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Abstract
Public-key cryptography is a mechanism for secret communication be-

tween parties who have never before exchanged a secret message. This thesis

contributes arithmetic algorithms and hardware architectures for the modu-

lar multiplication Z = A × B mod M . This operation is the basis of many

public-key cryptosystems including RSA and Elliptic Curve Cryptography.

The Residue Number System (RNS) is used to speed up long word length

modular multiplication because this number system performs certain long

word length operations, such as multiplication and addition, much more ef-

ficiently than positional systems.

A survey of current modular multiplication algorithms shows that most

work in a positional number system, e.g. binary. A new classification is de-

veloped which classes these algorithms as Classical, Sum of Residues, Mont-

gomery or Barrett. Each class of algorithm is analyzed in detail, new devel-

opments are described, and the improved algorithms are implemented and

compared using FPGA hardware.

Few modular multiplication algorithms for use in the RNS have been

published. Most are concerned with short word lengths and are not appli-

cable to public-key cryptosystems that require long word length operations.

This thesis sets out the hypothesis that each of the four classes of modular

multiplication algorithms possible in positional number systems can also be

used for long word length modular multiplication in the RNS; moreover using

the RNS in this way will lead to faster implementations than those which re-

strict themselves to positional number systems. This hypothesis is addressed

by developing new Classical, Sum of Residues and Barrett algorithms for

modular multiplication in the RNS. Existing Montgomery RNS algorithms

are also discussed.

The new Sum of Residues RNS algorithm results in a hardware im-

v



plementation that is novel in many aspects: a highly parallel structure using

short arithmetic operations within the RNS; fully scalable hardware; and

the fastest ever FPGA implementation of the 1024-bit RSA cryptosystem at

0.4 ms per decryption.
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Nomenclature

〈X〉M The operation X mod M .

D The dynamic range of a RNS.

M The modulus of a modular multiplication, typically n bits.

mi The ith RNS channel modulus.

N The number of RNS channels.

n The wordlength of M .

w The RNS channel width.

�X� The ceiling of X. The smallest integer greater than or equal to X.

�X� The floor of X. The largest integer smaller than or equal to X.

BE Base Extension.

CRT Chinese Remainder Theorem.

DSP Digital Signal Processing.

ECC Elliptic Curve Cryptography.

LUC Look-Up Cycle.

LUT Look-Up Table.

LUT Look-Up Table
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MRS Mixed Radix Number System.

QDS Quotient Digit Selection.

RNS Residue Number System.

RSA RSA Cryptography.
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Chapter 1

Introduction

The purpose of this chapter is to outline the thesis by chapters and present

the contribution this thesis makes.
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CHAPTER 1. INTRODUCTION

1.1 Thesis Outline

In the information age, cryptography has become a cornerstone for informa-

tion security. Cryptography allows people to carry established notions of

trust from the physical world to the electronic world; it allows people to do

business electronically without worries of deceit and deception; and it estab-

lishes trust for people through open, standards-based, security technology

that withstands the test of time.

In the distant past, cryptography was used to assure only secrecy. Wax

seals, signatures, and other physical mechanisms were typically used to assure

integrity of the message and authenticity of the sender. When people started

doing business online and needed to transfer funds electronically, the use of

cryptography for integrity began to surpass its use for secrecy. Hundreds of

thousands of people interact electronically every day, whether it is through e-

mail, e-commerce, ATM machines, or cellular phones. The constant increase

of information transmitted electronically has led to an increased reliance on

the transport of trust made possible by public-key cryptography, a mechanism

for secret communication between parties who have never before exchanged

a secret message.

One can argue that public-key cryptosystems become more secure as the

hardware used to perform cryptography increases in speed. Take the RSA

cryptosystem as an example [Rivest78]. The effort of cracking the RSA code,

via factorization of the product of two large primes, approximately doubles

for every 35 bits at key lengths around 210 bits [Crandall01]. However, adding

35 bits to the key increases the work involved in decryption by only 10%!

Thus speeding up the cryptography hardware by just 10% enables the use of

a cryptosystem that is twice as strong with no compromise in performance

[Koblitz87]. Speed, therefore, is an important goal for public-key cryptosys-

2



1.1. THESIS OUTLINE

tems. Indeed it is essential not just for cryptographic strength but also to

clear the large number of transactions performed by central servers in elec-

tronic commerce systems.

This thesis contributes to the modular multiplication operation Z =

A × B mod M , the basis of many public-key cryptosystems including RSA

[Rivest78] and Elliptic Curve Cryptography (ECC) over a prime finite field

[Hankerson04]. The Residue Number System (RNS) [Omondi07] is used to

speed up long word length modular multiplication.

Chapter 2 provides the background to the Residue Number System and

the RSA cryptosystem.

Chapter 3 defines a new classification of current modular multiplication

algorithms in a positional number system. The four classes in this definition

are Classical, Sum of Residues, Barrett and Montgomery. Further develop-

ments are made to these algorithms and implementations are prepared for the

modular multiplications within RNS channels that will appear in Chapter 5.

Chapter 4 is the core of this thesis. Firstly it surveys existing modular

multiplication algorithms in the RNS. Most of these schemes are designed

for short word length operands and hence are not applicable in public-key

cryptosystems that require long word length moduli. One reason for this

incompatibility is that their architectures are typically based on Look-Up

Tables (LUT). For long word length operands, these tables become infeasi-

bly large. However, they are still useful for other applications of RNS, e.g.

Digital Signal Processing (DSP). A new scheme of this kind is then derived

and decreases hardware complexity compared to previous schemes without

affecting time complexity.

Chapter 4 then explores the possibility that each of the four classes of

modular multiplication algorithms for positional number systems can be

3



CHAPTER 1. INTRODUCTION

adopted for modular multiplication in the RNS. The goal is a long word

length operation that is faster than working in a positional number system.

Ideally all intermediate processes will be short word length operations en-

tirely within RNS channels.

Chapter 5 illustrates a highly parallel and scalable architecture for the

RNS sum of residues modular multiplication algorithm discussed in Chap-

ter 4. This architecture is then implemented on a Xilinx Virtex5 FPGA plat-

form using results from Chapter 3 for RNS channel operations. The delay for

a 64-bit RNS modular multiplier is 81.7 ns. 0.4 μs and 0.73 μs are required

to perform 1024-bit and 2048-bit modular multiplication respectively. The

corresponding speed of a 1024-bit RSA system is 0.4 ms per decryption.

Chapter 6 concludes the work and suggests some areas for further study.

1.2 Contribution

The following contributions are presented in this thesis:

• A new classification of existing modular multiplication algorithms in a

positional number system. New developments are made and improved

algorithms are implemented on FPGA platforms.

• Existing algorithms performing short word length modular multipli-

cation in RNS are characterized in terms of Look-Up Cycles (LUC)

and Look-Up Tables (LUT) within a consistent framework. A new

LUT-based algorithm that is applicable in DSP achieves less hardware

complexity compared to existing algorithms.

• New algorithms are developed for Classical, Sum of Residues and Bar-

rett classes for a long word length modular multiplication in the Residue

4



1.2. CONTRIBUTION

Number System. All the intermediate operations are kept within RNS

channels, which leads to a highly parallel architecture performing a fast

long word length modular multiplication in the RNS in hardware.

• The fastest ever FPGA implementation of the 1024-bit RSA cryptosys-

tem. It achieves 0.4 ms per decryption.

5



CHAPTER 1. INTRODUCTION
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Chapter 2

Background

The purpose of this chapter is to introduce the Residue Number System and

RSA cryptography. The Residue Number System is the main mathematical

tool used to improve the performance of public-key cryptosystems in this

thesis. The background on the Residue Number System is the basis of tech-

nical developments made in later chapters, particularly in Chapter 4. The

introduction of RSA cryptography aims to show the significance of improving

the efficiency of the long word length modular multiplication operation.
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CHAPTER 2. BACKGROUND

2.1 Residue Number Systems

2.1.1 RNS Representation

What number has the remainders of 2, 3 and 2 when divided by the numbers

3, 5 and 7 respectively? This question is probably the first documented use

of residue arithmetic in representing numbers, recorded by a Chinese Scholar

Sun Tsu over 1500 years ago [Jenkins93]. The question basically asks us to

convert the coded representation {2, 3, 2} in a residue number system, based

on the moduli {3, 5, 7}, back to its normal decimal format.

A Residue Number System [Szabo67] is characterized by a set of N co-

prime moduli {m1,m2, . . . , mN} with m1 < m2 < · · · < mN . In the RNS a

number X is represented in N channels: X = {x1, x2, . . . , xN}, where xi is

the residue of X with respect to mi, i.e. xi = 〈X〉mi
= X mod mi. Hence a

RNS has digit sets {[0,m1 − 1], [0,m2 − 1], [0,m3 − 1], . . . ,[0,mN − 1]} in its

N channels. For example, in the RNS with the modulus set {3, 5, 7} above,

X = {2, 3, 2}. The word length of the largest channel mN is defined as the

channel width w.

Within a RNS: there is a unique representation of all integers in the range

0 ≤ X < D where D = m1m2 . . . mN . Also, D is the number of different

representable values in the RNS and is therefore known as the dynamic range

of the RNS. Hence D = 3×5×7 = 105 is the total number of distinct values

that are representable in the example above. These 105 available values can

be used to represent numbers 0 through 104, -52 through +52 or any other

interval of 105 consecutive integers. This thesis considers the non-negative

numbers from 0 to D − 1 only, as the RNS is used for positive modular

arithmetic.

There are two other important values in a RNS, Di and 〈D−1
i 〉mi

. Di =

8
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Table 2.1: The Pre-Computed Constants of RNS {3, 5, 7}
N 3

D 105

i 1 2 3

mi 3 5 7

Di 35 21 15

〈Di〉mi
2 1 1

〈D−1
i 〉mi

2 1 1

D
mi

and 〈D−1
i 〉mi

is its multiplicative inverse with respect to mi such that

〈Di × D−1
i 〉mi

= 1. These values are constants for a particular modulus set

and can be pre-computed before any actual computations are performed in

a RNS. For example, in RNS {3, 5, 7}, the Di set is {35, 21, 15} and the

〈D−1
i 〉mi

set is {2, 1, 1}. Thus, each RNS has a table of known constants that

might be useful in future computations. Table 2.1 lists some of the constants

of RNS {3, 5, 7}.

2.1.2 Conversion between RNS and Positional Num-

ber Systems

Conversion from Binary to RNS

The binary-to-RNS conversion is quite a simple problem compared with the

conversion in the opposite direction. All that is required is to find the residue

of X mod mi for each modulus. Computing X mod mi for binary values

X and m is a typical modular reduction problem and will be discussed in

detail in Chapter 3.

For example, if X = 23 is to be converted into its RNS format based on

the moduli {3, 5, 7}, then x1 = 〈23〉3 = 2, x2 = 〈23〉5 = 3 and x3 = 〈23〉7 = 2.

9
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Conversion from RNS to Positional Number Systems using the

Mixed Radix Number System (MRS)

Associated with any RNS {m1,m2, . . . , mN} is a Mixed Radix Number System

(MRS) {m1,m2, . . . , mN} [Soderstrand86], which is an N -digit positional

number system with position weights

1, m1, m1m2, m1m2m3, . . . , m1m2m3 . . .mN−1

and digit sets {[0,m1 − 1], [0,m2 − 1], [0,m3 − 1], . . . , [0,mN − 1]} in its

N digit positions. Hence, the MRS digits are in the same ranges as the

RNS residues. For example, the MRS {3, 5, 7} has position weights 1, 3 and

3 × 5 = 15.

The RNS-to-MRS conversion is to determine the gi digits of MRS, given

the xi digits of RNS, so that {g1, g2, . . . , gN} = {x1, x2, . . . , xN}. From the

definition of MRS, we have

X = g1 + g2m1 + g3m1m2 + · · · + gNm1m2m3 . . . mN−1.

A modular reduction, with respect to m1, of both sides of this equation yields

〈X〉m1 = g1.

Hence g1 = x1. Subtracting x1 and dividing both sides by m1 yields

X − g1

m1

= g2 + g3m2 + · · · + gNm2m3 . . . mN−1.

Now reduction modulo m2 yields g2 as

g2 = 〈(X − g1)m
−1
1 〉m2 = 〈(x2 − g1)m

−1
1 〉m2

because the equality 〈X−g1

m1
〉m2 = 〈(X−g1)m

−1
1 〉m2 holds according to a prop-

erty in number theory [Richman71]. A prerequisite for this is that m1 and

10
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m2 must be co-prime so that 〈m−1
1 〉m2 exists. This is exactly what happens

in a RNS.

Following a similar procedure,

X−g1

m1
− g2

m2

= g3 + g4m3 + · · · + gNm3 . . . mN−1,

g3 can be obtained as

g3 = 〈((X − g1)m
−1
1 − g2)m

−1
2 〉m3 = 〈((x3 − g1)m

−1
1 − g2)m

−1
2 〉m3 .

Continuing this process, the mixed radix digits, gi, can be retrieved from

RNS residues as

g1 = x1

g2 = 〈(x2 − g1)m
−1
1 〉m2

g3 = 〈((x3 − g1)m
−1
1 − g2)m

−1
2 〉m3

. . .

gN = 〈((. . . ((xN − g1)m
−1
1 − g2)m

−1
2 . . . )m−1

N−2 − gN−1)m
−1
N−1〉mN

All the 〈m−1
i 〉mj

are constants that can be pre-computed. Figure 2.1 illus-

trates this process implemented using N(N−1)
2

modular blocks. Each block

performs an operation like 〈(xj −gi)m
−1
i 〉mj

. As can be seen from Figure 2.1,

the disadvantage of this algorithm is the sequentiality of the structure. The

computation of gi has to wait for the result of gi−1.

Take X = {2, 3, 2} in RNS {3, 5, 7} as an example. Pre-computed con-

stants include

〈m−1
1 〉m2 = 2,

〈m−1
1 〉m3 = 5,

and 〈m−1
2 〉m3 = 3.

11
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1
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g Ng

Figure 2.1: Conversion from the RNS to the Mixed Radix Number System

(MRS)
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Then the corresponding MRS digits are

g1 = x1 = 2

g2 = 〈(x2 − g1)m
−1
1 〉m2 = 〈(3 − 2) × 2〉5 = 2

g3 = 〈((x3 − g1)m
−1
1 − g2)m

−1
2 〉m3 = 〈((2 − 2) × 5 − 2) × 3〉7 = 1

Therefore {2,2,1} in MRS is equal to {2,3,2} in RNS, and the decimal form

can be obtained by computing an inner product of the MRS digit set and

weight set as

X = 2 × 1 + 2 × 3 + 1 × 15 = 23.

Conversion from RNS to Binary using Chinese Remainder Theo-

rem (CRT)

Instead of deriving the mixed radix representation of a RNS and then using

the weights in the MRS to complete the conversion, the position weights

for a RNS can be directly derived using the Chinese Remainder Theorem

(CRT). The CRT is important in residue arithmetic as it is the basis of

almost all of the operations of a RNS, including conversion to binary, scaling

and comparison [Szabo67, Elleithy91]. It is also referred to in later sections

of this thesis such as in Section 4.1.2, 4.2.1 and 4.4.1. Using the CRT, an

integer X can be expressed as

X =

〈
N∑

i=1

Di〈D−1
i xi〉mi

〉
D

, (2.1)

where D, Di and 〈D−1
i 〉mi

are pre-computed constants introduced in Sec-

tion 2.1.1.

13
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For X = {2, 3, 2} in RNS {3, 5, 7}, the pre-computed constants are

D = 3 × 5 × 7 = 105,

Di = {35, 21, 15},
and 〈D−1

i 〉mi
= {2, 1, 1}.

Then following Equation (2.1),

X =

〈
3∑

i=1

Di〈D−1
i xi〉mi

〉
D

= 〈35 × 〈2 × 2〉3 + 21 × 〈1 × 3〉5 + 15 × 〈1 × 2〉7〉105 = 23.

The disadvantage of the CRT is its dependence on a modulo D operation

[Omondi07]. Given that D is a large integer, this reduction incurs a sig-

nificant hardware overhead. This will be discussed in Chapter 4 in more

detail.

2.1.3 RNS Arithmetic

If A, B and C have RNS representations given by A = {a1, a2, . . . , aN},
B = {b1, b2, . . . , bN} and C = {c1, c2, . . . , cN}, then denoting * to represent

the operations +, -, or ×, the RNS version of C = 〈A * B〉D satisfies

C = {〈a1 * b1〉m1 , 〈a2 * b2〉m2 , . . . , 〈aN * bN〉mN
}.

Again take the simple RNS {3, 5, 7} as an example. If A = 23 = {2, 3, 2}
and B = 40 = {1, 0, 5}, then

Csum = 〈A + B〉D = {〈2 + 1〉3, 〈3 + 0〉5, . . . , 〈2 + 5〉7} = {0, 3, 0}
= 〈23 + 40〉105 = 〈63〉105 = 63, (2.2)

Cdiff = 〈A − B〉D = {〈2 − 1〉3, 〈3 − 0〉5, . . . , 〈2 − 5〉7} = {1, 3, 4}
= 〈23 − 40〉105 = 〈−17〉105 = 88, (2.3)

and Cprod = 〈A × B〉D = {〈2 × 1〉3, 〈3 × 0〉5, . . . , 〈2 × 5〉7} = {2, 0, 3}
= 〈23 × 40〉105 = 〈920〉105 = 80. (2.4)

14
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The correct values of A − B and A × B in (2.3) and (2.4) are −17 and 920

respectively; however these overflow the dynamic range [0, 104], and so they

have to be reduced modulo D = 105 to form the results representable by

RNS. Therefore, the equality C = A * B holds if it can be assured that

A * B falls in the dynamic range D as in (2.2).

Thus addition, subtraction and multiplication can be concurrently per-

formed on the N residues within N parallel channels, and it is this high

speed parallel operation that makes the RNS attractive. There is, however,

no such parallel form of modular reduction within RNS and this problem

has long prevented wider adoption of RNS. Hence, this becomes the main

issue of this thesis. As an aside, note that a Maple package to perform basic

RNS arithmetic operations was developed to support the research described

in this thesis. This tool, RNSpack, can be found at:

http://gforge.eleceng.adelaide.edu.au/gf/project/rnspack/

2.1.4 Moduli Selection

RNS moduli need to be co-prime. Hence one common practice is to select

prime numbers for the RNS moduli. Sometimes, however, a set of non-prime

numbers can also be co-prime, and therefore, RNS moduli selection becomes

a case-specific problem.

In our application, RNS is used to accelerate a 1024-bit modular mul-

tiplication. This means that binary inputs to the RNS are all 1024 bits.

Therefore, the dynamic range D of the RNS should be no smaller than 2048

bits so that the product of two 1024-bit numbers does not overflow.

The other rule to be considered is the even distribution of this 2048-bit

dynamic range into the N moduli. The smaller the RNS channel width w, the

15
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faster the computation within RNS and the more remarkable the advantage

of RNS. Therefore, we want w as small as possible. On the other hand,

suppose the N RNS moduli are m1,m2, . . . ,mN . If m1 is 16 bits and m2 is

64 bits long, the computation in the m2 channel can be much slower than

in the m1 channel. Thus, in this thesis, the N moduli are selected to be the

same word length. This means that the dynamic range of the RNS system

is evenly distributed into the N moduli.

The remaining work is to make sure N co-prime w-bit moduli exist. For

example, suppose w = 9, N =
⌈

2048
9

⌉
= 228, i.e. 228 co-prime moduli must

be found within the range from 28 = 256 to 29 − 1 = 511. Because there

are only 128 odd integers from 256 to 511, it is impossible to find 228 co-

prime numbers. Now, w = 10. N =
⌈

2048
10

⌉
= 205 channels and these 205

co-prime moduli should be within the range from 29 = 512 to 210−1 = 1023,

included. However, according to our search algorithm, there are only 83

co-prime numbers found among the 256 odd numbers within [512, 1023], so

w = 10 is invalid. Similarly when w = 11. For the case of w = 12, a set of

268 co-prime numbers have been found within [211, 212 −1] = [2048, 4095], in

which there are 255 primes. Thus even the number of primes is enough for

the requirement of the number of moduli, N =
⌈

2048
12

⌉
= 171.

In addition, redundancy in dynamic range, i.e. more redundant channels,

is always required in building a RNS system. Consequently, to construct a

RNS system with 2048-bit dynamic range and equal word length moduli, the

minimal channel width w is very likely to be 12 bits.

2.1.5 Base Extension

So far it has been assumed that once the modulus set has been determined,

all operations are carried out with respect to that set only. This is not al-

16
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ways so. A frequently occurring computation is that of base extension(BE),

which is defined as follows [Omondi07]. Given a residue representation

{x1, x2, . . . , xN} in RNS {m1, m2, . . . , mN} and an additional set of moduli,

{mN+1,mN+2, . . . , mN+s}, such that m1,m2, . . . , mN , mN+1, . . . , mN+s are all

co-prime, the residue representation {x1, x2, . . . , xN , xN+1, . . . , xN+s} is to be

computed. This is also described as “base extend X to the new modulus set

m1,m2, . . . , mN ,mN+1, . . . , mN+s”. Base extension is very useful in dealing

with difficult operations of conversion to positional systems, scaling, division

and dynamic range extension.

Efficient algorithms for base extension are presented in [Szabo67, Barsi95,

Shenoy89b] and [Posch95]. The scheme in [Szabo67] uses the MRS conversion

introduced in Section 2.1.2 which is relatively slow and costly; [Shenoy89b]

employs two extra RNS channels with moduli both greater than N ; [Posch95]

performs an approximate extension; and [Barsi95] achieves exact scaling

without any extra RNS channel but can be as slow as the MRC in some

rare cases. These algorithms are discussed in further detail in Section 4.1,

4.4 and 4.5.
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2.2 RSA Public-Key Cryptography

2.2.1 Public-Key Cryptography

Public-key cryptography is a mechanism for secret communication between

parties who have never before exchanged a secret message [Schneier96]. Its

counterpart is private-key cryptography, in which both sender and receiver

must have knowledge of a shared private key and must have firstly secretly

exchanged the private key before exchanging secret messages. Public-key

cryptography eliminates this initial secret exchange step.

A very important application of public-key cryptography is key exchange

for a private-key system. The first example of public-key cryptography, pub-

lished by Diffe and Hellman in 1976 [Diffie76], was in fact a key exchange

scheme. Their public-key distribution system allows two parties to exchange

a private key over a public channel. In this way a public-key system is used

to initiate a private-key system, which is subsequently used to encrypt data.

This is a good combination of private and public-key systems in that private-

key systems are usually simpler and faster than public-key systems at a given

level of security.

The generation of digital signatures is another significant application of

public-key cryptography. Like a conventional signature, a digital signature is

affixed to a message to prove the identity of its sender. A public-key digital

signature, however, has many more merits apart from this [Boyd93]. These

include: integrity (which makes a signature unique for a particular docu-

ment), concurrence (which provides proof that two parties were in agreement

or disagreement), nonrepudiation (which prevents denial that a message was

sent or that it was received) and timeliness (which provides proof of the time

of a message’s transmission). All of these properties are of great importance
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in applications such as electronic commerce transactions.

2.2.2 The RSA Cryptosystem

The RSA cryptosystem [Rivest78] is a simple and widely used public-key

cryptosystem. It is based on one of the mathematical trapdoor problems: it

is easy to multiply two large primes but hard to factorize the product.

The RSA cryptosystem has been described many times in literature with

a tradition that a couple, Alice and Bob, act as the secretive pair exchanging

messages. Now let us also begin the description of RSA with these conspir-

ators.

Before Alice starts receiving any messages, she has to establish her private

and public keys. This is done by selecting two large prime numbers, U and

V , of approximately equal length such that their product M = U × V has a

required n-bit word length. Alice must also choose an integer e which is less

than M and relatively prime to (U − 1)(V − 1). Alice’s public key consists

of two numbers, M and e. Finally Alice must compute her private key, the

modular inverse k = e−1 mod (U−1)(V −1) and either dispose of the prime

factors U and V or keep them secret.

