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Abstract

Deep Learning Based Multi-document Summarization

by Congbo Ma

In this era of rapidly advancing technology, the exponential increase of data avail-
ability makes analyzing and understanding text files a tedious, labor-intensive, and
time-consuming task. Multi-document summarization (MDS) is an effective tool for
information aggregation that generates an informative and concise summary from
a cluster of topic-related documents. In this thesis, we systematically over-viewed
the recent deep learning based MDS models, proposed a series of novel methods to
cope with the MDS tasks with deep learning technique and examine the behaviours
of Transformer-based MDS models.

Firstly, we presented a categorization scheme to organize current research and
provide a comprehensive review for deep learning based MDS techniques, including
deep learning based models, objective functions, benchmark datasets, and evaluation
metrics. We reviewed development movements and provide a systematic overview
and summary of the state-of-the-art. We also summarized nine network design strate-
gies based on our extensive studies of the current models.

Secondly, due to linguistic knowledge plays an important role in assisting models
to learn informative representations, in this thesis, we presented a Transformer-based
abstractive MDS method with linguistic-guided attention (LGA) mechanism for bet-
ter representation learning. The proposed linguistic-guided attention mechanism
can be seamlessly incorporated into multiple mainstream Transformer based sum-
marization models to improve the quality of the generated summaries. We developed
the proposed method based on Flat Transformer (FT) and Hierarchical Transformer
(HT), named ParsingSum-FT and ParsingSum-HT respectively. Based on this work,
we further proposed document-aware positional encoding and linguistic-guided en-
coding that can be fused with Transformer architecture for MDS. For document-
aware positional encoding, we introduced a general protocol to guide the selection of
document encoding functions. For linguistic-guided encoding, we presented to em-
bed syntactic dependency relations into the dependency relation mask with a simple

http://www.adelaide.edu.au
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but effective non-linear encoding learner for feature learning. Empirical studies on
both models demonstrate these two simple but effective methods can help the models
outperform existing Transformer-based methods on the benchmark dataset by a large
margin.

Thirdly, the existing MDS methods neglect the specific information for each doc-
ument, limiting the comprehensiveness of the generated summaries. To solve this
problem, we presented to disentangle the specific content from documents in one
document set. The document-specific representations, which are encouraged to be
distant from each other via a proposed orthogonal constraint, are learned by the spe-
cific representation learner. We provided extensive analysis and had interesting find-
ings that specific information can well-complementary with document set features
for MDS tasks. Also, we found that the common (i.e. shared) information could not
contribute much to the overall performance under the MDS settings.

Fourthly, the utilization of Transformer based models prospers the growth of
MDS. In order to thoroughly examine the behaviours of Transformer based MDS
models, this thesis also presented five empirical studies on (1) measuring the im-
pact of document separators quantitatively; (2) exploring the effectiveness of dif-
ferent mainstream Transformer structures; (3) examining the sensitivity of encoder
and decoder (4) discussing different training strategies; (5) discovering the repeti-
tion in summary generation. The experimental results on two MDS datasets and
eleven evaluation metrics show the influence of document separators, the granularity
of different level features and different model training strategies. The experiments
also indicated that the decoder exhibits greater sensitivity to noises in summariza-
tion tasks compared to the encoder, which indicates the important role played by the
decoder, pointing a potential direction for future MDS researches. Furthermore, the
experimental results indicated that the repetition problem in the generated summaries
have correlations with the high uncertainty score.

Finally, we discussed the open issues of deep learning based MDS and identified
the future research directions of this field. We also proposed potential solutions for
some discussed research directions.
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Chapter 1

Introduction

1.1 Background and Motivations

A short and concise summary can be generated from one or several lengthy docu-
ments, resulting in single document summarization (SDS) and multi-document sum-
marization (MDS). While simpler to perform, SDS may not produce comprehensive
summaries because it does not take several related, or more recent, documents into
account. Conversely, multi-document summarization generates more comprehensive
and accurate summaries from documents written at different times, covering differ-
ent perspectives, but is accordingly more complicated as it tries to resolve potentially
diverse and redundant information (Tas and Kiyani, 2007). Formally, the aim of
multi-document summarization is to generate a concise and informative summary
Sum from a collection of documents D. D denotes a cluster of topic-related doc-
uments {di | i ∈ [1, N ]}, where N is the number of documents. Each document di

consists of Mdi sentences {si,j | j ∈ [1,Mdi ]}. si,j refers to the j-th sentence in the
i-th document. The standard summary Ref is called the gold summary or reference
summary.

Multi-document summarization enjoys a wide range of real-world applications,
including summarization of news (Fabbri et al., 2019a), scientific publications (Ya-
sunaga et al., 2019), emails (Carenini, Ng, and Zhou, 2007; Zajic, Dorr, and Lin,
2008), product reviews (Gerani et al., 2014), medical documents (Afantenos, Karkalet-
sis, and Stamatopoulos, 2005; Wang et al., 2023), lecture feedback (Luo et al., 2016),
software project activities (Alghamdi, Treude, and Wagner, 2020), and Wikipedia
articles (Liu et al., 2018a). Multi-document summarization technology has also re-
ceived a great amount of industry attention; an intelligent multilingual news reporter
bot named Xiaomingbot (Xu et al., 2020b) was developed for news generation, which
can summarize multiple news sources into one article and translate it into multiple
languages. Massive application requirements and rapidly growing online data have
promoted the development of multi-document summarization.



2 Chapter 1. Introduction

Existing traditional MDS algorithms are based on: term frequency-inverse docu-
ment frequency (TF-IDF) (Radev et al., 2004; Baralis et al., 2012), clustering (Gold-
stein et al., 2000; Wan and Yang, 2008), graphs (Mani and Bloedorn, 1997; Wan and
Yang, 2006) and latent semantic analysis (Arora and Ravindran, 2008; Haghighi and
Vanderwende, 2009). Most of these works still generate summaries with manually
crafted features (Mihalcea and Tarau, 2005; Wan and Yang, 2006), such as sentence
position features (Baxendale, 1958; Erkan and Radev, 2004a), sentence length fea-
tures (Erkan and Radev, 2004a), proper noun features (Vodolazova et al., 2013), cue-
phrase features (Gupta and Lehal, 2010), biased word features, sentence-to-sentence
cohesion and sentence-to-centroid cohesion.

More recently, deep learning has gained enormous attention due to its success in
various domains, for instance, computer vision (Krizhevsky, Sutskever, and Hinton,
2012), natural language processing (Devlin et al., 2014) and multi-modal learning
(Im et al., 2021). Both industry and academia have embraced deep learning to solve
complex tasks due to its capability of mapping highly nonlinear relations from data
to the labels. Deep neural network models learn multiple levels of representation and
abstraction from input data. Deep learning algorithms replace manual feature engi-
neering by capturing distinctive features through back-propagation to minimize given
objective functions. It is well known that linear solvable problems possess many ad-
vantages, such as it can be easily solved and has numerous theoretically proven sup-
ports; However, many NLP tasks are highly non-linear. As theoretically proven by
Hornik et al. (Hornik, Stinchcombe, and White, 1989), neural networks can fit any
given continuous function as a universal approximator. For multi-document sum-
marization tasks, deep neural networks also perform considerably better than tradi-
tional methods to effectively process large-scale documents and distill informative
summaries due to their strong fitting abilities. Therefore, deep learning based meth-
ods demonstrate outstanding performance in multi-document summarization tasks
in most cases (Cao et al., 2015b; Liu and Lapata, 2019a; Lebanoff et al., 2019; Lu,
Dong, and Charlin, 2020a; Li et al., 2020b; Chen et al., 2021a; Xiao et al., 2022; Wen
et al., 2022; Moro et al., 2022; Puduppully et al., 2023; Atri et al., 2023; Amar et al.,
2023). With recent huge improvements in computational power and the release of
increasing numbers of public datasets, neural networks with deeper layers and more
complex structures have been applied in multi-document summarization (Liu and
Lapata, 2019a; Li et al., 2017b), accelerating the development of text summarization
with more powerful and robust models. The prosperity of deep learning for summa-
rization in both academia and industry requires a comprehensive review of current
publications for researchers to better understand the process and research progress.
However, most of the existing summarization survey papers are based on traditional
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algorithms instead of deep learning based methods or target general text summariza-
tion (Nenkova and McKeown, 2012; Haque, Pervin, Begum, et al., 2013; Ferreira
et al., 2014; Shah and Jivani, 2016; El-Kassas et al., 2021). We have therefore in-
vestigated recent publications on deep learning based MDS methods in this thesis.
We classified neural based MDS techniques into diverse categories thoroughly and
systematically, and we also conducted a detailed discussion on the categorization and
progress of these approaches to establish a clearer concept standing in the shoes of
readers. Based on the existing MDS works, we found some challenges that deep
learning based multi-document summarization models faced:

• Deep learning methods often lack crucial linguistic knowledge, limiting their
ability to assist learners in creating informative representations and guiding
summary generation effectively. We believe that this is one possible reason
that some non-deep learning based MDS methods sometimes show better per-
formance than deep learning based methods (Lu, Dong, and Charlin, 2020a;
Cao et al., 2015b) as non-deep learning based methods pay more attention to
linguistic information.

• MDS faces a challenge related to the handling of document-specific details. In
a collection of documents, each document in a set describes topic-relevant con-
cepts, while per document also has its unique contents. Unfortunately, existing
MDS approaches tend to overlook the document-specific aspects, leading to a
lack of comprehensiveness in the generated summaries.

• Deep learning based models can be regarded as black boxes with high non-
linearity. It is challenging to understand the detailed transformation inside.
The contemporary developments of Transformer architecture (Vaswani et al.,
2017) thrives MDS task. Exploring the behaviours of Transformer-based MDS
models allows researchers to understand the effects of each module in these
models, therefore guiding the model design with a more accurate target.

Facing aforementioned challenges and moving towards the solutions, this the-
sis systematically proposed corresponding methods and analysis of multi-document
summarization. We first presented a simple yet effective linguistic-guided attention
mechanism for integrating dependency relations within multi-head attention mecha-
nisms. This linguistic-guided attention mechanism can be seamlessly integrated into
various mainstream Transformer-based summarization models, resulting in substan-
tial performance enhancements. Based on this work, we extended our efforts by
encoding 45 distinct dependency relations into a dependency relation mask using a
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straightforward yet highly effective non-linear encoding strategy aimed at enhanc-
ing feature learning. Additionally, we incorporated document positional information
to assist models in capturing cross-document relations. We conducted an extensive
analysis encompassing various configurations of document-aware positional encod-
ing and linguistic-guided encoding.

In order to address the second challenge, our intuition is not only to capture the
overall information in a document set but also to distinguish the specificity of each
document and learn representations of document specificity which will be considered
in the summary generation process. To this end, we presented disentangling speci-
ficity for abstractive multi-document summarization (DisentangleSum) — a simple
yet effective summarization model that disentangles document uniqueness with a set
of document-specific representation learners. In order to optimize the learning of spe-
cific features, we further proposed an orthogonal constraint to encourage the specific
features obtained from a pair of documents to be distinctive from each other. This
constraint encourages the document-specific feature vectors to align vertically with
each other, ensuring a semantic separation between them. Based on the constraint,
we designed an objective function that can transform the exponential increment of the
loss computation between each paired of documents into linear to cope with a large
number of documents in a set. Experimental results on two MDS datasets demon-
strate the effectiveness of DisentangleSum. We additionally offered comprehensive
analyses from multiple perspectives to investigate the underlying mechanisms of Dis-
entangleSum and circumstances of the proposed model that can work.

To solve the third challenge, we undertook a comprehensive investigation from
five distinct perspectives covering the Transformer-based multi-document summa-
rization model designing pipeline. (1) Document input perspective: we conducted
experiments to quantitatively assess the impact of document separators from the
standpoint of document input. (2) Transformer structure perspective: we explored
the effectiveness of different mainstream Transformer structures; (3) The signifi-
cance of encoder and decoder in MDS model: we designed empirical studies by
adding noises on top of the encoder and decoder; (4) Training strategy angle: we re-
organized the source documents and include self-supervised training techniques; (5)
Summary generation angle, we explored the uncertainty when repetition problems
occur in summary generation process.

1.2 Thesis Organization

The structure of this thesis is organized as follows: Chapter 1 provides foundational
knowledge in the field of multi-document summarization. This chapter encompasses
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essential components such as problem definition, applications, typologies of docu-
ment summarization, research challenges and a brief description of our solutions. In
Chapter 2, we structurally overviewed the recent deep learning based multi-document
summarization models via a proposed taxonomy. Particularly, we presented a novel
mechanism to summarize the design strategies of neural networks and conducted a
comprehensive summary. We also highlighted the various objective functions, eval-
uation metrics and datasets within MDS tasks. Chapter 3 introduced two innova-
tive methods for integrating linguistic knowledge into abstractive multi-document
summarization. Initially, a linguistically guided attention mechanism is proposed to
incorporate dependency relations within multi-head attention mechanisms, offering
a simple yet effective approach. Building upon this foundation, we expanded our
endeavors by encoding 45 distinct dependency relations into a dependency relation
mask, employing a straightforward yet well-performing non-linear encoding strat-
egy to enrich MDS feature learning. In Chapter 4, we presented DisentangleSum,
an innovative MDS model which is capable of disentangling specific information
from each document in a set, thereby enhancing the quality of summary generation.
Notably, this work represented the first attempt to consider document-specific in-
formation in the context of multi-document summarization. Chapter 5 conducted
a comprehensive exploration from five distinct angles, encompassing the pipeline
for designing Transformer-based MDS models. These perspectives include the doc-
ument input perspective, Transformer structure perspective, the significance of the
encoder and decoder, training strategy angle and summary generation angle. Chap-
ter 6 discussed the future research directions and open issues. Finally, Chapter 7
provided a succinct summary of the thesis.
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Chapter 2

Literature Review

This chapter covers various aspects of the advanced deep learning based works in
multi-document summarization. Similarities and differences between single docu-
ment summarization and multi-document summarization are introduced in section
2.1. Nine deep learning architecture design strategies, six deep learning based meth-
ods, and the variant tasks of multi-document summarization are presented in section
2.2. Section 2.3 summarized objective functions that guide the model optimization
process while evaluation metrics in section 2.4 summarized suitable indices to eval-
uate the effectiveness of a model. Section 2.5 summarized standard and the variant
multi-document summarization datasets.

2.1 From Single to Multi-document Summarization

To have a clear understanding of the processing of deep learning based summariza-
tion tasks, we summarized and illustrated the processing framework as shown in
Figure 2.1. The first step is preprocessing input document(s), such as segmenting
sentences, tokenizing non-alphabetic characters, and removing punctuation (Shir-
wandkar and Kulkarni, 2018). Multi-document summarization models in particular
need to select suitable concatenation methods to capture cross-document relations.
Then, an appropriate deep learning based model is chosen to generate semantic-rich

Deep Learning
based 
Model

Sentences 
Selection

OR
Words 

Generation

Representation
Fusion

Form the 
Summary

Input 
Documents

ConcatenationPreprocessing

FIGURE 2.1. The processing framework of text summarization. Each
of the highlighted steps (the one with the triangle mark) indicates
the differences between single document summarization and multi-

document summarization.
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representation for downstream tasks. The next step is to fuse these various types
of representation for later sentence selection or summary generation. Finally, docu-
ment(s) are transformed into a concise and informative summary. Each of the high-
lighted steps in Figure 2.1 (indicated by triangles) indicates a difference between
single document summarization and multi-document summarization. Based on this
process, the research questions of multi-document summarization can be summa-
rized as follows:

• How to capture the cross-document relations and in-document relations from
the input documents?

• Compared to single document summarization, how to extract or generate salient
information in a larger search space containing conflict, duplication, and com-
plementary information?

• How to best fuse various representation from deep learning based models and
external knowledge?

• How to comprehensively evaluate the performance of multi-document summa-
rization models?

The following sections provide a comprehensive analysis of the similarities and
differences between single document summarization and multi-document summa-
rization.

2.1.1 Similarities between SDS and MDS

Existing single document summarization and multi-document summarization meth-
ods share the summarization construction types, learning strategies, evaluation in-
dexes and objective functions. Single document summarization and multi-document
summarization both seek to compress the document(s) into a short and informative
summary. Existing summarization methods can be grouped into abstractive sum-
marization, extractive summarization and hybrid summarization (Figure 2.2). Ex-
tractive summarization methods select salient snippets from the source documents
to create informative summaries, and generally contain two major components: sen-
tence ranking and sentence selection (Cao et al., 2015a; Nallapati, Zhai, and Zhou,
2017). Abstractive summarization methods aim to present the main information of
input documents by automatically generating summaries that are both succinct and
coherent; this cluster of methods allows models to generate new words and sentences
from a corpus pool (Paulus, Xiong, and Socher, 2018). Hybrid models are proposed
to combine the advantages of both extractive and abstractive methods to process the
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FIGURE 2.2. Summarization construction types for text summariza-
tion.

input texts. Research on summarization focuses on two learning strategies. One strat-
egy seeks to enhance the generalization performance by improving the architecture
design of the end-to-end models (Fabbri et al., 2019b; Chu and Liu, 2019; Jin, Wang,
and Wan, 2020a; Liu and Lapata, 2019a). The other leverages external knowledge
or other auxiliary tasks to complement summary selection or generation (Cao et al.,
2017; Li et al., 2020b). Furthermore, both single document summarization and multi-
document summarization aim to minimize the distance between machine-generated
summary and gold summary. Therefore, single document summarization and multi-
document summarization could share some indices to evaluate the performance of
summarization models such as Recall-Oriented Understudy for Gisting Evaluation
(ROUGE), and objective functions to guide model optimization.

2.1.2 Differences between SDS and MDS

In the early stages of multi-document summarization, researchers directly applied
single document summarization models to multi-document summarization (Mao et
al., 2020). However, a number of aspects in multi-document summarization that
are different from single document summarization and these differences are also the
breakthrough point for exploring the multi-document summarization models. We
summarize the differences in the following five aspects:

• More diverse input document types;

• Insufficient methods to capture cross-document relations;

• High redundancy and contradiction across input documents;

• Larger searching space but lack of sufficient training data;
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• Lack of evaluation metrics specifically designed for multi-document summa-
rization.

A defining different character between single document summarization and multi-
document summarization is the number of input documents. multi-document sum-
marization tasks deal with multiple sources, of types that can be roughly divided into
three groups:

• Many short sources, where each document is relatively short but the quantity
of the input data is large. A typical example is product reviews summarization
that aims to generate a short, informative summary from numerous individual
reviews (Angelidis and Lapata, 2018).

• Few long sources. For example, generating a summary from a group of news
articles (Fabbri et al., 2019b), or constructing a Wikipedia-style article from
several web articles (Liu et al., 2018a).

• Hybrid sources containing one or few long documents with several to many
shorter documents. For example, news article(s) with several readers’ com-
ments to this news (Li, Bing, and Lam, 2017), or a scientific summary from a
long paper with several short corresponding citations (Yasunaga et al., 2019).

