Investigation and Application of Methods for Ancient DNA Research

Stephen Malone Richards

A dissertation submitted to the University of Adelaide in accordance with the requirements of the degree of PhD in the Faculty of Science, School of Earth & Environmental Sciences

September 2014

Dedication

This thesis is dedicated to Ignatius J. Reilly.

Table of Contents

Dedication	ii
	iii
List of Figures	vii
List of Tables	
List of Appendixes	Х
Abstract	xi
Thesis Declaration	xiii
Chapter I: Introduction	
1.0 History of Ancient DNA	1
1.1 DNA Sequencing and Polymerase Chain Reaction (PCR)	3
	4
1.3 Microarray Technologies	12
0	13
3.0 Outline of Thesis Chapters	16
	20
Chapter II: Optimizing Ancient DNA Sequencing Libraries	
1	25
Abstract	26
Introduction	26
Methods	29
Sample	30
	30
Library Construction and Amplification	31
Generation of TLR8 Probe	32
Hybridization Capture of TLR8	
Ion Torrent Sequencing	
Data Analysis	
Results	34
Library Characteristics	34
Shotgun Reads Mapped to Genome and Mitochondrial References	36
Shotgun and Hybridization Capture Reads Mapped to the	
TLR8 Reference	37
	38
Discussion	38
Library Characteristics	38
-	40
	42
	45
	45
References	47
	66
11	
Chapter III: Isothermal Amplification in Hybridization Capture of An	cient DNA
	88

Introduction	
Methods	93
Amplification Protocols	
Sample	95
Extraction of aDNA	95
Library Construction	
Generation of TLR8 Probe	96
Hybridization Capture of TLR8	<u>97</u>
Ion Torrent Sequencing	<u>97</u>
Data Analysis	98
Results	00
Whole Extract Amplification	<u>99</u>
Characteristics of Filtered Reads from TLR8 Hybridization	
Capture	99
Mapping of Filtered TLR8 Enriched Reads	101
Nucleotide Misincorporation	102
Discussion	102
Library Yields for Whole Amplification	102
Characteristics of Filtered Reads from TLR8 Hybridization	
Capture	104
Mapped TLR8 Unique Reads	106
Nucleotide Misincorporation	107
Future Directions	108
Conclusion	109
References	111
Supplemental Methods	130

Chapter IV: Detection of Altered Bases in Ancient DNA Using SMRT Sequencing

Statement of Authorship	149
Abstract	150
Introduction	150
Methods	155
Sample	155
Reagents and Materials	156
aDNA Extraction	156
SMRTbell Preparation and Sequencing	157
Data Analysis	
Results	150
Discussion	160
References	166

Chapter V: Paleoclimatic Impacts on European Bovid Megafauna in the Late Pleistocene

Statement of Authorship	175
Abstract	177
Introduction	177
Methods	181
Samples	181
Ancient DNA Extraction and Amplification	182

Amplicon Sequencing	184
Amplification of Template for In Vitro Transcription (IVT) of Pro	be
for Whole Mitochondrial Genome Enrichment	184
Transcription of <i>B. taurus</i> Mitochondrial <i>IVT</i> Templates	185
Fragmentation of Mitochondrial IVT RNA	186
Biotinylation of Fragmented RNA	
Repetitive Sequence Blocking RNA	187
<i>Bison X</i> Sequencing Library Construction and Amplification	188
Primary Mitochondria Hybridization Capture	188
Primary Hybridization Capture Amplification	190
Secondary Mitochondria Hybridization Capture	190
Secondary Hybridization Capture Amplification	190
Sequencing of Enriched Mitochondrial Libraries	191
NGS Data Analysis	191
Radiocarbon Dating	192
Phylogenetic Analysis	192
Genetic Identification of the New Specimens	193
Estimation of Evolutionary Timescale	193
Survey of Temperature and Paleovegetation Record	195
Morphological Comparisons	195
Results and Discussion	196
Ancient DNA Mitochondrial Typing	196
Position of New Samples in the Bovid Mitochondrial Phylogeny	196
Late Pleistocene Movements of Bison in Europe	198
References	202
Supplementary Methods	216
Chapter VI: Elucidating Bovid Evolution with Genotyping Technolo	gies
Statement of Authorship	222
Abstract	225
Introduction	225