To send a secret message to Alice, Bob performs the encryption

G = F e mod M,

where F is the n-bit plaintext message and G is the cyphertext. To decrypt

this message, Alice computes

F = Gk mod M.

Note that the encryption uses the public key pair only. This means anyone

can send Alice a message. Decryption requires the knowledge of the private
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key k, which means only Alice can see the plaintext of messages sent to her.

The generation of a cryptographic signature is a reverse of the process

above. This is because the nature of a signature requires that anyone can

verify that the signature is correct, yet only the holder of the private key can

generate a signature. Since Alice is the “private key holder” in the case above,

she can sign a message by performing an operation equivalent to decryption,

S = F k mod M,

where F is the n-bit message to be signed and S is her signature. Bob can

verify the signature S by encrypting it with the public key and comparing

the result with the original message F using

F = Se mod M.

As can be seen from these equations, only one kind of operation is in-

volved in RSA encryption and decryption, namely modular exponentiation.

Modular exponentiation is equivalent to a series of modular multiplications

[Knuth69]. Therefore, the performance of RSA depends largely on the effi-

ciency of the modular multiplication operation. Most practical RSA systems

today use keys which are 1024 bits long [Schneier96]. Hence the focus of this

thesis, is to improve 1024-bit modular multiplication.

2.2.3 Exponentiation

Modular exponentiation is classified as single exponentiation and multi-exponentiation.

RSA cryptography uses single exponentiation

C = AB mod M.

Multi-exponentiation takes the form

C =
l∏

i=1

ABi
i mod M.
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This is also widely used in public-key cryptosystems. For example, the

product of two modular exponentiations are needed in the digital signa-

ture proposed by Brickell and McCerley in [Brickell91], the DSS standard

[Standards91], and Schnorr’s identity verification of smart card [Schnorr89].

Three modular exponentiations are used in ElGamal’s scheme [ElGamal85].

Modular exponentiation can be performed using repeated modular multi-

plications in the same way as exponentiation can be performed with repeated

multiplications. Algorithms for multi-exponentiation appear in [ElGamal85,

Chang94, Yen93] and [Yen94]. Fewer new algorithms for single exponentia-

tion have appeared in recent years. This is probably because single modular

exponentiation seems to be ‘sequential’ in nature, and using extra hardware

does not seem to help much [Rivest85]. It is possible to prove that log2 B

is a lower bound on the number of multiplications required to evaluate AB

[Knuth97]. [Knuth97, Menezes97] and [Dhem98] provide good surveys for

modular exponentiations. The following subsections introduce the two well-

known methods for single exponentiation in both hardware and software:

the left-to-right and right-to-left methods. The focus is on single modular

exponentiation as this is required for RSA. Note, however, that modular

multiplication is the basis of both single and multi-exponentiation.

Left-to-Right Exponentiation

The left-to-right algorithm [Knuth97] is described in Algorithm 2.1.

Evaluation requires n− 1 modular squares (the very first modular square

is trivial) and nz(B)−1 modular multiplications, where nz(B) is the number

of non-zero bits in B. Take B = 23 = (10111)2 as an example and nz(B) = 4.

The process is illustrated in Equation (2.5).

1 → A → A2 → (A4 × A)2 → (A10 × A)2 → A22 × A = A23, (2.5)
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Algorithm 2.1 Left-to-Right Exponentiation

Ensure: C ≡ AB mod M , B is n-bit long

C = 1

for i = n − 1 downto 0 do

C = C × C mod M

if bi = 1 then

C = C × A mod M

end if

end for

where 4 modular squares and 3 modular multiplications are used.

Right-to-Left Exponentiation

The right-to-left algorithm [Knuth97] is described in Algorithm 2.2.

Algorithm 2.2 Right-to-Left Exponentiation

Ensure: C ≡ AB mod M , B is n-bit long

C = 1

D = A

for i = n − 1 downto 0 do

if bi = 1 then

C = C × D mod M

end if

D = D × D mod M

end for

Again n− 1 modular squares and nz(B)− 1 modular multiplications are

required and this is the same as the left-to-right algorithm. However, this

algorithm has an advantage when parallel hardware is available: the square

and multiplication can be performed in parallel [Rivest85, Orup91, Chiou93].
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Table 2.2: An Example of Right-to-Left Modular Exponentiation

i bi C D

1 A

0 1 1 × A A2

1 1 A × A2 A4

2 1 A3 × A4 A8

3 0 A7 A16

4 1 A7 × A16 = A23

In Algorithm 2.1, when bi = 1, the statement C = C ×A mod M needs the

result of C from the previous operation C = C × C mod M to continue,

and so these two statements have to be performed in series. Thus, the right-

to-left algorithm has a shorter delay within each loop than the left-to-right

algorithm though they both have the same number of loops. [Chiou93] gave

an implementation using this to obtain a speed benefit of 30%.

The example of B = 23 = (10111)2 is illustrated in Table 2.2.

Now that we have algorithms for modular exponentiation, our attention

turns to modular multiplication, the major topic of this thesis.
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Chapter 3

Four Ways to Do Modular

Multiplication in a Positional

Number System

The purpose of this chapter is to survey existing modular multiplication algo-

rithms in a positional number system. They are into 4 new classes: Classical,

Sum of Residues, Barrett and Montgomery. Each of the class of algorithm

is analyzed in detail and further developments are made to the Montgomery,

Sum of Residues and Barrett algorithm. Implementations are also prepared

for the channel modular multipliers within the long wordlength RNS modu-

lar multiplication algorithm implemented in Chapter 5.
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POSITIONAL NUMBER SYSTEM

3.1 Introducing Four Ways to Do Modular

Multiplication

To develop a first algorithm for modular multiplication, let us begin with a

simple schoolbook multiplication. Consider two integers A and B with digits

ai and bi in radix r:

A =
l∑

i=0

air
i

B =
l∑

i=0

bir
i

Then a simple multiplication is computed in Equation (3.1).

C = A × B

= blArl + bl−1Arl−1 + · · · + b1Ar + b0A

= (. . . ((blAr + bl−1A)rbl−2A)r + · · · + b1A)r + b0A. (3.1)

A and B are both l-digit integers and the product C is 2l digits. Equa-

tion (3.1) forms an algorithm suitable for an iterative implementation as

illustrated in Algorithm 3.1. Note that as the loop is from l − 1 down to 0,

Ci+1 denotes the value Ci in the previous iteration.

Algorithm 3.1 A Basic Multiplication
Ensure: C0 = A × B

Cl = 0

for i = l − 1 to 0 do

Ci = biA + rCi+1 {Partial product accumulation}
end for

Now the modular reduction step has to be included so that we perform a

modular multiplication as in Equation (3.2)

C = A × B mod M (3.2)
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One way is to complete the multiplication and then modulo reduce the result

in a separate step as in Equation (3.3) and Algorithm 3.2.

C = A × B mod M

= (. . . ((blAr + bl−1A)r + bl−2A)r

+ · · · + b1A)r + b0A mod M (3.3)

Algorithm 3.2 Separated Modular Multiplication

Ensure: C0 = A × B mod M

Cl = 0

for i = l − 1 to 0 do

Ci = biA + rCi+1 {Partial product accumulation}
end for

C0 = C0 mod M {Modular reduction step}

The other way is to place the modular reduction step inside every pair

of brackets as in Equation (3.4). This corresponds to the insertion of the

statement Ci = Ci mod M into the end of each iteration in Algorithm 3.1

and results in Algorithm 3.3, an interleaved modular multiplication algorithm.

C = A × B mod M

= (. . . ((blAr + bl−1A mod M)r + bl−2A mod M)r

+ · · · + b1A mod M)r + b0A mod M (3.4)

3.1.1 Classical Modular Multiplication

The way in which the modular reduction step in Algorithm 3.3, Ci = Ci

mod M , is implemented defines the class of modular multiplication algo-

rithm. For a Classical algorithm, this step is performed by subtracting a
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POSITIONAL NUMBER SYSTEM

Algorithm 3.3 Interleaved Modular Multiplication

Ensure: C0 = A × B mod M

Cl = 0

for i = l − 1 to 0 do

Ci = biA + rCi+1 {Partial product accumulation}
Ci = Ci mod M {Modular reduction step}

end for

multiple of the modulus at each iteration as shown in Algorithm 3.4, where

QDS stands for quotient digit selection.

Algorithm 3.4 Classical Modular Multiplication
Ensure: C0 = A × B

Cl = 0

for i = l − 1 to 0 do

Ci = biA + rCi+1 {Partial product accumulation}
q = QDS(Ci,M) {Quotient digit selection}
Ci = Ci − qM {Reduction step}

end for

Papers that take this approach include [Blakley83, Brickell83, Orup91]

and [Walter92]. Reduction in this way can be understood as a division in

which the quotient is discarded and the remainder retained. Development of

modular multipliers along this line has closely followed the development of

division, especially SRT division (as originally in [Robertson58]).

The quotient digit selection function (QDS) has received a great deal of

attention to: permit quotient digits (q) to be trivially estimated from only

the most significant bits of the partial result C; allow the partial result to

be stored in a redundant form; and move the QDS function from the critical

path (e.g. [Orup91, Walter92]).

The two methods from [Orup91, Walter92] were combined and imple-
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mented in Section 3.5 for comparison.

3.1.2 Sum of Residues Modular Multiplication

Some early modular multipliers [Kawamura88, Findlay90, Tomlinson89, Su96,

Chen99] perform the modular reduction step in Algorithm 3.3 by accumulat-

ing residues modulo M instead of by adding or subtracting multiples of the

modulus as in the case for Classical or Montgomery modular multiplication.

This results in the Sum of Residues (SOR) algorithm shown in Algorithm 3.5,

in which the residues q×rl+1 mod M are accumulated modulo M . They may

be pre-computed and retrieved from a table ([Kawamura88, Tomlinson89])

or evaluated recursively during the modular multiplication ([Findlay90]).

Algorithm 3.5 Sum of Residues Modular Multiplication

Ensure: C0 = A × B mod M

Cl = 0

q = 0

for i = l − 1 to 0 do

Ci = biA + rCi+1 {Partial product accumulation}
Ci = Ci + (q × rl+1 mod M) {Residues accumulation}
q =

⌊
Ci

rl

⌋
Ci = Ci − q × rl {Quotient digit selection and reduction}

end for

C0 = (C0 + (q × rl+1 mod M)) mod M

Section 3.2 examines this algorithm in further detail and presents some

improvements to it.
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3.1.3 Barrett Modular Multiplication

The relationship between division and modular multiplication is made ex-

plicit in Equation (3.5).

C = A × B mod M = A × B −
⌊

A × B

M

⌋
× M. (3.5)

A and B are two n-bit multiplicands and M denotes the n-bit modulus.

This equation suggests an alternative mechanism: one may perform the di-

vision
⌊

A×B
M

⌋
by multiplying by M−1. Papers that follow this line include

[Barrett87, Walter94] and [Dhem98]. A typical example is the improved Bar-

rett algorithm based on [Barrett84], developed in [Barrett87] and improved

in [Dhem98] by introducing more variable parameters.

The Improved Barrett modular multiplication described in [Dhem98] is

a separated modular multiplication scheme in which the product A × B

is modular reduced using multiplication by a pre-computed inverse of the

modulus. If we let C0 = A × B and Y =
⌊

A×B
M

⌋
=
⌊

C0

M

⌋
, Equation (3.5)

becomes

C = A × B mod M = C0 − Y × M. (3.6)

The advantage of Improved Barrett modular multiplication lies in the fast

computation of Y as

Y =

⌊
C0

M

⌋
=

⌊
C0

2n+v
2n+u

M

2u−v

⌋
,

where u and v are two parameters. Furthermore, the quotient Y can be

estimated with an error of at most 1 from

Ŷ =

⎢⎢⎢⎣
⌊

C0

2n+v

⌋ ⌊
2n+u

M

⌋
2u−v

⎥⎥⎥⎦ .

The value K =
⌊

2n+u

M

⌋
is a constant and can be pre-computed. The algorithm

is shown in Algorithm 3.6.
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Algorithm 3.6 Improved Barrett Modular Multiplication

Require: u, v {Pre-defined parameters}
Require: K =

⌊
2n+u

M

⌋
{A pre-computed constant}

Ensure: C ≡ A × B mod M

C0 = A × B

C1 =
⌊

C0

2n+v

⌋ {Right shift by n + v}
C2 = C1 × K

Y =
⌊

C2

2u−v

⌋ {Right shift by u − v}
C = C0 − Y × M

3.1.4 Montgomery Modular Multiplication

In recent years the Montgomery modular multiplication algorithm [Montgomery85]

has been the most popular [Orup95, Walter99, Batina02] of the 4 classes of

modular multiplication algorithms. It computes C = A × B × R−1 mod M

rather than a fully reduced residue C = A × B mod M . Here A, B, C and

M are all n-bit integers and R = 2n. An extra modular multiplication can

be used to convert the result to a fully reduced residue:

C = A × B mod M = (A × B × R−1) × (R2) × R−1 mod M.

Another way is to use the Montgomery residues AR mod M and BR mod M

instead of A and B as the multiplicands fed into the algorithm. Computation

can then proceed with Montgomery residues as an internal representation.

The result of a Montgomery modular multiplication is itself a Montgomery

residue ABR mod M = (AR) × (BR) × R−1 mod M , which can be fed

directly into a subsequent Montgomery modular multiplication. Inputting

ABR mod M and 1 into a Montgomery modular multiplier produces a fully

reduced residue as AB mod M = (ABR) × 1 × R−1 mod M .

This algorithm has evolved a great deal since its introduction in 1985

[Montgomery85]. Improvements include the use of a higher radix and inter-
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leaved structures. The algorithm can be rewritten to permit trivial QDS or

to move the QDS from the critical path [Walter99, Batina02].

A binary Montgomery modular multiplication calculates

A × B × R−1 mod M

= A × B × 2−n mod M

= (a0B + a1B2 + a2B22 + · · · + an−1B2n−1) × 2−n mod M

= a0B2−n + a1B2−(n−1) + a2B2−(n−2) + · · · + an−1B2−1 mod M

= (. . . ((a0B2−1 + a1B)2−1 + a2B)2−1 + · · · + an−1B)2−1 mod M

This equation describes an interleaved modular multiplier with the partial

result Ci in the ith iteration satisfying Ci+1 = (Ci + aiB)2−1 mod M . This

can be computed in another way [Montgomery85]. If M is odd, then

qi = Ci × (−M(0)−1) mod 2

and Ci2
−1 mod M = (Ci + qiM)/2.

Here −M(0)−1 is the least significant bit of 〈−M−1〉2. Thus,

Ci+1 = (Ci + aiB + qiM)/2 mod M

holds. This means by choosing appropriate quotient digit qi, the least sig-

nificant bit of C can be made 0 by adding qiM . The the division by 2 is

simply done by right shifting C by one bit. This simple algorithm is shown

in Algorithm 3.7.

A comparison of Algorithm 3.3 and Algorithm 3.5 with Algorithm 3.7

gives the main difference from the Classical and the Sum of Residues algo-

rithms to the Montgomery algorithm. The former two reduces partial prod-

ucts from the most significant digits to the least while the latter works the

reverse way. Further development and implementation of the Montgomery

modular multiplication algorithm is made in Section 3.4.
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Algorithm 3.7 Interleaved Montgomery Modular Multiplication at Radix 2

Require: R = 2n

Ensure: Cn ≡ A × B × R−1 mod M

C0 = 0

for i = 0 to n − 1 do

C = Ci + aiB {Partial product accumulation}
qi = Ci × (−M(0)−1) mod 2 {Quotient digit selection}
Ci+1 = (C + qiM)/2 {Reduction step}

end for

3.2 Reinvigorating Sum of Residues

3.2.1 Tomlinson’s Algorithm

In recent years, Sum of Residues algorithms have either been overlooked

[Walter99] or incorporated within one of the other class of reduction algo-

rithms [Chen99]. In this section, we revisit this distinct class of algorithms

and make some development on it.

A typical SOR algorithm was proposed by Tomlinson in [Tomlinson89]

and is shown in Algorithm 3.8. Tomlinson’s algorithm performs the reduction

by setting the most significant bits to zero and accounting for this change

by adding the pre-computed residue (q × 2n+1 mod M). We take a slightly

improved architecture, illustrated in Figure 3.1, of this algorithm as a starting

point for further development. A Carry Save Adder (CSA) [Burks46] is used

to perform the three-term addition Ci = 2Ci+1 + aiB + (q × 2n+1 mod M).

To make sure 2Ci+1 is n bits long, the same as the other two addends, q is

set to be the upper 3 bits of the current partial result instead of 2.

[Chen99] gives a similar algorithm but sets q only two bits long. This

means that the partial result Ci may be n + 1 bits long. To bound it within
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Algorithm 3.8 Tomlinson’s Sum of Residues Modular Multiplication

Ensure: C0 ≡ A × B mod M , C < 2n+1

Cn = 0

q = 0

for i = n − 1 downto 0 do

Ci = 2Ci+1 + aiB

Ci = Ci + (q × 2n+1 mod M) {The residue (q × 2n+1 mod M) is pre-

computed.}
q =

⌊
Ci

2n

⌋ {q is the upper 2 bits of C}
Ci = Ci − q × 2n {Set the upper 2 bits of C to zero}

end for

C0 = (C0 + (q × 2n+1 mod M)) mod M

q

n-bit Carry Save Adder

2Ci+1

q×2
n

mod M

Ci >> n – 1

Ci = 2Ci+1 + aiB + (q×2
n

mod M)

aiB

2Ci & (2
n

– 1)

LUT2Ci

n+1-bit Carry Propagate Adder

n n n

q×2
n+1

mod M

n+1

n+2

n

3

n

n

Figure 3.1: An Architecture for Tomlinson’s Modular Multiplication Algo-

rithm [Tomlinson89]
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n bits, a subtracter is used to constantly subtract M until Ci has only n bits.

This redundant step greatly increases the latency of the algorithm.

3.2.2 Eliminating the Carry Propagate Adder

There are two obvious demerits of the architecture in Figure 3.1. Firstly,

a Carry Propagate Adder (CPA) is used to transform the redundant rep-

resentation of Ci to its non-redundant form. This is required because the

upper 3 bits of Ci have to be known to look up q × 2n mod M before the

next iteration. The CPA delay contributes significantly to the latency of the

implementation. The second problem is that the look-up of q × 2n mod M

is on the critical path.

Both of these problems can be solved by keeping the intermediate result in

a redundant carry save form. The CPA of Figure 3.1 is eliminated so that the

calculation of the partial result becomes C1i + C2i = C1i+1 + C2i+1 + aiB +

((q1+q2)×2n mod M), where C1i and C2i are the redundant representation

of Ci as sum and carry terms respectively. A modified architecture is shown

in Figure 3.2. The CPA is replaced by a second CSA.

The pre-computed residue (q1+q2)×2n mod M , which must be retrieved

from a look-up table (LUT), can be sent to the second CSA rather than the

first. All three addends to the first CSA are available at the beginning of

each iteration and the table look-up step can be performed in parallel with

the first CSA.

In Figure 3.1 it can be seen that the carry output of the first CSA is

n + 1 bits wide. This can not be input directly to the second CSA which

is only n-bits wide. Thus, in Figure 3.2 the MSB of the (n + 1)-bit carry is

sent to the LUT circuit instead. The LUT retrieves two possible values of
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(q1+q2)×2
n

mod M

q1 = C1i >> n – 1

q2 = C2i >> n – 1

2C1i = 2C1i & (2
n

– 1)

2C2i = 2C2i & (2
n

– 1)

LUT

2C1i q1

n-bit Carry Save Adder

2C2i

n

n+1

n

n n+1

q2

C1i C2i

n n
1

2

q1
q2

1 2

1

n

MUX

n-bit Carry Save Adder

aiB

n n n

2C2i+1

2C1i+1

Figure 3.2: Modified Sum of Residues Modular Multiplier Architecture
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(q1 + q2) × 2n mod M corresponding to the case of either a 0 or 1 in the

MSB of the carry output from the first CSA. A MUX selects the appropriate

value of (q1 + q2) × 2n mod M once the MSB is available. Thus, although

the LUT executes in parallel with the first CSA, an additional MUX appears

on the critical path.

3.2.3 Further Enhancements

If the second CSA in Figure 3.2 can be modified to accept an (n+1)-bit input,

the MUX can be eliminated. The left of Figure 3.3 shows a conventional n-bit

CSA. Note that the output sum is only n bits wide. To accept an (n + 1)-

bit input, we can just copy the MSB of the (n + 1)-bit input to the MSB

of output sum. This is illustrated in the right of Figure 3.3. This modified

CSA accepts 1 (n+1)-bit input and 2 n-bit inputs and produces 2 (n+1)-bit

outputs.

Figure 3.3: n-bit Carry Save Adders

Figure 3.4 shows the resulting modular multiplication architecture. The

algorithm corresponding to this new architecture is given as Algorithm 3.9.

The CPA has been eliminated from the iteration and the residue lookup has

been shifted from the critical path. Also, no subtraction is needed at the end

of the algorithm to bound the output within n + 1 bits. If C10 and C20 are
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simply summed using a CPA, the resulting output C0 could be n + 2 bits,

which needs some further subtraction to be reduced. Therefore the same

technique as in the loop is applied. Both C10 and C20 are set to n − 1 bits

and the n-bit residue corresponding to the 2 upper reset bits is retrieved from

another LUT. The final sum yields an (n + 1)-bit output C0.

n-bit Carry Save Adder

2C1i+1

(q1+q2)×2
n

mod M

q1 = C1i >> n – 1

q2 = C2i >> n – 1

aiB

2C1i = 2C1i & (2
n

– 1)

2C2i = 2C2i & (2
n

– 1)

LUT

2C1i q1

n-bit Carry Save Adder

2C2i

n n n

n n+1
n

n+1 n+1

q2

C1i C2i

2C2i+1

n n
2

2

q1 q2

2 2

T1i T2i

Figure 3.4: New Sum of Residues Modular Multiplier Architecture

The LUTs have a 4-bit input and a n-bit output so that a (24 × n)-bit

ROM can be used. For example, a 64-bit modular multiplier only needs a

1K-bit ROM, which is reasonable for a RNS channel modular multiplier .

Figure 3.5 shows an example of the new algorithm for the case r = 2,

n = 4, A = 15 = (1111)2, B = 11 = (1011)2 and M = 9 = (1001)2. It is also

noted that at the last step a second LUT of the same size is needed.
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i n= - 1 = 3

i n= - 2 = 2

i n= - 3 = 1

i n= - 4 = 0

4-bit Carry Save Adder

(q1+q2)×2
4

mod 1001

q1 = 01011 >> 3

q2 = 00000 >> 3

1011

2C13 = 010110 & (1111)

2C23 = 000000 & (1111)

000000 mod 1001

2C13 q1

4-bit Carry Save Adder

2C23

1011 00000 0000

01011

q2

0000

0110 0000 01 00

q1 q2

00 000000

00000

C13 C23

2C14 2C24 a3B

4-bit Carry Save Adder

q1 = 11110 >> 3

q2 = 00010 >> 3

1011

2C11 = 111100 & (1111)

2C21 = 000100 & (1111)

2C11 q1

4-bit Carry Save Adder

2C21

0011 11000 0101

11110

q2

0100

1100 0100 11 00

1100

00010

C11 C21

2C12 2C22 a1B

(q1+q2)×2
4

mod 1001

100000 mod 1001

q1 q2

01 01

4-bit Carry Save Adder

1011

4-bit Carry Save Adder

0011 11000 0011

11000

01001100

00110

C10 C20

2C11 2C21 a0B

(q1+q2)×2
4

mod 1001

110000 mod 1001

q1 q2

11 00

3-bit Carry Propagate Adder

while C0 M do C0 = C0 – M

0110

C0

0011

q1 = 11000 >> 3

q2 = 00110 >> 3

C10 = 11000 & (111)

C20 = 00110 & (111)

C10 C20 q2

000 110 11 00

11000 mod 1001

(q1+q2)×2
3

mod 1001

4-bit Carry Propagate Adder

0110

01100

q1

4-bit Carry Save Adder

q1 = 01110 >> 3

q2 = 01010 >> 3

1011

2C12 = 011100 & (1111)

2C22 = 010100 & (1111)

2C12 q1

4-bit Carry Save Adder

2C22

1101 01000 0111

01110

q2

0000

1100 0100 01 01

0110

01010

C12 C22

2C13 2C23 a2B

(q1+q2)×2
4

mod 1001

010000 mod 1001

q1 q2

01 00

�

Figure 3.5: An Example for New Sum of Residues Modular Multiplication

n = 4, A = (1111)2, B = (1011)2 and M = (1001)2
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Algorithm 3.9 New Sum of Residues Modular Multiplication

Ensure: C0 ≡ A × B mod M , C < 2n+1

C1n = C2n = q1 = q2 = 0

for i = n − 1 downto 0 do

{T1i, T2i} = 2C1i+1 + 2C2i+1 + aiB {Carry save addition}
{C1i, C2i} = T1i +T2i +((q1+q2)×2n mod M) {Carry save addition}
{The residue ((q1 + q2) × 2n mod M) is precomputed}
{q1, q2} = {C1i >> (n − 1), C2i >> (n − 1)} {q1 and q2 are the upper

2 bits of C1i and C2i respectively.}
{C1i, C2i} = {2C1i & (2n − 1), 2C2i & (2n − 1)} {Set the upper 2 bits

of C1i and C2i to zero}
end for

{C10, C20} = {2C10, 2C20} {Right shift so they are both n − 1 bits}
C0 = C10 + C20 + ((q1 + q2) × 2n−1 mod M)

3.2.4 High Radix

A radix-r version of the algorithm can be produced as in Figure 3.6. If r = 2k

this version executes in n/k iterations; however a larger LUT and (n+k)-bit

CSAs are required.

