughout the research is the need for efficient and accurate modelling methods

specifically tailored to support such developments. This has been demonstrated

throughout the thesis with the combined use of powerful numerical methods and

equivalent models based on symmetries or unfolded geometries.
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