Introduction	225
Genotyping Microarrays in Evolutionary Biology	225
Illumina BovineSNP50 BeadChip	226
Ascertainment bias	227
Bison Evolution	228
Evolutionary History of American Bison	229
Genetic Markers	229
Sub-species Distinction of Plains and Woods American Bison	230
Modern Genotyping Data	231
Genotyping aDNA	231
Hybridization Capture	234
Methods	235
Modern Genotyping Data	235
SNP Character Analysis	235
Phylogenetic Analysis	236
Extraction of aDNA	237
BovineSNP50 BeadChip Genotyping: steppe bison aDNA	238
Hybridization Capture of SNPs from Steppe Bison aDNA	
Libraries	238
Genomic Mapping of Steppe Bison SNP Enriched Libraries	241

242
242
243
244
246
247
248
251
252

Chapter VII: Conclusion

1.0 Overview	268
2.0 Population-Level Studies	269
2.1 Methodologies for Generating Genome-Wide Data	269
2.2 Advantages and Disadvantages of Genome-wide Methodologies	271
2.3 Examples of Population-Level Studies	271
2.4 Sample Size in Modern DNA and aDNA Population-Level Studies	274
3.0 aDNA Molecular Adaptation Studies	274
3.1 Molecular Adaptation – Gene Expression	275
3.2 Molecular Adaptation – Gene Copy Number Variation	275
3.3 Molecular Adaptation – Mutations in Cis-Acting Elements	277
3.4 Molecular Adaptation – Epigenetic Modifications	279
3.5 Molecular Adaptation – Gene Product Activity	282
4.0 Relevance of Thesis to Population-Level and Molecular Adaptation	
Studies	284
4.1 Hybridization Capture	284
4.2 Library Fidelity	284
4.3 Identification of Nucleotide Damage	285
4.4 Identification of Epigenetic Modifications	286
4.5 Analytical Tools	286
5.0 Conclusion	287
References	289
Appendix A	295

List of Figures

Chapter I: Introduction

Figure 1. Illustration of cluster generation for Illumina's single end	
sequencing	8
Figure 2. Illumina's sequencing by synthesis using reversible terminator	
nucleotides	9
Figure 3. Cost of DNA Sequencing and Moore's Law	11

Chapter II: Optimizing Ancient DNA Sequencing Libraries

Figure 1. Library construction and amplification	50
Figure 2. Boxplots for shotgun filtered read GC content and length	51
Figure 3. Boxplot for TLR8 enriched filtered read GC content and length	52
Figure 4. Chromosomal distribution of shotgun unique reads	53
Figure 5. Length distribution for the unique TLR8 enriched reads	54-55
Figure 6. mapDamage plots for shotgun unique reads	56
Figure 7. mapDamage plots for captured TLR8 unique reads	57
Figure S1. TLR8 RNA probe synthesis	58
Figure S2. Restriction enzyme recognition sites	59
Figure S3. Examples of qPCR amplification curves	60
Figure S4. TLR8 mapped read coverage	61

Chapter III: Isothermal Amplification in Hybridization Capture of Ancient DNA

Figure 1. Flow diagrams for the hybridization capture protocols	115
Figure 2. Boxplots of filtered read GC content and read length	
distribution	116
Figure 3. TLR8 unique read coverage	117
Figure 4. TLR8 unique read length distribution	118-119
Figure 5. mapDamage misincorporation plots	120
Figure S1. Rolling circle amplification	121
Figure S2. Recombinase polymerase amplification	122
Figure S3. Agarose gel of RCA product from steppe bison aDNA	123
Figure S4. Illustration of the fragmentation of RCA product from aDNA	124
Figure S5. Example of TLR8 qPCR amplification curves	125

Chapter IV: Detection of Altered Bases in Ancient DNA Using SMRT Sequencing

Figure 1. Images generated with SMRT View showing modified bases	
detected in the subreads clusters of single SMRTbells	169
Figure 2. An image generated in SMRT View showing modified bases	
detected in the subreads of multiple SMRTbells	170

Chapter V: Paleoclimatic Impacts on European Bovid Megafauna in the Late Pleistocene

Figure 1. Phylogenetic tree of control region sequences from 350 bovid	
samples	207
Figure 2. (a) Bovid phylogeny estimated from whole mitochondrial genome	;
sequences	208
Figure 2. (b) Allometric scaling of metacarpal measurements between three	
bison groups	208