As single document summarization only uses one input document, no additional
processing is required to assess relationships between single document summariza-
tion inputs. By their very nature, the multiple input documents used in multi-document
summarization are likely to contain more contradictory, redundant, and complemen-
tary information (Radev, 2000). Multi-document summarization models therefore
require sophisticated algorithms to identify and cope with redundancy and contra-
dictions across documents to ensure that the final summary is comprehensive. De-
tecting these relations across documents can bring benefits for multi-document sum-
marization models. In multi-document summarization tasks, there are two common
methods to concatenate multiple input documents:

• Flat concatenation is a simple yet powerful concatenation method, where all
input documents are spanned and processed as a flat sequence; to a certain ex-
tent, this method converts multi-document summarization to single document
summarization tasks. Inputting flat-concatenated documents requires models
to have a strong ability to process long sequences.

• Hierarchical concatenation is able to preserve cross-document relations. How-
ever, many existing deep learning methods do not make full use of this hi-
erarchical relationship (Wang et al., 2020a; Fabbri et al., 2019b; Liu et al.,
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2018a). Taking advantage of hierarchical relations among documents instead
of simply flat concatenating articles facilitates the multi-document summa-
rization model to obtain representation with built-in hierarchical information,
which in turn improves the effectiveness of the models. The input documents
within a cluster describe a similar topic logically and semantically. Figure
2.3 illustrates two representative methods of hierarchical concatenation. Ex-
isting hierarchical concatenation methods either perform document-level con-
densing in a cluster separately (Amplayo and Lapata, 2021) or process doc-
uments in word/sentence-level inside document cluster (Nayeem, Fuad, and
Chali, 2018; Antognini and Faltings, 2019; Wang et al., 2020a). In Figure
2.3(a), the extractive or abstractive summaries, or representation from the in-
put documents are fused in the subsequent processes for final summaries gen-
eration. The models using document-level concatenation methods are usually
two-stage models. In Figure 2.3(b), sentences in the documents can be re-
placed by words. For word or sentence-level concatenation methods, cluster-
ing algorithms and graph-based techniques are the most commonly used meth-
ods. Clustering methods could help multi-document summarization models
decrease redundancy and increase the information coverage for the generated
summaries (Nayeem, Fuad, and Chali, 2018). Sentence relation graph is able
to model hierarchical relations among multi-documents as well (Antognini and
Faltings, 2019; Yasunaga et al., 2019; Yasunaga et al., 2017). Most of the
graph construction methods utilize sentences as vertexes and the edge between
two sentences indicates their sentence-level relations (Antognini and Faltings,
2019). Cosine similarity graph (Erkan and Radev, 2004a), discourse graph
(Christensen, Soderland, Etzioni, et al., 2013; Yasunaga et al., 2017; Liu and
Lapata, 2019a), semantic graph (Pasunuru et al., 2021b) and heterogeneous
graph (Wang et al., 2020a) can be used for building sentence graph structures.
These graph structures could all serve as an external knowledge to improve the
performance of multi-document summarization models.

In addition to capture cross-document relation, hybrid summarization models can
also be used to capture complex documents semantically, as well as to fuse dis-
parate features that are more commonly adopted by multi-document summarization
tasks. These models usually process data in two stages: extractive-abstractive and
abstractive-abstractive (the right part of Figure 2.2). The two-stage models try to
gather important information from source documents with extractive or abstractive
methods at the first stage, to significantly reduce the length of documents. In the
second stage, the processed texts are fed into an abstractive model to form final sum-
maries (Amplayo and Lapata, 2021; Lebanoff et al., 2019; Liu et al., 2018a; Liu and
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Lapata, 2019a; Li et al., 2020b).

2.2 Deep Learning Based Multi-document Summariza-
tion Methods

Deep neural network (DNN) models learn multiple levels of representation and ab-
straction from input data and can fit data in a variety of research fields. Deep learn-
ing algorithms replace manual feature engineering by learning distinctive features
through back-propagation to minimize a given objective function. It is well known
that linear solvable problems possess many advantages, such as being easily solved
and having numerous theoretically proven supports; however, many NLP tasks are
highly non-linear. As theoretically proven by Hornik et al. (Hornik, Stinchcombe,
and White, 1989), neural networks can fit any given continuous function as a uni-
versal approximator. For multi-document summarization tasks, DNNs also perform
considerably better than traditional methods to effectively process large-scale docu-
ments and distill informative summaries due to their strong fitting abilities.
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2.2.1 Architecture Design Strategies

Architecture design strategies play a critical role in deep learning based models,
and many architectures have been applied to variants multi-document summariza-
tion tasks. Here, we generalized the network architectures and summarized them
into nine types based on how they generate or fuse semantic-rich and syntactic-rich
representation to improve multi-document summarization model performance (Fig-
ure 2.4); these different architectures can also be used as basic structures or stacked
on each other to obtain more diverse design strategies. In Figure 2.4, deep neural
models are in green boxes and can be flexibly substituted with other backbone net-
works. The blue boxes indicate the neural embeddings processed by neural networks
or heuristic-designed approaches, e.g., "sentence/document" or "other" representa-
tion. The explanation for each sub-figure is listed as follows:

• Naive Networks (Figure 2.4(a)). Multiple concatenated documents are input
through DNN based models to extract features. Word-level, sentence-level or
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document-level representation is used to generate the downstream summary or
select sentences. Naive networks represent the most naive model that lays the
foundation for other strategies.

• Ensemble Networks (Figure 2.4(b)). Ensemble based methods leverage mul-
tiple learning algorithms to obtain better performance than individual algo-
rithms. To capture semantic-rich and syntactic-rich representation, ensemble
networks feed input documents to multiple paths with different network struc-
tures or operations. Later on, the representation from different networks is
fused to enhance model expression capability. The majority vote or the aver-
age score can be used to determine the final output.

• Auxiliary Task Networks (Figure 2.4(c)) employ different tasks in the summa-
rization models, where text classification, text reconstruction, or other auxil-
iary tasks serve as complementary representation learners to obtain advanced
features. Meanwhile, auxiliary task networks also provide researchers with a
solution to use appropriate data from other tasks. In this strategy, parameter
sharing schemes are used for jointly optimizing different tasks.

• Reconstruction Networks (Figure 2.4(d)) optimize models from an unsuper-
vised learning paradigm, which allows summarization models to overcome
the limitation of insufficient annotated gold summaries. The use of such a
paradigm enables generated summaries to be constrained in the natural lan-
guage domain in a good manner.

• Fusion Networks (Figure 2.4(e)) fuse representation generated from neural
networks and hand-crafted features. These hand-crafted features contain ade-
quate prior knowledge that facilitates the optimization of summarization mod-
els.

• Graph Neural Networks (Figure 2.4(f)). This strategy captures cross-document
relations, crucial and beneficial for multi-document model training, by con-
structing graph structures based on the source documents, including word, sen-
tence, or document-level information.

• Encoder-Decoder Structure (Figure 2.4(g)). The encoder embeds source docu-
ments into the hidden representation, i.e., word, sentence and document repre-
sentation. This representation, containing compressed semantic and syntactic
information, is passed to the decoder which processes the latent embeddings to
synthesize local and global semantic/syntactic information to produce the final
summaries.
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• Pre-trained Language Models (Figure 2.4(h)) obtain contextualized text rep-
resentation by predicting words or phrases based on their context using large
amounts of the corpus, which can be further fine-tuned for downstream task
adaption (Dong et al., 2019). The models can fine-tune with randomly initial-
ized decoders in an end-to-end fashion since transfer learning can assist the
model training process (Li et al., 2020b).

• Hierarchical Networks (Figure 2.4(i)). Multiple documents are concatenated
as inputs to feed into the first DNN based model to capture low-level repre-
sentation. Another DNN based model is cascaded to generate high-level rep-
resentation based on the previous ones. The hierarchical networks empower
the model with the ability to capture abstract-level and semantic-level features
more efficiently.

2.2.2 Recurrent Neural Networks based Models

Recurrent Neural Networks (RNNs) (Rumelhart, Hinton, and Williams, 1986) excel
in modeling sequential data by capturing sequential relations and syntactic/semantic
information from word sequences. In RNN models, neurons are connected through
hidden layers and unlike other neural network structures, the inputs of each RNN
neuron come not only from the word or sentence embedding but also from the output
of the previous hidden state. Despite being powerful, vanilla RNN models often
encounter gradient explosion or vanishing issues, so a large number of RNN-variants
have been proposed. The most prevalent ones are Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), Gated Recurrent Unit (GRU) (Chung et al.,
2014) and Bi-directional Long Short-Term Memory (Bi-LSTM) (Huang, Xu, and
Yu, 2015). The DNN based Model in Figure 2.4 can be replaced with RNN based
models to design models.

RNN based models have been used in multi-document summarization tasks since
2015. Cao et al. (Cao et al., 2015a) proposed an RNN-based model termed Ranking
framework upon Recursive Neural Networks (R2N2), which leverages manually ex-
tracted words and sentence-level features as inputs. This model transfers the sentence
ranking task into a hierarchical regression process, which measures the importance
of sentences and constituents in the parsing tree. Zheng et al. (Zheng et al., 2019)
used a hierarchical RNN structure to utilize the subtopic information by extracting
not only sentence and document embeddings, but also topic embeddings. In this
SubTopic-Driven Summarization (STDS) model, the readers’ comments are seen as
auxiliary documents and the model employs soft clustering to incorporate comment
and sentence representation for further obtaining subtopic representation. Arthur et
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al. (Bražinskas, Lapata, and Titov, 2019) introduced a GRU-based encoder-decoder
architecture to minimize the diversity of opinions reflecting the dominant views while
generating multi-review summaries. Mao et al. (Mao et al., 2020) proposed a max-
imal margin relevance guided reinforcement learning framework (RL-MMR) to in-
corporate the advantages of neural sequence learning and statistical measures. The
proposed soft attention for learning adequate representation allows more exploration
of search space.

To leverage the advantage of the hybrid summarization model, Reinald et al.
(Amplayo and Lapata, 2021) proposed a two-stage framework, viewing opinion sum-
marization as an instance of multi-source transduction to distill salient information
from source documents. The first stage of the model leverages a Bi-LSTM auto-
encoder to learn word and document-level representation; the second stage fuses
multi-source representation and generates an opinion summary with a simple LSTM
decoder combined with a vanilla attention mechanism (Bahdanau, Cho, and Bengio,
2015) and a copy mechanism (Vinyals, Fortunato, and Jaitly, 2015).

Since paired multi-document summarization datasets are rare and hard to obtain,
Li et al. (Li et al., 2017b) developed a RNN-based framework to extract salient in-
formation vectors from sentences in input documents in an unsupervised manner.
Cascaded attention retains the most relevant embeddings to reconstruct the origi-
nal input sentence vectors. During the reconstruction process, the proposed model
leverages a sparsity constraint to penalize trivial information in the output vectors.
Also, Chu et al. (Chu and Liu, 2019) proposed an unsupervised end-to-end abstrac-
tive summarization architecture called MeanSum. This LSTM-based model formal-
izes product or business reviews summarization problem into two individual closed-
loops. Inspired by MeanSum, Coavoux et al. (Coavoux, Elsahar, and Gallé, 2019)
used a two-layer standard LSTM to construct sentence representation for aspect-
based multi-document abstractive summarization, and discovered that the clustering
strategy empowers the model to reward review diversity and handle contradictory
ones.

2.2.3 Convolutional Neural Networks Based Models

Convolutional neural networks (CNNs) (LeCun et al., 1998) achieve excellent results
in computer vision tasks. The convolution operation scans through the word/sentence
embeddings and uses convolution kernels to extract important information from input
data objects. Using a pooling operation at intervals can return simple to complex
feature levels. CNNs have been proven to be effective for various NLP tasks in
recent years (Kim, 2014; Dos Santos and Gatti, 2014) as they can process natural
language after sentence/word vectorization. Most of the CNN based multi-document
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summarization models use CNNs for semantic and syntactic feature representation.
As with RNN, CNN-based models can also replace DNN-based models in network
design strategies (Please refer to Figure 2.4).

A simple way to use CNNs in multi-document summarization is by sliding mul-
tiple filters with different window sizes over the input documents for semantic repre-
sentation. Cao et al. (Cao et al., 2015b) proposed a hybrid CNN-based model Prior-
Sum to capture latent document representation. The proposed representation learner
slides over the input documents with filters of different window widths and two-
layer max-over-time pooling operations (Collobert et al., 2011) to fetch document-
independent features that are more informative than using standard CNNs. Similarly,
HNet (Singh, Gupta, and Varma, 2018) uses distinct CNN filters and max-over-time-
pooling to generate salient feature representation for downstream processes. Cho et
al. (Cho et al., 2019) also used different filter sizes in DPP-combined model to ex-
tract low-level features. Yin et al. (Yin and Pei, 2015) presented an unsupervised
CNN-based model termed Novel Neural Language Model (NNLM) to extract sen-
tence representation and diminish the redundancy of sentence selection. The NNLM
framework contains only one convolution layer and one max-pooling layer, and both
element-wise averaging sentence representation and context words representation are
used to predict the next word. For aspect-based opinion summarization, Stefanos et
al. (Angelidis and Lapata, 2018) leveraged a CNN based model to encode the product
reviews which contain a set of segments for opinion polarity.

People with different background knowledge and understanding can produce dif-
ferent summaries of the same documents. To account for this variability, Zhang et
al. (Zhang et al., 2016) suggested a MV-CNN model that ensembles three individual
models to incorporate multi-view learning and CNNs to improve the performance of
multi-document summarization. In this work, three CNNs with dual-convolutional
layers used multiple filters with different window sizes to extract distinct saliency
scores of sentences.

To overcome the insufficient training data problem, Cao et al. (Cao et al., 2017)
developed a TCSum model incorporating an auxiliary text classification sub-task
into multi-document summarization to introduce more supervision signals. The text
classification model uses a CNN descriptor to project documents onto the distributed
representation and to classify input documents into different categories. The sum-
marization model shares the projected sentence embedding from the classification
model, and the TCSum model then chooses the corresponding category based trans-
formation matrices according to classification results to transform the sentence em-
bedding into the summary embedding.

Unlike RNNs that support the processing of long time-serial signals, a naive CNN
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layer struggles to capture long-distance relations due to the limitation of the fixed-
sized convolutional kernels, each of which has a specific receptive field size. Never-
theless, CNN based models can increase their receptive fields through formation of
hierarchical structures to calculate sequential data in a parallel manner. Because of
this highly parallelizable characteristic, training of CNN-based summarization mod-
els is more efficient than for RNN-based models. However, summarizing lengthy
input articles is still challenging for CNN based models because they are not skilled
in modeling non-local relationships.

2.2.4 Graph Neural Networks Based Models

CNNs have been successfully applied to many computer vision tasks to extract dis-
tinguished image features from the Euclidean space, but struggle when processing
non-Euclidean data. Natural language data consist of vocabularies and phrases with
strong relations which can be better represented with graphs than with sequential
orders. Graph neural networks (GNNs, Figure 2.4 (f)) are composed of an ideal
architecture for NLP since they can model strong relations between entities seman-
tically and syntactically. Graph convolution networks (GCNs) and graph attention
networks (GANs) are the most commonly adopted GNNs because of their efficiency
and simplicity for integration with other neural networks. These models first build
a relation graph based on input documents, where nodes can be words, sentences or
documents, and edges capture the similarity among them. At the same time, input
documents are fed into a DNN based model to generate embeddings at different lev-
els. The GNNs are then built over the top to capture salient contextual information.

Yasunage et al. (Yasunaga et al., 2017) developed a GCN based extractive model
to capture the relations between sentences. This model first builds a sentence-based
graph and then feeds the pre-processed data into a GCN (Kipf and Welling, 2017)
to capture sentence-wise related features. Defined by the model, each sentence is
regarded as a node and the relation between each pair of sentences is defined as an
edge. Inside each document cluster, the sentence relation graph can be generated
through a cosine similarity graph (Erkan and Radev, 2004a), approximate discourse
graph (Christensen, Soderland, Etzioni, et al., 2013), and the proposed personal-
ized discourse graph. Both the sentence relation graph and sentence embeddings
extracted by a sentence-level RNN are fed into GCN to produce the final sentence
representation. With the help of a document-level GRU, the model generates cluster
embeddings to fully aggregate features between sentences.

Similarly, Antognini et al. (Antognini and Faltings, 2019) proposed a GCN based
model named SemSentSum that constructs a graph based on sentence relations. In
contrast to Yasunage et al. (Yasunaga et al., 2017), this work leverages external
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universal embeddings, pre-trained on the unrelated corpus, to construct a sentence
semantic relation graph. Additionally, an edge removal method has been applied
to deal with the sparse graph problems emphasizing high sentence similarities; if the
weight of the edge is lower than a given threshold, the edge is removed. The sentence
relation graph and sentence embeddings are fed into a GCN (Kipf and Welling, 2017)
to generate saliency estimation for extractive summaries.

Yasunage et al. (Yasunaga et al., 2019) also designed a GCN based model for
summarizing scientific papers. The proposed ScisummNet model uses not only the
abstract of source scientific papers but also the relevant text from papers that cite the
original source. The total number of citations is also incorporated into the model
as an authority feature. A cosine similarity graph is applied to form the sentence
relation graph, and GCNs are adopted to predict the sentence salience estimation
from the sentence relation graph, authority scores and sentence embeddings.

Existing GNN based models focused mainly on the relationships between sen-
tences, and do not fully consider the relationships between words, sentences, and
documents. To fill this gap, Wang et al. (Wang et al., 2020a) proposed a heteroge-
neous GAN based model, called HeterDoc-SUM Graph, that is specific for extrac-
tive multi-document summarization. This heterogeneous graph structure includes
word, sentence, and document nodes, where sentence nodes and document nodes are
connected according to the contained word nodes. Word nodes thus act as an inter-
mediate bridge to connect the sentence and document nodes, and are used to better
establish document-document, sentence-sentence and sentence-document relations.
TF-IDF values are used to weight word-sentence and word-document edges, and the
node representation of these three levels are passed into the graph attention networks
for model update. In each iteration, bi-directional updating of both word-sentence
and word-document relations are performed to better aggregate cross-level semantic
knowledge.

2.2.5 Pointer-generator Networks Based Models

Pointer-generator (PG) networks (See, Liu, and Manning, 2017a) are proposed to
overcome the problems of factual errors and high redundancy in the summariza-
tion tasks. This network has been inspired by Pointer Network (Vinyals, Fortunato,
and Jaitly, 2015), CopyNet (Gu et al., 2016), forced-attention sentence compression
(Miao and Blunsom, 2016), and coverage mechanism from machine translation (Tu
et al., 2016). PG networks combine sequence-to-sequence model and pointer net-
works to obtain a united probability distribution allowing vocabularies to be selected
from source texts or generated by machines. Additionally, the coverage mechanism
prevents PG networks from consistently choosing the same phrases.
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The Maximal Marginal Relevance (MMR) method is designed to select a set of
salient sentences from source documents by considering both importance and re-
dundancy indices (Carbonell and Goldstein, 1998a). The redundancy score con-
trols sentence selection to minimize overlap with the existing summary. The MMR
model adds a new sentence to the objective summary based on importance and re-
dundancy scores until the summary length reaches a certain threshold. Inspired by
MMR, Alexander et al. (Fabbri et al., 2019b) proposed an end-to-end Hierarchical
MMR-Attention Pointer-generator (Hi-MAP) model to incorporate PG networks and
MMR (Carbonell and Goldstein, 1998a) for abstractive multi-document summariza-
tion. The Hi-MAP model improves PG networks by modifying attention weights
(multiplying MMR scores by the original attention weights) to include better impor-
tant sentences in, and filter redundant information from, the summary. Similarly,
the MMR approach is implemented by PG-MMR model (Lebanoff, Song, and Liu,
2018) to identify salient source sentences from multi-document inputs, albeit with
a different method for calculating MMR scores from Hi-MAP; instead, ROUGE-L
Recall and ROUGE-L Precision (Lin, 2004a) serve as evaluation metrics to calculate
the importance and redundancy scores. To overcome the scarcity of multi-document
summarization datasets, the PG-MMR model leverages a support vector regression
model that is pre-trained on a single document summarization dataset to recognize
the important contents. This support vector regression model also calculates the score
of each input sentence by considering four factors: sentence length, sentence rela-
tive/absolute position, sentence-document similarities, and sentence quality obtained
by a PG network. Sentences with the top-K scores are fed into another PG network
to generate a concise summary.

