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Abstract 

Quantifying Biodiversity Patterns and Extinction Risk in Seasonal 

Wetland Plant Communities 

David Deane 

The University of Adelaide, 2016 

 

Supervisors: Corey J A Bradshaw 

Damien A. Fordham 

Fangliang He 

 

Wetlands are among the most threatened habitats on Earth. They are essential components 

of functional landscapes, providing habitat for native flora and fauna as well as supporting 

critical ecosystem services. Loss of wetland biodiversity threatens these values. There is an 

urgent need to understand patterns of wetland biodiversity, the processes creating these and 

the risk of species loss to plan effective intervention. Species-area relationships have a 

successful, although controversial, history of quantifying the risk of extinction in terrestrial 

biomes, and can provide rapid estimates of extinction risk at a range of scales without the 

need for extensive datasets. Prior to my research, applications of species-area relationships 

in extinction risk were limited to island archipelagos and formerly continuous terrestrial 

habitats that had become fragmented. Naturally occurring, discrete habitat types—such as 

wetlands—have been ignored. I address this gap, demonstrating that area-based methods 

can, with some modification, be successfully applied to predict extinction risk in wetland 

communities. Before considering extinction risk I analysed patterns of wetland plant 

diversity and occupancy and how competing community-assembly processes produce more 

or less unique combinations of species among wetlands. I showed that much of the plant 

community diversity in seasonal wetlands in South Australia is driven by rare terrestrial 
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species of wetland fringes, which assemble from a much larger available species pool. The 

distribution of these rare species was not correlated with total species richness or wetland 

size, suggesting that changes in the number or total area of wetlands could result in 

different extinction dynamics, depending on how they affected endemic species. I therefore 

compared risks associated with loss of complete wetlands (patch loss), with loss of the 

equivalent wetland area while maintaining the total number of wetlands. To implement the 

latter scenario, I developed a novel approach consisting of three steps: (i) a generalized 

empirical endemics-area relationship to predict the number of species lost within each 

wetland as a function of a reduction in wetland area; (ii) I selected the identities of the 

predicted number of species lost at each wetland probabilistically; (iii) I compred the 

number of wetlands from which each species was lost with its regional occupancy, and I 

considered any species predicted to be lost from all known sites as extinct. I then repeated 

steps (ii) and (iii) many times to obtain a distribution of regional-scale species loss for a 

given loss of area in each wetland. Step (ii) allowed for different scenarios to be tested by 

adjusting the sampling probability for each species. I found that a higher extinction risk was 

associated with the loss of complete wetlands than the equivalent area loss shared among 

all wetlands. Moreover, for a given area loss, small wetlands had a much higher risk of 

species loss due to the distribution of endemic species. The approach I developed could be 

readily applied to any discrete habitat type, providing predictions of risk for a range of 

ecosystems that have received little attention. 
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