Figure 3. Geographical origin and chronology of study bison samples	209-210
Figure 4. Maximum-clade-credibility tree of <i>Bison X</i>	211
Figure S1. Date-randomization test	212
Figure S2. Comparison of Nitrogen 15 and Carbon 13 values from the	
surveyed samples through time	215
Chapter VI: Elucidating Bovid Evolution with Genotyping Technolog	ies
Figure 1. Reanalyzed phylogenetic tree of 47 cattle breeds	257
Figure 2. SNP character composition plots	258
Figure 3. Reanalysis of European and American bison genotyping data	259
Figure 4. The maximum clade credibility tree estimated using Bayesian	
analysis of 55 bison and Yak BovineSNP50 genotyping data	260
Figure 5. Random phylogenetic placement of steppe bison Bovine SNP50	
replicates	261
Figure S1. Schematic of probe tiling	262
Figure S2. ML phylogenetic tree showing the position of the low quality	
modern bison samples	263
Figure S3. ML phylogenetic tree of European and American bison	
calculated without heterozygote characters	264

List of Tables

Chapter II: Optimizing Ancient DNA Sequencing Libraries	
Table 1. Library characteristics	62
Table 2. Unique shotgun reads mapping to cattle and <i>Bison bison</i>	
references	63
Table 3. Mapping of unique reads to the cattle TLR8 gene	<u>64</u>
Table S1 Primers and oligonucleotides	<u>65</u>
Chapter III: Isothermal Amplification in Hybridization Capture of A	ncient DNA
Table 1. Whole extract amplification 1 (WEA1) yields	
Table 2A. Enriched library characteristics	107
Table 2B. Characteristics of TLR8 mapped reads	
Table 3. Single nucleotide polymorphism profiles	
Table S1. Oligonucleotides	129
Chapter IV: Detection of Altered Bases in Ancient DNA Using SMRT	Sequencing
Table 1. Distribution of subread clusters and modified bases	171
Table 2. Examples of local sequence context that produced	1 / 1
multiple altered bases in steppe bison aDNA	172
Table 3. Characteristics of modified bases called in subreads	1/2
from single SMRTbells	173-174
Chapter V: Paleoclimatic Impacts on European Bovid Megafauna in	the
Late Pleistocene	
Table 1. List of all samples from Urals, North Sea, Caucasus and Austria	200
analyzed in this study	_206
Table S1. List of published mitochondrial control region sequences used	010
for phylogenetic analysis	_213
Table S2. List of published whole mitochondrial genome sequences used	214
for phylogenetic analysis	214
Table S3. Mitochondria control region primers	_214
Table S4. Oligonucleotides for whole mitochondrial genome hybridization capture	221
capture	221
Chapter VI: Elucidating Bovid Evolution with Genotyping Technolog	gies
Table 1. Steppe bison samples	265
Table 2. Read depth coverage of SNPs targeted for enrichment by	
Hybridization capture	266
Table S1. Primers and Oligonucleotides	267

List of Appendixes

Appendix A: Additional manuscript produced during canditature_____295

Abstract

The introduction of high throughput sequencing (HTS) in 2005 caused a revolution in the field of ancient DNA (aDNA). Using the large sequencing capacity of HTS, researchers have overcome the abundant environmental contamination present in most aDNA extractions to reconstruct the genomes of long extinct organisms, such as an archaic horse that perished >500,000 years ago. The proliferation of genomes engendered by HTS has also led to the development of potential ancillary technologies for aDNA research such as genotyping microarrays. In this thesis, HTS and genotyping techniques were developed or refined to improve the application of aDNA to larger biological questions in evolution. This thesis successfully: *a) describes an in-house* hybridization capture system that uses RNA probes generated from long-range PCR amplicons, b) demonstrates that recombinase polymerase amplification is a less biased alternative to PCR in hybridization capture of aDNA, c) develops an analytical approach that improves phylogenies generated with data from the Illumina *BovineSNP50 BeadChip (a commercially available genotyping microarray).* In contrast, an attempt to determine the identity of modified nucleotides in aDNA with Pacific Bioscience's Single Molecule Real-Time (SMRT) sequencing prove to be unsuccessful and genotyping of ancient bison aDNA with the BovineSNP50 BeadChip generated inconsistent results. Furthermore, a hybridization capture probe design was tested and found to be unsuitable for aDNA enrichment. For the larger biological aspect of this thesis, several of the methods developed were used to study bison, because these animals are ideal models of megafauna evolution. Using the in-house hybridization capture system, whole mitochondrial genomes were enriched from aDNA and used to help identify a new extinct species of bison. Furthermore, the new analytical approach for BovineSNP50 BeadChip data was used to demonstrate a

xi

significant genetic split between American woods and plains bison, which supports separating these animals at least at the subspecies level. This genetic split suggests that woods and plains bison should be conserved as separate species, which has considerable economic and political implications.

Thesis Declaration

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Stephen M. Richards

September 13, 2014