2.2.6 Transformer Based Models

As discussed, CNN based models are not as good at processing sequential data as
RNN based models. However, RNN based models are not amenable to parallel
computing, as the current states in RNN models highly depend on results from the
previous steps. Additionally, RNNs struggle to process long sequences since for-
mer knowledge will fade away during the learning process. Adopting Transformer
based architectures (Vaswani et al., 2017) is one solution to solve these problems.
The Transformer is based on the self-attention mechanism, has natural advantages
for parallelization, and retains relative long-range dependencies. The Transformer
model has achieved promising results in multi-document summarization tasks (Liu
et al., 2018a; Liu and Lapata, 2019a; Li et al., 2020b; Jin, Wang, and Wan, 2020a;
Chen et al., 2021a; Xiao et al., 2022; Moro et al., 2022; Wen et al., 2022) and can
replace the DNN based Model in Figure 2.4. Most of the Transformer based models
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follow an encoder-decoder structure. Transformer based models can be divided into
flat Transformer, hierarchical Transformer, and pre-train language models.

Flat Transformer. Liu et al. (Liu et al., 2018a) introduced Transformer to multi-
document summarization tasks, aiming to generate a Wikipedia article from a given
topic and set of references. The model selects a series of top-K tokens and feeds
them into a Transformer based decoder-only sequence transduction model to gener-
ate Wikipedia articles. More specifically, the Transformer decoder-only architecture
combines the results from the extractive stage and gold summary into a sentence
for training. To obtain rich semantic representation from different granularity, Jin
et al. (Jin, Wang, and Wan, 2020a) proposed a Transformer based multi-granularity
interaction network MGSum and unified extractive and abstractive multi-document
summarization. Words, sentences, and documents are considered as three granular
levels of semantic unit connected by a granularity hierarchical relation graph. In the
same granularity, a self-attention mechanism is used to capture the semantic relation-
ships. Sentence granularity representation is employed in the extractive summariza-
tion, and word granularity representation is adapted to generate an abstractive sum-
mary. Brazinskas et al. (Brazinskas, Lapata, and Titov, 2020) created a precedent for
few-shot learning for multi-document summarization that leverages a Transformer
conditional language model and a plug-in network for both extractive and abstractive
multi-document summarization to overcome rapid overfitting and poor generation
problems resulting from naive fine-tuning of large parameter models.

Hierarchical Transformer. To handle huge amounts of input documents (currently
many large scale multi-document summarization datasets contain more than ten thou-
sand input document sets), Yang et al. (Liu and Lapata, 2019a) proposed a two-stage
Hierarchical Transformer (HT) model with an inter-paragraph and graph-informed
attention mechanism that allows the model to encode multiple input documents hi-
erarchically instead of by simple flat-concatenation. A logistic regression model is
employed to select the top-K paragraphs, which are fed into a local Transformer
layer to obtain contextual features. A global Transformer layer mixes the contex-
tual information to model the dependencies of the selected paragraphs. To leverage
graph structure, Chen et al. (Chen et al., 2021a) used a hierarchical Transformer
to encode the document graph and select the summary sub-graph. The document
graph is a directed acyclic graph that represents the relations between sentences in
multiple documents. The summary sub-graph is a sub-DAG that contains the most
salient and relevant sentences for the summary. Another work to leverage graph in-
formation is model GraphSum, an end-to-end Transformer based model based on
the HT model. In the graph encoding layers, GraphSum extends the self-attention
mechanism to the graph-informed self-attention mechanism, which incorporates the
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graph representation into the Transformer encoding process. Furthermore, the Gaus-
sian function is applied to the graph representation matrix to control the intensity of
the graph structure’s impact on the summarization model. The HT and GraphSum
models are both based on the self-attention mechanism leading quadratic memory
growth increases with the number of input sequences; to address this issue, Pasunuru
et al. (Pasunuru et al., 2021b) modified the full self-attention with local and global
attention mechanism (Beltagy, Peters, and Cohan, 2020) to scale the memory lin-
early. Dual encoders are proposed for encoding truncated concatenated documents
and linearized graph information from full documents.

Pre-trained language models (LMs). Pre-trained Transformers on large text cor-
pora have shown great successes in downstream NLP tasks including text summa-
rization. The pre-trained LMs can be trained on non-summarization or single doc-
ument summarization datasets to overcome lack of multi-document summarization
data (Zhang et al., 2020a; Li et al., 2020b; Pasunuru et al., 2021b), which helps
to improve the model performance. In hierarchical Transformer architecture, re-
placing the low-level Transformer (token-level) encoding layer with pre-trained LMs
helps the model breakthrough length limitations to perceive further information (Li
et al., 2020b). Inside a hierarchical Transformer architecture, the output vector of
the "[CLS]" token can be used as input for high-level Transformer models. To avoid
the self-attention quadratic-memory increment when dealing with document-scale
sequences, a Longformer based approach (Beltagy, Peters, and Cohan, 2020), in-
cluding local and global attention mechanisms, can be incorporated with pre-trained
LMs to scale the memory linearly for multi-document summarization (Pasunuru et
al., 2021b). Another solution for computational issues can be borrowed from single
document summarization is to use a multi-layer Transformer architecture to scale the
length of documents allowing pre-trained LMs to encode a small block of text and the
information can be shared among the blocks between two successive layers (Grail,
Perez, and Gaussier, 2021). BART (Lewis et al., 2020), GPT-2 (Radford et al., 2019),
and T5 (Raffel et al., 2020) are pre-trained language models that can be used for
language generation and they have been applied for multi-document summarization
tasks (Pang et al., 2021; Su et al., 2020; Alambo et al., 2020; Moro et al., 2022; Wen
et al., 2022). Instead of regular language models, PEGASUS (Zhang et al., 2020a)
is a pre-trained Transformer-based encoder-decoder model with gap-sentences gen-
eration (GSG) that focused on abstractive summarization. GSG shows that masking
whole sentences based on importance, instead of through random or lead selection,
works well for downstream summarization tasks. BART, T5, and PEGASUS are
based on data-rich single document summarization settings. Goodwin et al. (Good-
win, Savery, and Demner-Fushman, 2020) evaluated these three pre-trained models
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on four multi-document summarization datasets and suggested that while large im-
provements have been made on the standard single document summarization task,
highly abstractive multi-document summarization remains a challenge. PRIMERA
(Xiao et al., 2022) is a pre-trained model specifically designed for multi-document
summarization which can serve as a zero-shot summarizer.

2.2.7 Deep Hybrid Models

Many neural models can be integrated to formalize a more powerful and expressive
model. In this section, we summarized the existing deep hybrid models that have
proven to be effective for multi-document summarization.

CNN + LSTM + Capsule networks. Cho et al. (Cho et al., 2019) proposed a
hybrid model based on the determinantal point processes for semantically measuring
sentence similarities. A convolutional layer slides over the pairwise sentences with
filters of different sizes to extract low-level features. Capsule networks (Sabour,
Frosst, and Hinton, 2017; Yang et al., 2018) are employed to identify redundant
information by transforming the spatial and orientational relationships for high-level
representation. The authors also used LSTM to reconstruct pairwise sentences and
add reconstruction loss to the final objective function.

CNN + Bi-LSTM + Multi-layer Perceptron (MLP). Abhishek et al. (Singh,
Gupta, and Varma, 2018) proposed an extractive MDS framework that considers
document-dependent and document-independent information. In this model, a CNN
with different filters captures phrase-level representation. Full binary trees formed
with these salient representation are fed to the recommended Bi-LSTM tree indexer
to enable better generalization abilities. A MLP with ReLU function is employed for
leaf node transformation. More specifically, the Bi-LSTM tree indexer leverages the
time serial power of LSTMs and the compositionality of recursive models to capture
both semantic and compositional features.

PG networks + Transformer. In generating a summary, it is necessary to con-
sider the information fusion of multiple sentences, especially sentence pairs. Logan
et al. (Lebanoff et al., 2019) found the majority of summary sentences are generated
by fusing one or two source sentences; so they proposed a two-stage summarization
method that considers the semantic compatibility of sentence pairs. This method
joint-scores single sentence and sentence pairs to filter representative from the orig-
inal documents. Sentences or sentence pairs with high scores are then compressed
and rewritten to generate a summary that leverages PG network. This paper uses a
Transformer based model to encode both single sentence and sentence pairs indis-
criminately to obtain the deep contextual representation of words and sequences.
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2.2.8 The Variants of Multi-document Summarization

In this section, we briefly introduced several multi-document summarization task
variants which can be modeled as multi-document summarization problems and adopt
the aforementioned deep learning techniques and neural network architectures.

Query-oriented MDS calls for a summary from a set of documents that answers a
query. It tries to solve realistic query-oriented scenario problems and only summa-
rizes important information that best answers the query in a logical order (Pasunuru
et al., 2021a). Specifically, query-oriented multi-document summarization combines
the information retrieval and multi-document summarization techniques. The con-
tent that needs to be summarized is based on the given queries. Liu et al. (Liu and
Lapata, 2019a) incorporated the query by simply prepending the query to the top-
ranked document during encoding. Pasunuru (Pasunuru et al., 2021a) involved a
query encoder and integrated query embedding into an multi-document summariza-
tion model, ranking the importance of documents for a given query.

Dialogue summarization aims to provide a succinct synopsis from multiple textual
utterances of two or more participants, which could help quickly capture relevant in-
formation without having to listen to long and convoluted dialogues (Liu et al., 2019).
Dialogue summary covers several areas, including meetings (Zhu et al., 2020; Koay
et al., 2020; Feng et al., 2021), email threads (Zhang et al., 2021), medical dialogues
(Song et al., 2020b; Joshi et al., 2020; Enarvi et al., 2020), customer service (Liu
et al., 2019) and media interviews (Zhu et al., 2021). Challenges in dialogue summa-
rization can be summarized into the following seven categories: informal language
use, multiple participants, multiple turns, referral and coreference, repetition and in-
terruption, negations and rhetorical questions, role and language change (Chen and
Yang, 2020). The flow of the dialogue would be neglected if multi-document sum-
marization models are directly applied for dialogue summarization. Liu et al. (Liu
et al., 2019) relied on human annotations to capture the logic of the dialogue. Wu
et al. (Wu et al., 2021) used summary sketch to identify the interaction between
speakers and their corresponding textual utterances in each turn. Chen et al. (Chen
and Yang, 2020) proposed a multi-view sequence to sequence based encoder to ex-
tract dialogue structure and a multi-view decoder to incorporate different views to
generate final summaries.

Stream summarization aims to summarize new documents in a continuously grow-
ing document stream, such as information from social media. Temporal summariza-
tion and real-time summarization (RTS)1 can be seen as a form of stream document
summarization. Stream summarization considers both historical dependencies and

1http://trecrts.github.io/
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future uncertainty of the document stream. Yang et al. (Yang et al., 2020) used deep
reinforcement learning to solve the relevance, redundancy, and timeliness issues in
steam summarization. Tan et al. (Tan, Lu, and Li, 2017) transformed the real time
summarization task as a sequential decision-making problem and used a LSTM layer
and three fully connected neural network layers to maximize the long-term rewards.

2.3 Multi-document Summarization Objective Func-
tions

In this section, we will take a closer look at different objective functions adopted by
various multi-document summarization models. In summarization models, objective
functions play an important role by guiding the model to achieve specific purposes.

2.3.1 Cross-Entropy Objective

Cross-entropy usually acts as an objective function to measure the distance between
two distributions. Many existing multi-document summarization models adopt it to
measure the difference between the distributions of generated summaries and the
gold summaries (Cao et al., 2015a; Zhang et al., 2016; Wang et al., 2020a; Zhang,
Tan, and Wan, 2018; Cho et al., 2019; Yasunaga et al., 2019). Formally, the cross-
entropy loss is defined as:

LCE = −
∑
i=1

yi log(ŷi), (2.1)

where yi is the target score from gold summaries and machine-generated summaries,
and ŷi is the predicted estimation from the deep learning based models. Different
from calculations in other tasks, such as text classification, in summarization tasks, yi

and ŷi have several methods to calculate. ŷi usually is calculated by Recall-Oriented
Understudy for Gisting Evaluation (ROUGE). For example, ROUGE-1(Antognini
and Faltings, 2019), ROUGE-2 (Liu and Lapata, 2019a) or the normalized average
of ROUGE-1 and ROUGE-2 scores (Yasunaga et al., 2017) could be adopted to com-
pute the ground truth score between the selected sentences and gold summary.

2.3.2 Reconstructive Objective

Reconstructive objectives are used to train a distinctive representation learner by re-
constructing the input vectors in an unsupervised learning manner. The objective
function is defined as:

LRec =
∥∥xi − ϕ′(ϕ(xi; θ); θ

′)
∥∥
∗ , (2.2)
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where xi represents the input vector; ϕ and ϕ′ represent the encoder and decoder
with θ and θ′ as their parameters respectively, || · ||∗ represents norm (* stands for
0, 1, 2, ..., infinity). LRec is a measuring function to calculate the distance between
source documents and their reconstructive outputs. Chu et al. (Chu and Liu, 2019)
used a reconstructive loss to constrain the generated text into the natural language
domain, reconstructing reviews in a token-by-token manner. Moreover, this paper
also proposes a variant termed reconstruction cycle loss. By using the variant, the
reviews are encoded into a latent space to further generate the summary, and the
summary is then decoded to the reconstructed reviews to form another reconstructive
closed-loop. An unsupervised learning loss was designed by Li et al. (Li et al.,
2017b) to reconstruct the condensed output vectors to the original input sentence
vectors with L2 distance. This paper further constrains the condensed output vector
with a L1 regularizer to ensure sparsity. Similarly, Zheng et al. (Zheng et al., 2019)
adopted a bi-directional GRU encoder-decoder framework to reconstruct both news
and comment sentences in a word sequence manner. Liu et al. (Liu et al., 2018a)
concatenated both input and output sequences to predict the next token to train the
abstractive model. There are also some variants, such as leveraging the latent vectors
of variational auto-encoder for reconstruction to capture better representation. Li et
al. (Li, Bing, and Lam, 2017) introduced three individual reconstructive losses to
consider both news reconstruction and comments reconstruction separately, along
with a variational auto-encoder lower bound. Bravzinskas et al. (Bražinskas, Lapata,
and Titov, 2019) utilized a variational auto-encoder to generate the latent vectors of
given reviews, where each review is reconstructed by the latent vectors combined
with other reviews.

2.3.3 Redundancy Objective

Redundancy is an important objective to minimize the overlap between semantic
units in a machine-generated summary. By using this objective, models are encour-
aged to maximize information coverage. Formally,

LRed = Sim(xi,xj), (2.3)

where Sim(·) is the similarity function to measure the overlap between different
xi and xj, which can be phrases, sentences, topics or documents. The redundancy
objective is often treated as an auxiliary objective combined with other loss functions.
Li et al. (Li et al., 2017b) penalized phrase pairs with similar meanings to eliminate
the redundancy. Nayeem et al. (Nayeem, Fuad, and Chali, 2018) used the redundancy
objective to avoid generating repetitive phrases, constraining a sentence to appear
only once while maximizing the scores of important phrases. Zheng et al. (Zheng et
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al., 2019) adopted a redundancy loss function to measure overlaps between subtopics;
intuitively, smaller overlaps between subtopics resulted in less redundancy in the
output domain. Yin et al. (Yin and Pei, 2015) proposed a redundancy objective to
estimate the diversity between different sentences.

2.3.4 Max Margin Objective

Max Margin Objectives (MMO) are also used to empower the multi-document sum-
marization models to learn better representation. The objective function is formalized
as:

LMargin = max (0, f(xi; θ)− f(xj; θ) + γ) , (2.4)

where xi and xj represent the input vectors, θ are parameters of the model function
f(·), and γ is the margin threshold. The MMO aims to force function f(xi; θ) and
function f(xj; θ) to be separated by a predefined margin γ. In Cao et al. (Cao et
al., 2017), a MMO is designed to constrain a pair of randomly sampled sentences
with different salience scores – the one with a higher score should be larger than the
other one more than a marginal threshold. Two max margin losses are proposed in
Zhong et al. (Zhong et al., 2020): a margin-based triplet loss that encouraged the
model to pull the gold summaries semantically closer to the original documents than
to the machine-generated summaries; and a pair-wise margin loss based on a greater
margin between paired candidates with more disparate ROUGE score rankings.

2.3.5 Multi-Task Objective

Supervision signals from multi-document summarization objectives may not be strong
enough for representation learners, so some works seek other supervision signals
from multiple tasks. A general form is as follows:

LMul = LSumm + LOther, (2.5)

whereLSumm is the loss function of multi-document summarization tasks, andLOther

is the loss function of an auxiliary task. Angelidis et al. (Angelidis and Lapata, 2018)
assumed that the aspect-relevant words not only provide a reasonable basis for model
aspect reconstruction, but also a good indicator for product domain. Similarly, multi-
task classification was introduced by Cao et al. (Cao et al., 2017). Two models are
maintained: text classification and text summarization models. In the first model,
CNN is used to classify text categories and cross-entropy loss is used as the ob-
jective function. The summarization model and the text classification model share
parameters and pooling operations, so are equivalent to the shared document vector
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representation. Coavoux et al. (Coavoux, Elsahar, and Gallé, 2019) jointly optimized
the model from a language modeling objective and two other multi-task supervised
classification losses, which are polarity loss and aspect loss.

2.3.6 Other Types of Objectives

There are many other types of objectives in addition to those mentioned above. Cao
et al. (Cao et al., 2015b) proposed using ROUGE-2 to calculate the sentence saliency
scores and the model tries to estimate this saliency with linear regression. Yin et al.
(Yin and Pei, 2015) suggested summing the squares of the prestige vectors calculated
by the PageRank algorithm to identify sentence importance. Zhang et al. (Zhang et
al., 2016) proposed an objective function by ensembling individual scores from mul-
tiple CNN models; besides the cross-entropy loss, a consensus objective is adopted
to minimize disagreement between each pair of classifiers. Amplay et al. (Amplayo
and Lapata, 2021) used two objectives in the abstract module: the first to optimize
the generation probability distribution by maximizing the likelihood; and the second
to constrain the model output to be close to its gold summary in the encoding space,
as well as being distant from the random sampled negative summaries. Chu et al.
(Chu and Liu, 2019) designed a similarity objective that shares the encoder and de-
coder weights within the auto-encoder module, while in the summarization module,
the average cosine distance indicates the similarity between the generated summary
and the reviews. A variant similarity objective termed early cosine objective is fur-
ther proposed to compute the similarity in a latent space which is the average of the
cell states and hidden states to constrain the generated summaries semantically close
to reviews.