3.2.5 Summary of the Sum of Residues Modular Mul-

tiplication

In this section, we set out to invigorate the Sum of Residues modular mul-

tiplication algorithms. We developed a new structure (shown in Figure 3.4)

of this distinct class of modular multiplication algorithm based on Tomlin-

son’s Algorithm [Tomlinson89]. This new algorithm will be implemented in

Section 3.5 for a comparison with other classes of algorithms.
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n+k-bit Carry Save Adder

rC1i+1

(q1+q2)×2
n+k

mod M

q1 = C1i >> n

q2 = C2i >> n

aiB

rC1i = rC1i & (2
n+k

– 1)

rC2i = rC2i & (2
n+k

– 1)

LUT

rC1i q1

n+k-bit Carry Save Adder

rC2i

n+k

n+k+1 n

n+k+1

q2

C1i C2i

rC2i+1

k+1

q1 q2

n+k n+k

n+k

n+k+1

n+k n k

k+1

k+1k+1

+

Figure 3.6: New High-Radix Sum of Residues Modular Multiplier Architec-

ture
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3.3 Bounds of Barrett Modular Multiplica-

tion

In Section 3.1.3, the Improved Barrett modular multiplication algorithm is

introduced. In this section, the bounds of the output and input of the al-

gorithm are derived, and hence the range of the two parameters u and v is

given. Implementations are also made on Xilinx Virtex2 FPGA platform and

the delay and area of this algorithm are simulated.

3.3.1 Bound Deduction

Bounds on the Estimated Quotient

The estimated quotient Ŷ is at most 1 less than the actual quotient Y if u

and v are chosen appropriately, as shown below.

Recall Y =
⌊

C0

M

⌋
=

⌊
C0

2n+v
2n+u

M

2u−v

⌋
and Ŷ =

⌊� C0
2n+v �

⌊
2n+u

M

⌋
2u−v

⌋
, then

Y ≥ Ŷ >

⌊
C0

2n+v

⌋ ⌊
2n+u

M

⌋
2u−v

− 1

>
( C0

2n+v − 1)(2n+u

M
− 1)

2u−v
− 1

=
C0

M
− C0

2n+u
− 2n+v

M
+

1

2u−v
− 1

≥
⌊

C0

M

⌋
− C0

2n+u
− 2n+v

M
+

1

2u−v
− 1

⇔ Y ≥ Ŷ > Y − C0

2n+u
− 2n+v

M
+

1

2u−v
− 1 (3.7)

because x ≥ �x� > x − 1 always holds for any natural x.

Because M is the n-bit modulus, A and B are two n-bit multiplicands
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and C0 = A × B, C0 is 2n bits long. Thus,

2n−1 ≤ M ≤ 2n − 1 < 2n and 22n−1 ≤ C0 ≤ 22n − 1 < 22n.

Then (3.7) becomes

Y ≥ Ŷ > Y − 22n

2n+u
− 2n+v

2n−1
+

1

2u−v
− 1

⇔ Y ≥ Ŷ > Y − (2n−u + 2v+1 + 1 − 2v−u) (3.8)

If we choose u ≥ n + 1 and v ≤ −2, then 0 < 2n−u ≤ 1
2
, 0 < 2v+1 ≤ 1

2
and

0 < 2n−u − 2v−u ≤ 1
2
. Thus, 1 < 2n−u + 2v+1 + 1− 2v−u < 2. Therefore, (3.8)

becomes

Y ≥ Ŷ > Y − 1.xx.

Because Ŷ is an integer, Ŷ = Y or Ŷ = Y − 1. Namely, the maximal error

on the estimated quotient is limited to 1 by choosing u ≥ n + 1 and v ≤ −2.

Bounds on the Output

The worst-case word length of the estimated output Ĉ will be checked below.

Recall Equation (3.6) C = A×B mod M = C0 −Y ×M and the remainder

C is certainly no more than n bits long. Now Y is replaced by Ŷ and (3.6)

becomes

Ĉ = C0 − Ŷ × M (3.9)

If Ŷ = Y , (3.9) will be the same as (3.6) and the result Ĉ is at most n

bits long. If Ŷ = Y − 1, (3.9) will be Ĉ = A × B − (Y − 1) × M =

A × B − Y × M + M = C + M . Because both C and M are n bits long at

most, the output is n + 1 bits long at most. Consequently, the output of the

Improved Barrett Modular Multiplication Algorithm is n + 1 bits.
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Bounds on the Input

Because the output is likely to be the input of another modular multiplier,

which will itself use Improved Barrett Modular Multiplication, we should

ensure output Ĉ is n + 1 bits when there are two n + 1 bit inputs, A and B.

We will now show that this consistency exists if u and v are appropriately

selected.

Recall Equation (3.7)

Y ≥ Ŷ > Y − C0

2n+u
− 2n+v

M
+

1

2u−v
− 1.

Now M is n bits and A and B become n + 1 bits, and so C0 = A × B is

2n + 2 bits long. Thus,

2n−1 ≤ M ≤ 2n − 1 < 2n and 22n+1 ≤ C0 ≤ 22n+2 − 1 < 22n+2.

Then Equation (3.7) becomes

Y ≥ Ŷ > Y − 22n+2

2n+u
− 2n+v

2n−1
+

1

2u−v
− 1

⇔ Y ≥ Ŷ > Y − (2n−u+2 + 2v+1 + 1 − 2v−u) (3.10)

If we choose u − 2 ≥ n + 1 i.e. u ≥ n + 3 and also v ≤ −2, then (3.10)

becomes the same as (3.8):

Y ≥ Ŷ > Y − 1.xx.

Therefore, Ŷ = Y or Ŷ = Y − 1 and the output Ĉ is still n + 1 bits long in

the case of n + 1-bit inputs by choosing u ≥ n + 3 and v ≤ −2.

Now, Ŷ ≤ Y =
⌊

C0

M

⌋ ≤ ⌊22n+2

2n−1

⌋
= 2n+3. While M cannot be 2n+1 because

it is usually odd, Ŷ < 2n+3. Therefore, the bound on the estimated quotient

Ŷ is n+3 bits. In conclusion, the bounds on the quotient inputs and output

are n + 3, n + 1 and n + 1 respectively. To save hardware, the parameters

are suggested to be u = n + 3 and v = −2.
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3.3.2 Performance at Different Word Lengths

As stated in Section 2.1.4, the RNS channel width n should be at least 12

bits in a RNS system with 2048-bit dynamic range. The delay of a modular

multiplier is expected to increase as the word length n increases. This is

apparent in the results from the algorithm implemented and evaluated in

terms of speed and area on an FPGA platform using Xilinx tools.

A Xilinx Virtex2 FPGA was used as the implementation target. All

of the implementations were performed using the Xilinx ISE environment

using XST for synthesis and ISE standard tools for place and route. Speed

optimization with standard effort was used for all of the implementations:

Target FPGA: Virtex2 XC2V1000 with a -6 speed grade, 1M gates,

5120 slices and 40 embedded 18 × 18 multipliers

Xilinx 6.1i: XST - Synthesis

ISE - Place and Route

Optimization Goal: Speed

Language: VHDL

Pure delays of the combinatorial circuit were measured excluding those

between pads and pins. They were generated from the Post-Place and Route

Static Timing Analyzer with a standard place and route effort level.

The results of the Improved Barrett Modular Multiplier from 12 bit to

24 bits are shown in Figure 3.7(a). As can be seen from Figure 3.7, the

performance in terms of both speed and space complexity is best at n = 12.

This multiplier is used for the RNS channel modular multiplication in the

final implementation of the RNS in Chapter 5.
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Delays at Different Wordlengths
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Figure 3.7: Delays and Areas of Improved Barrett Modular Multiplication

Algorithm
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3.4 Montgomery Modular Multiplication on

FPGA

In this section, published techniques of the Montgomery modular multiplica-

tion algorithm are analyzed, including interleaved/separated structure, high

radix, trivial quotient digit selection and quotient pipelining. They are also

implemented on the same FPGA platform described in Section 3.3.2.

3.4.1 Separated Montgomery Modular Multiplication

Algorithm

In contrast to interleaved Montgomery modular multiplication in Algorithm 3.7,

a separated Montgomery modular multiplier performs the multiplication and

then reduces the product using the Montgomery algorithm. Recall n is the

word length of modulus M and suppose C0 is the 2n-bit product of A × B.

The Montgomery modular reduction algorithm calculates

C0 × R−1 mod M

= C0 × 2−n mod M

= (. . . ((C02
−1)2−1)2−1 . . . )2−1 mod M

= (. . . (((C0 + q0M)/2 + q1M)/2 + q2M)/2 + · · · + qn−1M)/2 mod M

The algorithm is shown in Algorithm 3.10

3.4.2 High Radix Montgomery Algorithm

Algorithm 3.11 shows an interleaved modular multiplication at a radix r and

Algorithm 3.12 shows a separated version of this algorithm. The radix is
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Algorithm 3.10 Separated Montgomery Modular Multiplication at Radix

2
Require: R = 2n

Ensure: Cn ≡ A × B × R−1 mod M

C0 = A × B

for i = 0 to n − 1 do

qi = Ci × (−M(0)−1) mod 2 {Quotient digit selection}
Ci+1 = (Ci + qiM)/2 {Reduction step}

end for

chosen to be a power of 2, i.e. r = 2k, k = 0, 1, 2, . . .. Note −M(0)−1 is the

least significant digit of 〈−M−1〉r in base r.

Radix-2

Consider the case r = 2 in Algorithm 3.12. The product C0 yet to be reduced

modulo M is 2n bits and M is n bits long. There are n iterations and exactly

one bit is reduced in each iteration since the least significant bit of the current

Ci is made 0 by adding qi×M . After n iterations, the result will be presented

as Cn. Table 3.1 illustrates the process for the case of n = 8. To show the

reduction process more clearly, assume there is no word length growth on

the partially reduced results Ci. However, this is impossible and the bound

of the growth will be calculated in Section 3.4.3.

Radix-r

Now consider the case when k > 1, r > 2, and assume that n bits are

equivalent to l digits. Then there is 1 digit, i.e. k bits, to be reduced in

each iteration. For example, if k = 2, we have radix 4 and 2 bits will be

reduced in one iteration; there will be l = 8/2 = 4 iterations in the case of
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Table 3.1: Montgomery Modular Reduction Process at Radix 2

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C0 * * * * * * * * * * * * * * * *

q0M * * * * * * * *

C0 + q0M * * * * * * * * * * * * * * * 0

C1 * * * * * * * * * * * * * * *

q1M * * * * * * * *

C1 + q1M * * * * * * * * * * * * * * 0

C2 * * * * * * * * * * * * * *

q2M * * * * * * * *

C2 + q2M * * * * * * * * * * * * * 0

C3 * * * * * * * * * * * * *

q3M * * * * * * * *

C3 + q3M * * * * * * * * * * * * 0

C4 * * * * * * * * * * * *

q4M * * * * * * * *

C4 + q4M * * * * * * * * * * * 0

C5 * * * * * * * * * * *

q5M * * * * * * * *

C5 + q5M * * * * * * * * * * 0

C6 * * * * * * * * * *

q6M * * * * * * * *

C6 + q6M * * * * * * * * * 0

C7 * * * * * * * * *

q7M * * * * * * * *

C7 + q7M * * * * * * * * 0

C8 * * * * * * * *

=< C0 × 2−8 >M
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Table 3.2: Montgomery Modular Reduction Process at Radix 4

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C0 * * * * * * * * * * * * * * * *

q0M * * * * * * * *

C0 + q0M * * * * * * * * * * * * * * 0 0

C1 * * * * * * * * * * * * * *

q1M * * * * * * * *

C1 + q1M * * * * * * * * * * * * 0 0

C2 * * * * * * * * * * * *

q2M * * * * * * * *

C2 + q2M * * * * * * * * * * 0 0

C3 * * * * * * * * * *

q3M * * * * * * * *

C3 + q3M * * * * * * * * 0 0

C4 * * * * * * * *

=< C0 × r−4 >M

=< C0 × 2−8 >M

n = 8. This reduction process is illustrated in Table 3.2 with the assumption

that no word length grows during the process. The corresponding interleaved

and separated algorithms are shown in Algorithm 3.11 and Algorithm 3.12

respectively.

A complication arises if n is not divisible by k. In these cases, the number

of iterations l can be l =
⌈

n
k

⌉
or l =

⌊
n
k

⌋
with some additional correction

steps after l iterations. This is just what the function Cn = Correct(Cl) does

in Algorithm 3.11 and Algorithm 3.12. Take n = 8 and k = 3 as an example

for the version of separated modular multiplication in Algorithm 3.12, where

one digit equals 3 bits and hence 3 bits are reduced in each iteration.

Let us consider how many iterations are required. If l =
⌈

n
k

⌉
=
⌈

8
3

⌉
= 3,
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Algorithm 3.11 Interleaved Montgomery Modular Multiplication at Radix

r
Require: R = 2n, r = 2k and l =

⌊
n
k

⌋
Ensure: Cn ≡ A × B × R−1 mod M

C0 = 0

for i = 0 to l − 1 do

C = Ci + aiB {Partial product accumulation}
qi = Ci × (−M(0)−1) mod r {Quotient digit selection}
Ci+1 = (C + qiM)/r {Reduction step}

end for

Cn = Correct(Cl) {Correction step}

Algorithm 3.12 Separated Montgomery Modular Multiplication at Radix

r
Require: R = 2n, r = 2k and l =

⌊
n
k

⌋
Ensure: Cn ≡ A × B × R−1 mod M

C0 = A × B

for i = 0 to l − 1 do

qi = Ci × (−M(0)−1) mod r {Quotient digit selection}
Ci+1 = (Ci + qiM)/r {Reduction step}

end for

Cn = Correct(Cl) {Correction step}
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Table 3.3: Montgomery Modular Reduction Process at Radix 8 (l =
⌈

n
k

⌉
)

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C0 * * * * * * * * * * * * * * * *

q0M * * * * * * * *

C0 + q0M * * * * * * * * * * * * * 0 0 0

C1 * * * * * * * * * * * * *

q1M * * * * * * * *

C1 + q1M * * * * * * * * * * 0 0 0

C2 * * * * * * * * * *

q2M * * * * * * * *

C2 + q2M * * * * * * * 0 0 0

C3 * * * * * * *

=< C0 × r−3 >M

=< C0 × 2−9 >M

Corrected C3 * * * * * * * 0

=< 2 × C0 × 2−9 >M

=< C0 × 2−8 >M

9 bits will be reduced and the result is C0 × 2−9 mod M instead of C0 × 2−8

mod M . Then C0 × 2−9 mod M is multiplied by 2 in the correction step to

obtain the correct answer. This is shown in Table 3.3.

Rather than having l =
⌈

n
k

⌉
, let us now consider l =

⌊
n
k

⌋
=
⌊

8
3

⌋
= 2.

In this case, 6 bits will be reduced and the result is C0 × 2−6 mod M .

Then C0 × 2−6 mod M is further reduced to C0 × 2−8 mod M either by

two additional radix-2 iterations or one radix-4 iteration. This is shown in

Table 3.4 with one radix-4 iteration added at the end as a correction step.

Of the two cases considered, l =
⌊

n
k

⌋
is better because the result from

l =
⌈

n
k

⌉
is likely not to be fully reduced. This is proved in Section 3.4.3.

Therefore, the version of l =
⌊

n
k

⌋
iterations is adopted in Algorithm 3.11 and
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Table 3.4: Montgomery Modular Reduction Process at Radix 8 (l =
⌊

n
k

⌋
)

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

C0 * * * * * * * * * * * * * * * *

q0M * * * * * * * *

C0 + q0M * * * * * * * * * * * * * 0 0 0

C1 * * * * * * * * * * * * *

q1M * * * * * * * *

C1 + q1M * * * * * * * * * * 0 0 0

C2 * * * * * * * * * *

q2M * * * * * * * *

C2 + q2M * * * * * * * * 0 0

Corrected C2 * * * * * * * *

< C0 × 2−8 >M

Algorithm 3.12 with one n mod k correction step added at the end when n

is not divisible by k.

The performance of the multipliers using different radices are compared in

Figure 3.8 using the Xilinx FPGA simulation described on page 45. Following

the word length in the tables above, n = 16 bits is chosen here, which is

greater than 12 bits, the lower bound of n derived in Section 2.1.4. As

can be seen from Figure 3.8, the higher the radix r = 2k, the faster the

modular multiplier runs, especially when k becomes close to the word length

n. However, very high radices can be impossible to implement, as proved in

Section 3.4.5 below, and, therefore, the radix is often selected to be as high

as possible under some further conditions.
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Delays at Different Radices
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Figure 3.8: Delays of Montgomery Modular Multiplication at Different

Radices.

3.4.3 Bound Deduction

In this section we consider the magnitudes of the intermediate results of

Montgomery modular multiplication algorithm and reduce their bounds.

Bounds of Interleaved Montgomery Modular Multiplication Algo-

rithm

Recall the Interleaved Montgomery Modular Multiplication Algorithm in Al-

gorithm 3.11. The partial result Ci in the current iteration has the following

relationship with Ci+1 in next iteration:

rCi+1 = Ci + aiB + qiM, (3.11)

where B and M are n bits long, ai and qi are to be no more than k bits long

and r = 2k. We want the word length of Ci and Ci+1 to be consistent and

certainly as short as possible to save hardware.
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If Ci is x bits long, the worst case of the right side of (3.11), Ci+aiB+qiM

is 2x−1+(2k−1)(2n−1)+(2k−1)(2n−1) = 2x−1+2(2k−1)(2n−1) = 2kCi+1.

If Ci and Ci+1 are the same word length, then Ci+1 ≤ 2x − 1 should hold.

Thus,

2x − 1 + 2(2k − 1)(2n − 1) ≤ 2k(2x − 1),

which gives

2x ≥ 2n+1 − 1.

Because n > 0, 1 < 2n = 2n+1 − 2n, hence 2n < 2n+1 − 1 and 2x >

2n+1 − 1, x ≥ n + 1. To minimize hardware choose x = n + 1. In other words

n+1 bits is sufficient for the partial result Ci of the interleaved Montgomery

modular multiplier. It can also be seen that the final result Cn is at most

n + 1 bits long regardless of n and k.

Bounds of Separated Montgomery Modular Multiplication Algo-

rithm

Recall the Separated Montgomery Modular Multiplication Algorithm in Al-

gorithm 3.12 on page 51. The partial result Ci in the current iteration has

the following relationship with Ci+1 in its next iteration.

rCi+1 = Ci + qiM, (3.12)

where M is n bits long, qi is k bits long at most and r = 2k. Again assuming

that Ci is x bits long, the right side of (3.12), Ci + qiM can be 2x − 1 +

(2k − 1)(2n − 1) = 2kCi+1 in the worst case. If Ci and Ci+1 are consistent,

Ci+1 ≤ 2x − 1 should hold. Thus,

2x − 1 + (2k − 1)(2n − 1) ≤ 2k(2x − 1),

which gives

x ≥ n.
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This means for all the word lengths greater than or equal to n bits Ci and

Ci+1 are consistent. However, the word length of Ci cannot be shorter than

2n, because A × B is assigned to C0 at the very first step. Therefore, the

partial result Ci of the separated modular multiplier is 2n bits long.

Now the range of the final result Cn is to be determined. There are two

alternations for the number of iterations l, i.e. l =
⌈

n
k

⌉
and l =

⌊
n
k

⌋
, as

discussed in Section 3.4.2 above.

If l =
⌈

n
k

⌉
, then let kl = n + p, where 0 ≤ p ≤ k − 1. All of the l

iterations in Algorithm 3.12 up to the line Cn = Correct(Cl) are connected

and expressed in the equation below:

rlCl = C0 + q0M + rq1M + r2q2M + · · · + rl−1ql−1M,

where M is n bits long, qi is k bits long at most, C0 is 2n bits long and

r = 2k. Thus,

2klCl ≤ (22n − 1) + (r − 1)(2n − 1) + r(r − 1)(2n − 1) + r2(r − 1)(2n − 1)

+ · · · + rl−1(r − 1)(2n − 1)

= (22n − 1) + (r − 1)(2n − 1)(1 + r + r2 + · · · + rl−1)

= (22n − 1) + (2n − 1)(2kl − 1)

⇒ 2klCl ≤ (22n − 1) + (2n − 1)(2kl − 1) (3.13)

Because kl = n + p, (3.13) becomes

2n+pCl ≤ (22n − 1) + (2n − 1)(2n+p − 1)

⇒ 2pCl ≤ (2n − 1)(2p + 1) < 2p(2n+1 − 1)

⇒ Cl ≤ 2n+1 − 1.

Therefore, Cl = C02
−kl mod M is n + 1 bits long at most. However, we

need Cn = C02
−n mod M , so C02

−kl mod M should be left-shifted by p bits
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to produce Cn = C02
−n mod M . In other words, the process Correct(Cl)

adds p “0”s to the end of C02
−kl mod M . Consequently, the final result Cn

is n + p + 1 bits long, where p = k − (n mod k). Hence the result is not

fully Montgomery modular reduced. For example, if n = 16, and k = 7, then

p = k − (n mod k) = 5 and n + p + 1 = 16 + 5 + 1 = 22 bits. This is why

this approach is not used in Algorithm 3.11 and Algorithm 3.12.

If l =
⌊

n
k

⌋
, then let kl + p = n, where 0 ≤ p ≤ k − 1. All of the l

iterations in Algorithm 3.12, along with the Correct(Cl) line, are connected

and expressed in the equation below:

2nCn = C0 + q0M + rq1M + r2q2M + · · · + rl−1ql−1M + rlq′lM,

where q′l is p bits long at most, M is n bits long, qi is k bits long at most, C0

is 2n bits long and r = 2k. Thus,

2nCn ≤ (22n − 1) + (r − 1)(2n − 1) + r(r − 1)(2n − 1) + r2(r − 1)(2n − 1)

+ · · · + rl−1(r − 1)(2n − 1) + rl(2p − 1)(2n − 1)

= (22n − 1) + (2kl − 1)(2n − 1) + 2kl(2p − 1)(2n − 1)

= 2n+1(2n − 1)

⇒ Cn ≤ 2n+1 − 2 < 2n+1 − 1.

Therefore, Cn = C02
−n mod M is at most n+1 bits, which means it is fully

reduced.

