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Abstract
Public-key cryptography is a mechanism for secret communication be-

tween parties who have never before exchanged a secret message. This thesis

contributes arithmetic algorithms and hardware architectures for the modu-

lar multiplication Z = A × B mod M . This operation is the basis of many

public-key cryptosystems including RSA and Elliptic Curve Cryptography.

The Residue Number System (RNS) is used to speed up long word length

modular multiplication because this number system performs certain long

word length operations, such as multiplication and addition, much more ef-

ficiently than positional systems.

A survey of current modular multiplication algorithms shows that most

work in a positional number system, e.g. binary. A new classification is de-

veloped which classes these algorithms as Classical, Sum of Residues, Mont-

gomery or Barrett. Each class of algorithm is analyzed in detail, new devel-

opments are described, and the improved algorithms are implemented and

compared using FPGA hardware.

Few modular multiplication algorithms for use in the RNS have been

published. Most are concerned with short word lengths and are not appli-

cable to public-key cryptosystems that require long word length operations.

This thesis sets out the hypothesis that each of the four classes of modular

multiplication algorithms possible in positional number systems can also be

used for long word length modular multiplication in the RNS; moreover using

the RNS in this way will lead to faster implementations than those which re-

strict themselves to positional number systems. This hypothesis is addressed

by developing new Classical, Sum of Residues and Barrett algorithms for

modular multiplication in the RNS. Existing Montgomery RNS algorithms

are also discussed.

The new Sum of Residues RNS algorithm results in a hardware im-
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plementation that is novel in many aspects: a highly parallel structure using

short arithmetic operations within the RNS; fully scalable hardware; and

the fastest ever FPGA implementation of the 1024-bit RSA cryptosystem at

0.4 ms per decryption.

vi



Publications
1. Yinan Kong and Braden Phillips, “Fast Scaling in the Residue Number

System”, accepted by IEEE Transactions on VLSI Systems in Decem-

ber 2007.

2. Yinan Kong and Braden Phillips, “Simulations of modular multipliers

on FPGAs”, Proceedings of the IASTED Asian Conference on Mod-

elling and Simulation, Beijing, China, Oct. 2007, pp. 11281131.

3. Yinan Kong and Braden Phillips, “Comparison of Montgomery and

Barrett modular multipliers on FPGAs”, 40th Asilomar Conference

on Signals, Systems and Computers. Pacific Grove, CA, USA: IEEE,

Piscataway, NJ, USA, Oct. 2006, pp. 16871691.

4. Yinan Kong and Braden Phillips, “Residue number system scaling

schemes”, in Smart Structures, Devices, and Systems II, ser. Proc.

SPIE, S. F. Al-Sarawi, Ed., vol. 5649, Feb. 2005, pp. 525536.

5. Yinan Kong and Braden Phillips, “A classical modular multiplier for

RNS channel operations”, The University of Adelaide, CHiPTec Tech.

Rep. CHIPTEC-05-02, November 2005.

6. Yinan Kong and Braden Phillips, “A Montgomery modular multiplier

for RNS channel operations”, The University of Adelaide, CHiPTec

Tech. Rep. CHIPTEC-05-02, November 2005.

vii



Publications in Submission
1. Yinan Kong and Braden Phillips, “Modular Reduction and Scaling

in the Residue Number System Using Multiplication by the Inverse”,

submitted to IEEE Transactions on VLSI Systems in November 2008.

2. Yinan Kong and Braden Phillips, “Low latency modular multiplica-

tion for public-key cryptosystems using a scalable array of parallel pro-

cessing elements”, submitted to 19th IEEE Computer Arithmetic in

October 2008.

3. Braden Phillips and Yinan Kong, “Highly Parallel Modular Multiplica-

tion in the Residue Number System using Sum of Residues Reduction”,

submitted to Journal of Applicable Algebra in Engineering, Communi-

cation and Computing in June 2008.

4. Yinan Kong and Braden Phillips, “Revisiting Sum of Residues Mod-

ular Multiplication”, submitted to International Journal of Computer

Systems Science and Engineering in May 2008.

viii



Nomenclature

〈X〉M The operation X mod M .

D The dynamic range of a RNS.

M The modulus of a modular multiplication, typically n bits.

mi The ith RNS channel modulus.

N The number of RNS channels.

n The wordlength of M .

w The RNS channel width.

�X� The ceiling of X. The smallest integer greater than or equal to X.

�X� The floor of X. The largest integer smaller than or equal to X.

BE Base Extension.

CRT Chinese Remainder Theorem.

DSP Digital Signal Processing.

ECC Elliptic Curve Cryptography.

LUC Look-Up Cycle.

LUT Look-Up Table.

LUT Look-Up Table
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MRS Mixed Radix Number System.

QDS Quotient Digit Selection.

RNS Residue Number System.

RSA RSA Cryptography.
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