2.4 Multi-document Summarization Evaluation Met-
rics

Evaluation metrics are used to measure the effectiveness of a given method objec-
tively, so well-defined evaluation metrics are crucial to multi-document summariza-
tion research. We classified the existing evaluation metrics into two categories and
will discuss each category in detail: (1) ROUGE: the most commonly used evalua-
tion metrics in the summarization community; and (2) other evaluation metrics that
have not been widely used in multi-document summarization research to date. We
summarize the advantages and disadvantages of above-mentioned evaluation metrics
in Table 2.1.
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TABLE 2.1. Advantages and disadvantages of different evaluation
metrics.

Evaluation Metrics Advantages Disadvantages

Lexical
Matching
Metrics

ROUGE
• Widely used
• Intuitive
• Easily computed

• Cannot measure texts
semantically

• Exact matching

BLEU

• Intuitive
• Easily computed
• High correlations with
human judgments

• Cannot measure texts
semantically

• Cannot deal with
languages lacking word
boundaries

Perplexity
• Easily computed
• Intuitive

• Sensitive to certain
symbols and words

Pyramid
• High correlations with
human judgments

• Requires manual
extraction of units

• Bias results easily

Responsiveness

• Consider both content and
linguistic quality

• Can be calculated without
reference

• Not widely adopted

Data
Statistics

• Can measure the density
and coverage of summary

• Cannot measure texts
semantically

Semantic
Matching
Metrics

METEOR • Consider non-exact matching • Sensitive to length

SUPERT
• Can measure texts semantic
similarity • Not widely adopted

Preferences
based Metric

• Does not depend on the
gold summaries

• Require human
annotations

BERTScore
• Semantically measure texts to
some extent

• Mimic human evaluation

• High computational
demands

MoverScore

• Semantically measure texts to
some extent

• More similar to human
evaluation by adopting earth
mover’s distance

• High computational
demands

Importance
• Combining redundancy,
relevance and informativeness

• Theoretically supported

• Non-trivial for
implementation

Human
Evaluation

• Can accurately and
semantically measure texts

• Require human
annotations

2.4.1 ROUGE

Recall-Oriented Understudy for Gisting Evaluation (ROUGE) (Lin, 2004a) is a col-
lection of evaluation indicators that is one of the most essential metrics for many
natural language processing tasks, including machine translation and text summa-
rization. ROUGE obtains prediction/ground-truth similarity scores through compar-
ing automatically generated summaries with a set of corresponding human-written
references. ROUGE has many variants to measure candidate abstracts in a vari-
ety of ways (Lin, 2004a). ROUGE-N measures a n-gram recall between reference
and their corresponding candidate summaries (Lin, 2004a). ROUGE-L adopts the
longest common subsequence algorithm to count the longest matching vocabularies
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(Lin, 2004a). ROUGE-W (Lin, 2004a) is proposed to weight consecutive matches
to better measure semantic similarities between two texts. ROUGE-S (Lin, 2004a)
stands for ROUGE with Skip-bigram co-occurrence statistics that allows the bigram
to skip arbitrary words. An extension of ROUGE-S, ROUGE-SU (Lin, 2004a) refers
to ROUGE with Skip-bigram plus Unigram-based co-occurrence statistics and is able
to be obtained from ROUGE-S by adding a begin-of-sentence token at the start of
both references and candidates. ROUGE-WE (Ng and Abrecht, 2015) is proposed
to further extend ROUGE by measuring the pair-wise summary distances in word
embedding space. In recent years, more ROUGE-based evaluation models have been
proposed to compare gold and machine-generated summaries, not just according to
their literal similarity, but also considering semantic similarity (ShafieiBavani et al.,
2018; Zhao et al., 2019; Zhang et al., 2020b). In terms of the ROUGE metric for
multiple gold summaries, the Jackknifing procedure (similar to K-fold validation)
has been introduced (Lin, 2004a). The M best scores are computed from sets com-
posed of M -1 reference summaries and the final ROUGE-N is the average of M
scores. This procedure can also be applied to ROUGE-L, ROUGE-W and ROUGE-
S.

2.4.2 Other Evaluation Metrics

Besides ROUGE -based (Lin, 2004a) metrics, other evaluation metrics for multi-
document summarization exist, but have received less attention than ROUGE. Based
on the mode of summaries matching, we divide the evaluation metrics into two
groups: lexical matching metrics and semantic matching metrics.

Lexical Matching Metrics. BLEU (Papineni et al., 2002) is a commonly used
vocabulary-based evaluation metric that provides a precision-based evaluation in-
dicator, as opposed to ROUGE that mainly focuses on recall. Perplexity (Jelinek
et al., 1977) is used to evaluate the quality of the language model by calculating the
negative log probability of a word’s appearance. A low perplexity on a test dataset is
a strong indicator of a summary’s high grammatical quality because it measures the
probability of words appearing in sequences. Based on Pyramid (Nenkova, Passon-
neau, and McKeown, 2007) calculation, the abstract sentences are manually divided
into several Summarization Content Units (SCUs), each representing a core concept
formed from a single word or phrase/sentence. After sorting SCUs in order of impor-
tance to form the Pyramid, the quality of automatic summarization is evaluated by
calculating the number and importance of SCUs included in the document (Nenkova
and Passonneau, 2004). Intuitively, more important SCUs exist at higher levels of
the pyramid. Although Pyramid shows a strong correlation with human judgment, it
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requires professional annotations to match and evaluate SCUs in generated and gold
summaries. Some recent works focus on the construction of Pyramid (Passonneau
et al., 2013; Yang, Passonneau, and De Melo, 2016; Hirao, Kamigaito, and Nagata,
2018; Gao, Sun, and Passonneau, 2019; Shapira et al., 2019). Responsiveness (Louis
and Nenkova, 2013) measures content selection and linguistic quality of summaries
by directly rating scores. Additionally, the assessments are calculated without refer-
ence to model summaries. Data Statistics (Grusky, Naaman, and Artzi, 2018) contain
three evaluation metrics: extractive fragment coverage measures the novelty of gen-
erated summaries by calculating the percentage of words in the summary that are
also present in source documents; extractive fragment density measures the average
length of the extractive block to which each word in the summary belongs; and com-
pression ratio compares the word numbers in the source documents and generated
summary.

Semantic Matching Metrics. METEOR (Metric for Evaluation of Translation with
Explicit Ordering) (Banerjee and Lavie, 2005) is an improvement to BLEU. The
main idea behind METEOR is that while candidate summaries can be correct with
similar meanings, they are not exactly matched with references. In such a case,
WordNet2 is introduced to expand the synonym set, and the word form is also taken
into account. SUPERT (Gao, Zhao, and Eger, 2020) is an unsupervised evaluation
metric that measures the semantic similarity between the pseudo-reference summary
and the machine-generated summary. SUPERT obviates the need for human annota-
tions by not referring to gold summaries. Contextualized embeddings and soft token
alignment techniques are leveraged to select salient information from the input docu-
ments to evaluate summary quality. Preferences based Metric (Zopf, 2018) is a pair-
wise sentence preference-based evaluation model and it does not depend on the gold
summaries. The underlying premise is to ask annotators about their pair-wise pref-
erences rather than writing complex gold summaries, and are much easier and faster
to obtain than traditional reference summary-based evaluation models. BERTScore
(Zhang et al., 2020b) computes a similarity score for each token within the candi-
date sentence and the reference sentence. It measures the soft overlap of two texts’
BERT embeddings. MoverScore (Zhao et al., 2019) adopts a distance to evaluate the
agreement between two texts in the context of BERT and ELMo word embeddings.
This proposed metric has a high correlation with human judgment of text quality by
adopting earth mover’s distance. Importance (Peyrard, 2019) is a simple but rigorous
evaluation metric from the aspect of information theory. It is a final indicator calcu-
lated from the three aspects: Redundancy, Relevance, and Informativeness. A good

2https://wordnet.princeton.edu/
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TABLE 2.2. Comparison of different datasets. In the table, “Ave”,
“Summ”, “Len”, “bus”,“rev” and “#” represent average, summary,
length, business, reviews and numbers respectively; “Docs” and

“sents” mean documents and sentences respectively.

Datasets Cluster # Document # Summ # Ave Summ Len Topic
DUC01 30 309 docs 60 summ 100 words News
DUC02 59 567 docs 116 summ 100 words News
DUC03 30 298 docs 120 summ 100 words News
DUC04 50 10 docs / cluster 200 summ 665 bytes News
DUC05 50 25-50 docs / cluster 140 summ 250 words News
DUC06 50 25 docs / cluster 4 summ / cluster 250 words News
DUC07 45 25 docs / cluster 4 summ / cluster 250 words News

TAC 2008 48 10 docs / cluster 4 summ / cluster 100 words News
TAC 2009 44 10 docs / cluster 4 summ / cluster 100 words News
TAC 2010 46 10 docs / cluster 4 summ / cluster 100 words News
TAC 2011 44 10 docs / cluster 4 summ / cluster 100 words News

OPOSUM 60 600 rev 1 summ / cluster 100 words
Amazon
reviews

WikiSum -
train / val / test

1579360 / 38144 / 38205 1 summ / cluster 139.4 tokens Wikipedia

Multi-
News -

train / val / test
44972 / 5622 / 5622
2-10 docs / cluster

1 summ / cluster
263.66 words

9.97 sents
262 tokens

News

Opinosis 51 6457 rev 5 summ / cluster -
Site

reviews
Rotten

Tomatoes 3731 99.8 rev / cluster 1 summ / cluster 19.6 tokens
Movie
reviews

Yelp -
train / val / test

bus: 10695 / 1337 / 1337
rev: 1038184 / 129856 / 129840

- -
Customer
reviews

Scisumm 1000
21 - 928 cites / paper

15 sents / refer 1 summ / cluster 151 words
Science
Paper

WCEP 10200 235 docs / cluster 1 summ / cluster 32 words Wikipedia
Multi-

XScience -
train / val / test

30369 / 5066 / 5093 1 summ / cluster 116.44 words
Science
Paper

summary should have low Redundancy and high Relevance and high Informative-

ness. The cluster of Human Evaluation is used to supplement automatic evaluation
on relatively small instances. Annotators evaluate the quality of machine-generated
summaries by rating Informativeness, Fluency, Conciseness, Readability, Relevance.
Model ratings are usually computed by averaging the rating on all selected summary
pairs.

2.5 Multi-document Summarization Datasets

Compared to single document summarization tasks, large-scale multi-document sum-
marization datasets, which contain more general scenarios with many downstream
tasks, are relatively scarce. In this section, we presented our investigation on the 10
most representative datasets commonly used for multi-document summarization and
its variant tasks. Table 2.2 compares the datasets based on the numbers of clusters
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and documents; the number and the average length of summaries; and the field to
which the dataset belongs.

DUC & TAC. DUC3 (Document Understanding Conference) provides official text
summarization competitions each year from 2001-2007 to promote summarization
research. DUC changed its name to Text Analysis Conference (TAC)4 in 2008. Here,
the DUC datasets refer to the data collected from 2001-2007; the TAC datasets refer
to the datasets after 2008. Both DUC and TAC are from the news domains, includ-
ing various topics such as politics, natural disasters, and biography. Nevertheless,
as shown in Table 2.2, the DUC and TAC datasets provide small datasets for model
evaluation that only include hundreds of news documents and human-annotated sum-
maries. Of note, the first sentence in a news item is usually information-rich that
renders bias in the news datasets, so it fails to reflect the structure of natural docu-
ments in daily lives. These two datasets are on a relatively small scale and not ideal
for large-scale deep neural based multi-document summarization model training and
evaluation.

OPOSUM. OPOSUM (Angelidis and Lapata, 2018) collects multiple reviews of six
product domains from Amazon. This dataset not only contains multiple reviews and
corresponding summaries but also products’ domain and polarity information. The
latter information could be used as auxiliary supervision signals.

WikiSum. WikiSum (Liu et al., 2018a) targets abstractive multi-document summa-
rization. For a specific Wikipedia theme, the documents cited in Wikipedia articles
or the top-10 Google search results (using the Wikipedia theme as a query) are seen
as the source documents. gold summaries are the real Wikipedia articles. However,
some of the URLs are not available and can be identical to each other in parts. To
remedy these problems, Liu et al. (Liu and Lapata, 2019a) cleaned the dataset and
deleted duplicated examples, so here we report statistical results from (Liu and Lap-
ata, 2019a).

Multi-News. Multi-News (Fabbri et al., 2019b) is a relatively large-scale dataset in
the news domain; the articles and human-written summaries are all from the Web5.
This dataset includes 56,216 article-summary pairs and contains trace-back links to
the original documents. Moreover, the authors compared the Multi-News dataset
with prior datasets in terms of coverage, density, and compression, revealing that this
dataset has various arrangement styles of sequences.

Opinosis. The Opinosis dataset (Ganesan, Zhai, and Han, 2010) contains reviews

3http://duc.nist.gov/
4http://www.nist.gov/tac/
5http://newser.com
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of 51 topic clusters collected from TripAdvisor6, Amazon7, and Edmunds8. For
each topic, approximately 100 sentences on average are provided and the reviews
are fetched from different sources. For each cluster, five professionally written gold
summaries are provided for model training and evaluation.

Rotten Tomatoes. The Rotten Tomatoes dataset (Wang and Ling, 2016) consists of
the collected reviews of 3,731 movies from the Rotten Tomato website9. The reviews
contain both professional critics and user comments. For each movie, a one-sentence
summary is created by professional editors.

Yelp. Chu et al. (Chu and Liu, 2019) proposed a dataset named Yelp based on
the Yelp Dataset Challenge. This dataset includes multiple customer reviews with
five-star ratings. The authors provided 100 manual-written summaries for model
evaluation using Amazon Mechanical Turk (AMT), within which every eight input
reviews are summarized into one gold summary.

Scisumm. Scisumm dataset (Yasunaga et al., 2019) is a large, manually annotated
corpus for scientific document summarization. The input documents are a scientific
publication, called the reference paper, and multiple sentences from the literature
that cite this reference paper. In the SciSumm dataset, the 1,000 most cited papers
from the ACL Anthology Network (Radev et al., 2013) are treated as reference pa-
pers, and an average of 15 citation sentences are provided after cleaning. For each
cluster, one gold summary is created by five NLP-based Ph.D. students or equivalent
professionals.

WCEP. The Wikipedia Current Events Portal dataset (WCEP) (Ghalandari et al.,
2020a) contains human-written summaries of recent news events. Similar articles
are provided by searching similar articles from Common Crawl News dataset10 to
extend the inputs to obtain large-scale news articles. Overall, the WCEP dataset has
good alignment with real-world industrial use cases.

Multi-XScience. The source data of Multi-XScience (Lu, Dong, and Charlin, 2020a)
are from Arxiv and Microsoft academic graphs and this dataset is suitable for abstrac-
tive multi-document summarization. Multi-XScience contains fewer positional and
extractive biases than the WikiSum and Multi-News datasets, so the drawback of
obtaining higher scores from a copy sentence at a certain position can be partially
avoided.

6https://www.tripadvisor.com/
7https://www.amazon.com.au/
8https://www.edmunds.com/
9http://rottentomatoes.com

10https://commoncrawl.org/2016/10/news-dataset-available/
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Datasets for MDS Variants. The representative query-oriented multi-document
summarization datasets are Debatepedia (Nema et al., 2017), AQUAMUSE (Kulka-
rni et al., 2020), and QBSUM (Zhao et al., 2021). The representative dialogue sum-
marization datasets are DIALOGSUM (Chen et al., 2021b), AMI (Carletta et al.,
2005), MEDIASUM (Zhu et al., 2021), and QMSum (Zhong et al., 2021). RTS
is a track at the Text Retrieval Conference (TREC) which provides several RTS
datasets11. Tweet Contextualization track (Bellot et al., 2016) (2012-2014) is derived
from the INEX 2011 Question Answering Track, that focuses on more NLP-oriented
tasks and moves to multi-document summarization.

11http://trecrts.github.io/
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Chapter 3

Enhancing Abstractive
Multi-document Summarization with
Linguistic Knowledge

3.1 Introduction

Recent years have witnessed an increasing number of neural network models applied
in MDS (Fabbri et al., 2019a; Liu and Lapata, 2019a; Li et al., 2020c; Jin, Wang, and
Wan, 2020b; Xiao et al., 2022) due to the rapid improvement of computational power
(Ma et al., 2020). Transformer (Vaswani et al., 2017) is a popular one among them. It
is based on a self-attention mechanism and has natural advantages for parallelization
and could retain long-range relations between pairs of tokens among documents. Liu
et al. (Liu et al., 2018b) adopted a flat Transformer model to generate Wikipedia arti-
cles. The model selects top-K tokens and feeds them into the decoder-only sequence
transduction. Besides Flat Transformer, Hierarchical Transformer-based models (Liu
and Lapata, 2019a; Li et al., 2020d; Pasunuru et al., 2021b) utilize multiple encoders
to embed the hierarchical relations among the source documents. Wen et al. (Xiao
et al., 2022) proposed a pre-train language model PRIMERA, using encoder-decoder
transformers to simplify the processing of concatenated input documents, leverages
the Longformer (Beltagy, Peters, and Cohan, 2020) to pre-train with a novel entity-
based sentence masking objective. However, computing token-wise self-attention in
the Transformer takes pairs of token relations into account but lacks syntactic sup-
port that may cause content irrelevance and deviation for summary generation (Jin,
Wang, and Wan, 2020c).

Many research works seek to incorporate linguistic knowledge to further improve
the quality of summaries. Daniel et al. (Leite et al., 2007) suggested that linguistic
knowledge help improve the informativeness of summaries. Sho et al. (Takase et
al., 2016) proposed an attention-based encoder-decoder model that adopts abstract
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TABLE 3.1. Generated summaries via different MDS models. Differ-
ent colors mean different thought groups.

Source
Documents a girl reported missing more than two years ago when

she was 15 told police she escaped a home in illinois
... ... they recovered the child and arrested a 24-year-
old man ... ... she was 15 when she disappeared. she
escaped from the home in washington park earlier this
week and went to police ...

HT ... she was also taken into custody. ...
FT ... the girl , who was 15 when she escaped from a home

in washington park earlier this week. ...
ParsingSum-HT
(Ours)

... a 24-year-old man were arrested and taken into cus-
tody. ...

ParsingSum-FT
(Ours)

... she was 15 when she disappeared from the home. ...

meaning representation parser to capture structural syntactic and semantic informa-
tion. The authors also pointed out that for natural language generation tasks in gen-
eral, semantic information obtained from external parsers could help improve the
performance of encoder-decoder based neural network model. Patrick et al. (Fernan-
des, Allamanis, and Brockschmidt, 2019) adopted named entities and entity corefer-
ences for summarization problem. Jin et al. (Jin, Wang, and Wan, 2020c) enriched
a graph encoder with semantic dependency graph to produce semantic-rich sentence
representations. Song et al. (Song et al., 2020a) presented a LSTM-based model to
generate sentences and the parse trees simultaneously by combining a sequential and
a tree-based decoder for abstractive summarization generation.