3.4.4 Interleaved vs. Separated Structure

Figure 3.9 shows the comparison between interleaved and separated multi-

pliers in terms of delays and areas respectively. Various radices are included

and n is chosen to be 16. In Figure 3.9(a), the separated modular multiplier

is obviously faster than the interleaved one at k < 8, i.e. when k is less than
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n/2, while when k becomes larger than n/2, this advantage becomes vague.

However, as proved in Section 3.4.5 below, k cannot be too large. (Typi-

cally k must not be greater than n/2.) Therefore, the separated structure

is recommended to implement the Montgomery Modular Multiplier because

it is faster than the interleaved structure at most of the possible values of

k. Although our main optimization goal is speed, Figure 3.9(b) shows that

the separated structure also gains some advantage over the interleaved one

in hardware area.

3.4.5 Trivial Quotient Digit Selection

Techniques have been published to improve performance by making the

quotient digit selection step trivial and moving it from the critical path

[Shand93, Walter95]. Recall the Separated Montgomery Modular Multipli-

cation Algorithm shown in Algorithm 3.12 on page 51. In each iteration,

qi is computed using qi = Ci × (−M(0)−1) mod r, where −M(0)−1 is the

least significant bit of 〈−M−1〉2. This step is called quotient digit selection

(QDS). If M is always selected to guarantee that M mod r = r − 1 , then

−M(0)−1 mod r = M(0)M(0)−1 mod r = 1 can also be guaranteed, and

thus qi = Ci(0) holds and the QDS step examines only the least significant

digit of the partial result Ci. This is known as trivial QDS and is included

in Algorithm 3.13.

However, this brings a restriction on the radix r = 2k. Because M should

always satisfy M mod r = r−1, which means that the least significant digit

of M must satisfy M(0) = r − 1 = 2k − 1, i.e. there should be k “1”s at

the end of M . Thus for n = 8, M should be in the form *******1 if r = 2,

******11 if r = 4 and *****111 if r = 8.

Recall the conclusion from Section 2.1.4: to construct a RNS system with
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Delays for Interleaved vs Separated Structure
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Figure 3.9: Delays and Areas of Interleaved and Separated Montgomery

Modular Multiplication at Different Radices
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Algorithm 3.13 Separated Montgomery Modular Multiplication Algorithm

with Trivial QDS

Require: R = 2n, r = 2k and l =
⌊

n
k

⌋
Ensure: Cn ≡ A × B × R−1 mod M

C0 = A × B

for i = 0 to l − 1 do

Ci+1 = (Ci + Ci(0)M)/r {Reduction step with trivial QDS}
end for

Cn = Correct(Cl) {Correction step}

2048-bit dynamic range using equal word length moduli, the channel width

n should be at least 12 bits.

However, if trivial QDS is used, the range of the available integers may

not be enough for the co-prime moduli to be found. For example, if n = 12

and r = 4, i.e. k = 2, 171 co-prime moduli must be found from the set,

{y|y = 4x+3, 29 ≤ x ≤ 210−1}, which has 210−29 = 512 integers. Only 132

co-prime numbers can be found in these 512 integers∗, and this is not enough.

Therefore, n = 12 can only be feasible in the case of radix-2, i.e. k = 1. We

name this kind of set a “range set”, and obviously there is a unique range

set for each pair of n and k. Similarly, if n = 13, N =
⌈

2048
12

⌉
= 158 co-prime

numbers are needed. If k = 2, 242 co-prime numbers have been found in its

range set {y|y = 4x + 3, 210 ≤ x ≤ 211 − 1}, which means k = 2 is feasible.

However if k = 3, only 126 co-prime numbers can be found in its range set

{y|y = 8x + 7, 29 ≤ x ≤ 210 − 1}, which means k = 3 is not feasible and

k = 2 is the largest k that suits n = 13. Thus, for each value of word length

n, there will be a largest feasible k. We name this the k-boundary. Table 3.5

lists the k-boundary for n from 12 to 32.

Recall the result from Figure 3.8 in Section 3.4.2. The higher the radix

∗This result was obtained using a bruteforce search in Maple.
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Table 3.5: The k-boundary of Montgomery Reduction for n from 12 to 32

n 12 13 14 15 16 17 18 19 20 21 22

k-boundary 1 2 3 4 5 6 7 9 10 11 12

n 23 24 25 26 27 28 29 30 31 32

k-boundary 13 14 15 16 17 18 19 20 21 23

Table 3.6: Shortest Delays of Separated Montgomery Multiplication Algo-

rithm using Trivial QDS at n from 12 to 32

n 12 13 14 15 16 17 18

k 1 1 3 4 5 6 7

delays 32.087 34.282 34.100 27.646 22.297 25.085 24.869

n 19 20 21 22 23 24 25

k 9 10 10 11 13 14 15

delays 22.006 23.684 24.403 25.133 25.583 25.858 25.720

n 26 27 28 29 30 31 32

k 16 17 18 19 20 21 23

delays 25.479 28.483 28.896 27.924 28.217 29.916 31.953

r = 2k, the faster the modular multiplier runs, especially when k becomes

roughly the same as the word length n. Nonetheless, here we can see that to

use trivial QDS, k cannot be that large, because k cannot be greater than the

k-boundary in each word length. Thus, k should always be selected to be one

of those values close to the k-boundary or just the k-boundary itself. This

was also proved in our implementation, where trivial QDS gave a speed-up

of 2 over the non-trivial QDS version. All the possible values of k for n from

12 to 32 were simulated and the shortest delays at each word length n are

listed in Table 3.6 and shown in Figure 3.10.
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Shortest Delays at Each Wordlength with Trivial

QDS
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Figure 3.10: Shortest Delays of Separated Montgomery Multiplication Algo-

rithm using Trivial QDS at n from 12 to 32

3.4.6 Quotient Digit Pipelining

For the Separated Montgomery Algorithm, although we have trivial QDS as

qi = Ci(0), as indicated in Ci+1 = (Ci + Ci(0)M)/r from Algorithm 3.13,

the generation of Ci+1 must wait for the generation of the addend Ci(0)M

in ith iteration. A technique called quotient digit pipelining was published

in [Shand93] and improved in [Walter95, Orup95] to speed the Montgomery

Algorithm. The Ci(0)M generated is used several iterations later so that Ci

does not have to wait for it to generate Ci+1.
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Recall the equation of Montgomery Modular Reduction:

C × R−1 mod M

= (. . . (((C + C0(0)M)/r + C1(0)M)/r + C2(0)M)/r

+ · · · + Cl−1(0)M)/r mod M

= (. . . (((C − C0(0) + C0(0)(M + 1))/r − C1(0) + C1(0)(M + 1))/r − C2(0)

+C2(0)(M + 1))/r − · · · − Cl−1(0) + Cl−1(0)(M + 1))/r mod M

= ((. . . ((((((C − C0(0))/r − C1(0))/r − C2(0) + C0(0)(M + 1))/r2)/r

−C3(0) + C1(0)(M + 1))/r2)/r − C4(0) + C2(0)(M + 1)/r2)/r

− · · · − Cl−2(0) + Cl−4(0)(M + 1)/r2)/r − Cl−2(0)

+Cl−4(0)(M + 1)/r2)/r − Cl−1(0) + Cl−3(0)(M + 1)/r2)/r

+Cl−2(0)(M + 1)/r2 + Cl−1(0)(M + 1)/r mod M (3.14)

As can be seen from (3.14), because Ci +Ci(0)M will set the least significant

digit of the result to 0, Ci + Ci(0)M can be split into two parts, Ci − Ci(0)

and Ci(0) + Ci(0)M = Ci(0)(M + 1), i.e. Ci + Ci(0)M = [Ci − Ci(0)] +

[Ci(0)(M +1)]. These two parts are computed in parallel in the ith iteration.

So Ci(0)(M + 1)/r2 is planned to be added to Ci+2 two iterations later, and

Ci−Ci(0) is added by Ci−2(0)(M+1)/r2 already computed two iterations ago

without waiting for the computation of Ci(0)(M + 1). The level of quotient

digit pipelining d indicates how many iterations Ci(0)M is added after it

was calculated. In the previous example d = 2. The cost of quotient digit

pipelining is that Cl−2(0)(M + 1)/r2 + Cl−1(0)(M + 1)/r mod M has to be

computed after l iterations. This is reasonable compared with the advantage

in speed of the algorithm. The algorithm is shown in Algorithm 3.14.

The selection of d depends on the speed to compute Ci(0)(M + 1)/rd.

d = 2 or 3 was enough in the FPGA implementation studied here. When d

was set greater, no remarkable change was observed in speed.

The biggest disadvantage is the limitation quotient digit pipelining im-
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Algorithm 3.14 Separated Montgomery Modular Multiplication Algorithm

with Trivial QDS and Quotient Digit Pipelining

Require: R = 2n, r = 2k and l =
⌊

n
k

⌋
Ensure: Cn ≡ A × B × R−1 mod M

C0 = A × B

for i = −d to −1 do

Ci(0) = 0 {Initialisation of quotient digit}
end for

for i = 0 to l − 1 do

Ci+1 = (Ci−Ci(0)+Ci−d(0)(M+1)/rd)/r {Reduction step with quotient

digit generated previously}
Ci(0)(M + 1)/rd {Generation of quotient digit to be used d iterations

later}
end for

Cl−d = (Cl) {Initialisation of Cl−d for the final loop}
for i = l − d to l − 1 do

Ci+1 = Ci + Ci(0)(M + 1)/rl−i {Reduction step with quotient digit

generated previously}
end for

Cn = Correct(Cl) {Correction step}
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poses on the radix r = 2k. The largest possible k will be smaller than the

k-boundary of the version without quotient digit pipelining. The reason is

that in the ith iteration,

Ci+1 = (Ci−Ci(0)+Ci−d(0)(M+1)/rd)/r = (Ci−Ci(0))/r+Ci−d(0)(M+1)/rd+1

should be computed. This means the last d + 1 least significant digits of

Ci(0)(M + 1) should be 0. Therefore,

Ci(0)(M + 1) = 0 mod rd+1 ⇔ M = −1 mod rd+1

Thus, there should be k(d + 1) “1”s at the end of M instead of k “1”s in

the version without quotient digit pipelining above. Similarly, k(d + 1) ≤ k-

boundary instead of k ≤ k-boundary. If d = 2, k should be no more than

one third of the k-boundary. Table 3.7 lists the possible values of k and d

for n from 12 to 25.

This is obviously a bad effect because the decrease in k slows the multiplier

as discussed in Section 3.4.2 and 3.4.5. However, the use of quotient digit

pipelining speeds up the algorithm, and therefore, we expect a tradeoff point

in the implementation where the speed is highest.

All the possible values of k and d for n from 12 to 32 were simulated and

the shortest delays at each word length n are listed in Table 3.8 and shown

in Figure 3.11 below.

n = 24 has the shortest delay across all word lengths. To judge if the

quotient digit pipelining technique really accelerates the modular multiplier,

consider Figure 3.12. The version without quotient digit pipelining is faster

than the quotient digit pipelining version within the interval [16, 26]. This

means the advantage the greater k brings about in the version without quo-

tient digit pipelining overwhelms the advantage the quotient digit pipelining

technique brings. Overall, the shortest delay is 22.006(ns) and this occurs for
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Table 3.7: k and d in Quotient Digit Pipelining of Montgomery Algorithm

for n from 12 to 25
n 12 13 14 15 16 17 18

k-boundary 1 2 3 4 5 6 7

k 1 1 1 1 2 1 2 1 2 3 1

d NA 1 1,2 1–3 1 1–4 1 1–5 1,2 1 1–6

n 18 19 20

k-boundary 7 9 10

k 2 3 1 2 3 4 1 2 3 4 5

d 1,2 1 1–8 1–3 1,2 1 1–9 1–4 1,2 1 1

n 23 24

k-boundary 13 14

k 1 2 3 4 5 6 1 2 3 4 5

d 1–12 1–5 1–3 1,2 1 1 1–13 1–6 1–3 1,2 1

n 24 25

k-boundary 14 15

k 6 7 1 2 3 4 5 6 7

d 1 1 1–14 1–6 1–4 1,2 1,2 1 1
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Table 3.8: Shortest Delays of Separated Montgomery Multiplication Algo-

rithm using Quotient Digit Pipelining at n from 13 to 32

n 13 14 15 16 17 18 19

k 1 1 2 2 3 3 3

d 1 2 1 1 1 1 2

delays 34.318 34.205 29.820 28.735 28.483 27.182 28.912

n 20 21 22 23 24 25 26

k 4 5 6 4 6 6 5

d 1 2 1 2 1 1 2

delays 26.875 27.478 30.054 31.999 26.764 29.158 29.686

n 27 28 29 30 31 32

k 5 9 9 10 10 8

d 2 1 1 2 1 1

delays 31.056 28.836 30.415 28.787 29.033 28.009

Shortest Delays at Each Wordlength with

Quotient Pipelining Used

20

22

24

26

28

30

32

34

36

12 14 16 18 20 22 24 26 28 30 32

n

n
s Quotient Pipelining

Figure 3.11: Shortest Delays of Separated Montgomery Multiplication Algo-

rithm using Quotient Digit Pipelining at n from 13 to 32
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Figure 3.12: Shortest Delays of Separated Montgomery Multiplication Algo-

rithm with & without Quotient Digit Pipelining at n from 13 to 32

a separated Montgomery modular multiplier with n = 19 and k = 9 without

quotient digit pipelining.

Finally, a conclusion of Montgomery modular multiplication algorithm is

obtained: high radix and trivial QDS are both beneficial while the quotient

digit pipelining technique is not suitable for FPGA implementations.
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3.5 Modular Multiplications within RNS Chan-

nels

A common characteristic for all modular multiplication algorithms is to pro-

duce a result C > M such that a few subtractions of M are required to

fully reduce the result. The usual approach is to design the algorithm so

that C can be fed back to the input without overflow, even if C is not fully

reduced. In terms of the resulting residue C, Montgomery algorithm com-

putes C = A × B × R−1 mod M and hence needs conversion to and from

the residue C = A × B mod M , while the other three compute the residue

C = A × B mod M directly. Nonetheless, the four classes of algorithms

discussed in this chapter are all suitable for channel modular multiplication

within a RNS.

Figure 3.13 compares these four classes of modular multiplications on

the Xilinx Virtex2 FPGA [Kong07]. Barrett and Montgomery take the re-

sult from Section 3.3 and 3.4 respectively; the two methods from [Orup91,

Walter92] introduced in Section 3.1.1 are combined for the Classical algo-

rithm; and the new algorithm derived in Section 3.2 is used for the simulation

of Sum of Residues algorithm in binary.

As can be seen from Figure 3.13, Barrett is fastest for channel width

w ≤ 16. For longer wordlengths, Montgomery is better than others and

Classical is slowest. All of the delays show monotonically increase along with

the wordlength except Montgomery. This is because the higher the radix,

the more strict the choice of modulus in the Montgomery algorithm. This

means it limits the selection of RNS modulus set if Montgomery algorithm

is selected for the channel modular multiplication implementation. Hence,

Barrett was selected instead of Montgomery for the implementation of the

RNS where each channel is 18 bits wide in Chapter 5.
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Figure 3.13: Delays and Areas of Four Classes of Modular Multipliers in

Binary
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Chapter 4

Four Ways to Do Modular

Multiplication in the Residue

Number System

The purpose of this chapter is to explore the application of the four classes of

modular multiplication algorithms from positional number systems to long

word length modular multiplication in a RNS. Section 4.1 surveys modular

multiplication algorithms currently available in the RNS. Each of the subse-

quent 4 sections discusses one of the four classes of algorithms. New Classical,

Sum of Residues and Barrett algorithms are developed for modular multipli-

cation in the RNS. Existing Montgomery RNS algorithms are also discussed.
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Chapter 2 states some facts: the long word length modular multiplica-

tion Z = A × B mod M , where A, B and the modulus M are all n-bit

positive integers, is the most frequent operation in Elliptic Curve Cryp-

tosystems (ECC) [Doche06]; in RSA, it is the only operation required to

implement the modular exponentiations which constitute encryption and de-

cryption [Rivest78]; and the Residue Number System (RNS) [Soderstrand86]

offers advantages for long word length arithmetic of this kind by representing

integers in independent short word length channels. Therefore, implement-

ing public-key cryptosystems using RNS becomes an interesting avenue of

research [Kawamura88, Bajard04b]. The drawback to this approach is RNS

modular reduction which is a computationally complex operation. Thus, the

modular reduction Z = X mod M , also denoted as 〈X〉M , is the focus of

this chapter.

Early publications [Szabo67] avoided RNS modular reduction altogether

by converting from RNS representation to a positional system, performing

modular reduction there, and converting the result back into RNS. This

approach was discussed in Section 2.1.2. Later, algorithms using look-up

tables were proposed to perform short word length modular reduction. Most

of these avoided converting numbers from RNS to positional systems, but

were limited to 32-bit inputs, as surveyed in Section 4.1. More recently,

variations of Montgomery’s reduction algorithm [Montgomery85] have been

developed for long word length modular reduction, which work entirely within

a RNS [Kawamura00, Freking00, Bajard04a].

Montgomery’s reduction algorithm is only one of the alternatives available

in positional number systems [Kong05]. This raises a question: can any of the

other reduction algorithms from positional number systems be applied to the

RNS? This chapter provides an answer in the affirmative by presenting RNS

reduction algorithms using the other three classes of algorithms: Classical,
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Sum of Residues and Barrett.

4.1 Short Word Length RNS Modular Mul-

tiplications using Look-Up Tables

This section will examine existing modular reduction algorithms in RNS, and

then give a new algorithm for doing short word length modular multiplica-

tion in RNS. All of these algorithms use look-up tables (LUTs) and only

perform short word length modular multiplication in RNS, typically a mod-

ulus M ≤ 32 bits. They cannot be used to do encryptions and decryptions of

public-key cryptosystems because sufficiently large LUTs would not only be

slow, but infeasibly large in existing technology. Nonetheless, there are other

applications for short word length RNS such as Digital Signal Processing

(DSP) [Alia84, Barraclough89].

The fast RNS operations, additions and multiplications, have been used

for DSP and it has proved to be most profitable to speed up computations

in DSP. Some architectures were designed with a very high degree of pro-

cessing parallelism and communication parallelism tailored to the response

time of adders and multipliers. [Parhami96] uses longer intermediate pseudo-

residues for look-up table implementations. [Alia98] proposes a high speed

pipelined Fast Fourier Transform (FFT) algorithm with relatively optimal

VLSI complexity. Several adder and multiplier units were conceived with dif-

ferent characteristics, such as multiply-accumulate units (MAC) [Preethy99]

and power-of-2 scaling units [Mahesh00]. Furthermore, general purpose DSP

chips were shown to achieve great higher data processing bandwidth when

incorporated with RNS processors [Bhardwaj98]. For these applications, a

new LUT-based RNS scaling algorithm is described in Section 4.1.3.
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4.1.1 RNS Modular Reduction, Scaling and Look-Up

Tables

To perform the modular reduction Z = X mod M , one may use

X mod M = X −
⌊

X

M

⌋
× M.

This modular reduction will be easily done in the RNS if the scaling step

Y =

⌊
X

M

⌋

can be performed effectively within the RNS as subtraction and multiplica-

tion can both be accomplished by efficient RNS channel operations. Note

that in the scaling step, the scaling factor M is a known constant.

RNS Scaling using Look-Up Tables

Most of the RNS scaling schemes from the literature operate using look-up

tables. Scaling results are pre-computed and stored in a network of ROM

tables as shown in Figure 4.1. The various schemes lead to different structures

in the ROM network and, in general, trade reduced latency (achieved through

exploiting parallelism within the network) against hardware cost. All LUTs

in an implementation are assumed to have the same size. The number of

look-up cycles (LUCs) is typically used as a measure of the latency of the

scaling algorithm and the number of look-up tables as the hardware cost.

Sizing Look-Up Tables

Both the time and space complexity are heavily dependent on the size of

the ROMs selected as well as the width of each RNS modulus. Therefore,

to make a uniform base for comparison of them, r is used to denote the
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…… ……

1
x ix Nx
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1
y iy Ny

…… ……

Figure 4.1: RNS Scaling using Look-Up Tables.

number of residue inputs addressing each LUT and it is assumed that r

remains the same for all of the LUTs within an implementation. Take the

5-bit moduli {19, 23, 29, 31} as an example. If ROMs with an address space

of 32K = 4K× 8 bits are used, then r =
⌊

log2 4K
5

⌋
= 2 because each memory

can accommodate two residue inputs at most.

The size of LUTs increases sharply as the modulus word length goes up.

Large LUTs are not only slow but are not commercially available. This is

exactly why the algorithms based on LUTs are not applicable to long word

length modular reduction. In Section 2.1.4, it was shown that the channel

width w of a RNS needs to be at least 12 bits for a 1024-bit RSA system.

Given r = 2, the size of one LUT will reach 2r×w × w = 16M × 12 ≈ 200M

bits, and this is not acceptable for any hardware system to be constructed

with thousands of such LUTs.

4.1.2 Existing RNS Scaling Schemes using Look-Up

Tables

Scaling by Conversion to and from a Positional Representation

A straightforward approach to scaling a RNS number X is to first convert

it to a positional number system where it is scaled by M . The result is
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converted back to RNS representation. The last two steps are fairly conve-

nient and the most time-consuming step is to convert a RNS number into a

positional system. As stated in Section 2.1.2, there are two common conver-

sion techniques [Szabo67]: conversion using the Chinese Remainder Theorem

(CRT) and using the Mixed Radix System (MRS).

As illustrated in Figure 2.1, N(N−1)
2

LUTs and N − 1 LUCs are used to

complete a MRS conversion. To accomplish the whole scaling by conversion

to and from a positional representation, the latency and complexity of per-

forming Y =
⌊

X
M

⌋
in that positional system and the conversion back to RNS

system should be added. Thus, such a scaling method based on MRS can be

both complex and slow.

Scaling in the 3 Modulus RNS

The RNS with modulus set {2k−1, 2k, 2k+1} has been the topic of considerable

interest as efficient hardware mechanisms exist for reduction with respect to

these moduli. An autoscale multiplier is described in [Taylor82] for this

modulus set. The autoscale multiplier performs the operation
⌊

KX
M

⌋
where

K is a constant, which may lead to overflow of the product KX.

One of the motives of [Taylor82] was to incorporate the whole scaling

process for each output digit, into one look-up table. However, at the time of

publication, commercially available memory of an appropriate speed category

was limited to a 12-bit address space. If this memory was used to implement

scaling by conversion to a positional representation, the system would achieve

a dynamic range that was considered too small for most applications.

To extend the dynamic range, [Taylor82] presented a scaling structure

that is based on a partial conversion from the RNS to a positional binary

representation using MRS conversion. The conversion is truncated at the
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point at which the result is within the addressing capacity of a high-speed

memory. This truncation introduces some errors to the scaling. For the MRS

conversion, x̄ is defined as

x̄ = 〈X − x1〉D = {0, 〈x2 − x1〉m2 , 〈x3 − x1〉m3} = {0, x̄2, x̄3}.

Thus, the two residues x̄2 and x̄3 can represent an approximation to x. Fig-

ure 4.2 shows the autoscale architecture.
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Figure 4.2: The 3 Modulus RNS Scaler

Using 12-bit ROMs an autoscale multiplier can be built with dynamic

range 12N
N−1

bits. Note however, that this scaling technique is most attractive

for systems with 3 moduli as the effective dynamic range decreases with

increased number of moduli. For example when N = 3, the system using

12-bit ROMs has an effective dynamic range of 18 bits; however the effective

dynamic range is only 14 bits when N = 7.

This scaling algorithm works with an arbitrary value of M and requires

only O(N) LUTs and 1 LUC. This remarkably low latency is achieved at the

cost of limited dynamic range. Also note that the scaling is not completed
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entirely within the RNS: the difference of residues from adjacent channels is

required to address the LUTs.

