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As the appetite for data use across telecommunications networks is predicted to continue

to grow rapidly in the coming years, there is an increasing need to address the bandwidth

gap that exists between the optical links that underpin high speed networks and the

electronic layer typically used for processing signals at the endpoints. Nonlinear fibre

optics is a potential avenue to addressing this bandwidth bottleneck, where nonlinear

optical phenomena can be exploited to perform signal processing tasks, thereby allowing

the broad bandwidth of optical media to be used for signal processing as well as trans-

mission. Indeed the development of such optical signal processing devices is crucial to

moving towards the next generation of communications technology – where ultra fast

telecommunication networks with speeds approaching 1 Tb/s are required.

This work explored the use of the enhanced optical nonlinearity and dispersion engin-

eering possible in soft glass microstructured fibres as a basis for developing devices

for broadband telecommunications applications at 1.55 µm. Two applications were

considered in this research, namely multicasting and phase sensitive amplification –

both of which are signal processing applications that are important to the realisation of

all optical networks.

A number of soft glass materials were studied in this research, primarily those with high

nonlinear refractive indices such as chalcogenides, tellurites, bismuth oxide based glasses

and germanates. During the course of this work a novel lead germanate glass was also

developed. This glass was shown to have a high nonlinear index and relatively high

mechanical strength when compared to tellurite glasses of similar refractive indices.

Dispersion tailored, soft glass fibre designs were developed for both multicasting and

phase sensitive amplification. The design geometry, referred to as a ‘hexagonal wagon

wheel design’, was a hybrid model combining a hexagonal array geometry for dispersion

engineering with a suspended core or ‘wagon wheel’ geometry for high nonlinearity.

The fibre designs were optimised for each application by using a genetic algorithm

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://)
http://tilanka.co


based optimisation technique to achieve high and broad gain suitable for efficient signal

processing at extremely high bit rates.

Each fibre design was modelled for its intended application to demonstrate, numerically,

that the designs were indeed capable of performing their intended application over

a broad band. The modelling work used a numerical beam propagation model and

demonstrated that the designs were capable of operating at the extremely high bit rate

of 640 Gb/s.

Advances were made to fabrication techniques during the fabrication trials of these novel

designs due to the complex nature of the designs and, in some cases, the use of novel

materials. A first generation, simplified hexagonal wagon wheel fibre was fabricated in

the novel germanate glass developed earlier. A number of characterisation experiments

were also performed on fabricated microstructured fibres, including a measurement of

the dispersion profile for a tellurite fibre (that was shown to be in good agreement with

modelling results) and the measurement of the nonlinear index for a fibre fabricated

with the novel germanate glass – one of the few such measurements in the literature for

this family of glasses.

In addition to these fabrication advances and characterisation experiments, a study of

dispersive waves was performed on previously fabricated hexagonal wagon wheel fibres in

collaboration with colleagues at the University of California, Merced. These experiments

were used to study soliton propagation in these fibres at near infrared wavelengths.

Comparison of experimental data to theoretical models is shown to have good agreement

– an important validation of the modelling technique.
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