Dependency parsing, an important linguistic knowledge that retains the intra-
sentence syntactic relations between words, has been adopted and shown promis-
ing results in a variety natural language processing task (Deguchi, Tamura, and Ni-
nomiya, 2019; Sun et al., 2019; Wang et al., 2020b; Cao et al., 2021; Wu et al.,
2017). When it comes to document summarization, according to Hirao et al. (Hirao
et al., 2004), no matter how the word order changes from the source documents to
generated summaries, the dependency structures will keep consistent in most cases.
Incorporating dependency structures into summarization models is crucial to retain
the correct logics from source documents. The parsing information is usually formed
as a tree structure that offers discriminate syntactic paths on arbitrary sentences for
information propagation (Sun et al., 2019). The grammatical structure between the
pair of words can be extracted from the dependency parser helping the model retain
the syntactic structure. Therefore, in this thesis, we presented two multi-document
summarization models by leveraging linguistic knowledge.
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• Model 1 ParsingSum. The first work introduced a generic and flexible frame-
work linguistic guided attention to incorporate dependency information into
the Transformer based summarization models. We developed the proposed
framework based on Flat Transformer (FT) and Hierarchical Transformer (HT),
named ParsingSum-FT and ParsingSum-HT. Our proposed models can also be
applied for both single and multiple document summarization. Table 3.1 is
an example to illustrate why dependency information helps improve the qual-
ity of summaries. The data source is from Multi-News dataset (Fabbri et al.,
2019a). The HT model can not distinguish who was arrested: it should be “a

24-year-old man” rather than “she”. In contrast, ParsingSum-HT (our model)
shows consistent content with source documents. The potential reason is that
the dependency parsing captures the relation between “arrested” and “man”,
which keeps the token relations for summaries generation. We also find the FT
model mingles two events within two sentences. However, the source docu-
ments show two events: (1) the disappearance of the girl in Illinois was at her
age of 15; (2) she escaped from her Washington Park home two years later.
Comparatively, ParsingSum-FT (our model) retains correct information. This
is due to, from the linguistic perspective, a sentence is a linguistic unit that has
complete meaning (Halliday et al., 2014). Furthermore, dependency parsing
focuses on intra-sentence relations that help summaries retain correct syntactic
structure. Figure 3.1 presented the framework of the proposed model Pars-
ingSum. The proposed linguistic-guided attention mechanism is generic and
flexible to be applied in different Transformer structures. Inside the model,
the encoder is a representations learner to learn distinctive feature represen-
tations from the source documents and decoder is able to decipher represen-
tations into language domain for summary generation. More concretely, the
document sets are first fed into a Transformer-based encoder for representa-
tion learning. Meanwhile, the source documents are passed into an external
dependency parser to fetch the dependency relations. These relations and the
Transformer’s multi-head attention then be input into the linguistic-guided at-
tention mechanism to construct the linguistic attention map. With the assis-
tance of linguistic information, the model can grasp intra-sentence linguistic
relations for summaries generation.

• Model 2 DocLing: Except lack of linguistic knowledge, Transfomer based
summarization models face another chanllenge: only token-level positional
encoding is not sufficient to capture document-level positional information.
Missing document-level positional encoding significantly prevents models from
detecting cross-document relationships. To solve the above-mentioned two
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Dependency Parser

Doc 2

Doc 1

Generated
Summary

Summarizer

Doc m

… … Encoder Linguistic-guided attention (LGA)

Decoder Linguistic-guided attention (LGA)

Dependency 
Information Matrix

FIGURE 3.1. The framework of ParsingSum. Document sets are first
fed into the encoder to generate the representations. In the meantime,
these documents are input to a dependency parser to produce their sen-
tence dependency information. The dependency information matrix
will be further processed into a linguistic-guided attention mechanism
and then fused with Transformer’s multi-head attention, guiding the

downstream summary generation.

problems, the second work proposed an encoding mechanism combining doc-
ument aware positional encoding and linguistic-guided encoding for abstrac-
tive MDS. Figure 3.2 illustrates a general overview of the proposed method:
DocLing. We constructed a document-aware positional encoding protocol to
guide the encoding process and the selection of document-level positional
encoding functions. Like most of the Transformer-based models, we added
document-aware positional encoding with the input token embedding at the
bottoms of the encoder stacks. Furthermore, we extended our efforts by en-
coding 45 distinct dependency relations into a dependency relation mask using
a straightforward yet highly effective non-linear encoding strategy aimed at
enhancing feature learning. The proposed linguistic-guided encoding method
allows the model to better understand the relationship between each pair of
words, and retains the correct dependency structure as well as grammatical
associations when generating the summaries.

3.2 Methodology 1: ParsingSum

3.2.1 Dependency Information Matrix

Dependency grammar is a family of grammar formalisms that plays an important
role in natural language processing. The dependency parser constructs several de-
pendency trees that represent grammatical structure and the relations between head

words and corresponding dependent words. To utilize these dependency information,
we first adopted an external dependency parser (Dozat and Manning, 2017a), which
can handle sentences of any length, to generate a set of dependency trees from multi-
ple documents. The trees contain dependencies between any pair of dependent words
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FIGURE 3.2. The framework of our proposed document-aware po-
sitional encoding and linguistic-guided encoding. Document-aware
positional encoding serves as part of the input of the encoder; the pro-
posed dependency relation mask will be incorporated with multi-head

attention.

in one sentence. Let P denotes the dependency information matrix for one sentence.
pij ∈ P is a dependency weight between token ti and token tj . We simplified the
definition of the weight as shown in Eq.(1):

pij =

1 ti ⊖ tj

0 ti ⊘ tj
(3.1)

where ti ⊖ tj indicates that ti and tj have a dependency relation, while ti ⊘ tj rep-
resents there is no dependency between the two tokens. To simplify the model, we
consider the relations are undirected by ignoring the direction of head word and de-

pendent word. For any pair of tokens, as long as there is a dependency between them,
the dependency information matrix is assigned a value of 1, otherwise it will be set
to 0. We hope to keep all dependency relations between the pair words in a simple
yet effective manner.

3.2.2 Linguistic-Guided Attention Mechanism

In order to process source documents effectively and preserve salient source relations
in the summaries, in ParsingSum, we presented a novel linguistic-guided attention
mechanism to extend the Transformer architecture (Vaswani et al., 2017; Liu and
Lapata, 2019a). Figure 3.3 depicts this mechanism on an exemplary sentence from
Multi-News dataset (Fabbri et al., 2019a). linguistic-guided attention joins the de-
pendency information matrix with the multi-head attention from source documents
to generate syntactic-rich features. The linguistic-guided attention mechanism can be
viewed as learning graph representations for the input sentences. Let xli ∈ Rdmodel∗1
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FIGURE 3.3. The linguistic-guided attention mechanism. The given
exemplary sentence The issues are vexing and complex. is from Multi-
News dataset (Fabbri et al., 2019a). Different properties of vocabu-
laries and relations between words are included in the parsing infor-
mation. The linguistic-guided attention mechanism incorporates the
dependency information matrix P constructed from dependency trees
of the input content and the Transformer’s multi-head attention of this

input content.

denotes the output vector of the last encoding layer of Transformer for token ti. For
the attention head headz ∈ Head(j = 1, 2, ..., h), h represents the number of head.
We have:

qi,headz =W q,headzxli

ki,headz =W k,headzxli

vi,headz =W v,headzxli

(3.2)

where W q,headz , W k,headz , W v,headz ∈ Rdk∗dmodel are weight matrices. dk is the di-
mension of the key, query and value. qi,headz , ki,headz , vi,headz ∈ Rdk∗1 are sub-query,
sub-key and sub-values in different heads and we concatenate them respectively:

Qi = concat(qi,head1 , qi,head2 , ..., qi,headh)

Ki = concat(ki,head1 , qi,head2 , ..., qi,headh)

Vi = concat(vi,head1 , qi,head2 , ..., qi,headh)

(3.3)

where Qi, Ki, Vi ∈ Rh∗dk∗1 are corresponding key, query and value for attention
calculation. In ParsingSum, the linguistic-guided attention merges dependency in-
formation with multi-head attention in the following manner:

LGAttij = αMij ⊙Attij +Attij (3.4)

where
Attij = softmax

(
Qi

TKj√
dk

)
(3.5)
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Mij = Stack_h(pij) (3.6)

where α is a trade-off hyper-parameter to balance the linguistic-guided information
Mij and multi-head attention Attij . In order to fuse dependency weight pij , we build
a function stack_h(·) to repeat pij on the dimension of head to have the same size
withAttij ∈ Rh∗1∗1. ⊙ denotes the element-wise Hadamard product. Then, we have:

Contexti =
∑
j

LGAttij · Vj (3.7)

where Contexti represents the context vectors generated by linguistic-guide atten-
tion. Later on, two layer-normalization operations are applied to Contexti to get the
output vector of current encoder layer for token ti:

xl+1
i = LayerNorm (ki + FFN (ki)) (3.8)

ki = LayerNorm
(
xli + Contexti

)
(3.9)

where FFN is a two-layer feed-forward network with ReLU as activation function.
Then, the learned feature representations are passed into multiple decoder layers
that are fairly similar to the Flat Transformer structure (Gehrmann, Deng, and Rush,
2018).

3.3 Methodology 2: DocLing

In this work, we incorporated two types of encodings into Transformer-based ab-
stractive MDS model: i) document-aware positional encoding considered document
positional information; ii) linguistic-guided encoding incorporated dependency in-
formation into summarization process. The encodings will be introduced based
on the following problem formulation and notations: given a set of N documents
D =

(
d1, d2, ..., dN

)
on the same topic, the task of MDS is to generate a concise

and informative summary Sum distilling knowledge from D. Let tki denotes the i-
th token in the k-th document dk(k = 1, 2, ..., N) in D. eki represents the token
embedding assigned to tki by the Transformer model.

3.3.1 Document-aware Positional Encoding

For the token tki from the source documents, the token positional encoding Posktokeni

and document positional encoding Poskdoci can be represented as:

Posktokeni
= ftoken (i)

Poskdoci = fdoc (k)
(3.10)
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FIGURE 3.4. The proposed document-aware positional encoding. It
contains a document-level positional encoding and a token-level posi-
tional encoding. The selection of document positional encoding func-

tions is according to our proposed protocol.

where ftoken and fdoc are encoding functions for token positional encoding and doc-
ument positional encoding respectively. Different from the token positional embed-
ding that considers the order of tokens, document positional embedding does not
require the document order information as the order does not affect the MDS tasks.
In order to find a proper fdoc, we designed a protocol with three considerations: (1)
The encoding of each document should be unique. The purpose is to distinguish the
documents and trace the source document for the tokens. (2) The values of encoding
should be bonded. It will inevitably introduce large bias to certain documents if the
encoding values are not bonded. (3) The values of encoding can not be remarkably
larger than the value of token positional encoding. It will overwhelm the values of
the token positional encoding if the document encoding values are too large, which
impedes the model optimization process.

We adopted the sin function as document positional encoding function. Many
other functions satisfying the document positional encoding protocol. We discussed
their performances in Section 3.4.6. The final positional encoding Poski for token tki
combines the token-level and document-level positional encoding by a linear combi-
nation:

Poski = αPosk
′

doci
+ Posktokeni

(3.11)

where
Posk

′
doci

= Stack_dimtoken(Pos
k
doci

) (3.12)

where Stack_dimtoken(·) is to repeat Poskdoci for dimtoken times to have the same
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dimension with Posktokeni
. Then the overall input representations to the Transformer-

based model are obtained by simply adding the token embedding and its correspond-
ing positional encoding:

Ek
i = Poski + eki (3.13)

Figure 3.4 illustrates the process of proposed document-aware positional encod-
ing. Given a set of documents (containing N documents), the document positional
encoding combines with token positional encoding to form the document-aware posi-
tional encoding, which later serves as part of the input to the encoder of Transformer.

3.3.2 Linguistic-guided Encoding

We extended the dependency information matrix in ParsingSum by encoding 45 dis-
tinct dependency relations into a dependency relation mask using a straightforward
yet highly effective non-linear encoding strategy aimed at enhancing feature learn-
ing. We constructed the three-order tensor Dep to place the dependency relations
(the tokens discussed below are all from the same document, so the superscript k is
omitted). The specific dependency relations depij ∈ Dep can be defined as below:

depij =

vrel ti ⊖ tj

0 ti ⊘ tj
(3.14)

where vrel ∈ RR∗1 is the one-hot vector of dependency relations between token ti
and tj . There are a variety of dependency relations between paired words in de-
pendency parsing and R represents the total number of these dependencies. ti ⊖ tj

indicates there is a dependency relation for ti and tj , while ti ⊘ tj represents no ex-
isting dependency between the two tokens. To encode these dependency relations
into the Transformer-based models, we first transfered the dependency tensor into a
dependency encoding weight through a two-layers encoding function:

mij = FdepEnc(depij) (3.15)

where FdepEnc contains two linear transformations and one LeakReLU non-linear
mapping in between:

FdepEnc(x) = Linear ◦ LeakyReLU ◦ Linear(x) (3.16)

where ◦ represents the concatenation of multiple sub-functions. In general, we dis-
covered that the complexity of designing the encoding function for dependency in-
formation is crucial for model optimization. A too-naive encoding function may lack
the ability to embed the information well enough; while an encoding function with
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Dependency relation 
tensor

Dependency relation 
weight

Dependency relation 
mask

h times

FIGURE 3.5. The transformation of dependency relation mask (right)
from dependency relation tensor (left).

overly strong fitting abilities results in a slow training process and may cause failures
in transforming the dependencies in an easy-optimizable manner.

Figure 3.5 shows the process of the transformation from dependency relation
tensor Dep to dependency relation mask Mij . Each fiber of the dependency rela-
tion tensor represents a one-hot vector for a specific dependency relation. Only the
corresponding element of the one-hot vector has the value (highlight in red). The
dependency relation weight mij is joined with the multi-head attention from source
documents to generate syntactic-rich features in the following manner:

MHAtt(ti, tj ,mij) =
∑
j

Ãij · Vj (3.17)

where
Ãij =Mij ⊙Aij +Aij (3.18)

Aij = softmax

(
Qi

TKj√
dim

)
(3.19)

Mij = Stack_h(mij) (3.20)

where Qi, Kj, Vj ∈ Rh∗dk∗1 are corresponding key, query, value for token ti and tj .
dim is the dimension of the key, query and value. h is the number of attention heads.
Both dim and h are fixed values that we followed the original settings in Transformer.
In order to fuse dependency relation weight mij into dependency relation mask Mij ,
function Stack_h(·) is to repeat pij on the dimension of head to have the same size
with Attij ∈ Rh∗1∗1. ⊙ denotes the element-wise Hadamard product. Then two
layer-normalization operations are applied to get the output vector of the current
encoder or decoder layer for the token ti.
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3.4 Experiments

3.4.1 Datasets

Multi-News Dataset (Fabbri et al., 2019a) is a large-scale English dataset containing
various topics in news domain. It includes 56,216 document-summary pairs and it
is further scattered with the ratio 8:1:1 for training, validation, and test respectively.
Each document set contains 2 to 10 documents with a total length of 2103.49 words.
The average length of the gold summaries is 263.66. Multi-XScience Dataset (Lu,
Dong, and Charlin, 2020b) is a large-scale English dataset and it contains 40,528
document-summary pairs collected from scientific articles. The task of the Multi-
XScience dataset is to generate the related work section of a target scientific paper
based on the abstract of the same target paper and the abstracts of the articles it refers
to. The dataset contains 30,369 training, 5,066 validation and 5,093 testing data.
Samples have an average input length of 778 tokens and an average length of 116
tokens on the summary. WCEP-100 (Ghalandari et al., 2020b) consists of 10,200
document sets (8158 for training, 1020 for validation and 1022 for testing) with one
corresponding human-written summary. The average length of the summaries are
32 words. For the ParsingSum model, our experiments were conducted using the
Multi-News and WCEP-100 datasets. As for the DocLing model, we performed
experiments on the Multi-News and Multi-XScience datasets.

3.4.2 Baselines

We compared our proposed method with the following strong baselines: LexRank

(Erkan and Radev, 2004b) computes textual unit salience based on the eigenvector
centrality algorithm using heuristic features in the similarity graph-based sentence
representations. TextRank (Mihalcea and Tarau, 2004) leverages the graph-based
ranking formula, deciding on the importance of a text unit representative within a
graph built for information extraction. SummPip (Zhao et al., 2020) constructs sen-
tence graphs by incorporating both linguistic knowledge and deep neural representa-
tions. Maximal Marginal Relevance (MMR) (Carbonell and Goldstein, 1998b) com-
bines query relevance and information novelty from source documents, benefiting
summarization in reducing redundancy while remaining the most salient information.
Bidirectional recurrent neural network (BRNN) superimposes two RNNs of oppos-
ing directions on the same output according to RNN states. Transformer (Vaswani
et al., 2017) follows an encoder-decoder structure based on attention mechanism,
which has been extensively utilized in a wide range of natural language processing
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TABLE 3.2. Models comparison on Multi-News test set. We reran all
the compared models under the same environment. The best results

for each column are in bold.

Models ROUGE-1 ROUGE-2 ROUGE-L
LexRank 37.92 13.10 16.86
TextRank 39.02 14.54 18.33

MMR 42.12 13.19 18.41
SummPip 42.29 13.29 18.54

BRNN 38.36 13.55 19.33
FT 42.98 14.48 20.06

Hi-MAP 42.98 14.85 20.36
HT 36.09 12.64 20.10

ParsingSum-HT (Ours) 37.34 13.00 20.42
ParsingSum-FT (Ours) 44.32 15.35 20.72

tasks1. CopyTransformer restricts abstractive summarizer to copy tokens from source
documents. Pointer-Generator (PG) (See, Liu, and Manning, 2017b) equips with
the coverage mechanism between the pointer network and the standard sequence-
to-sequence attention model. Hierarchical MMR-Attention Pointer-generator (Hi-

MAP) model (Fabbri et al., 2019a) integrates sentence representatives with hidden-
state-based MMR into a standard pointer-generator network, an end-to-end model
for abstract summarization. Hierarchical Transformer (HT) (Liu and Lapata, 2019a)
captures relationships across multiple paragraphs via the hierarchical Transformer
encoders and flat Transformer decoders2.

3.4.3 Automatic Evaluation Metrics

We evaluated the models by using ROUGE scores (Lin, 2004a) and BERTScore
(Zhang et al., 2020c). Unigram and bigram overlap (ROUGE-1 and ROUGE-2
scores) are adopted to indicate the literal quality of generated summaries. ROUGE-
SU score is a unigram-based co-occurrence statistic, bringing out the soft skip bigram
by computing both the skip-bigram and unigram. ROUGE-L adopts the longest com-
mon subsequence algorithm to count the longest matching vocabularies. ROUGE F1
scores are considered in our work3. BERTScore is an automatic language evaluation
metric for text generation based on contextual token embeddings of the pre-trained
BERT (Devlin et al., 2019a).

1We implemented the Transformer model based on https://github.com/Alex-Fabbri/Multi-
News/tree/master/code/OpenNMT-py-baselines

2We trained the HT model on one GPU for 100,000 steps with batch-size 13,000.
3The scores are computed with ROUGE-1.5.5 script with option “-c 95 -2 -1 -U -r 1000 -n 4 -w

1.2 -a -m"
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TABLE 3.3. Models comparison on WCEP-100 test set. The best
results for each column are in bold.