Scaling using Estimation

Recall the Chinese Remainder Theorem (CRT) introduced in Section 2.1.2

on page 13. The Chinese Remainder Equation (2.1) is re-written here:

X =

〈∑
i

Di〈D−1
i xi〉mi

〉
D

. (2.1)

Also recall the definitions for RNS dynamic range D = m1m2 . . .mN , Di = D
mi

and 〈D−1
i 〉mi

in Section 2.1.1. For the RNS with moduli {m1, . . . , ms}, the

CRT in (2.1) becomes

〈X〉M =

〈
S∑

i=1

Mi〈M−1
i xi〉mi

〉
M

, (4.1)

where Mi = M
mi

and 〈M−1
i 〉mi

is its multiplicative inverse with respect to mi.

Many of the schemes surveyed [Jullien78, Griffin89, Shenoy89a, Barsi95] take

M to be a product of several of the moduli because this permits the rapid

evaluation of 〈X〉M from (4.1).

From Y =
⌊

X
M

⌋
= X−〈X〉M

M
,

yi = 〈Y 〉mi
=

〈
X − 〈X〉M

M

〉
mi

=
〈〈X − 〈X〉M〉mi

× 〈M−1〉mi

〉
mi

, (4.2)

where 〈M−1〉mi
is the multiplicative inverse of M with respect to mi. A

sufficient condition for the existence of 〈M−1〉mi
is that M and mi are co-

prime and M �= 0 [Richman71]. Since M =
S∏

i=1

mi, then 〈M−1〉mi
does not

exist for 1 ≤ i ≤ S. Hence the choice of M as a product of a subset of the

moduli has come at a cost: while Equation (4.2) above can be used to deduce

yi for S + 1 ≤ i ≤ N , a different method must be applied for 1 ≤ i ≤ S.
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In [Jullien78], an estimation algorithm with an absolute error of S+1
2

is

used to derive yi for S + 1 ≤ i ≤ N . The estimated result is

yi =

〈
S∑

j=1

Ai(xj) + Ai(xi)

〉
mi

where Ai(xj) =

〈
D〈D−1

j xj〉
Mmj

〉
mi

. This can be pre-computed and entered into

the LUTs as illustrated in Figure 4.3. For this figure it is assumed that r = 2,

N = 6 and S = 3 such that M =
3∏

i=1

mi. It is possible to see that it takes

�logr(S + 1)� LUCs and (N−S)
⌈

S
r−1

⌉
LUTs to estimate yi for S+1 ≤ i ≤ N .

Finding yi for 1 ≤ i ≤ S is a typical process of base extension (BE), as

introduced in Section 2.1.5. Note that the scaled result Y <
S∏

i=1

mi and can

therefore be uniquely represented by {yS+1, . . . , yN} in the RNS with moduli

{mS+1, . . . , mN}. Base extending this (N − S)-channel representation of Y

back into the original N -channel RNS gives yi for the whole RNS modulus set

1 ≤ i ≤ N . In the scaling scheme in [Jullien78], the BE is accomplished using

a partial MRS conversion in a recursive form, as discussed in Section 2.1.2.

This requires N − S + �logr(N − S)� LUCs and
⌈

(N+S)(N−S−1)
2

⌉
LUTs.

Because the base extension technique to generate yi for 1 ≤ i ≤ S depends

on the values of yi for S + 1 ≤ i ≤ N , it must occur subsequent to the

estimation of these results, rather than in parallel. Therefore, �logr(S+1)�+

N −S�logr(N −S)� = N −S + �logr(N + 1)�+ 1 LUCs are required for the

scaling process, i.e. a time complexity of O(N). A total of (N − S)
⌈

S
r−1

⌉
+⌈

(N+S)(N−S−1)
2

⌉
LUTs are required, i.e. space complexity of O(N2). With

O(N) LUCs and O(N2) LUTs, this scaling scheme is an improvement over

the one using MRS; however the error of up to ±S+1
2

is larger than most other

scaling schemes. Moreover, the base extension method processes numbers of

long word lengths outside of the RNS and this decreases the parallelism

available in the second half of the scaling process.
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Figure 4.3: RNS Scaling using Estimation for Channels S + 1 ≤ i ≤ N
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Scaling using a Decomposition of the CRT

The scaling schemes in [Shenoy89a, Griffin89] and [Aichholzer93] are based

on a decomposition of the CRT. The scheme from [Shenoy89a] achieves the

more remarkable effect in reducing the latency within the scaling process. It

also represents a significant advance towards the goal of performing as much

of the scaling as possible within the RNS. It decreases the required number

of LUTs to O(logr N) by expressing the scaled integer Y as a summation of

terms that can be evaluated in parallel:

Y =

⌊
X

M

⌋
≈

N∑
i=1

f(xi). (4.3)

This equation is typical of residue arithmetic processes that achieve O(logr N)

time complexity. This will be deduced shortly in the last subsection.

Once again the scaling in [Shenoy89a] is performed by a product of some

of the moduli M =
S∏

i=1

mi. Substituting the two CRT equations (2.1) and

(4.1) into Y =
⌊

X
M

⌋
= X−〈X〉M

M
yields

Y =

〈∑N
i=1 Di〈D−1

i xi〉mi

〉
D
−
〈∑S

i=1 Mi〈M−1
i xi〉mi

〉
M

M
. (4.4)

Two parameters, rx and ŕx, are then introduced [Shenoy89b] to reduce the

two large modulo operations, 〈∑i ·〉D and 〈∑i ·〉M , in (4.4). It can be derived

that

Y = ŕx − rx
D

M
+

N∑
i=S+1

Di

M
〈D−1

i xi〉mi
+

S∑
i=1

1

mi

(
D

M
〈D−1

i xi〉mi
− 〈M−1

i xi〉mi
).

(4.5)

By a novel decomposition of the CRT [Shenoy89b], rx and ŕx can be calcu-

lated by constructing 2 redundant channels in the RNS scaler as

rx =

〈
D−1(

N∑
i=1

〈
Di〈D−1

i xi〉mi

〉
mr

− xr)

〉
mr
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and

ŕx =

〈
M−1

〈
S∑

i=1

Mi〈M−1
i xi〉mi

− 〈x́〉ḿr

〉
ḿr

〉
ḿr

,

where mr and ḿr are additional RNS moduli. The channel mr with its

residue xr needs to be maintained during other operations. This is because

the x́ required to deduce ŕx can be obtained through the original residues,

xi, by

x́ = Ml

〈
S∑

i=1

〈M−1
i xi〉mi

Ml

〉
ml

=

〈
S∑

i=1

Mi〈M−1
i xi〉mi

〉
Ml

where ml is chosen to be the modulus among the S moduli such that ml ≥
S. This leads to a maximum error of ±1 in the scaled result [Shenoy89a].

The factors rx and ŕx need only be computed once within the scaling and

can then be broadcast to all of the channels. The output residues yi, can

then be obtained by performing a modulo mi operation on both sides of

Equation (4.5). By implementing the channels in parallel it is possible to

compute yi in O(logr N) LUCs. Figure 4.4 shows the block diagram of one

modulus channel and the two redundant channels of this scaler for the case

r = 2, N = 4 and S = 2.

It is also proved [Shenoy89b] that the sum of xr and x́r is at most log2(NS)

bits long. Hence for the example shown in Figure 4.4, the sum of xr and x́r

is at most 3 bits. Thus, even though r = 2, it is possible to input xr,

x́r and the result of the sum terms into a single ROM in the last look-

up cycle. Note that the size of the two redundant channels increases with

the number of moduli in the RNS system. For example, in the RNS with

modulus set {7, 11, 13, 17, 19, 23}, if S = 3 then the redundant channel width

is log2(NS) ≈ 4.17 bits. Given D = 7436429 ≈ 22.83 bits the redundant

channels represent 18.27% percent of dynamic range.

The total number of look-up tables is
⌈

N2+(r+2)N+r−2
r−1

⌉
which is O(N2).

The major advantage of this scheme is its speed. Scaling by a product
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Figure 4.4: RNS Scaling using a Decomposition of the CRT (two redundant

channels with channel mi)

83



CHAPTER 4. FOUR WAYS TO DO MODULAR MULTIPLICATION IN THE

RESIDUE NUMBER SYSTEM

of several moduli is achieved within �logr(N + 1)� + �logr 3� LUCs which

is O(logr N). However, two extra moduli are employed in two redundant

channels that require extra hardware. This represents a hardware overhead

of logD(NS) percent (typically > 10%). Moreover, the channel mr should

be maintained in other RNS operations such that the modulus set become

{m1, . . . , mN ,mr}.

Scaling using Parallel Base Extension

The scaling scheme shown in Figure 4.3 takes a product of some moduli

as the scaling factor M and uses MRS to base extend {yS+1, . . . , yN} to

{m1, . . . , mS}. The scaling scheme in [Barsi95] uses the same form of M but

this time a base extension is used to generate all of the yi. The simplicity

of this scaling scheme is due to the innovation of a parallel base extension

technique. One of the significant goals of the authors was to perform scal-

ing without the two redundant channels required by the scheme shown in

Figure 4.4 and without increasing the latency and hardware overhead.

Scaling by M =
S∏

i=1

mi can be achieved with two base extension steps.

Firstly the representation of 〈X〉M in {x1, x2, . . . , xS} is base extended to

the moduli {mS+1,mS+2, . . . , mN} to obtain a representation of 〈X〉M in the

whole dynamic range [0, M). In the base extension scheme of [Barsi95] this

costs O(logr S) LUCs. One can then use:

Y =

⌊
X

M

⌋
=

X − 〈X〉M
M

=

〈
X − 〈X〉M

M

〉
D
M

=
〈〈

M−1
〉

D
M

(〈X〉 D
M
− 〈〈X〉M〉 D

M
)
〉

D
M

to deduce {yS+1, yS+2, . . . , yN}. This requires one LUC and N − S LUTs.

Finally one can base extend this result back to {y1, y2, . . . , yS} to obtain the

final representation of y. This base extension takes O(logr(N − S)) LUCs.
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The entire scaling process requires O(logr S)+O(logr(N−S))+1 ≈ O(logr N)

LUCs and is shown in Figure 4.5 where the BE blocks perform base extensions

using the hardware structure described in [Barsi95]. A total of O(N2) LUTs

are required.

...

1
x Sx Nx

BES+1

…… ……

BEN

1�Sx

LUTLUT

……

BE1 BES……

Sy
1

y

……

1�Sy Ny

……

...

Figure 4.5: RNS Scaling using Parallel Base Extension (BE) Blocks

Note that another two publications [Ulman98] and [Garcia99] take al-

ternative approaches to this same problem but both of them involve larger

LUTs. The latter replaces the base extension blocks with large LUTs with

up to S + 1 inputs. For a RNS with more than 3 5-bit channels, such large

LUTs are not available and hence the scheme is only viable in some specific

cases as stated in [Garcia99].
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…… ……

…… ………… …… …… ……

LUTs to generate yi

1
y iy Ny

ix
1

x Nx

LUTs to generate yNLUTs to generate y1

Figure 4.6: Parallel Architecture to Perform Y =
⌊

X
M

⌋ ≈∑N
i=1 f(xi).

The Time Complexity of O(logr N)

A ROM network to perform (4.3)

Y =

⌊
X

M

⌋
≈

N∑
i=1

f(xi) (4.3)

is shown in Figure 4.6. A more detailed diagram appears in Figure 4.7. This

is a typical architecture of residue arithmetic processes that achieve O(logr N)

time complexity. Many scaling schemes [Shenoy89a, Barsi95, Garcia99, Posch95,

Ulman98, Aichholzer93] can be implemented with this structure. In this

subsection, the time complexity of residue arithmetic structures following

Equation (4.3) is derived.

Suppose each available LUT can accept only r inputs at most while gen-

erating only one output as discussed in Section 4.1.1 above. Then, each

channel of the parallel scaling structure in Figure 4.6 can be drawn as a tree

as in Figure 4.7, where it is assumed that there are N input residues and l

look-up cycles are consumed to accomplish the scaling in channel i.

In the first cycle, the number of LUTs is �N/r�. Thus, there are �N/r�
input residues to the LUTs in the second cycle, where the number of LUTs

will be ��N/r�/r�. This proceeds recursively until only one LUT is needed,

i.e. �. . . ��N/r�/r� . . . /r� = 1 as illustrated in Figure 4.7. Using the result

from Number Theory [Richman71], �N/r2� = ��N/r�/r�, gives the number
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Memories with Addressing Capacity = r.
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of LUTs as �N/r� in the first cycle, �N/r2� in the second and so on, until the

last cycle, where �. . . ��N/r�/r� . . . /r� = �N/rl� = 1. Then from N/rl ≤
�N/rl� = 1, we have, N/rl ≤ 1 ⇒ l ≥ logr N .

If 0 < N/rl−1 ≤ 1, then �N/rl−1� = 1. This means only l − 1 cycles are

needed and this contradicts our original assumption that l cycles are required.

Therefore, N/rl−1 > 1 ⇒ l < logr N +1 and logr N ≤ l < logr N +1, so that

l = �logr N�.

This represents the exact time complexity of the i-th channel of the residue

arithmetic process shown in Figure 4.7. Because all N channels run in par-

allel, �logr N� is also the exact time complexity of the scaling scheme con-

structed using r-input LUTs.

It can also be proved that the exact space complexity of each channel is⌈
N−1
r−1

⌉
and so the exact space complexity of the whole arithmetic process is

N
⌈

N−1
r−1

⌉
, which is at the level of O(N2).

4.1.3 A New RNS Scaling Scheme using Look-Up Ta-

bles

This section presents a new RNS short word length scaling scheme using

LUTs. For those schemes surveyed in Section 4.1.2, O(logr N) and O(N2)

are the lowest time and hardware complexity respectively. Furthermore, the

scaling factor M is usually chosen to be a product of some of the moduli

M =
S∏

i=1

mi. This scheme decreases hardware complexity to O(N) without

affecting time complexity. Also, it allows M to be any number co-prime to

the RNS moduli.
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The New Scaling Scheme

Consider Equation (4.2)

yi =
〈〈X − 〈X〉M〉mi

× 〈M−1〉mi

〉
mi

.

This is equivalent to

yi =
〈〈xi − 〈X〉M〉mi

× 〈M−1〉mi

〉
mi

. (4.6)

Because M is co-prime with all mi, 〈M−1〉mi
always exists and (4.6) can be

used to evaluate yi in every channel. For a constant M , 〈M−1〉mi
can be pre-

computed and stored in a LUT. Note that [Meyer-Bäse03] presents a similar

scheme by fixing M = 2.

The first step in this scheme is to evaluate 〈X〉M from the RNS repre-

sentation of X, i.e. {x1, x2, . . . , xN}. This again is a typical base extension

problem as long as M is not too large. The base extension approach in

[Barsi95] can then be used.

As there are only two inputs to (4.6), xi and 〈X〉M , (4.6) can be im-

plemented using a single LUT for each output residue yi provided the word

length of M is at most (r − 1) times the RNS channel width w. In this case

the scaling step only uses 1 LUC and N LUTs.

For example, if r = 3 and the channel width is w = 5 bits, the addressing

capacity of each LUT is 23×5 × 5 = 32K × 5 bits. In this case M can be

as large as (r − 1) × 5 = 10 bits. M can be made larger if a larger LUT

is used or several LUTs are concatenated to allow more addressing capacity.

In the example above, if the largest available LUT is 512K = 64K × 8, i.e.

2M+5 ≤ 64K, then the scaling factor M can be as large as log2 64+10−5 = 11

bits.

The scaling scheme is illustrated in Figure 4.8. The base extension block
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costs O(logr N) LUCs and O(N) LUTs, and the scaling step consumes 1

LUC and N LUTs. Thus the time complexity of this new scaling process is

O(logr N) + 1 = O(logr N) and the space complexity is O(N) + N = O(N).

The latter is an improvement for the scaling problem in RNS using LUTs

since all other methods incur a hardware cost of O(N2). The main reason

is they need O(N) LUTs to scale in one channel. When scaling over N

channels, their space complexities become O(N2).

More specifically, suppose the base extension block in Figure 4.5 is used,

which has an exact time complexity of logr N + 2 and an exact space com-

plexity of 2
⌈

N−1
r−1

⌉
+4. The exact time complexity of this new scaling process

is logr N + 3 and the exact space complexity is 2
⌈

N−1
r−1

⌉
+ N + 4.

……

……

……

1
x

LUTs for

base extension

2
x

1
x Nx

LUT

K
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2
x

LUT LUT

Nx

1
y

2
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Figure 4.8: A New Architecture to Perform Short Word length Scaling in

RNS

An Example

As an example, consider the RNS moduli m1 = 23, m2 = 25, m3 = 27, m4 =

29 and m5 = 31, and suppose the integer X = 578321 = {9, 21, 8, 3, 16} is to

be scaled by M = 1039. 〈M−1〉mi
has been pre-computed as {6, 9, 25, 23, 2}
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for 1 ≤ i ≤ 5. Base extend X to M to compute 〈X〉M = 637. Then, according

to (4.6), the scaled residues are computed as y1 = 〈〈9 − 637〉23 × 6〉23 =

4, y2 = 〈〈21 − 637〉25 × 9〉25 = 6, y3 = 〈〈8 − 637〉27 × 25〉27 = 16, y4 =

〈〈3 − 637〉29 × 23〉29 = 5, and y5 = 〈〈16 − 637〉31 × 2〉31 = 29. Thus, Y =

{4, 6, 16, 5, 29} = 556 =
⌊

578321
1039

⌋
. Note that in this example all operations

can be performed using 64K × 8 bit LUTs.

Evaluation

Table 4.1 shows a comparison between the 5 surveyed scaling schemes with

the new one.

Note that none of these schemes can be used for modular multiplication

of over 1024 bits because their LUT implementations are not suitable for

the RNS with long dynamic ranges and wide channel widths. Long word

length modular multiplication is discussed in more detail in the following 4

sections.
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Table 4.1: A Comparison of 6 Short Word length RNS Scaling Schemes using

LUTs
Scaling Scaling LUCs LUTs Limitation

scheme factor M

Scaling using Any integer

MRS conversion within [0, D) O(N) O(N2) High overhead

[Szabo67]

3 modulus Any integer Narrow D;

scaling within [0, D) 1 O(N) only suitable

[Taylor82] for 3 moduli

Scaling using A product Large error of S+1
2

;

estimation of some O(N) O(N2) high complexity

[Jullien78] moduli generating yi

for 1 ≤ i ≤ S

Scaling using a A product Two redundant

decomposition of some O(logr N) O(N2) channels;

of the CRT moduli one to be

[Shenoy89a] maintained

Scaling using A product High overhead

parallel base of some O(logr N) O(N2) in some

extension moduli rare cases

[Barsi95]

Any integer Low hardware

The new < (r − 1)w O(logr N) O(N) complexity;

scaling and co-prime dependent on

to mi base extension
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4.2 RNS Classical Modular Multiplication

This section describes a Classical algorithm for modular multiplication in

the Residue Number System. Recall the Classical modular multiplication

algorithm for modular multiplication in a positional system introduced in

Section 3.1.1. In the Classical algorithm, the modular reduction is performed

by subtracting a multiple of the modulus from the current partial product, as

in Algorithm 3.4. Typically X mod M = X−Y ×M is evaluated following a

step called quotient digit selection to decide the multiple Y =
⌊

X
M

⌋
. Quotient

digit selection involves a comparison between the magnitudes of X and M .

Thus a way is sought to quickly determine the relative magnitudes of RNS

numbers. This is not easy in a RNS. The solution developed here uses the

Core Function [Akushskii77, Miller83] for this purpose.

Existing RNS algorithms using the Core Function for scaling and conver-

sion between RNS and positional systems can be found in [Burgess97] and

[Burgess03]. Their drawback is that they do not support sufficiently long

word lengths for public-key cryptography.

4.2.1 The Core Function

The Core C(X)

The core function [Gonnella91] for a RNS {m1,m2, . . . , mN} is defined for

an integer X as

C(X) =
∑

i

wi

⌊
X

mi

⌋
=
∑

i

(X − xi)
wi

mi

= X
∑

i

wi

mi

−
∑

i

xiwi

mi

(4.7)

where xi is the channel residue of X mod mi. The wis are arbitrary con-

stants known as the channel weights. Setting X = D, where D is the dynamic
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range of the RNS, in (4.7) gives

C(D) =
∑

i

wi

⌊
D

mi

⌋
=
∑

i

wi
D

mi

= D
∑

i

wi

mi

. (4.8)

Hence,
C(D)

D
=
∑

i

wi

mi

. (4.9)

Substituting (4.9) into (4.7) gives

C(X) =
XC(D)

D
−
∑

i

xiwi

mi

. (4.10)

This is the commonly used form of the core function. It shows a nearly

linear plot of C(X) against X with a slope C(D)
D

and some noise due to the

summation term
∑

i
xiwi

mi
[Soderstrand86], as illustrated in Figure 4.9 from

[Burgess03]. Therefore, C(X) could be used as a rough representation of

the magnitude of X, as required for a classical modular reduction algorithm.

The magnitude of the noise depends on the magnitudes of the weights wi

and the specific value of C(D) for a given RNS [Burgess97].

Let Mag(X) = XC(D)
D

and Noise(X) =
∑

i
xiwi

mi
, then (4.10) becomes

Mag(X) = C(X) + Noise(X). (4.11)

Therefore,
C(X)

C(M)
≈ Mag(X)

Mag(M)
=

X

M
. (4.12)

The Chinese Remainder Theorem for a Core Function

In this subsection, let us derive the Chinese Remainder Theorem for a Core

Function, as in [Soderstrand86]. From (4.8), we have

C(D) =
∑

i

wi
D

mi

=
∑

i

Diwi. (4.13)
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Figure 4.9: A Typical Core Function C(X): D = 30030; C(D) = 165

A modular reduction, with respect to mj, of both sides of this equation yields

〈C(D)〉mj
=

〈∑
i

Diwi

〉
mj

= 〈Djwj〉mj
.

Then,

wj =
〈
C(D)D−1

j

〉
mj

. (4.14)

Hence, the weights can be decided once C(D) has been chosen so long as

Equation (4.13) is satisfied. This implies that some of the weights must be

negative to ensure C(D) � D.

Again recall the Chinese Remainder Theorem (CRT) introduced in Sec-
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tion 2.1.2 on page 13. The Chinese Remainder Equation (2.1) gives

X =

〈∑
i

Di〈D−1
i xi〉mi

〉
D

, (2.1)

where D, Di and 〈D−1
i 〉mi

are pre-computed constants. Let σi = Di〈D−1
i 〉mi

,

which can also be pre-computed, so that the CRT equation becomes

X =

〈∑
i

σixi

〉
D

=
∑

i

σixi − αD, (4.15)

where α is an unknown integer. Substituting (4.15) into the basic core func-

tion (4.10) yields

C(X) =
C(D)

D
(
∑

i

σixi − αD) −
∑

i

xiwi

mi

=
∑

i

xi(
σiC(D)

D
− wi

mi

) − αC(D).

Setting X = σi = Di〈D−1
i 〉mi

in (4.10),

C(σi) =
σiC(D)

D
−
∑

j

〈DiD
−1
i 〉mj

wj

mj

=
σiC(D)

D
− wi

mi

=
D−1

i C(D) − wi

mi

. (4.16)

Therefore,

C(X) =
∑

i

xiC(σi) − αC(D).

Then we have the Chinese Remainder Theorem for a core function as

〈C(X)〉C(D) =

〈∑
i

xiC(σi)

〉
C(D)

, (4.17)

where C(σi) can be pre-computed using (4.16).

96



4.2. RNS CLASSICAL MODULAR MULTIPLICATION

An example should make things clearer. Consider a RNS {17, 19, 23,

25, 27, 29, 31}, giving D = 4508102925 and 〈D−1
i 〉mi

= {1, 15, 13, 3, 8, 4, 1}.
Choose C(D) = 28 = 256. Then, from (4.14), the weights are found as

w1 = 〈256 × 1〉17 = 1 or − 16

w2 = 〈256 × 15〉19 = 2 or − 17

w3 = 〈256 × 13〉23 = 16 or − 7

w4 = 〈256 × 3〉25 = 18 or − 7

w5 = 〈256 × 8〉27 = 3 or − 4

w6 = 〈256 × 4〉29 = 9 or − 20

w7 = 〈256 × 1〉31 = 8 or − 23

In order to minimize the noise in the core function, weights with small mag-

nitudes should be chosen. In this example, the weight set is selected as

wi = {1, 2,−7,−7,−4, 9, 8}. For w5, -4 is selected rather than 3 because

w5 needs to be negative to offset the positive magnitude of the sum of the

other 6 weights. The legitimacy of these weights can be checked against

Equation (4.13):

C(D) = 1 × 265182525 + 2 × 237268575 − 7 × 196004475 − 7 × 180324117

−4 × 166966775 + 9 × 155451825 + 8 × 145422675

= 256,

as required.