Models ROUGE-1 ROUGE-2 ROUGE-L
HT 23.20 5.78 17.45
FT 23.41 6.64 17.93

ParsingSum-HT (Ours) 24.03 6.42 18.31
ParsingSum-FT (Ours) 26.45 7.06 18.98

3.4.4 Experimental Settings

ParsingSum: We equipped the proposed linguistic-guided attention on both Hierar-
chical Transformer (HT) and Flat Transformer (FT) architectures. Two models are
thus derived: ParsingSum-HT and ParsingSum-FT. For ParsingSum-HT, we followed
the implementation of the HT model by using six local Transformer layers and two
global Transformer layers with eight heads4. For ParsingSum-FT, we followed FT
model settings and adopt four encoder layers and four decoder layers5. For training,
we used Adam optimizer (β1=0.9 and β2=0.998). The dropout rates of both encoder
and decoder are set to 0.1. The initial learning rate is set to 1× 10−3. The first 8000
steps are trained for warming up and the models are trained with a multi-step learn-
ing rate reduction strategy. Deep Biaffine dependency parsing (Dozat and Manning,
2017a) are used to generate dependency information for these source documents.
DocLing: To have a fair comparison, we kept all the experimental settings consistent
throughout all experiments. In our Transformer-based model, eight encoder layers
and decoder layers are adopted. The Biaffine parser (Dozat and Manning, 2017b) is
used for generating dependency relations among the source documents. Our model
adopts 45 dependency relations. We used Adam optimizer (β1=0.9 and β2=0.998)
for model parameter optimization. The initial learning rate of the model is set to
1 × 10−3 and 0.1 dropout rate is set for both the encoder and decoder. The trade-
off hyper-parameter α is set to 0.1. In the training phase, the first 8 × 103 steps are
trained for warming up and the models are trained with a multi-step learning rate
reduction strategy. In the experiments, the model accumulates gradients and updates
once every four iterations. The minimum and maximum lengths of the generated
summaries are set to 200 and 300 words for the Multi-News dataset, while 110 and
300 words for the Multi-XScience dataset.
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TABLE 3.4. The analysis of fusion weights of linguistic-guided atten-
tion on Multi-News validation set. The best results for each column

are in bold.

Models ROUGE-1 ROUGE-2 ROUGE-L
HT 36.02 12.57 20.05

ParsingSum-HT (α=1) 36.71 12.79 20.27
ParsingSum-HT (α=2) 35.64 12.18 19.80
ParsingSum-HT (α=3) 36.74 12.86 20.29

FT 42.81 14.25 19.81
ParsingSum-FT (α=1) 43.69 14.67 19.95
ParsingSum-FT (α=2) 43.84 15.01 20.50
ParsingSum-FT (α=3) 43.61 14.92 20.13

3.4.5 Model Performance of ParsingSum

Overall Performance

We evaluated the proposed ParsingSum-HT, ParsingSum-FT and compare them with
multiple mainstream models on both Multi-News and WCEP-100 datasets. For
fair comparisons, we reran all the compared models under the same environment.
For Multi-News dataset, as shown in Table 3.2, the ParsingSum-HT model receives
higher ROUGE scores (across all ROUGE-1, ROUGE-2 and ROUGE-L) steadily
compared to the original HT model. The linguistic-guided attention helps the model
raise 1.25 on ROUGE-1 score, 0.36 on ROUGE-2 score, and 0.32 on ROUGE-L re-
spectively. It indicates the outstanding capability of ParsingSum models to retain
the intention of original documents when generating summaries. A similar phe-
nomenon shows on the ParsingSum-FT model. More specifically, ParsingSum-FT
surpasses FT model 1.34 on ROUGE-1 score, 0.87 on ROUGE-2 score, and 0.66
on ROUGE-L score, which shows the effectiveness of linguistic-guided attention on
the Transformer-based models. It is worth noting that the proposed ParsingSum-FT
is able to outperform its baseline (i.e., FT model) by a large margin and also re-
ceives the highest ROUGE scores across all the compared methods. The effect of
linguistic-guided attention can be verified on the WCEP-100 dataset. The ROUGE
results can be improved on both two version of Transformer based summarization
models. These results indicate the outstanding capability of linguistic-guided atten-
tion to retain the intention of original documents when generating summaries.

4We trained the HT model on one GPU for 100,000 steps with batch-size 13,000.
5We implemented the FT model based on https://github.com/Alex-Fabbri/Multi-

News/tree/master/code/OpenNMT-py-baselines. We trained the FT model for 20,000 steps
with batch-size 4096 on one GPU.
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TABLE 3.5. Human evaluation results on the Multi-News dataset.
The best results for each column are in bold.

Models Fluency Informativeness Consistency
Hi-MAP 2.53 2.80 2.33
FT 2.47 2.67 2.60
HT 2.20 2.13 2.40
ParsingSum-HT 2.73 2.93 2.87
ParsingSum-FT 2.87 2.87 2.73

(ROUGE-1) (ROUGE-2) (ROUGE-L)

FIGURE 3.6. The performance of ParsingSum-HT on small (in blue)
and large batch-size setting (in red).

Human Evaluation

Although ROUGE are the standard evaluation metrics for summarization tasks, they
focus on lexical matching instead of semantic matching. Therefore, in addition to
the automatic evaluation, we accessed model performance by human evaluation in
a semantic way. We invite three annotators who research natural language process-
ing to evaluate the performance of five models (Hi-MAP, FT, HT, ParsingSum-FT,
ParsingSum-HT) independently. For each model, 30 summaries are randomly se-
lected from the Multi-News dataset. Three criteria are taken into account to evalu-
ate the quality of generated summaries: (1) Informativeness: how much important
information does the generated summary contain from the input document? (2) Flu-
ency: how coherent are the generated summaries? (3) Consistency: how closely the
information in the generated summaries are consistent with the input documents?
Annotators are asked to give scores from 1 (worst) to 5 (best). Table 4.5 summarizes
the comparison results of five summarization models. For each model, the score of
each criterion is computed by averaging the score of all summary samples. The re-
sults demonstrate that the Transformer based models equipped with linguistic-guided
attention are able able to generate higher quality summaries than the baseline mod-
els in terms of informativeness, fluency, and consistency. These human evaluation
results further validate the effectiveness of our proposed linguistic-guided attention
mechanism.
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TABLE 3.6. Performance of ParsingSum-HT via different fusion
methods on Multi-New validation set. The best results for each col-

umn are in bold.

Models ROUGE-1 ROUGE-2 ROUGE-L
ParsingSum-HT (P0.25) 19.50 3.40 12.59
ParsingSum-HT (G0.25) 16.84 1.92 11.36

ParsingSum-HT (G8) 20.18 3.55 13.00
ParsingSum-HT (α=3) 36.74 12.86 20.29

(a) (b) (c)

(d) (e) (f)

FIGURE 3.7. Visualization of different fusion methods. (a) HT
model; (b) ParsingSum-HT (α=1); (c) ParsingSum-HT (P0.25);
(d) dependency parsing matrix; (e) ParsingSum-HT (α=3); (f)

ParsingSum-HT (G0.25).

Analysis

We further analyzed the effects of the trade-off parameter α and batch-size in Pars-
ingSum. We also examined and discuss different manners to incorporate parsing
information into the proposed model.

The Analysis of the Fusion Weights. The trade-off factor α controls the intensity
of attention from a linguistic perspective to be fused with multi-head attention. To
analyze its importance, we conducted experiments by setting α to 0, 1, 2, and 3 (α = 0
denotes the naive Transformer model without linguistic-guided attention) on the two
proposed models on the validation set. The results are shown in Table 3.4. Generally,
there is an increasing trend with the increment of α. This rising trend further proves
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assigning a relatively larger α in a suitable range can improve the performance of
summarization models.

The Analysis of Batch-size. Batch-size is considered to have a great effect on the
mini-batch stochastic gradient descent process of model training (Smith et al., 2018)
and it will thus further affect the model performance. To validate it empirically, we
trained the model with small/large batch-size (the small batch-size is 4,500 and the
large one is 13,000) of the ParsingSum-HT model. The experiments are conducted
with different α. The results in Figure 3.6 show that smaller batch-size reduces the
performance on all the evaluation metrics. Interestingly, the ROUGE scores of the
small batch-size setting are steadily increasing with α changes from 1 to 3; when
the model is trained with large batch-size, the increasing trend is retained but the
ROUGE scores are jittering when α equals two. It indicates different batch-sizes
have different sensitivities towards the change of α.

The Analysis of the Fusion Methods. How to integrate the parsing information
into the Transformer-based model is important in our work. In addition to the fusion
method introduced in Section 3.2.2, we attempted several other fusion methods under
a small batch-size setting of the ParsingSum-HT model: (1) Direct fusion. Weight
the dependency parsing matrix and add it directly to the multi-head attention. It
denotes as ParsingSum-HT (P0.25):

LGAttij = 0.25Mij +Attij (3.21)

(2) Gaussian-based fusion. We adopted the idea from (Li et al., 2020c) and apply
Gaussian weights to the product of the dependency information and the multi-head
attention. The Gaussian weights are set to 0.25 (ParsingSum-HT (G0.25)) and 8
(ParsingSum-HT (G8)):

LGAttij =
(1−MijAttij)

2

0.25
+Attij (3.22)

LGAttij =
(1−MijAttij)

2

8
+Attij (3.23)

Figure 3.7(a) and 3.7(d) represent the heatmap of the HT model and dependency
parsing matrix. Figure 3.7(b), 3.7(c), 3.7(e), and 3.7(f) illustrate the attention maps of
different fusion methods. Table 3.6 presents the performance of the mentioned fusion
methods on Multi-New validation set. ParsingSum-HT with α=3 receives the best
results for all ROUGE scores. The potential reason is that through direct fusion and
Gaussian fusion, the scale of the original multi-head attention has been overwhelmed,
leading to posing the dependency information in a dominant position. In this case,
the normal gradient backpropagation process has been disturbed. The experiment
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TABLE 3.7. Performance comparison on the Multi-News dataset. We
reran all the baseline models under the same settings. “CopyTrans"
represents CopyTransformer. The best results for each column are in

bold.

Models ROUGE-1 ROUGE-2 ROUGE-SU BERTScore
LexRank 37.92 13.10 12.51 0.83
TextRank 39.02 14.54 13.08 0.83
SummPip 42.29 13.29 16.16 0.84
MMR 42.12 13.19 15.63 0.84
BRNN 38.36 13.55 14.65 0.83
Transformer 25.82 5.84 6.91 0.80
CopyTrans 42.98 14.48 16.91 0.84
PG 34.13 11.01 11.58 0.83
Hi-MAP 42.98 14.85 16.93 0.83
HT 36.09 12.64 12.55 0.84
DocLing 44.35 15.04 17.97 0.85

TABLE 3.8. Performance comparison on the Multi-XScience dataset.
We reran all the baseline models under the same settings. “Copy-
Trans" represents CopyTransformer. The best results for each column

are in bold.

Models ROUGE-1 ROUGE-2 ROUGE-SU BERTScore
LexRank 31.31 5.85 9.13 0.83
TextRank 31.15 5.71 9.07 0.84
SummPip 29.66 5.54 8.11 0.82
MMR 30.04 4.46 8.15 0.83
BRNN 27.95 5.78 8.43 0.83
Transformer 28.34 4.99 8.21 0.82
CopyTrans 26.92 4.92 7.50 0.83
PG 30.30 5.02 9.04 0.84
Hi-MAP 30.41 5.85 9.13 0.81
HT 25.31 4.23 6.64 0.83
DocLing 30.93 6.06 9.57 0.84

results indicate that a direct summation of the weighted dependency parsing matrix
and multi-head attention may damage the original attention. On the other hand, a
“soft” fusion (when α is adopted) of these two attentions can achieve promising
results.

3.4.6 Model Performance of DocLing

Overall Performance

In this section, we compared our proposed model with several strong baselines and
list the comparison results in Table 3.7 (Multi-News) and Table II (Multi-XScience).
The results of our proposed model on the Multi-News dataset show the best over-
all results on both ROUGE scores and BERTScore. To give a fair comparison, we
reran all the baseline models. It is observed that our model performs particularly
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TABLE 3.9. Ablation study of our model on Multi-News and Multi-
XScience dataset. “doc-pos en" and “depen en" stand for document-

aware positional encoding and linguistic-guided encoding.

Dataset Model Variants ROUGE-1 ROUGE-2 ROUGE-SU
Multi- w/o doc-pos en 44.16 15.06 17.74
News w/o depen en 43.73 14.86 17.37

Full Model 44.35 15.04 17.97
Multi- w/o doc-pos en 28.81 5.53 8.56
XScience w/o depen en 29.69 5.62 8.86

Full Models 30.93 6.06 9.57

well on R-SU than other models. It gains 1.06 improvement to the second best, Hi-

MAP. Given that R-SU takes more skip-bigram plus unigram-based co-occurrence
statistics into account, it contains additional comprehensive information to evaluate
the models. The BERTScore on different models shows relative marginal differ-
ences. However, our proposed model still achieves the best among all the evaluate
models, which indicates our proposed model can generate high-quality summaries
in a semantic level. We also evaluated our proposed models based on the Multi-
XScience datasets. Comparing the Transformer baseline models and our model with
document-aware positional encoding and linguistic guided encoding, we observed
that these two encodings help to improve the performance by 2.59 on R-1, 1.07 on R-
2 and 1.36 on R-SU. The results on the Multi-XScience dataset show that our model
performs better than most of the models. Our proposed model does not achieve
the best results on all evaluation metrics because the proposed model is based on
the Transformer models which are dataset sensitive. This means the Transformer-
basd models do not always work well on all the MDS datasets. This phenomenon
can also be found in the paper (Zhao et al., 2020; Pasunuru et al., 2021b) and (Jin
and Wan, 2020). In these paper, the Transformer-based model (CopyTransformer)
shows poor results on DUC-2004 dataset6 although it works well on the Multi-News
dataset. A potential reason is Multi-XScience and DUC-2004 datasets have higher
novel n-grams score than Multi-News dataset (Fabbri et al., 2019a; Lu, Dong, and
Charlin, 2020b). For example, paper (Lu, Dong, and Charlin, 2020b) reported that
the proportion novel of unigrams/bigrams/trigrams/4-grams in the gold summaries
of the Multi-News dataset is 17.76/57.10/75.71/82.30, which are much lower than
that of Multi-XScience dataset (42.33/81.75/94.57/97.62). The Transformer models
may not work very well on datasets with higher novel n-gram scores.

6http://duc.nist.gov
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Ablation Study

To better understand the contribution of document-aware positional encoding and
linguistic-guided encoding techniques to overall model performance individually, we
conducted an ablation study on the proposed model on both Multi-News and Multi-
XScience datasets. Table 3.9 presents the results. The experiments confirm that the
proposed two encoding methods perform considerably better than the model without
them. This is due to (1) document-aware positional encoding has the capability of
capturing cross-document information in MDS; (2) with linguistic-guided encoding,
dependency relations within the source documents are well preserved, enabling the
summarization model to effectively learn a much more faithful syntactic structure
than that working on the model without it.

Encoding Strategies

In addition to the model performance evaluation, we reported our findings on differ-
ent encoding functions and the ways to incorporate the encoding.

(1) Document-aware Positional Encoding Strategies. We evaluated the contribu-
tion of different document positional encoding functions. All these functions satisfy
the proposed protocol described in Section 3.3.1. The experience results are shown
in the upper part of Table 3.10. sin function helps the MDS model achieve the best
ROUGE score and the combination of sin and cos produce similar results. However,
cos function greatly reduces the model performance. The reason could be related to
the document number in a document set of Multi-News dataset. Most of the docu-
ment sets contain two documents in the Multi-News dataset. When applying cos on
two documents, the value differences for the two encodings is smaller than what the
sin function provides, which means cos has less distinguishing ability than sin. This
may result in lower model performance for MDS tasks. Additionally, we also tried
to adjust α in Equation (2). Results are shown in the lower part of Table 3.10. We
tested the model performance on validation set when α = 0.1, 0.5, 1 and observe
model perform best when α = 0.1. Therefore, we fixed this hyper-parameter to 0.1
and report the final results on the test set.

(2) Document-aware Positional Encoding Protocol. To verify the proposed three
considerations of document encoding functions, we selected some other functions
except sin and cos, and the functions are not satisfy the conditions proposed in 3.3.1
for experiments. We also randomly assigned values to document positional encoding
to verify the effectiveness of our chosen function. The results are shown in Table
3.11. We observed that the performance are not well when (1) the document po-
sitional encoding of each document is the same (SameEncoding); (2) the values of
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TABLE 3.10. Performance of our model using different document
positional encoding strategies. The strategies include different en-
coding functions (upper) and different document positional encoding
weights(lower). iter(A, B) means to use functions A and B alter-
nately. Values obtained from the validation set based on the Multi-

News dataset.

Models ROUGE-1 ROUGE-2 ROUGE-SU
sin(x) 43.80 14.74 17.59
cos(x) 42.82 14.49 16.71
iter(sin(x), cos(x)) 43.56 14.43 17.38
iter(sin(0.1x), cos(0.1x)) 43.66 14.52 17. 47
α= 0.1 44.11 14.81 17.74
α= 0.5 43.68 14.54 17.45
α= 1 43.80 14.74 17.59

TABLE 3.11. Performance of models with functions that do not meet
the document positional encoding protocol. Values obtained from the

validation set based on the Multi-News dataset.

Models ROUGE-1 ROUGE-2 ROUGE-SU
SameEncoding 42.82 14.28 16.63
y = x 42.25 14.08 16.25
y = 2x 42.57 14.06 16.60
y = 5x 40.56 12.06 15.13
y = 10x 38.94 11.50 14.24
Random 43.19 14.67 16.87

document positional encoding are not bonded (y = x, y = 2x, y = 5x, y = 10x); and
(3) the values of document positional encoding are remarkable larger than the values
of token positional encoding (y = 10x); (4) randomly assign values to document
positional encoding (Random).

(3) Linguistic-guided Encoding Strategies. There are 45 dependency relations ex-
isting in the Biaffine parser. Some dependency relations have a great influence on the
generated summaries; and vice versa. This section discussed how to encode these
various relations into multi-head attention mechanism by considering their impor-
tance. The performance of different linguistic-guided encoding methods is shown

TABLE 3.12. Performance of our model based on different linguistic-
guided encoding methods. Values obtained from the validation set

based on the Multi-News dataset.

Models ROUGE-1 ROUGE-2 ROUGE-SU
Arithmetic sequence 43.71 14.54 17.43
Arithmetic sequence (core) 43.79 14.57 17.47
Arithmetic sequence (root) 43.89 14.64 17.55
One-hot (one layer) 43.15 14.40 17.03
One-hot (FdepEnc) 44.11 14.81 17.74
Added on values 42.41 13.89 16.47
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TABLE 3.13. Human evaluation on the Multi-News. The best re-
sults for each column are in bold. “CopyTrans" represents CopyTrans-

former.