4.2.2 A Classical Modular Multiplication Algorithm in

RNS using the Core Function

This section presents a new algorithm for modular multiplication in RNS

using the Core Function. Following an efficient RNS multiplication X =
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A×B, the RNS modular reduction is to compute X mod M = X −Y ×M ,

where

Y =

⌊
X

M

⌋
=

⌊
Mag(X)

Mag(M)

⌋
(4.18)

as Mag(X) = XC(D)
D

and Mag(M) = MC(D)
D

. An algorithm implementing this

depends on the efficiency of computing Mag(X) using (4.11) as Mag(M) can

be pre-computed. Note that for a modular reduction the algorithm does not

have to produce the exact Y . The result will satisfy X mod M ≡ X−Y ×M

and for many applications it is sufficient that the word length of the result

is consistent from each round of modular multiplication.

The advantage of the core function lies in the fact that a number C(X),

computed through Equation (4.17), is used to approximate the scaled magni-

tude of X, Mag(X), as shown in (4.12). Therefore, Y =
⌊

Mag(X)
Mag(M)

⌋
≈
⌊

C(X)
C(M)

⌋
is always used in previously published RNS scaling techniques using core

functions. However, there are two unsolved problems as stated below.

Two Problems with the Core Function used in RNS Modular Re-

duction

First, because C(X) has to be large enough to minimize the error incurred

by the noise term in (4.11), it has to be very large for a long word length

X as used in public-key cryptosystems. Second, the modular reduction

〈C(X)〉C(D) has to be performed in (4.17). This is hard to do in a RNS. These

are the reasons why most of the previously published techniques for RNS scal-

ing using the core function [Burgess97, Burgess03, Miller83, Soderstrand86]

are difficult to apply to long word length operations. The following work gives

a Classical Modular Reduction Algorithm for RNS using the Core Function

which addresses these two problems.

First, both terms, C(X) and Noise(X), are computed in the algorithm
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instead of the former only, namely, Y =
⌊

Mag(X)
Mag(M)

⌋
≈
⌊

C(X)+Noise(X)
Mag(M)

⌋
. This

requires an efficient algorithm to find Noise(X). A suitable algorithm for

this is described later. The advantage of this approach is that C(X) does

not need to be very large as Mag(X) can be accurately derived. Also, C(D)

can be selected to be a power of 2 so that 〈C(X)〉C(D) can be computed

efficiently outside the RNS.

Pre-Computations

Let C(D) = 2h < M , then Equation (4.16) becomes C(σi) =
2hD−1

i −wi

mi
.

Both C(σi) and Mag(M) = 2hM
D

can be pre-computed. As in [Miller83],

the dynamic range D of the RNS is selected to satisfy
√

D > M and then

Mag(M) = 2hM
D

< 1. Therefore,
⌊

1
Mag(M)

⌋
has to be pre-computed instead

of Mag(M). Then Equation (4.18) becomes

Y =

⌊
X

M

⌋
=

⌊
Mag(X)

Mag(M)

⌋
≈ �Mag(X)� ×

⌊
1

Mag(M)

⌋
. (4.19)

This will give Y a small error of
⌈
Mag(X) + 1

Mag(M)

⌉
at most. This means

that the final result from (4.19) may, on occasion, be too great by several

factors of M . In an implementation of RSA cryptography, for example, this

error can be carried through a long series of modular multiplications and

only corrected at the end. In this case the user must ensure that the dynamic

range of the RNS, D, is sufficiently large to hold intermediate values without

overflow. Typically this incurs a cost of a few extra RNS channels.

Although
⌊

1
Mag(M)

⌋
is pre-computed, unfortunately sometimes Mag(X) =

2hX
D

< 1, which makes �Mag(X)� = 0. A scaling factor L is needed to increase

Mag(X) so that Equation (4.19) becomes

Y =

⌊
X

M

⌋
=

⌊
L × Mag(X)

L × Mag(M)

⌋
≈ �L × Mag(X)� ×

⌊
1

L × Mag(M)

⌋
, (4.20)
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where L is an integer such that L×Mag(X) > 1 and L×Mag(M) < 1. This

makes both �L × Mag(X)� > 0 and
⌊

1
L×Mag(M)

⌋
> 0. Here L is the least pos-

sible integer such that L×Mag(X) > 1 and for the convenience of computa-

tion, L = 2l is chosen, where l is the number of “0”s in front of the first non-

zero fractional bit of Mag(X). Using the example on page 97, suppose the

modulus M = 32767 and the pre-computed Mag(M) = 2hM
D

= 0.0021367 =

(0.00000000100011)2. Mag(X) = 0.0326 = (0.00001000010110)2 gives l =

5 and L = 25 as 25 × (0.00001000010110)2 = (1.000010110)2 > 1 and

25 × (0.00000000100011)2 = (0.000100011)2 < 1. 5 is selected instead of

7 or 8 is because the smaller the L × Mag(M), the larger the 1
L×Mag(M)

and the less error
⌊

1
L×Mag(M)

⌋
incurs. For example,

⌊
Mag(X)
Mag(M)

⌋
=
⌊

0.0326
0.0021367

⌋
=⌊

(0.00001000010110)2
(0.00000000100011)2

⌋
= 15. �25 × (0.00001000010110)2�×

⌊
1

25×(0.00000000100011)2

⌋
=

1×14 = 14 and �28 × (0.00001000010110)2�×
⌊

1
28×(0.00000000100011)2

⌋
= 8×1 =

8.

During the pre-computation, the possible values of L are not known when

Mag(M) = (0.00000000100011)2 is calculated. Therefore,
⌊

1
2l×Mag(M)

⌋
is pre-

computed for l = 1, 2, . . . , 8 and the correct value will be selected once l is

found during the actual computation process.

The required pre-computations are:

• 〈D−1
i 〉mi

for each RNS channel.

• wi for each RNS channel.

• C(D) = 2h.

• C(σi) =
2hD−1

i −wi

mi
in binary.

• −
⌊

1
Mag(M)

⌋
× M in the RNS.

• −
⌊

1
2l×Mag(M)

⌋
× M for l = 1 . . . h in the RNS.
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Core Computation

Equation (4.17) becomes C(X) = 〈∑i xiC(σi)〉2h after setting C(D) = 2h.

Then C(X) = 〈∑i〈xiC(σi)〉2h〉2h is used to compute C(X). The inner

multiplication 〈xiC(σi)〉2h is actually a sum of w h-bit numbers as xi is

bounded by the channel width w bits. This is because only the least sig-

nificant h bits of each partial product generated during this multiplication

need to be kept, as shown within the dotted rectangle in Figure 4.10. These

trimmed partial products can be easily obtained by discarding the top j bits

of C(σi) and adding j “0”s to its end if the j-th bit of xi is 1. For exam-

ple, if h = 8, C(σi) = 202 = (11001010)2 and xi = 18 = (10010)2, then

〈xiC(σi)〉2h = (10010100)2 + (10100000)2 because xi has “1”s at the 1st and

4th bits respectively.

These w h-bit partial products can be summed in O(log w) complexity

using an h-bit tree [Wallace64, Dadda65]. Such a basic tree [Weinberger81,

Santoro89, Ohkubo95, Itoh01] is normally composed of a few h-bit Carry Save

Adders (as described in Section 3.2 on page 37) followed by a h-bit Carry

Propagate Adder [Weinberger58]. Note that it is only necessary to keep the

h least significant bits while dropping any carry-outs above the h − 1-th bit

because of the reduction modulo 2h to follow. Compared with array adders

[Baugh73, Hatamian86, Sutherland99, Weste04], these trees achieve higher

speed at the price of irregular layout and some long interconnect wires during

implementation. Various hybrid structures have also been proposed that

offer tradeoffs between these two extremes [Zuras86, Hennessy90, Mou90,

Dhanesha95, Weste04]. They can achieve nearly as few levels of logic as the

Wallace tree while offering more regular wiring.

The rest of the work is to perform the consecutive modular addition〈∑N
i=1 •

〉
2h

. Once again the addition tree method can be used to arrive at
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... ...

... ...

... ...

... ...

... ... }
}

w partial products

h bits

Figure 4.10: The h Least Significant Bits to be Maintained during the Mod-

ular Multiplication 〈xiC(σi)〉2h

a low complexity of O(log N), where N is the number of RNS channels.

Noise Computation

Noise(X) =
∑

i
xiwi

mi
is to be computed at the same time as the core compu-

tation. This seems to be hard as it involves division, which is much harder

than the multiplication within a RNS channel. However, note that wi

mi
can

be pre-computed, and so this is actually a RNS channel multiplication with

errors incurred by the inaccuracy of wi

mi
. The following paragraphs describe a

simple way to do this multiplication by examining the precision of the noise.

Let fi = xiwi

mi
, then Noise(X) =

∑N
i=1 fi. Each fi is truncated or rounded

up to maintain the precision needed, as it is not an integer. Here rounding fi

towards −∞ is chosen, for example, 2.568 → 2.5, 27.66 → 27.6, −1.210 →
−1.3, etc. Define fi = main(fi) + trivial(fi), where main(fi) is the rounded

result, i.e. 2.5, 27.6 and -1.3 respectively in the 3 cases above; trivial(fi) is the

part of value discarded from fi, i.e. 0.068, 0.06 and 0.090 in the cases. Note

that trivial(fi) is always positive. Then, Noise(X) =
∑

i fi =
∑

i(main(fi)+
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trivial(fi)) =
∑

i main(fi) +
∑

i trivial(fi). Thus, Noise(X)−∑i main(fi) =∑
i trivial(fi) > 0, is the error of main(fi) as an estimate to the noise.

If
∑

i trivial(fi) < 1, then 0 < Noise(X) −∑i main(fi) < 1. Hence,

�Noise(X)� = �∑i main(fi)� or �∑i main(fi)�+1. This implies the �Mag(X)�
needed in (4.19) has an error of at most 1 because from (4.11), �Mag(X)� =

�C(X)+Noise(X)� and C(X) is an integer. One way to achieve
∑N

i=1 trivial(fi)

< 1 is to ensure each trivial(fi) is less than 1/N , where N is the num-

ber of RNS modulus channels. In the example on page 97, N = 7 and

1/N = 0.142857. Thus keeping �log10 N� = 1 fractional digit in main(fi) will

make trivial(fi) < 0.1 < 1/7, and hence �Noise(X)� = �∑i main(fi)�. Simi-

larly in binary, �log2 N� = 3 fractional bits in main(fi) will make trivial(fi) <

(0.001)2 < (0.001001 . . . )2 = 1/7.

In fact, to keep xi × wi

mi
a fast short word length multiplication, only

w + �log2 N� + 1 bits of the pre-computed wi

mi
are stored. This is because

xi is w bits long and can increase the inaccuracy by at most w times. Now

the estimate to wi

mi
is only �log2 N� + 1 bits more than the channel width w

and xi × wi

mi
is only a short multiplication. Therefore, the noise computation,

Noise(X) =
∑

i
xiwi

mi
, is expected to have only a similar delay to a RNS

channel modular multiplication.

Again take the RNS with 7 channels of 5-bit width as in the example on

page 97. 5 + �log2 7� + 1 = 9 fractional bits of wi

mi
are to be kept. Hence

14-bit xiwi

mi
and Noise(X) =

∑7
i=1

xiwi

mi
add up to 14 + �log2 7� = 17 bits with

8 integer bits all exact and 3 out of 9 fractional bits exact. This is why the

xiwi

mi
values are kept to 4 decimal fractional digits in the examples in Table 4.3

and Table 4.4 shown on page 107 and 108, respectively.
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The Algorithm

The Classical Modular Reduction Algorithm in RNS using the Core Function

is shown in Algorithm 4.1.

Algorithm 4.1 The Classical Modular Reduction Algorithm in RNS using

the Core Function
Require: M,N, h, {m1, . . . ,mN} as described above.

Require: pre-computed values C(D) = 2h

Require: pre-computed tables 〈D−1
i 〉mi

, wi

mi
, C(σi) =

2hD−1
i −wi

mi
,〈

−
⌊

1
Mag(M)

⌋
× M

〉
mi

for i = 1 . . . N and
〈
−
⌊

1
2l×Mag(M)

⌋
× M

〉
mi

for

i = 1 . . . N and l = 1 . . . h

Ensure: Z ≡ A × B mod M

1: X = A × B {1 RNS multiplication in N channels}
2: C(X) =

〈∑N
i=1〈xiC(σi)〉2h

〉
2h

| Noise(X) =
∑N

i=1
xiwi

mi
{Two parallel

computations with Core using fast tree structure and Noise equivalent to

1 RNS channel multiplication}
3: �Mag(X)� = �C(X) + Noise(X)�
4: if �Mag(X)� ≥ 1 then

5: 〈�Mag(X)�〉mi
for i = 1 . . . N {Convert �Mag(X)� to its residue rep-

resentation}
6: Z = X + �Mag(X)� × (−

⌊
1

Mag(M)

⌋
× M) {1 RNS multiplication and

1 RNS addition in N channels}
7: else

8: Choose l so that �2l × Mag(X)� = 1

9: Z = X + (−
⌊

1
2l×Mag(M)

⌋
× M) {1 RNS multiplication and 1 RNS

addition in N channels}
10: end if
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4.2.3 Examples

To provide some examples of the new algorithm, consider once again the RNS

modulus set {17, 19, 23, 25, 27, 29, 31} with dynamic range D = 4508102925,

M = 37627, 〈D−1
i 〉mi

= {1, 15, 13, 3, 8, 4, 1}, C(D) = 28 = 256, and the

weight set wi = {1, 2,−7,−7,−4, 9, 8}. Table 4.2 lists the pre-computed pa-

rameters. To demonstrate the process for �Mag(X)� ≥ 1, take A = 65537

and B = 65535. The calculation of Z = A × B mod M = 65537 ×
65535 mod 37627 = 33380 using Algorithm 4.1 is listed in Table 4.3. This

gives Z = {2, 18, 0, 22, 21, 8, 22} = 15874347 ≡ 33380 mod 37627. For

the case of �Mag(X)� ≤ 1, suppose A = 167 and B = 3463, then Z =

167 × 3463 mod 37627 = 13916 is listed in Table 4.4. This gives Z =

{16, 15, 0, 18, 0, 10, 21} = 51543 ≡ 13916 mod 37627.
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Table 4.2: An Example of Pre-Computed Parameters for the Classical Mod-

ular Reduction Algorithm in RNS using the Core Function

N 7

D 4508102925 (33 bits)

h 8

C(D) 28 = 256

M 37627 (16 bits)

Mag(M) 0.002136710754 = (0.00000000100011)2

i 1 2 3 4 5 6 7

mi 17 19 23 25 27 29 31

〈D−1
i 〉mi

1 15 13 3 8 4 1

wi 1 2 -7 -7 -4 9 8

C(σi) =
2hD−1

i −wi

mi
15 202 145 31 76 35 8

−
⌊

1
Mag(M)

⌋
× M 14 11 8 14 18 2 21

l = 1 7 15 4 7 9 1 26

l = 2 12 17 2 16 18 15 13

l = 3 9 12 12 9 17 0 3

−
⌊

1
2l×Mag(M)

⌋
× M l = 4 13 6 6 17 22 0 17

l = 5 1 16 14 22 19 7 5

l = 6 9 8 7 11 23 18 18

l = 7 16 17 3 19 6 16 21

l = 8 11 12 1 23 11 15 7

106



4.2. RNS CLASSICAL MODULAR MULTIPLICATION

T
ab

le
4.

3:
A

n
E

x
am

p
le

of
th

e
C

la
ss

ic
al

M
o
d
u
la

r
R

ed
u
ct

io
n

A
lg

or
it

h
m

in
R

N
S

u
si

n
g

th
e

C
or

e
F
u
n
ct

io
n

fo
r

a
ca

se

in
w

h
ic

h
�M

ag
(X

)�
≥

1

i
1

2
3

4
5

6
7

A
2

6
10

12
8

26
3

B
0

4
8

10
6

24
1

X
=

A
×

B
0

5
11

20
21

15
3

〈x
iC

(σ
i)
〉 2h

0
24

2
59

10
8

60
13

24

C
(X

)
=

〈∑ i
x

iC
(σ

i)
〉 2h

25
0

x
i
w

i

m
i

0.
00

00
0.

52
63

-3
.3

47
9

-5
.6

00
0

-3
.1

11
2

4.
65

51
0.

77
41

N
oi

se
(X

)
=
∑ i

x
i
w

i

m
i

-6
.1

03
6

M
ag

(X
)

=
C

(X
)
+

N
oi

se
(X

)
24

3.
89

64
>

1

�M
ag

(X
)�

24
3

Z
=

X
+
�M

ag
(X

)�×
(−
⌊

1
M

a
g
(M

)

⌋ ×
M

)
2

18
0

22
21

8
22

107



CHAPTER 4. FOUR WAYS TO DO MODULAR MULTIPLICATION IN THE

RESIDUE NUMBER SYSTEM

T
ab

le
4.

4:
A

n
E

x
am

p
le

of
th

e
C

la
ss

ic
al

M
o
d
u
la

r
R

ed
u
ct

io
n

A
lg

or
it

h
m

in
R

N
S

u
si

n
g

th
e

C
or

e
F
u
n
ct

io
n

fo
r

a
ca

se

in
w

h
ic

h
�M

ag
(X

)�
<

1

i
1

2
3

4
5

6
7

A
14

15
6

17
5

22
12

B
12

5
13

13
7

12
22

X
=

A
×

B
15

18
9

21
8

3
16

〈x
iC

(σ
i)
〉 2h

22
5

52
25

13
9

96
10

5
12

8

C
(X

)
=

〈∑ i
x

iC
(σ

i)
〉 2h

2
x

i
w

i

m
i

0.
88

23
1.

89
47

-2
.7

39
2

-5
.8

80
0

-1
.1

85
2

0.
93

10
4.

12
90

N
oi

se
(X

)
=
∑ i

x
i
w

i

m
i

-1
.9

67
4

M
ag

(X
)

=
C

(X
)
+

N
oi

se
(X

)
0.

03
26

=
(0

.0
00

01
00

00
10

11
0)

2
<

1

C
h
o
os

e
l

5

L
=

2l
25

C
h
o
os

e
−
⌊

1
2

l ×
M

a
g
(M

)

⌋ ×
M

1
16

14
22

19
7

5

Z
=

X
+

(−
⌊

1
2

l ×
M

a
g
(M

)

⌋ ×
M

)
16

15
0

18
0

10
21

108



4.3. RNS SUM OF RESIDUES MODULAR MULTIPLICATION

4.3 RNS Sum of Residues Modular Multipli-

cation

Recall the Sum of Residues modular reduction algorithm in Section 3.2. X

is reduced modulo M by finding a sum of residues modulo M [Findlay90,

Tomlinson89]. If X =
∑

i xi then
∑

i〈xi〉M ≡ X mod M is obtained. Al-

though this does not produce a fully reduced result, it is possible to determine

bounds for intermediate values such that the output from one modular mul-

tiplication can be used as the input to subsequent modular multiplications

without overflow. This section uses this sum of residues method for modular

multiplication in the RNS, with the advantage that all of the residues 〈xi〉M
can be evaluated in parallel.

4.3.1 Sum of Residues Reduction in the RNS

To derive a RNS algorithm for sum of residues reduction, we start again with

the Chinese Remainder Theorem (CRT). Using the CRT, an integer X can

be expressed as

X =

〈∑
i

Di〈D−1
i xi〉mi

〉
D

, (2.1)

where D, Di and 〈D−1
i 〉mi

are pre-computed constants. Defining γi = 〈D−1
i xi〉mi

in (2.1) yields

X =

〈
N∑

i=1

γiDi

〉
D

=
N∑

i=1

γiDi − αD. (4.21)

Actually Equation (4.21) has already appeared in a different style as Equa-

tion (4.15) in Section 4.2.1 on page 96. The difference is it was used then for

109



CHAPTER 4. FOUR WAYS TO DO MODULAR MULTIPLICATION IN THE

RESIDUE NUMBER SYSTEM

core function to form a classical RNS algorithm while here it gives rise to a

RNS modular reduction algorithm using a sum of residues. Reducing (4.21)

modulo M yields

Z =
N∑

i=1

γi〈Di〉M − 〈αD〉M (4.22)

=
N∑

i=1

Zi − 〈αD〉M
≡ X mod M

for Zi = γi〈Di〉M . Thus X can be reduced modulo M using a sum of the

residues Zi and a correction factor 〈αD〉M .

Note that γi = 〈D−1
i xi〉mi

can be found using a single RNS multiplication

in channel i as 〈D−1
i 〉mi

is just a pre-computed constant. All N γis can be

produced simultaneously in their respective channels in the time of a single

RNS multiplication. Similarly, only one RNS multiplication is needed for

Zi = γi〈Di〉M as 〈〈Di〉M〉mi
can be pre-computed.

4.3.2 Approximation of α

Now α becomes the only value yet to be found. In this section, let us deduce

the solution provided by [Kawamura00] in a different perspective and try to

improve it by decomposing its approximations. This is the first improvement

over [Kawamura00] and gives more accuracy by permitting exact γi.

Dividing both sides of (4.21) by D yields

α +
X

D
=

∑N
i=1 γiDi

D
=

N∑
i=1

γi

mi

. (4.23)

Since 0 ≤ X/D < 1, α ≤∑N
i=1

γi

mi
< α + 1 holds. Therefore,

α =

⌊
N∑

i=1

γi

mi

⌋
. (4.24)
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In subsequent discussions, α̂ is used to approximate α. Firstly, an approx-

imation of α̂ = α or α − 1 will be given. Secondly, some extra work will

exactly assure α̂ = α under certain prerequisites.

Deduction of α̂ = α or α − 1

The first approximation is introduced here: a denominator mi in (4.24) is

replaced by 2w, where w is the RNS channel width and 2w−1 < mi ≤ 2w.

Then the estimate of (4.24) becomes

α̂ =

⌊
N∑

i=1

γi

2w

⌋
. (4.25)

The error incurred by this denominator’s approximation is denoted as

εi =
(2w − mi)

2w
.

Then,

2w =
mi

1 − εi

.

Recall that according to the definition of a RNS in Section 2.1.1, the RNS

moduli are ordered such that mi < mj for all i < j. Therefore, the largest

error

ε = max(εi) =
(2w − m1)

2w
.

Let us now investigate the accuracy of α̂:

0 ≤ γi ≤ mi − 1

⇒ 0 ≤ γi

mi

≤ mi − 1

mi

< 1

⇒ 0 ≤
N∑

i=1

γi

mi

< N. (4.26)
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Therefore,

N∑
i=1

γi

2w
=

N∑
i=1

γi(1 − εi)

mi

(4.27)

≥
N∑

i=1

γi(1 − ε)

mi

= (1 − ε)
N∑

i=1

γi

mi

=
N∑

i=1

γi

mi

− ε

N∑
i=1

γi

mi

⇒
N∑

i=1

γi

2w
>

N∑
i=1

γi

mi

− Nε. (4.28)

The last inequality holds due to Equation (4.26). If 0 ≤ Nε ≤ 1, then∑N
i=1

γi

mi
− Nε >

∑N
i=1

γi

mi
− 1. Thus,

∑N
i=1

γi

2w >
∑N

i=1
γi

mi
− 1. In addition,

obviously
∑N

i=1
γi

2w <
∑N

i=1
γi

mi
. Therefore,

N∑
i=1

γi

mi

− 1 <

N∑
i=1

γi

2w
<

N∑
i=1

γi

mi

. (4.29)

Then,

α̂ =

⌊
N∑

i=1

γi

2w

⌋
=

⌊
N∑

i=1

γi

mi

⌋
= α,

or,

α̂ =

⌊
N∑

i=1

γi

mi

⌋
− 1 = α − 1.

when 0 ≤ Nε ≤ 1.