Models Fluency Informativeness Conciseness
Transformer 2.50 1.97 2.50
CopyTrans 2.60 2.60 2.83
Hi-MAP 3.07 2.87 2.97
DocLing 3.13 3.10 3.20

in Table 3.12. The importance of dependency relations in the first three methods are
manually set and the following two are automatically learned. “Arithmetic sequence"
represents a sequence with the values of 1, R− 1/R,R− 2/R..., 1/R, which means
the dependency relations at the top of the list have a larger weight. R denotes the
number of dependency relations in total. The sequence of dependency relation list in
the first methods is constructed according to the sequence of the occurrence of de-
pendency relations in the source documents. We selected the top-8 dependents from
the official core dependents of clausal predicates7 to build the relation lists for “Arith-
metic sequence (core)". “Arithmetic sequence (root)" is to assign the largest weight
to the root word since the dependency relation “root" is proven to be the most impor-
tant token in the syntax dependency tree (Wang et al., 2020b). “One-hot (one layer)"
means the one-hot representation of dependencies with only one linear transforma-
tion between the dependency relation tensor and the dependency relation mask. The
“One-hot (one layer)" model performs substantially poorer than the one-hot encod-
ing model with non-linear function FdepEnc. It is because non-linearity enlarges the
learning capability of encoding functions significantly. The“One-hot (FdepEnc)" rep-
resents our final model. The FdepEnc function can outperform all arithmetic sequence
models since it delegates the construction of dependency relations to a non-linear
learner. It enables the model to learn the importance of gradient descent directly.
From another point of view, besides the addition of the linguistic-guided encoding
on keys and queries within self-attention, we also tried to add the encoding on val-
ues. However, model performance dropped greatly. We hypothesized the reason is
that keys and queries are adopted to calculate attention, but values are the final recep-
tors of attention. Small changes in values will have a large influence on the model
optimization process.

Human Evaluation

Apart from automatic evaluation, we conducted a human evaluation to assess the
quality of the generated summaries on three aspects: text fluency checks whether

7https://universaldependencies.org/docs/en/dep/
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TABLE 3.14. Generated summaries of different models given the
same source documents. “CopyTrans" represents CopyTransformer.

Different colors represent different thought groups.

Source Docs a nine-year-old boy from los banos has completed quite the journey
on tuesday , as he swam through the san francisco bay , all the
way to alcatraz island and back . james savage is hoping to be
the youngest swimmer on record to make the swim . the title is
currently held by a 10-year-old . it ’ s been quite an emotion day in
san francisco , but it ended with smiles and cheers as james walked
on shore , after hours in the bay . james began the swim at 7 : 00
a.m. , and it took him a little over two hours to complete the feat .
he struggled for a big out in the open water , about 30 minutes into
the swim . james said the waves were hitting him , and the current
was too strong , making it difficult for him to fight them . in the
end , however , with help from his coach and a promise from his
father , james found his second wind , and was off . " i wanted to
turn back and they kept yelling , ’ i believe i you you can do it ’
, " said james . " we kind of pushed each other . finally got him
going . smooth sailing all the way ......james savage , a 9-year-old
boy from los banos , calif......

Transformer james savage has been swimming off the san francisco bay area
since he was 14 years old , but he ’ s not the only one who ’ s been
in the water for more than a century . " i ’ ve never seen anything
like this before , " he tells nbc bay area . " it ’ s a great thing to do .
i ’ m not going to be able to do it . " he says he ’ ll be swimming in
the bay of san francisco ’ s bay in san francisco when he ’ d swim
to the beach , and he ’ s 〈blank〉〈blank〉〈blank〉......

CopyTrans james savage , a 9-year-old boy who completed the tiring trek last
year , was able to set a record as the youngest swimmer to make
the journey to the island and back on june 14 , reports nbc bay area
...... james tells ksee . " he ’ s not going to do anything about it ,
" he says , adding that his second wind was off the rails . " it ’ s
really hard to get to the bottom of the road , " savage says of his
father . " it was just a slap on the wrist . it was a slap in the water .
it ’ s 〈blank〉〈blank〉〈blank〉......

Hi-Map james savage is hoping to be the youngest swimmer on record to
make the swim to the former prison , reports the san francisco
chronicle . " i wanted to turn back and they kept yelling , ’ i believe
i you you can do it ’ , " james told ksee . " we kind of pushed each
other . finally got him going . smooth sailing all the way , " he says
. " i 〈blank〉〈blank〉〈blank〉......

Ours james savage , a 9-year-old boy from los banos , calif. , has com-
pleted the swim at 7 : 〈unk〉and 57 pounds , was able to set a record
as the youngest swimmer to make the journey to the alcatraz island
and back on june 14 , nbc news reports. " i wanted to turn back and
they kept yelling , ’ i believe i you can do it , ’ " james tells ksee
. " we kind of pushed each other . finally got him going . smooth
sailing all the way , " ......
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the summary is natural, well-formed, and both syntactically and semantically cor-
rect; conciseness assesses whether the summary is concise and without repeated
or useless information; informativeness examines whether the summary keeps the
salient information from the source documents. We randomly sampled 10 examples
from the Multi-News dataset (Fabbri et al., 2019a). Three experienced researcher are
invited to score summaries (from 4 models) on the above aspects. The score range is
1-5 (1 means very bad; 5 means very good). The final scores for each model are aver-
aged across different examples and raters. The results are listed in Table 4.5. The text
fluency score of our model is 3.13, which is higher than 2.50 of Transformer, 2.60
of CopyTransformer, and 3.07 of Hi-Map, which means the summaries generated by
our model are more natural and well-formed. In terms of the score of informative-
ness, our model achieves 3.10 and is higher than the second-best model (Hi-Map)
by 0.23, indicating our model is better at capturing the most important information
from different sources. Moreover, the generated summaries by our model are more
concise and better at reducing redundant information, which could be concluded by
the conciseness score.

Case Study

Table 3.14 presents the generated summaries from four models: Transformer, Copy-

Transformer, Hi-Map, and our models. In this example, the Transformer model only
captures “james savage has been swimming off the san francisco bay area" (in red)
but takes the age wrong. It should be 9 in fact. Besides, Transformer model also
generates something that are not supported in the source document (in orange). For
the CopyTransformer, the salient information (in green) is in the generated summary.
However, this model also outputs unsupported text (in orange). The Hi-Map model
misses some key information (e.g. the red highlight in the source document). In con-
trast, the summary generated by our proposed model keeps the significant informa-
tion and shows content consistent with the source documents. It could demonstrate
that our model equipped with the proposed informative encoding mechanism could
generate summaries more accurately than the other comparing models.

3.5 Conclusion for the Chapter

In this chapter, we presented two methods to incorporate linguistic-guided encod-
ing for abstractive multi-document summarization. In the first work, the proposed
linguistic guided attention mechanism can be seamlessly incorporated into multi-
ple mainstream Transformer-based summarization models and can outperform ex-
isting Transformer-based methods by a large margin. We developed two models
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based on Flat Transformer (FT) and Hierarchical Transformer (HT). The proposed
ParsingSum-HT and ParsingSum-FT incorporate dependency relations with Trans-
former’s multi-head attention for summaries generation. Based on this work, we en-
coded 45 distinct dependency relations into a dependency relation mask. We also
proposed an effective and informative encoding mechanism to encode the multi-
document positional information and give a general protocol to guide the selection of
document encoding functions. We conducted extensive experiments on two bench-
mark datasets and the results demonstrate the superior performance of the proposed
two encoding methods. The analysis of various settings of the document-aware posi-
tional encoding and linguistic-guided encoding can help researchers understand the
intuitiveness of the proposed model and could serve as an informative reference to
the MDS research community.
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Chapter 4

Disentangling Specificity for
Abstractive Multi-document
Summarization

4.1 Introduction

In the preceding chapter, we delved into addressing the challenges of Multi-Document
Summarization (MDS) by examining linguistic and document positional perspec-
tives, unraveling the interconnections among various documents. In this chapter, our
focus extends beyond merely exploring connections; we also delve into the distinc-
tions between input documents. Our objective is to generate summaries that are both
informative and comprehensive, synthesizing key insights from multiple input doc-
uments. Some researchers tried to establish the connections not only at word-level
relations but also sentence, paragraph and document levels. They employ hierar-
chical Transformer structures (Liu and Lapata, 2019a; Li et al., 2020b; Jin, Wang,
and Wan, 2020a; Song, Chen, and Shuai, 2022) to forge connections among doc-
uments. The high-level Transformer encodes the paragraph representations from
different documents. Besides, some existing works incorporated graph information
(Fan et al., 2019; Li et al., 2020b; Pasunuru et al., 2021b; Wang et al., 2020a) to
build connections among documents. However, these methods are not specifically
designed for extracting specific features and therefore they ignore the specific infor-
mation contained in each document in a document set.

Nonetheless, the extraction of specific information is crucial with the following
reasons: (1) In a collection of documents, each document contains not only the com-
mon information but also has specific contents that distinguish it from other docu-
ments. These specific information contain unique facts, viewpoints, and details (Fab-
bri et al., 2019a). Extracting these specific details enhance the comprehensiveness of
the resulting summary. Additionally, some essential information may be exclusive to
a particular document, yet it plays a pivotal role in obtaining a comprehensive grasp
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of the entire document set. Therefore, a high-quality MDS summary should not only
be able to capture document commonality but can also comprehensively consider
the specific information from each document, covering various dimensions to meet
the user’s demand for a comprehensive understanding of the documents (Wolhandler
et al., 2022). (2) Focusing on the extraction of specific information helps reduce re-
dundancy, rendering the summary more concise and informative. Clustering-based
MDS methods (Goldstein et al., 2000; Wan and Yang, 2008; Nayeem, Fuad, and
Chali, 2018; Pasunuru et al., 2021b; Ernst et al., 2022) can be used to group simi-
lar sentences or pieces of information and remove redundancy. After removing the
redundant information, the remaining information in each document can be viewed
as implicitly specific information. However, the specificity within these remaining
information cannot be explicitly guaranteed to be distinctive between documents.

In order to address this issue, our intuition is not only to capture the overall in-
formation in a document set but also to distinguish the specificity of each document
and learn representations of document specificity which will be considered in the
summary generation process. To this end, we proposed DisentangleSum — a sim-
ple yet effective summarization model that disentangles document uniqueness with
a set of document-specific representation learners. In order to optimize the learning
of specific representations, we further proposed an orthogonal constraint to encour-
age the specific representations obtained from a pair of documents to be distinctive
from each other. Based on the constraint, we designed an objective function that
can transform the quadratic increment of the losses between each of the paired doc-
uments into linear to cope with a large number of documents in a set. We summarize
our contributions as follows:

• We presented DisentangleSum, an innovative MDS model that is capable of
disentangling specific information from each document in a set, leading to
more comprehensive summary generation. To the best of our knowledge, we
are the first to consider the specific information for deep learning based MDS
task.

• To incentivize the document-specific learner to retain document specificity in-
formation, we proposed an orthogonal constraint. This constraint encourages
the document-specific representation vectors to align vertically with each other,
ensuring a semantic separation between them.

• Experimental results on two MDS datasets demonstrate the effectiveness of
DisentangleSum. We additionally offered comprehensive analyses from multi-
ple perspectives to investigate the underlying mechanisms of DisentangleSum
and circumstances of the proposed model can work.
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FIGURE 4.1. The overall framework of the proposed Disentangle-
Summodel. One to N documents are processed individually by a set of
specific encoders {ψ1, ψ2, ψ3, ..., ψN} with sharing weights into spe-
cific representations {S1,S2,S3, ...,SN}. These specific representa-
tions are then concatenated into one specific vector and finally added
to the document-set representation generated by another document-set
encoder ϕ for summary generation. During the optimization process,
an orthogonal constraint is introduced to encourage the learned spe-

cific features that are dissimilar to each other.

4.2 Our Approach

In this section, we provided an overview of the proposed model, DisentangleSum,
by describing how to incorporate document disentangling specificity representation
learning into the summarization framework. We introduced the orthogonal constraint
applied during the training of document-specific features. In Figure 4.1, individual
documents in a set are processed by specific Transformer-based encoders to learn
document-specific features. Simultaneously, in order to capture overall document-
set context, these documents are also concatenated into a document and fed into
a Transformer based document-set encoder. The overall document-set features are
then added to the document-specific features for decoding.

4.2.1 Problem Formulation

In the context of MDS tasks, each document set can have a varying number of docu-
ments. For illustration purposes, let’s consider a document set D = (d1,d2,d3, ...,dN)

consisting of N input documents related to a specific topic or sharing common in-
formation. In our approach, we utilized the specific encoder ψi(·; Θ) for document
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di, where Θ represents the learnable parameters. These specific encoders generate
specific representations Si for each document, and collectively, they form the spe-
cific representations S for the entire document set. Additionally, we employed a
document-set encoder ϕ(·; Ω) with learnable parameters Ω to obtain document-set
representations F. The target is to generate a concise summary output O that syn-
thesizes all important contents from input documents by considering both specific
representations S and document-set representations F.

4.2.2 Document Specific Representation Learner

In a document set, the specific representation learner aims to identify the specific
information within each document. To achieve this, we introduced a specific encoder
to encode document di in the same document set D:

Si = ψi(d
i; Θ), (4.1)

Under the setting of MDS, the number of input documents can vary within a docu-
ment set (e.g., Multi-News dataset have two to ten documents per set). To address
this variability, we presented a design where the learnable parameters, denoted as Θ,
are shared across a set of N specific encoders instead of assigning a separate spe-
cific encoder to each document in the set. The rationale behind this approach stems
from the fact that documents with identical indexes in different document sets are
unrelated in terms of their contents. Consequently, maintaining multiple separate
specific encoders for each indexed document is not reasonable. Subsequently, we
concatenated these specific representations to obtain the overall specific features of a
document set:

S = S1 ⊕ S2 ⊕ S3 ⊕ ...⊕ SN , (4.2)

⊕ is the concatenation operation in this work. To enable sufficient expressive power
for representations to be decoded, we also obtained the document-set representations
F out of a document set D by:

F = ϕ(D; Ω), (4.3)

Next, we combined the document-set representations and specific representations by
performing an element-wise addition and decoding them into summarization outputs:

O = ζ(α · F+ S; Λ), (4.4)

Here, α serves as a trade-off factor to control the weight balancing between the
document-set representations and specific representations. The decoder function
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ζ(·; Λ), parameterized by Λ, is responsible for decoding the intermediate features
into concise summaries.

4.2.3 Orthogonal Constraint within the Training of Document
Specific Features

To guide the learning of specific features, we imposed an orthogonal constraint be-
tween pairs of specific features Si and Sj . The document-specific loss, which pro-
motes dissimilarity between specific features, is defined as:

Lspec =
∑
i

∑
j

∥∥∥S ⊤
i Sj

∥∥∥2
F
, (4.5)

where ∥·∥2F is the squared Frobenius norm. To encourage dissimilarity between spe-
cific features, we aimed for a smaller inner product between each pair of specific
feature vectors, promoting orthogonality. This ensures that the specific features of
each document within the same set are as distinct from each other as possible. As the
specific encoder learns, it captures the unique essence of each individual document,
thereby retaining specific content. However, when a document set contains more
than two documents, the computation of specific representation objectives between
every pair of documents grows exponentially. To address this, we introduced a circle-
paired loss objective function, which effectively transforms the exponential growth
into linear growth, suppressing computational complexity. Formally, we have:

Lspec =
N∑
i=1

Li
spec , (4.6)

Li
spec =


∥∥S ⊤

i Si+1

∥∥2
F

i ̸= N∥∥S ⊤
N S1

∥∥2
F

i = N
, (4.7)

The objective function calculates the specific feature costs between each doc-
ument and the subsequent document in the set, with the last document computed
against the first one.

4.2.4 Overall Objectives

The proposed framework aims to train a high-quality summarization model that in-
corporates specific representations from each document. This is achieved through
two key components: an orthogonal constraint for distinct document representations
and a supervised cross-entropy loss concerning gold summaries:

Ltotal = Lgen + β · Lspec , (4.8)
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Lgen = −
M∑
k=1

η(Ôk,Ok) log(p(Ok)), (4.9)

where β is a balance factor, p(Ok) is one shard1 of the predictive summary from
the DisentangleSum model. Ôk denotes corresponding true labels. M represents
the number of shard within the generated summary. The calculation of η(·, ·) in a
summarization task is different from other tasks such as text classification. η(·, ·)
indicates the evaluation function between prediction and ground truth, the widely
used ROUGE evaluation are adopted here.

4.3 Experiments

4.3.1 Datasets & Evaluation Metrics & Baselines

We assessed the effectiveness of the proposed method on Multi-News(Fabbri et al.,
2019a) and Multi-XScience (Lu, Dong, and Charlin, 2020c) datasets which satisfy
that documents contain the specific information in a document set. Both datasets
are truncated to 500 tokens. We used standard summarization evaluation metrics
ROUGE2 (Lin, 2004b) which are based on word-matching and BERTScore3 (Zhang
et al., 2020b) which is based on semantically matching. Specifically, we used ROUGE-
1 (R-1), ROUGE-2 (R-2), ROUGE-SU (R-SU) scores. Additionally, we employed
the coverage rate (Grusky, Naaman, and Artzi, 2018) to quantify the amount of in-
formation retained in the generated summaries compared to input documents. This
provides insights into the effectiveness of the proposed disentangling specificity rep-
resentations in preserving important information. We invited three Ph.D students in
the NLP area to examine the performance of four different models. The raters are
asked to rate each summary along three dimensions: comprehensive, coherence, and
relevance. 50 randomly sampled source documents from the Multi-News dataset.
The score range from one to five (one means very bad; five means very good). The
final scores are averaged across different cases and raters.

We compared with the following strong baselines: LexRank (Erkan and Radev,
2004b), TextRank (Mihalcea and Tarau, 2004), MMR (Carbonell and Goldstein, 1998b),
BRNN, Vanilla Transformer (VanillaTrans) (Vaswani et al., 2017) and its variant
CopyTransformer (CopyTrans), Pointer-Generator (See, Liu, and Manning, 2017b),

1Following the implementation in https://github.com/Alex-Fabbri/Multi-
News/blob/master/code/OpenNMT-py-baselines/onmt/utils/loss.py, shards are segments when
computing losses.

2The parameters of ROUGE are -c 95 -2 -1 -U -r 1000 -n 4 -w 1.2 -a -m.
3The model type of BERTScore is bert-base-uncased.
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TABLE 4.1. Performance comparison on the Multi-News dataset.

Models R-1 R-2 R-SU BS
LexRank 37.92 13.1 12.51 0.83
TextRank 39.02 14.54 13.08 0.83
MMR 42.12 13.19 15.63 0.84
BRNN 38.36 13.55 14.65 0.83
VanillaTrans 25.82 5.84 6.91 0.8
CopyTrans 42.98 14.48 16.91 0.84
PG 34.13 11.01 11.58 0.83
Hi-MAP 42.98 14.85 16.93 0.83
HierTrans 36.09 12.64 12.55 0.84
SummPip 42.29 13.29 16.16 0.84
SAGCopy 43.98 15.21 17.65 -
HeterGraphSum 43.62 14.99 17.29 0.85
HiTrans 44.62 15.57 18.06 -
DocLing 44.35 15.04 17.97 0.85
DisentangleSum 45.95 16.32 19.23 0.85

Hi-MAP (Fabbri et al., 2019a), Hierarchical Transformer (HierTrans) (Liu and La-
pata, 2019a), SummPip (Zhao et al., 2020), SAGCopy (Xu et al., 2020c), Heter-

GraphSum (Wang et al., 2020a), Highlight-Transformer (HiTrans)(Liu et al., 2021),
DocLing (Ma et al., 2022). The models with the best performance are bolded for
each column in the following Tables.