This raises the question: is it easy to satisfy the condition 0 ≤ Nε ≤ 1 in

a RNS? The answer is: the larger the dynamic range of the RNS, the easier.

This is contrary to most published techniques that are only applicable to

RNS with small dynamic range as surveyed in Section 4.1.

Given 0 ≤ Nε ≤ 1 and ε = (2w−m1)
2w ,

N − 1

N
≤ m1

2w
≤ 1,
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Table 4.5: The Maximum Possible N against w in RNS Sum of Residues

Reduction
w (bits) 2–4 5 6 7 8 9 10

Maximum N 2 3 3 5 7 9 12

D (bits) 4–8 15 18 35 56 81 120

w (bits) 11 12 13 14 15 16 17

Maximum N 17 26 52 80 123 211 376

D (bits) 187 312 676 1120 1845 3376 6392

w (bits) 18 19 20 21 22 23 24

Maximum N 524 732 1044 1526 2307 3574 5256

D (bits) 9432 13908 20880 32046 50754 82202 126144

which means there must be at least N co-prime numbers existing within

the interval I = [N−1
N

2w, 2w] for the use of RNS moduli. Take w = 32 and

N = 69 as an example. Then the dynamic range D > 31 × 69 = 2139 bits

> 2048 bits, which gives sufficient word length for a 1024-bit modulus M .

I = [68
69

232, 232] has a rough span of 107, and there are 2807426 primes found

within it, which is much larger than the required number, N = 69. Another

example could be a RNS with 10 8-bit moduli. I = [ 9
10

28, 28] = [231, 256],

which spans 26 integers with only 4 primes among them, much less than

N = 10.

Table 4.5 lists the maximum N against different w from 2 to 24, which

witnesses the fact that the number of channels N available increases drasti-

cally along with the linear increase of the channel width w. This is because

the span of interval I is 2w − N−1
N

2w = 2w

N
. 2w increases much faster than

N , which gives a sharp increase of the span of I with more primes existing

within it as the dynamic range D of the RNS increases.

Apart from this, it is also easy to satisfy the harsher condition 0 ≤ Nε ≤
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1
2
. This requires

2N − 1

2N
≤ m1

2w
≤ 1,

which can be derived using the process above. This will be used for further

developments in next subsection.

The actual problem now is α̂ could be α or α− 1. From Equation (4.21),

X̂ could be X or X + D. Then two values of X mod M will result and it is

difficult to tell the correct one. Thus, α̂ needs to be the exact α.

Ensuring α̂ = α

To make sure α̂ =
⌊∑N

i=1
γi

2w

⌋
in (4.25) is equal to α instead of α − 1, a

correction factor Δ can be added to the floor function. Equation (4.25)

becomes

α̂ =

⌊
N∑

i=1

γi

2w
+ Δ

⌋
. (4.30)

Substituting Equation (4.23) into Equation (4.28) and Equation (4.29)

yields

α +
X

D
− Nε <

N∑
i=1

γi

2w
< α +

X

D
.

Adding Δ on both sides yields

α +
X

D
− Nε + Δ <

N∑
i=1

γi

2w
+ Δ < α +

X

D
+ Δ. (4.31)

If Δ ≥ Nε, then Δ−Nε ≥ 0 and α+ X
D
−Nε+Δ ≥ α. If 0 ≤ X < (1−Δ)D,

then X
D

+ Δ < 1 and α + X
D

+ Δ < α + 1. Hence,

α <

N∑
i=1

γi

2w
+ Δ < α + 1. (4.32)

Therefore,

α̂ =

⌊
N∑

i=1

γi

2w
+ Δ

⌋
= α
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holds. The two prerequisites from the deduction above are

⎧⎨
⎩Nε ≤ Δ < 1

0 ≤ X < (1 − Δ)D
(4.33)

It has already been shown in the previous section that the first condition

Nε < Δ < 1 is easily satisfied as long as Δ is not too small. For example, Δ

could be 1
2
. The second one is not that feasible at first sight as it requires X

be less than half the dynamic range D in the case of Δ = 1
2
. However, 1

2
D

is just one bit shorter than D, which is a number over two thousand bits.

Therefore, this can be easily achieved by extending D by several bits to cover

the upper bound of X. This is deduced in the following section. Hence, we

have obtained an α̂ = α.

4.3.3 Bound Deduction

The RNS dynamic range to do a 1024-bit multiplication should at least be

2048 bits. However as stated in Section 2.1.4, algorithms always require some

redundant RNS channels. This section is dedicated to confirming how many

channels are actually needed for the new RNS Sum of Residues algorithm.

Equation (4.22), the basis of the RNS Sum of Residues algorithm, is rewritten

here:

Z =
N∑

i=1

γi〈Di〉M − 〈αD〉M . (4.22)

Note that the result Z may be greater than the modulus M and would

require subtraction of a multiple of M to be fully reduced. Instead, the

dynamic range D of the RNS can be made large enough that the results

of modular multiplications can be used as operands for subsequent modular

multiplications without overflow.
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Given that γi < mi < 2w, 〈Di〉M < M and 〈αD〉M ≥ 0,

Z =
N∑

i=1

γi〈Di〉M − 〈αD〉M < N2wM. (4.34)

Thus, take operands A < N2wM and B < N2wM such that X = A × B <

N222wM2.

According to Equation (4.33), we must ensure that X does not overflow

(1 − Δ)D. If it is assumed M can be represented in h channels so that

M < 2wh, then

X < N222wh+2w.

X < (1 − Δ)D is required for

D > 2N(w−1),

which will be satisfied if

N222wh+2w < (1 − Δ)2N(w−1).

This is equivalent to

N > 2h + 2 +
2 log2

N
1−Δ

+ N

w
.

For example, for w ≥ 32, N < 128 and Δ = 1
2
, it will be sufficient to choose

N ≥ 2h + 7. Note that this bound is conservative and fewer channels may

be sufficient for a particular RNS, as in the example on page 119. This is

because the bound of Z can be directly computed as

Z =
N∑

i=1

γi〈Di〉M − 〈αD〉M ≤
N∑

i=1

(mi − 1)〈Di〉M .

using the pre-computed RNS constants, mi and 〈Di〉M , instead of worst case

bounds N and M as in (4.34).
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4.3.4 The RNS Sum of Residues Modular Multiplica-

tion Algorithm

Another Approximation

Equation (4.24) giving the exact α is rewritten here:

α =

⌊
N∑

i=1

γi

mi

⌋
. (4.24)

2w has been used to approximate the denominator mi to form Equation (4.25)

and Equation (4.30). Note that a numerator γi can also be simplified by being

represented using its most significant q bits, where q < w. Hence,

γ̂i = 2w−q
⌊ γi

2w−q

⌋
. (4.35)

The error incurred by this numerator’s approximation is denoted as

δi =
γi − γ̂i

mi

.

Then

γ̂i = γi − δimi.

The largest possible error will be

δ =
2w−q − 1

m1

.

Note that this approximation, treated as a necessary part of the computa-

tion of α in [Kawamura00], is actually not imperative. It has been shown

the algorithm works fine without this approximation in previous discussions

although it does simplify the computations in hardware.

Replacing the γi in Equation (4.30) by γ̂i yields

α̂ =

⌊
N∑

i=1

γ̂i

2w
+ Δ

⌋
. (4.36)
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Then, Equation (4.27) becomes

N∑
i=1

γ̂i

2w
=

N∑
i=1

(γi − δimi)(1 − εi)

mi

=
N∑

i=1

γi(1 − εi)

mi

−
N∑

i=1

(1 − εi)δi

≥ (1 − ε)
N∑

i=1

γi

mi

− Nδ

N∑
i=1

γ̂i

2w
>

N∑
i=1

γi

mi

− N(ε + δ). (4.37)

This is because

0 < 1 − εi =
mi

2w
< 1

⇒ 0 <

N∑
i=1

(1 − εi) < N,

and Equation (4.26)

0 ≤
N∑

i=1

γi

mi

< N.

Note that the only difference between Equation (4.28) and (4.37) is that the

ε in the former is replaced by the ε + δ in the latter. Following a similar

development to Section 4.3.2, Equation (4.31) becomes

α +
X

D
− N(ε + δ) + Δ <

N∑
i=1

γ̂i

2w
+ Δ < α +

X

D
+ Δ. (4.38)

The two prerequisites in (4.33) are now⎧⎨
⎩N(ε + δ) ≤ Δ < 1

0 ≤ X < (1 − Δ)D
(4.39)

This will again guarantee

α̂ =

⌊
N∑

i=1

γ̂i

2w
+ Δ

⌋
= α.
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Substituting (4.35) into Equation (4.36) yields

α̂ =

⌊
N∑

i=1

⌊
γi

2w−q

⌋
2q

+ Δ

⌋
. (4.40)

This is the final equation used in the new algorithm to estimate α.

An example

To demonstrate the applicability of this scheme to, for example, 1024-bit

RSA cryptography, consider the set of consecutive 32-bit prime moduli [m1,

m2, . . ., m69] = [4294965131, 4294965137, . . . , 4294966427]. For h = 33,⌊
log2

(∏h
i=1 mi

)⌋
= 1055 and the RNS has over 1024 bits of dynamic range

for the modulus M . Choosing N = 69 gives �log2 D� = 2207 bits of

dynamic range. The maximum value of the intermediate product X is(∑N
i=1(mi − 1)〈Di〉M

)2

such that �log2 X� ≤ 2188 and X < D as required.

Selecting q = 7 and Δ = 0.75 ensures 0 ≤ N(ε + δ) ≤ Δ < 1 and

0 ≤ X < (1 − Δ)D as required for exact determination of α.

The Algorithm

The Sum of Residues modular multiplication algorithm in RNS is shown in

Algorithm 4.2. It computes Z ≡ A × B mod M using Equation (4.22).

Z =

N∑
i=1

γi〈Di〉M − 〈αD〉M .

Note that from Equation (4.24) and (4.26), α < N . Thus, 〈αD〉M can be

pre-computed in RNS for α = 0 . . . N − 1.

An implementation of this algorithm is described in Chapter 5.
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Algorithm 4.2 The Sum of Residues Modular Multiplication Algorithm in

RNS

Require: M,N,w, Δ, q, {m1, . . . , mN}, (N2wM)2 < (1 − Δ)D,N( (2w−m1)
2w +

2w−q−1
m1

) ≤ Δ < 1.

Require: pre-computed table 〈D−1
i 〉mi

for i = 1, . . . , N

Require: pre-computed table 〈〈Di〉M〉mj
for i, j = 1, . . . , N

Require: pre-computed table 〈〈αD〉N〉mi
for α = 1, . . . , N − 1 and i =

1, . . . , N − 1

Require: A < N2wM,B < N2wM

Ensure: Z ≡ A × B mod M

1: X = A × B

2: γi = 〈xiD
−1
i 〉mi

for i = 1, . . . , N

3: Zi = γi × 〈Di〉M for i = 1, . . . , N

4: Z =
∑N

i=1 Zi

5: α =
⌊∑N

i=1

⌊
γi

2w−q

⌋
/2q + Δ

⌋
6: Z = Z − 〈αD〉M
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4.4 RNS Barrett Modular Multiplication

This section presents a RNS modular multiplication algorithm in which the

reduction modulo a long word length M is performed by multiplying by the

inverse of the modulus.

Section 3.1.3 proposes Equation (3.5)

X mod M = X −
⌊

X

M

⌋
× M (3.5)

for modular multiplication in binary. The scaling step Y = �X
M
� is achieved

by multiplying X by M−1 using Barrett algorithm. The following sections

use this to develop a RNS reduction algorithm in which all of intermediate

operations occur within the RNS.

4.4.1 RNS Modular Reduction using Barrett Algorithm

Since multiplication and subtraction are both trivial in RNS, the scaling �X
M
�

in (3.5) again becomes the key problem. An instance of the Improved Barrett

algorithm in [Dhem98] is used, as described in Section 3.1.3:

Y =

⌊
X

M

⌋
=

⎢⎢⎢⎣
⌊

X
2n+v

⌋ ⌊
2n+u

M

⌋
2u−v

⎥⎥⎥⎦+ ε (4.41)

where n is the word length of modulus M . Setting u = n + 3 and v = −2

bounds the error term ε within 1, as shown in Section 3.3.1. Then, (4.41)

becomes

Y =

⌊
X

M

⌋
=

⌊⌊
X

2n−2

⌋× K

2n+5

⌋
. (4.42)

where K = �22n+3/M� is a constant and can be computed and stored in

advance.
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Subsections below examine the following steps involved in RNS scaling

using Barrett’s algorithm in the following order:

• Scaling by a power of 2:
⌊

X
2u

⌋
=

⌊� X
2u−1 �

2

⌋
.

• Scaling by 2:
⌊

X
2

⌋
= (X − 〈X〉2) × 2−1.

• Reduction modulo 2: 〈X〉2 = 〈γ1〉2 ⊕ 〈γ2〉2 ⊕ . . . 〈γN〉2 ⊕ 〈α〉2, where

γi = 〈D−1
i × xi〉mi

.

• Calculation of 〈α〉2: 〈α〉2 = 〈〈∑N
i=1 θi−φ〉mr〉2, where θi = 〈D−1Diγi〉mr ,

φ = 〈D−1xr〉mr and mr is a redundant RNS channel.

Scaling by a power of 2

To apply Barrett’s equation (4.42), scaling by the binary powers 2n−2 and

2n+5 must be performed in RNS. Since

⌊� X
2a−1 �

2

⌋
=
⌊

X
2a

⌋
[Richman71], X

can be scaled by 2a by iteratively being scaled by 2. Higher radix versions

are also possible in which X is iteratively scaled by a power 2l. Subsequent

subsections assume scaling by 2 but the issue of high-radix versions will be

revisited on page 127.

Scaling by 2

Scaling by 2 is achieved by using
⌊

X
2

⌋
= (X − 〈X〉2) × 2−1. In the RNS

channels this is performed as

yi = 〈
⌊

X

2

⌋
〉mi

= 〈(xi − 〈X〉2) × 〈2−1〉mi
〉mi

(4.43)

where 〈2−1〉mi
has been pre-computed.
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Reduction modulo 2

The next problem is to find 〈X〉2. To do this a redundant modulus mr is

introduced into the RNS. mr ≥ N is chosen and mr is co-prime with all of

the members of the original modulus set {m1, ...,mN}. The original input

X is therefore represented as X = {x1, x2, ..., xN , xr}. Note that a similar

solution from [Shenoy89a] is discussed in Section 4.1.2; however in that case

two redundant moduli are used instead of one.

From the Chinese Remainder Theorem,

X = 〈
N∑

i=1

Diγi〉D

= D1γ1 + D2γ2 + ... + DNγN − αD (4.44)

where γi = 〈D−1
i xi〉mi

and α is an unknown integer. Note that this equation

is identical to Equation (4.21) which is then used to perform the reduction

modulo M . However, in this section it will be used to perform a reduction

modulo the redundant channel modulus mr to obtain α. Reducing both sides

of (4.44) modulo mr yields

xr =

〈
N∑

i=1

〈〈Di〉mr〈γi〉mr〉mr
− 〈αD〉mr

〉
mr

⇒ 〈α〉mr =

〈〈
N∑

i=1

〈〈Di〉mr〈γi〉mr〉mr
− xr

〉
mr

× 〈D−1〉mr

〉
mr

.

Since Equation (4.26) in Section 4.3.2 gives

0 ≤
N∑

i=1

γi

mi

< N, (4.26)

it can then be shown that 0 ≤ α < N because

α =

⌊
N∑

i=1

γi

mi

⌋
. (4.24)
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Now that mr ≥ N and α < N , α = 〈α〉mr . So

α =

〈
N∑

i=1

〈〈D−1〉mr〈Di〉mr〈γi〉mr

〉
mr

− 〈〈D−1〉mrxr〉mr

〉
mr

(4.45)

⇒ 〈α〉2 = 〈〈
N∑

i=1

〈〈D−1〉mr〈Di〉mr〈γi〉mr〉mr

−〈〈D−1〉mrxr〉mr〉mr〉2. (4.46)

where 〈Di〉mr and 〈D−1〉mr can both be pre-computed.

From (4.44):

〈X〉2 = 〈〈D1γ1〉2 + 〈D2γ2〉2 + ... + 〈DNγN〉2 − 〈αD〉2〉2. (4.47)

As 〈a〉2 ∈ {0, 1}, 〈ab〉2 = 〈a〉2〈b〉2 is valid for any integers a and b. Also,

working modulo 2, both addition ′+′ and subtraction ′−′ operations can be

performed using Boolean addition ′⊕′ (which is equivalent to a logic XOR).

Hence Equation (4.47) can be re-written as

〈X〉2 = 〈D1〉2〈γ1〉2 ⊕ 〈D2〉2〈γ2〉2 ⊕ ... ⊕ 〈DN〉2〈γN〉2 ⊕ 〈α〉2〈D〉2.

If all of the RNS moduli mi are primes other than 2, then Di and D are all

odd and hence

〈X〉2 = 〈γ1〉2 ⊕ 〈γ2〉2 ⊕ ... ⊕ 〈γN〉2 ⊕ 〈α〉2. (4.48)

As γi = 〈D−1
i xi〉mi

is only an efficient RNS channel modular multiplica-

tion, 〈X〉2 can be computed from (4.48) given 〈α〉2 from (4.46). The compu-

tation of 〈α〉2 is obviously slower than other steps which just involve short

modular multiplications in RNS channels and boolean XOR operations. The

next subsection will, therefore, explore ways to accelerate the evaluation of

〈α〉2.
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Computation of 〈α〉2

The computation of 〈α〉2 is slower than other intermediate computations but

two strategies can be used to break this bottleneck.

The first strategy is to ensure that (4.48) does not wait for evaluation of

(4.46). To do this 〈X〉2 is found using (4.48) for both possible cases: 〈α〉2 = 0

and 〈α〉2 = 1. Then two results for �X
2
� can be found from (4.43). Finally,

when the result from (4.46) is available, it is used to select the correct value

of �X
2
�.

A second strategy is to speed up the evaluation of (4.46) using careful

selection of the redundant modulus mr. If we set θi = 〈D−1Diγi〉mr and

φ = 〈D−1xr〉mr , (4.46) becomes a series of N additions modulo mr:

〈α〉2 = 〈〈
N∑

i=1

θi − φ〉mr〉2. (4.49)

One might consider choosing mr = 2k to accelerate this. In that case, how-

ever, 〈2−1〉mr does not exist and the scaled residue yr = 〈⌊X
2

⌋〉mr cannot

be computed for the next round of scaling using 〈(xr − 〈X〉2) × 〈2−1〉mr〉mr .

Therefore mr = 2k − 1 is chosen.

Then, one addition modulo mr in (4.49) becomes 〈θi+θi+1〉2k−1 = 〈s〉2k−1,

where 0 ≤ s ≤ 2mr − 2 as 0 ≤ θi ≤ mr − 1 and 0 ≤ θi+1 ≤ mr − 1. Suppose

t = 〈s〉mr , then

s = l × (2k − 1) + t = l × 2k + (t − l). (4.50)

It can be seen that l is the most significant bit of the k + 1-bit number s.

Reducing both sides of (4.50) modulo 2k gives

t = 〈s〉2k + l, (4.51)

where 〈s〉2k is actually the least significant k bits of s. Thus, an addition

modulo 2k − 1 can be conveniently performed using an end-around adder
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Figure 4.11: An End-Around Adder to Compute 〈θi + θi+1〉2k−1.

[Parhami00] in which the carry output l from a conventional adder is fed

back into the carry input at the least significant end of the adder. The

latency is only marginally longer than ordinary addition.

Figure 4.11 shows the scheme. Note that the end-around adder can be

used in the RNS channels directly, because the two inputs θi and θi+1 are

both less than mr = 2k−1, which makes the output bounded by the modulus

mr = 2k − 1 too.

If a binary tree of adders is used, only �log2(N)� levels of addition are

required to evaluate (4.49).

Moreover, the modular multiplication units computing θi = 〈D−1Diγi〉mr

and φ = 〈D−1xr〉mr will also be much faster than units for general modular

multiplication because of the special modulus mr [Beuchat03]. In the case of

θi, Equation (4.51) still holds as

θi = t = 〈s〉2k +
⌊ s

2k

⌋
, (4.52)

where s = 〈D−1Di〉mr × 〈γi〉mr [Zimmermann99]. (4.52) can be easily imple-

mented using a multiplier followed by an adder.
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Figure 4.12 gives the architecture for the whole process of scaling by 2.

High-Radix Architecture

In the high-radix version of the scaling algorithm, Equation (4.43) becomes

yi = 〈
⌊

X

2l

⌋
〉mi

= 〈(xi − 〈X〉2l) × 〈2−l〉mi
〉mi

(4.53)

where 2l = r is the radix and 〈2−l〉mi
has been pre-computed. Equation (4.47)

becomes

〈X〉2l = 〈〈D1γ1〉2l + 〈D2γ2〉2l + ... + 〈DNγN〉2l − 〈αD〉2l〉2l , (4.54)

and Equation (4.49) becomes

〈α〉2l = 〈〈
N∑

i=1

θi − φ〉mr〉2l . (4.55)

Only the final 〈•〉2 operation in Equation (4.49) is replaced by 〈•〉2l in (4.55).

This means the time to compute Equation (4.55) is almost independent of

the radix. Hence this algorithm is suitable for high-radix implementations

where the radix can be selected higher to reduce the number of iterations to

compute
⌊

X
M

⌋
. Figure 4.13 gives the high-radix architecture for the scaling

by 2l process.

4.4.2 The Algorithm

The RNS Barrett modular multiplication algorithm at radix-2 is shown in

Algorithm 4.3.

All the operations in this algorithm are short word length and within

the RNS. When the channel moduli are not too large, the evaluation time is
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Figure 4.12: Architecture for Scaling by 2 in RNS
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Figure 4.13: High-Radix Architecture for Scaling by 2l in RNS
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Algorithm 4.3 The Barrett Modular Multiplication Algorithm in RNS

Require: M,N,w, {m1, . . . , mN ,mr} as described above.

Require: pre-computed values 〈D−1〉mr and 〈2−1〉mr

Require: pre-computed table 〈Di〉mi
, 〈D−1Di〉mr , 〈M〉mi

and 〈2−1〉mi
for

i = 1, . . . , N

Ensure: Z ≡ A × B mod M

1: xi = 〈ai × bi〉mi
for i = 1, . . . , N

2: φ = 〈D−1xr〉mr

3: γi = 〈D−1
i xi〉mi

for i = 1, . . . , N

4: θi = 〈D−1Diγi〉mr for i = 1, . . . , N

5: 〈X〉2 = 〈γ1〉2 ⊕ 〈γ2〉2 ⊕ ... ⊕ 〈γN〉2
6: y′

i = 〈(xi − 〈X〉2) × 〈2−1〉mi
〉mi

for i = 1, . . . , N

7: y′′
i = 〈(xi − NOT(〈X〉2)) × 〈2−1〉mi

〉mi
for i = 1, . . . , N

8: 〈α〉2 = 〈〈∑N
i=1 θi − φ〉mr〉2

9: if 〈α〉2 == 0 then

10: yi = y′
i for i = 1, . . . , N

11: else

12: yi = y′′
i for i = 1, . . . , N

13: end if

14: zi = 〈xi − yi × 〈M〉mi
〉mi

for i = 1 . . . N
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dominated by the modular accumulation 〈〈∑N
i=1 θi − φ〉mr〉2l in the redun-

dant channel with its special modulus of the form 2k − 1. A benefit of the

algorithm is that modular addition and multiplication operations within this

channel are much faster than for a general modulus. If these are referred

to as fast modular operation steps, then algorithm requires (2n + 3)/l fast

modular multiplications, (2n + 3)/l multiplications modulo general mi and

�log2(N)�(2n + 3)/l fast modular additions.

Figure 4.14 compares the latency for the 2 fast channel modular opera-

tions with 2 operations modulo general mi. The RNS channel word length

w starts from 12 bits because this is the minimum w required to construct

a RNS system with 2048-bit dynamic range and equal word length moduli

as stated in Section 2.1.4. The Xilinx Virtex2 FPGA used in Section 3.3.2

on page 45, XC2V1000 with a -6 speed grade, is used again. The Barrett

algorithm in binary discussed in Section 3.1.3 and 3.3 is used for general

modular multiplication and addition within the channels. The result from

Section 3.3.2 is taken for general modular multiplication.

It can be seen that on the FPGA, a fast modular multiplication is even

faster than a general modular addition. Also, a fast modular addition has

roughly the same latency as an addition. At the end of next section, these

results will be used to compare the RNS Barrett and RNS Montgomery

algorithm as the latter uses general modular multiplications and additions,

but fewer of them.
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Delays of channel-width multiplication,

multiplication modulo 2^k - 1, addition modulo a

general modulus and end-around addition vs

RNS channel widths
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Figure 4.14: Delay of Channel-Width Multiplication and Addition modulo

a General Modulus and Multiplication and Addition modulo 2k − 1 used for

RNS Barrett Algorithm against RNS Channel Width w
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4.5 RNS Montgomery Modular Multiplica-

tion

Existing schemes for multiplication modulo a long word length modulus in

RNS [Posch95, Freking00, Bajard98, Bajard01, Phillips01a, Phillips03] are

based on Montgomery reduction [Montgomery85]. Most of them are quite

similar and this section will examine these techniques.

Recall the Montgomery algorithm in Section 3.1.4. Montgomery reduc-

tion of X × R−1 modulo M proceeds by adding a multiple of M according

to 〈X〉M . This approach works well in the RNS as 〈X〉M can be found easily

for some values of R.

4.5.1 Montgomery Modular Reduction in RNS

In the RNS, the value R is chosen to be the dynamic range D =
∏N

i=1 mi.

This is consistent in all of the existing RNS Montgomery algorithms. Hence

the RNS Montgomery reduction computes

Z ≡ X × D−1 mod M, (4.56)

where Z, X and M are all represented in the RNS with modulus set Ω =

{m1,m2, . . . , mN}. As in the Montgomery algorithm in binary in Section 3.1.4,

an integer q is sought such that q < D and X+qM is a multiple of D. Hence,

the resulting division X+qM
D

is exact and easily performed in RNS by multi-

plying X + qM by D−1 since Z ≡ 〈X × D−1〉M = X+qM
D

[Montgomery85].

Therefore, the RNS Montgomery modular reduction algorithm is composed

of 4 steps:

• Find q in Ω such that 〈X + qM〉D = 0.
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• Base extend q from Ω to q̄ in Ω̄.

• Find Z = (X + q̄M)D−1 in Ω̄.

• Base extend Z from Ω̄ to Ω noting that Z ≡ X × D−1 mod M .

Details of these steps will be examined below.

Because X +qM is a multiple of D, the representation of X +qM in RNS

Ω is {0, 0, . . . , 0} [Bajard00]. This means

〈xi + qi〈M〉mi
〉mi

= 0 for i = 1, . . . , N.

Then

qi = 〈xiM
−1〉mi

for i = 1, . . . , N

where 〈M−1〉mi
is pre-computed. Thus, q is obtained such that X + qM

is divisible by D. However, this means (X + qM) × D−1 cannot be com-

puted because D−1 does not exist in Ω as D =
∏N

i=1 mi. Therefore, it is

necessary to perform this computation in another RNS with modulus set

Ω̄ = {mN+1,mN+2, . . . , m2N}, where D̄ =
∏2N

j=N+1 mj and D̄ has to be co-

prime to D. Again, this becomes a typical issue of base extension: q needs

to be base extended from {q1, q2, . . . , qN} to {qN+1, qN+2, . . . , q2N}.

Base Extension I

The technique in [Bajard01] improves this base extension based on previous

publications [Posch95, Kawamura00]. From CRT,

q =

〈
N∑

i=1

Di〈D−1
i qi〉mi

〉
D

=
N∑

i=1

Di〈D−1
i qi〉mi

− αD,

where α < N from Equation (4.24) and (4.26). Set

q̄ = q + αD =
N∑

i=1

Di〈D−1
i qi〉mi

.
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Reducing q̄ modulo mj for j = N + 1, . . . , 2N yields

q̄j =

〈
N∑

i=1

〈Di〉mj
〈D−1

i qi〉mi

〉
mj

, (4.57)

where 〈D−1
i 〉mi

and 〈Di〉mj
can both be pre-computed. Therefore,

Z = (X + q̄M)D−1 = (X + qM)D−1 + αM, (4.58)

and then

Z ≡ X × D−1 mod M.

[Bajard04a] gives conditions for this result by assuming X < DM . From

α < N , q < D and q̄ = q + αD, q̄ < (N + 1)D. Then, Z < (DM + (N +

1)DM)D−1 = (N + 2)M . Thus, both (N + 2)M < D and (N + 2)M <

D̄ have to be satisfied to assure Z < D and Z < D̄ such that Z has a

valid RNS representation in Ω and Ω̄. Moreover, to be able to reuse the

result Z < (N + 2)M as inputs for the next round of RNS Montgomery

modular multiplication, ((N + 2)M)2 < DM has to be satisfied. This gives

(N + 2)2M < D. Note that this has already implied (N + 2)M < D. Thus,

the prerequisites for this algorithm are⎧⎨
⎩(N + 2)2M < D

(N + 2)M < D̄.

These are easy to satisfy. Note that D̄ can be greater or less than D.

Base Extension II

The last step is to base extend Z ≡ X × D−1 mod M back to RNS Ω. For

this base extension, all RNS Montgomery algorithms [Posch95, Bajard98,

Kawamura00, Bajard01, Phillips01b, Phillips03] take a method similar to

[Shenoy89a], which has been discussed in Section 4.4.1. A redundant modulus
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channel mr > N is introduced with mr co-prime to mi for i = 1, . . . , 2N .

〈M〉mr and 〈D−1〉mr are pre-computed. xr = 〈X〉mr must be input from the

beginning and q̄r has to be computed using Equation (4.57). Following CRT,

Z =
2N∑

j=N+1

D̄j

〈
〈D̄j

−1〉mj
Zj

〉
mj

− βD̄. (4.59)

β can be obtained similarly to Equation (4.45) as

β =

〈
2N∑

j=N+1

〈
〈D̄−1D̄j〉mr

〈〈
〈D̄j

−1〉mj
Zj

〉
mj

〉
mr

〉
mr

− 〈〈D̄−1〉mrZr

〉
mr

〉
mr

where Zj for j = N + 1, . . . , 2N and r is computed from Equation (4.58) as

Zj =
〈〈

xj + q̄j〈M〉mj

〉
mj

〈D−1〉mj

〉
mj

.

Given β, Zi is evaluated by reducing both sides of (4.59) modulo mi for all

i = 1, . . . , N ,

Zi =

〈
2N∑

j=N+1

〈D̄j〉mi

〈
〈D̄j

−1〉mj
Zj

〉
mj

− 〈βD̄〉mi

〉
mi

.

4.5.2 The Algorithm

The RNS Montgomery modular multiplication algorithm is shown in Algo-

rithm 4.4. There are N + 5 RNS channel multiplications and N − 2 chan-

nel additions needed to perform a RNS Montgomery modular multiplication

[Bajard01, Bajard04a].

4.5.3 A Comparison between RNS Barrett and Mont-

gomery Modular Multiplication

Recall that the RNS Barrett algorithm shown in Algorithm 4.3 has the advan-

tage that most of its modular multiplications and modular additions on the
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Algorithm 4.4 The Montgomery Modular Multiplication Algorithm in RNS

Require: M,N, Ω = {m1, . . . , mN}, Ω̄ = {mN+1, . . . ,m2N},mr as described

above.

Require: (N + 2)2M < D =
∏N

i=1 mi and (N + 2)M < D̄ =
∏2N

j=N+1 mj

Require: pre-computed values 〈D−1〉mr and 〈2−1〉mr

Require: pre-computed table 〈M−1〉mi
, 〈M〉mj

, 〈D−1
i 〉mi

, 〈Di〉mj
, 〈D̄j〉mi

,

〈D̄j
−1〉mj

, 〈D̄j〉mr , 〈D̄〉mi
, 〈D−1〉mj

and 〈D̄−1〉mr for i = 1, . . . , N and

j = N + 1, . . . , 2N and r

Ensure: Z ≡ A × B mod M

1: xi = 〈ai × bi〉mi
for i = 1, . . . , 2N and r

2: qi = 〈xiM
−1〉mi

for i = 1, . . . , N

3: q̄j =
〈∑N

i=1〈Di〉mj
〈D−1

i qi〉mi

〉
mj

for j = N + 1, . . . , 2N and r

4: Zj =
〈〈

xj + q̄j〈M〉mj

〉
mj

〈D−1〉mj

〉
mj

for j = N + 1, . . . , 2N and r

5: β =

〈∑2N
j=N+1

〈
〈D̄−1D̄j〉mr

〈〈
〈D̄j

−1〉mj
Zj

〉
mj

〉
mr

〉
mr

− 〈〈D̄−1〉mrZr

〉
mr

〉
mr

6: Zi =

〈∑2N
j=N+1〈D̄j〉mi

〈
〈D̄j

−1〉mj
Zj

〉
mj

− 〈βD̄〉mi

〉
mi

for i = 1, . . . , N
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Delays of Barrett and Montgomery RNS modular

reduction algorithm

vs RNS channel widths
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Figure 4.15: Delay of Barrett and Montgomery RNS Modular Multiplication

against RNS Channel Width w

critical path are modulo its special modulus of the form 2k −1 within the re-

dundant channel. Figure 4.14 shows these fast modular operations are indeed

faster than multiplications and additions modulo general moduli. However,

the RNS Barrett algorithm requires (2n + 3)/l fast modular multiplications,

(2n + 3)/l multiplications modulo a general mi and �log2(N)�(2n + 3)/l fast

modular additions. These are much more than the RNS Montgomery algo-

rithm, which needs N + 5 and N − 2 for general modular multiplication and

addition respectively.

Figure 4.15 shows the delay of the Barrett RNS algorithm and the Mont-

gomery RNS algorithm for reduction of a 2048-bit product by a 1024-bit

modulus at radix-16 on the same FPGA platform as in Section 3.3.2. These

results are produced by adding the delays of channel operations in Figure 4.14

for the two algorithms.

It can be seen from Figure 4.15 that the RNS Barrett algorithm is faster

when the RNS channels are less than 18 bits. As the width of the chan-

nels increases, the cost of channel operations increases while the number of

138



4.5. RNS MONTGOMERY MODULAR MULTIPLICATION

channels N decreases, and hence the Montgomery approach becomes faster.

Note that in next chapter, the implementation of RNS Sum of Residues

algorithm shows a better performance than both of these two implementa-

tions.
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Chapter 5

Implementation of RNS Sum of

Residues Modular

Multiplication

The purpose of this chapter is to give an implementation for a long word

length RNS modular multiplier on an FPGA platform. The Sum of Residues

algorithm is chosen to achieve this. It forms a highly parallel and scalable

architecture which can perform 1024-bit RSA decryption with the fastest

published rate of 0.4 ms per decryption on a Xilinx Virtex5 device.
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MULTIPLICATION

An implementation of a RNS modular multiplication algorithm depends

heavily on the size of the hardware used. A hardware platform able to hold a

1024-bit RNS modular multiplication may become obsolete as demand grows

for 2048-bit encryption. Thus, the RNS Sum of Residues algorithm is selected

to be implemented because it is suitable for a scalable architecture and also

because of its parallelism.

5.1 A Scalable Structure for Sum of Residues

Modular Multiplication in RNS

Recall Algorithm 4.2 described in Section 4.3.4 as below:

Algorithm 5.1 The Sum of Residues Modular Multiplication Algorithm in

RNS

Require: M,N,w, Δ, q, {m1, . . . , mN}, (N2wM)2 < (1 − Δ)D,N( (2w−m1)
2w +

2w−q−1
m1

) ≤ Δ < 1.

Require: pre-computed table 〈D−1
i 〉mi

for i = 1, . . . , N

Require: pre-computed table 〈〈Di〉M〉mj
for i, j = 1, . . . , N

Require: pre-computed table 〈〈αD〉N〉mi
for α = 1, . . . , N − 1 and i =

1, . . . , N − 1

Require: A < N2wM,B < N2wM

Ensure: Z ≡ A × B mod M

1: X = A × B

2: γi = 〈xiD
−1
i 〉mi

for i = 1, . . . , N

3: Zi = γi × 〈Di〉M for i = 1, . . . , N

4: Z =
∑N

i=1 Zi

5: α =
⌊∑N

i=1

⌊
γi

2w−q

⌋
/2q + Δ

⌋
6: Z = Z − 〈αD〉M
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MULTIPLICATION IN RNS

5.1.1 A 4-Channel Architecture

A structure for Algorithm 4.2 is illustrated in Figure 5.1 using a 4-channel

RNS. Table 5.1 lists the pre-computed values required. The structure per-

forms the following steps:

• First the product X = A × B is computed within the RNS.

• Next a RNS multiplication is performed to find the γis.

• Then RNS multiplications are used to compute the Zis while the γis

are used to generate α.

• The sum
∑

Zi is performed while 〈−αD〉M is retrieved from a table.

• Finally Z is produced by adding 〈−αD〉M from the
∑

Zi.

Hence this is a highly parallel structure with only 3 RNS multiplication and

N + 1 RNS addition steps. All of the computations are done in short word

length (at most w bits) within the RNS.

To extend this architecture to longer word lengths that fit in a single in-

tegrated package, one might consider arranging a row of processing elements.

The drawback of this approach is the communication required between the

elements of the row. As the length of the row increases, so does the number of

values to be communicated between the elements. The delay of the intra-row

communication soon outweighs any benefit of the parallel structure.

Instead, the basic block shown in Figure 5.1 can be modified to permit a

scalable structure using a square array of identical blocks. This eliminates all

communications between the columns of the array. There must be enough

columns in the array to fit the number of channels required for the large

operands. The number of rows in the array is increased to account for the
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Table 5.1: The Pre-Computed Constants for the RNS Sum of Residues Mod-

ular Multiplication Algorithm in Algorithm 4.2

i 1 2 3 4

〈D−1
i 〉mi

〈D−1
1 〉m1 〈D−1

2 〉m2 〈D−1
3 〉m3 〈D−1

4 〉m4

〈〈D1〉M〉m1
〈〈D1〉M〉m2

〈〈D1〉M〉m3
〈〈D1〉M〉m4

〈〈Dj〉M〉mi
〈〈D2〉M〉m1

〈〈D2〉M〉m2
〈〈D2〉M〉m3

〈〈D2〉M〉m4

〈〈D3〉M〉m1
〈〈D3〉M〉m2

〈〈D3〉M〉m3
〈〈D3〉M〉m4

〈〈D4〉M〉m1
〈〈D4〉M〉m2

〈〈D4〉M〉m3
〈〈D4〉M〉m4

〈〈−D〉M〉m1
〈〈−D〉M〉m2

〈〈−D〉M〉m3
〈〈−D〉M〉m4

〈〈−αD〉M〉mi
〈〈−2D〉M〉m1

〈〈−2D〉M〉m2
〈〈−2D〉M〉m3

〈〈−2D〉M〉m4

〈〈−3D〉M〉m1
〈〈−3D〉M〉m2

〈〈−3D〉M〉m3
〈〈−3D〉M〉m4

residues Zi which must be computed (in parallel) and accumulated (in series).

For example, Figure 5.2 shows a 4-channel block arranged for the scalable

array. This is a modified version of Figure 5.1 with extra input and output

ports to account for communication down a column.

5.1.2 The Scaled Architecture for Modular Multipli-

cation

A 12-channel modular multiplication can be built with a 3 × 3 array of the

block in Figure 5.2. The resulting structure is shown in Figure 5.3. The

leftmost column performs calculations in channels m1 to m4; the middle

column is for m5 to m8; and the rightmost for m9 to m12. The columns

execute independently. This is achieved by computing γ1 to γN and α in

each of the columns.
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The rows of the array in Figure 5.3 evaluate the residues. The first row

finds Z1 to Z4 and
∑4

i=1 Zi; the second row Z5 to Z8, the sum
∑8

i=5 Zi

and
∑8

i=1 Zi =
∑4

i=1 Zi +
∑8

i=5 Zi; and the last row finds Z9 to Z12, the

sum
∑12

i=9 Zi and
∑8

i=1 Zi +
∑12

i=9 Zi. The sum of the residues is found by

accumulating the results down a column. This comes at a cost of latency

but bounds the number of I/O pins for the blocks and ensures the array is

scalable. A similar scheme is used to accumulate the terms required to find

α. This is off the critical path of the modular multiplication. Note that each

row produces outputs for the result Z but these will be meaningless for all

but the last row.

The indices in Figure 5.2 are arranged to illustrate the first block in the

second row of Figure 5.3. First {γ5, . . . , γ8} are computed from the inputs

{a5b5, . . . , a8b8}. Then RNS multiplications with {〈D5〉M , . . . , 〈D8〉M} mod-

ulo {m1, . . . , m4} are used to compute {〈Z5〉m1 , . . . , 〈Z5〉m4} . . .

{〈Z8〉m1 , . . . , 〈Z8〉m4}. These results are added to
{〈∑Z1...4〉m1

, . . . , 〈∑Z1...4〉m4

}
(available at the Zin input) to generate

{〈∑Z1...8〉m1
, . . . , 〈∑Z1...8〉m4

}
. These

values are sent to the next element down the column via the Zout output.

The critical path is shown on the middle column in Figure 5.3. The

latency of the modular multiplier is given by

d1 + (k − 2)dz + dn, (5.1)

where k is the number of rows in the array, d1 is the delay from the ai and bi

inputs to Zout of the first block, dz is the delay from Zin to Zout of any block

between the first and the last block, and dk is the delay from Zin of the last

block to the final output Z.
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5.2 Implementation Results

To utilize the hardware efficiently, each block shown in Figure 5.2 has to

hold as many channels as possible. This depends largely on the size of the

hardware used. Thus, the latest version of the Xilinx Virtex5 FPGA is

used as the implementation target to evaluate the performance of the RNS

modular multiplier. The implementation was performed using the Xilinx ISE

environment using XST for synthesis and ISE standard tools for place and

route. Speed optimization with standard effort has been used.

Target FPGA: Virtex5 XC5VSX95T with a -3 speed

grade, 14720 CLB (Configurable Logic

Blocks) slices and 640 DSP slices

Xilinx 9.1i: XST - Synthesis

ISE - Place and Route

Optimization Goal: Speed

Language: VHDL

The largest RNS modular multiplier this FPGA can accommodate was

found to be 64 bits. Repeated modular multiplication of 64-bit inputs can

be performed without overflow in a 10-channel RNS where each channel is

18 bits wide. The pin-to-pin delay was measured from the Post-Place and

Route Static Timing Analyzer with a standard place and route effort level.

The modular multiplications within the 18-bit channels is performed using

the Barrett algorithm discussed Sections 3.1.3 and 3.3 and optimized for the

Xilinx Virtex2 FPGA platform used in Sections 3.3 and 3.4. The performance

of this modular multiplier has already been shown in Figure 3.7 on page 46.

The latency of a single block of this 64-bit modular multiplier is 81.7 ns

and the component delays for Equation (5.1) were d1 = 77.18 ns, dz =
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20.87 ns and dk = 25.45 ns. This was done by using the consecutive prime

moduli [m1,m2, . . . , m10] = [262051, 262069, . . . , 262139], q = 5 and Δ = 0.5.

The final design consumed 78% of the DSP slices on Virtex5 but only 10%

of the CLB slices. This is because the channel modular multipliers make

extensive use of the hardware multipliers available in the DSP slices of the

FPGA. With more DSP slices it would have been possible to include more

channels within each FPGA.

Modular multiplication of 1024-bit inputs can be performed with a 16×16

array of 64-bit blocks using the consecutive prime moduli [m1,m2, . . . ,m160] =

[260017, 260023, . . . , 262139], q = 10 and Δ = 0.6. From Equation (5.1) the

delay for this array can be estimated to be 77.18 + 20.87 × 14 + 25.45 =

394.8 ns ≈ 0.4 μs. Similarly a 2048-bit modular multiplication can be per-

formed with an 32 × 32 array using the consecutive prime moduli

[m1,m2, . . . , m320] = [258101, 258107, . . . , 262139], q = 10 and Δ = 0.8. The

delay in this case is 77.18 + 20.87 × 30 + 25.45 = 728.7 ns.

According to Section 2.2.3, the number of multiplications required to

evaluate a RSA decryption C = AB mod M is log2 B on parallel hardware.

Then a 1024-bit RSA decryption could be achieved in 394.8 ns × 1024 ≈
0.4 ms and a 2048-bit in 728.7 ns × 2048 ≈ 1.5 ms.

This can be compared with some previously published low latency results.

• The design in [Blum99] can complete a 1024-bit modular multiplica-

tion in 8.2 μs on a Xilinx XC4000 FPGA. The Montgomery modular

multiplication algorithm [Montgomery85] discussed in Section 3.4 is

implemented on systolic arrays with all the operations performed in

binary.

• The design in [McIvor04] can perform the same operation in 2.6 μs on

the same FPGA. This design again uses Montgomery algorithm in a
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positional system and improves the speed by using redundant repre-

sentations for intermediate results.

• The design in [Nozaki01] is the only published implementation based on

the Montgomery modular multiplication in RNS [Posch95]. It uses the

RNS Montgomery algorithm discussed in Section 4.5 with a Cox-Rower

architecture from [Kawamura00]. This is implemented on a 0.25 μm LSI

prototype and achieves 2.34 μs for a 1024-bit modular multiplication

at its fastest speed.

• Finally, Figure 4.15 shows the speed of a 1024-bit modular multipli-

cation in RNS using RNS Barrett and RNS Montgomery algorithms

discussed in Section 4.4 and 4.5. They are both over 4 μs at w = 18.

Moreover, these results are relatively theoretical because they are pro-

duced from a theoretical sum of the results of implemented channel

modular operators only. The actual speed could be lower.
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Chapter 6

Conclusion and Future

Perspectives

The purpose of this chapter is to conclude this thesis by reflecting on its

original objectives and contributions. Some suggestions for further study are

made.
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6.1 Conclusion

The four classes of modular multiplication algorithms possible in positional

number systems can also be used for long word length modular multiplication

in the RNS; moreover, using the RNS in this way will lead to faster implemen-

tations than those which restrict themselves to positional number systems.

This outcome was the foremost objective of this thesis and was demonstrated

through developing new Classical, Barrett and Sum of Residues algorithms

for modular multiplication in the RNS and implementing the RNS Sum of

Residues algorithm on an FPGA.

In Chapter 3, four classes of positional modular multiplication algorithms

are analyzed, improved and implemented. Chapter 4 uses RNS to speed

up long word length modular multiplication. This is achieved by devising

new algorithms of Classical, Barrett and Montgomery classes that restrict

all intermediate operations within short word length RNS channels. This is

further demonstrated by the implementation in Chapter 5.

6.2 Future Perspectives

The RNS modular multiplication algorithms show good performance in speed-

ing up long word length modular multiplication for the RSA Cryptosystem on

an FPGA. As the word length of public-key systems increases over time, El-

liptic Curve Cryptography, which uses shorter keys and moduli, will probably

become another interesting application of the RNS in the future. Apart from

the multiplication modulo a long word length modulus, the Elliptic Curve

system involves modular additions and inversions, which also challenge the

capacity of the RNS.
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The benefits of the RNS to public-key systems may not be limited to

speed. Investigations can proceed in other aspects of a public-key system

based on the RNS, such as security. The parallel architectures possible with

RNS are different to the relatively serial procedures possible in a positional

system. To what extent can a RNS help a public-key system circumvent

power and timing attacks by disguising internal operations through its par-

allel nature? This may not only be of theoretical interest.
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