4.3.2 Implementation Details

During model training, the initial learning rate is set to 2. The training strategy in-
volves a warm-up phase for the first 8,000 steps, followed by multi-step learning rate
reduction. The batch size is set to 4,096, and the models are trained for 20,000 steps
using the Adam optimizer. Both the encoder and decoder consist of four transformer
layers, and positional encoding is applied. The dropout rate is 0.2. The trade-off
factor for specific features (α) is set to 0.01, and the trade-off factor for specific loss
(β) is set to 0.001. The word embedding size for source documents is set to 512
dimensions. We conducted all the experiments on one NVIDIA 3090 GPU with one
Intel i9-10900X CPU upon Ubuntu 22.04.3 LTS Operation System. For the mini-
mum and maximum lengths of generated summaries, Multi-News has 200 and 300
words, while Multi-XScience has 110 and 300 words.

4.3.3 Main Results

This section is designated for validating the model’s effectiveness from four perspec-
tives: (1) verifying the comprehensiveness of the generated summaries; (2) evaluat-
ing the overall performance through automated evaluations; (3) assessing the model’s
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TABLE 4.2. Performance comparison on the Multi-XScience dataset.

Models R-1 R-2 R-SU BS
LexRank 31.31 5.85 9.13 0.83
TextRank 31.15 5.71 9.07 0.84
MMR 30.04 4.46 8.15 0.83
BRNN 27.95 5.78 8.43 0.83
VanillaTrans 28.34 4.99 8.21 0.82
CopyTrans 26.92 4.92 7.50 0.83
PG 30.30 5.02 9.04 0.84
Hi-MAP 30.41 5.85 9.13 0.81
HierTrans 25.31 4.23 6.64 0.83
SummPip 29.66 5.54 8.11 0.82
DocLing 30.93 6.06 9.57 0.84
DisentangleSum 31.81 5.90 9.88 0.84

TABLE 4.3. Human evaluation results on the Multi-News dataset. The
final scores are averaged across different cases and raters. “Compr”,
“Coher” and “Relev” indicate comprehensiveness, coherence and rel-

evance.

Models Compr Coher Relev
Vanilla Trans 2.28 2.13 2.46
CopyTrans 2.70 2.27 2.78
DocLing 3.10 2.78 2.93
DisentangleSum 3.87 3.21 3.13

performance through human evaluations, assessing the effectiveness of extracting
specific information, and ensuring the comprehensive, coherence and relevance of
the generated summaries; (4) giving significance analysis.

Coverage Score

We conducted a comparison based on coverage score (Table 4.4) between Disen-
tangleSum and three Transformer-based models, namely Vanilla Transformer, Copy-
Transformer, and DocLing. These models share a similar structure but do not con-
sider document specificity. Coverage score measures the percentage of words in
the generated summary that are part of an extractive fragment with the input docu-
ments. The higher coverage score indicates that its corresponding model can produce
summaries with richer information in the source documents. From the results, it is
observable that DisentangleSum achieves the highest coverage score on both two
datasets and outperforms its counterparts by a large margin, indicating the proposed
DisentangleSum model can generate more comprehensive summaries that preserve
more information from the original documents.
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TABLE 4.4. Coverage score comparison on Multi-News and Multi-
XScience datasets.

Models
Multi-
News

Multi-
XScience

Vanilla Trans 19.76 18.98
CopyTrans 46.78 15.82
DocLing 49.62 20.10
DisentangleSum 52.99 22.68

Overall Performance

Table 4.1 and Table 4.24 shows the proposed DisentangleSum model receives out-
standing performance in most of the cases. On the Multi-News dataset, Disentangle-
Sum outperforms the second-best model, attaining 1.6 improvement on ROUGE-1,
1.28 improvement on ROUGE-2, and 1.26 improvement on ROUGE-SU. Particu-
larly, the ROUGE-SU score received 7% improvement over the second-best model.
Similarly results are shown on Multi-XScience data as well. Compare with the
second-best model for each column, DisentangleSum raises the ROUGE-1 score
from 30.93 to 31.81 and the ROUGE-SU score from 9.57 to 9.88. The superior
results can be consistently gained because the proposed DisentangleSum model has
been empowered with the ability to precisely grasp the document set and the document-
specific features for a better summary generation.

Human Evaluation

We conducted human evaluations to assess summary quality in terms of Specificity
(Speci), Comprehensiveness (Compr), Coherence (Coher), and Relevance (Relev),
aiming to detect diverse viewpoints from multiple documents. Comprehensive refers
to the extent to which it covers the essential information present in the source doc-
uments. Coherence measures how well the content in a summary is logically con-
nected and flows smoothly. Relevance refers to the degree to which the information
presented in the summary is pertinent and directly related to the source documents.
We invited three Ph.D students in the NLP area to examine the performance of four
different models. 50 randomly sampled source documents from the Multi-News
dataset. The score range from one to five (one means very bad; five means very
good). The final scores (shown in Table 4.5) are averaged across different cases and

4The code for model SAGCopy (Xu et al., 2020c) and HiTrans (Liu et al., 2021) is not pub-
licly available and they did not provide results on the Multi-XScience dataset. Additionally, since
MultiX-Science does not contain labels for extractive summarization, hindering the the HeterGraph-
Sum (Wang et al., 2020a) from being implemented on it.



72
Chapter 4. Disentangling Specificity for Abstractive Multi-document

Summarization

Models Speci Compr Coher Relev
VT 1.67 2.28 2.13 2.46
CT 2.33 2.70 2.27 2.78
DocLing 2.89 3.10 2.78 2.93
DisentangleSum 3.16 3.87 3.21 3.13

TABLE 4.5. Human evaluation results on the Multi-News dataset.

raters. The results consistently favor DisentangleSum across all four human evalua-
tion metrics. An example from the MultiNews (Fabbri et al., 2019a) dataset is shown
in Table 4.6. The document set talks about how to discourage smoking, and each
document discusses this topic from different angles. Doc #1 indicates the ugliest
colour serves an important purpose: discouraging smoking, Doc #2 lists the statistics
related to smoking, and Doc #5 discusses smoking from a legal point of view. Ex-
isting works provide summaries that miss some specific information from the source
documents. For example, the summary generated by the DocLing (Ma et al., 2022)
model fails to include the statistical information presented in Doc #2, resulting in the
omission of important specific details from the source documents. These indicated
the summaries generated by our model can cover more specific information from the
source documents, and exhibit better coherence and relevance.

Significance Analysis

To assess the statistical significance of our model’s results, we performed one-tailed
paired t-test using the evaluation metrics ROUGE from the Multi-News dataset.
While BERTScore is an effective measure of summary quality, the distinctions be-
tween various models were relatively minor, making it unsuitable for t-test applica-
tion. Our findings, present in Table 4.7, revealed that all p-values were less than the
significant threshold 5e-2. This outcome suggests that the DisentangleSum exhibits
statistical significance, indicating that the observed differences in evaluation metrics
are unlikely to be random and are more likely attributable to the structure of the
model.

4.4 Model Analyses

4.4.1 Objective Function Selections

In MDS, each document in a set shares common content while also having unique
information. We examined the effectiveness of models by incorporating shared fea-
tures and specific representations through different objective functions. This evalu-
ation aims to shed light on the importance of capturing both common and specific
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TABLE 4.6. Source documents and generated summaries. The doc-
ument set discusses the same event, but each document has specific
content that sets it apart. Texts in the same color indicate the same

thought groups.

Document Set Doc #1: the world’s ugliest color has been
described as "death," "dirty" and "tar," but
this odious hue is serving an important
purpose: discouraging smoking. pantone
448 c, a "drab, dark brown" also called
"opaque couché," was specifically selected
after three months and multiple studies by
research agency gfk. the agency was hired
by the australian government to find a color
that was so repugnant that if it was on to-
bacco products, it would dissuade people
from smoking ...
Doc #2: ...3.260 billion in december 2015.3
know your limits – changes to australia
’ s duty free tobacco allowance smoking
prevalence rates abs national aboriginal and
torres strait islander social survey, 2014-15
the proportion of aboriginal and torres strait
islander people aged 15 years and over who
were daily smokers was 38.9 % in 2014-15
, down from 44.6 % in 2008 and 48.6 % in
2002 ...
......
Doc #5: ... in may, previously passed legis-
lation will go into effect requiring all packs
of cigarettes to be standardized. tobaccos
products will be stripped of brightly col-
ored branding and replaced with a sludge-
like color . . but does the stripped-down , "
ugly " packaging really reduce smoking ...

Vanilla Trans (Vaswani et al., 2017) –australia’s news agency says it’s time to
get rid of certain types of 〈unk〉products.
the australian government has approved a
ban on <unk> products , which include ...

CopyTrans5 -the world’s ugliest color will be helpful in
smoking rates in their country, according
to a team of experts ... researchers found
that pantone publications, including pan-
tone 448c visually, are chock full of " ugly
" reactions ...

DocLing (Ma et al., 2022) ... world’s ugliest color - will be stripped
of colored branding and replaced with a
sludge-like color .in may, previously passed
legislation will go into effect requiring all
packs of cigarettes to be standardized ...

DisentangleSum (Ours) –the world’s ugliest color is serving an im-
portant purpose: ... more likely to deter
smoking from reaching for their next pack
of cigarettes ... it will go into effect requir-
ing to be standardized ... found that smok-
ers aged 15 years and over half a year ... in
smoking rates than those in 2002 and 48.6
% in 2002 ...
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Models LexRank TextRank MMR BRNN VT CT PG
p-value 2.65e-2 4.53e-2 1.70e-3 3.56e-2 2.01e-2 9.23e-3 2.46e-2
Models Hi-MAP HierTrans SummPip SAGCopy HGS HiTrans DocLing
p-value 1.77e-2 3.17e-2 1.95e-3 1.23e-2 1.17e-2 1.2e-2 3.16e-3

TABLE 4.7. ROUGE score p-value from one-tailed paired t-test on
Multi-News dataset.

TABLE 4.8. Models performance with different objective functions
on Multi-News validation dataset. “SSL”, “TL”, “SL”, “CPL”, “DPL”
denote shared specific loss, triple loss, shared loss, circle-paired-loss
and dense-paired-loss. “R” and “N” indicates randomly sort docu-

ments in the same document set and normalization.

Objectives R-1 R-2 R-SU
SSL 44.64 15.47 17.83
TL 44.15 14.98 17.52
SL 44.10 15.00 17.47
CPL 45.16 15.39 18.48
CPL-R 45.03 15.09 18.40
DPL 44.74 15.33 18.05
DPL-N 44.41 14.93 17.86

information in MDS and understand the impact of different training objectives on
model performance.

Specific-Shared Loss V.S. Triplet Loss

Inspired by the good performance for specific features, we intuitively thought that
disentangling the shared feature may further improve the model performance. Here
shared feature refers to common information shared by multiple documents in one
set. To obtain the shared features, we incorporated a shared encoder ω(·; ν) to learn
the shared representations Hi from the document di by:

Hi = ω(di; ν), (4.10)

where ν is a set of learnable parameters. We expected that, in one set, the shared fea-
tures of each document should be similar and the specific features are distinguishable
from each other. To achieve so, we attempted two objective functions to encourage
the document-shared features to be similar and specific features to be distinctive from
each other.

(1) Specific-shared loss (SSL) represents by:

Ltotal = Lgen + β · Lspec + γ · Lshared , (4.11)
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Lshared =

N∑
i=1

Li
shared , (4.12)

Li
shared =

∥Hi −Hi+1∥p i ̸= N

∥HN − H1∥p i = N
, (4.13)

Lspec =
N∑
i=1

∥∥∥S ⊤
i Hi

∥∥∥2
F
, (4.14)

where γ is a balance factor. For one document di, we expected its specific represen-
tations to be orthogonal with its shared representations.

(2) Triplet loss (TL) is inspired by contrastive representation learning from positive
and negative samples (Schroff, Kalenichenko, and Philbin, 2015). For one document
di, its shared feature Hi and specific feature Si can be seen as an anchor and a neg-
ative sample, respectively. The positive sample can be another shared feature map
Hj from document dj . Note that di and dj are in the same document set. The final
objective function can be:

Ltotal = Lgen + β · Ltriplet , (4.15)

Ltriplet =

N∑
i=1,j ̸=i

max(∥Hi − Hj∥22 + ∥Hi − Si∥22) , (4.16)

Table 4.8 reveals that the performance of the SSL-equipped model surpasses that
of the TL-equipped model. However, it falls short when compared to the results
achieved by the Disentangle model’s objective. We hypothesized the conflict be-
tween shared features and the document-set features causes this phenomenon during
the optimization of summary generation. As a result, we decided not to incorporate
the shared and specific representations together in the proposed objective function.

Specific Loss V.S. Shared Loss

Given the better performance of specific-shared loss than triplet loss, we further ex-
amined the roles played by specific features and the shared features separately. We
compared the results of specific loss and shared loss. The total objective function to
generate shared features can be defined as:

Ltotal = Lgen + γ · Lshared , (4.17)

where the calculation of Lshared is equal to Equation (4.12). Table 4.8 shows the
performance on the Multi-News validation dataset. The model equipped with shared
loss obtains lower performance than that equipped with specific loss.
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specific features shared features

FIGURE 4.2. Attention maps of learned specific features and shared
features. Sentence “the world’s ugliest color has been described as
"death," "dirty" and "tar," but this odious hue is serving an important
purpose: discouraging smoking.” is from the first document of Table

4.6.

Furthermore, to dig out why the specific loss has a comparative advantage in sum-
maries generation, we visualized the attention maps (Figure 4.2 ) of specific features
and shared features from the last encoding layer. Interestingly, the attention-specific
encoder is mainly focused on the individual words “hue" which is the specific infor-
mation for #1 document. However, the heatmap of shared features is more scattered
than the specific features. This may because specific features concentrate on impor-
tant information of each document while shared features do not. Consequently, we
opt not to select the objective function associated with shared representations for our
main experiment.

The Selection of Specific Loss

This section investigate two design options of specific loss: circle-paired loss (CPL),
introduced in Section 4.2.3, and dense-paired loss (DPL). DPL indicates the specific
feature loss will be computed from each pair of documents in the same document set.
We conducted two experiments in this subsection:

(1) Compare the overall performance of DisentangleSum equipped with CPL
and DPL. We evaluated the models on Multi-News dataset, analyzing their perfor-
mance with different objectives. The results in Table 4.8 indicate that CPL outper-
forms DPL across all three evaluation metrics.

(2) Explore the impact of document number on specific loss. To investigate
the relationship between specific loss and the number of documents, we divided the
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FIGURE 4.3. ROUGE scores of DisentangleSum with circle-paired-
loss (CPL), DisentangleSum with dense-paired-loss (DPL), and Copy-

Transformer on document sets containing two to ten documents.

Multi-News validation set into subsets based on the document set size. We compared
the model performance trained with CPL and DPL on these subsets. Figure 4.3 illus-
trates that DisentangleSum with CPL outperforms DPL and CopyTransformer across
all subsets in terms of three ROUGE scores. Notably, when the document set size is
two, the results of DPL and CPL are quite similar for the ROUGE-1 score. However,
as the number of documents increases, the model trained with DPL experiences a
significant performance drop, while the model trained with CPL exhibits a slower
decline. This trend holds for ROUGE-2 and ROUGE-SU scores as well. Besides,
from the perspective of computational complexity, as the number of documents in-
creases, the document pairs in DPL increase quadratically (e.g. 10 documents yield
45 pairs), while CPL does not.

In order to exclude the impacts of the order of documents in a document set
and the loss scale, we further conducted two experiments: (1) Based on CPL, we
randomly sorted documents in the same document set; (2) Based on DPL, we ad-
justed the loss scale through normalization, dividing the right head side of Equation
4.5 by N2. The results (in Table 4.8) ruled out the interference of these two fac-
tors. The performance differences may be that for MDS tasks, the documents in
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FIGURE 4.4. The distribution of document similarity scores in the
Top 150 and Last 150 cases. The X-axis and Y-axis of each sub-
figure are ROUGE-SU scores (scale to 0 ∼ 1) and documents simi-
larity scores, respectively. The orange line represents the document

similarity score equal to 0.5.

the same document set describe topic-relevant concepts, yet with some document-
specific information. The constraint may be too strong by imposing a model to learn
document-specific representations completely different between documents, which
in turn may incur a confused model and less “informative” representations learned.

4.4.2 DisentangleSum Performances with Different Inter-Document
Similarities

The purpose of this subsection is to examine the relationship between Disentangle-
Sum performance and inter-document similarities. We defined a simple function to
calculate the document similarity within a document set using statistical analysis:

Sim(D) =

N−1∑
i=1

N∑
j=i+1

2 · overlap(di, dj)
N(N− 1)

, (4.18)

where N represents the document number in each document set. It calculates the con-
tent overlap between each pair of documents within the document set. We evaluated
the DisentangleSum and CopyTransformer models by calculating ROUGE scores for
document sets and ranking them. We analyzed the Top 150 and Last 150 cases, find-
ing average similarity scores of 0.308 and 0.299 for DisentangleSum, and 0.293 and
0.281 for CopyTransformer. Figure 4.4 shows: (1) DisentangleSum’s Top 150 cases
have slightly higher document similarity scores than the Last 150 cases. (2) Dis-
entangleSum’s Top 150 cases have more instances with similarity scores above 0.5
compared to Last 150 cases and CopyTransformer’s Top 150 cases.
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TABLE 4.9. Model performance on Multi-News validation set by tun-
ing specific feature trade-off factor α and loss trade-off factor β.

Variants R-1 R-2 R-SU Variants R-1 R-2 R-SU
α = 1 43.60 13.94 17.30 β = 1 44.15 15.17 17.72
α = 0.1 43.36 13.67 17.26 β = 0.1 44.24 15.16 17.77
α = 0.01 45.16 15.39 18.48 β = 0.01 44.64 15.45 18.09
α = 0.001 44.67 15.50 17.90 β = 0.001 45.16 15.39 18.48
w/o Spec Feat 43.66 14.79 17.39 w/o Spec Loss 43.66 14.79 17.39

These findings suggest that the proposed model tends to perform better when the
document similarity score is higher. The potential reason is in one document set when
the overlap between each document is relatively large, the ratio of the uniqueness of
each document is relatively small. Models that do not explicitly capture document-
specific information may struggle to capture the specific details from the source doc-
uments. The DisentangleSum model, designing to retain document-specific informa-
tion, performs better in such cases when the document similarity score is higher.

4.4.3 Hyperparameter Scale of Models

We perform a hyperparameter study to examine the effectiveness of specific feature
trade-off factor α and loss trade-off factor β, controlling the trade-off strength of
fetching the document specific information and document-set information. The re-
sults are shown in Table 4.9. Both the weights of α and β are controlled by searching
the grid [1, 0.1, 0.01, 0.001, 0]. The experiments of evaluation α is performed un-
der β equals to 0.001; while the examination β is conducted by setting α to 0.01.
By setting either specific feature weights or specific loss weights to 0s, the model
performance is significantly degraded. It suggests the positive contribution of grasp-
ing documentary unique information. Interestingly, with the increasing of specific
feature trade-off factor α from 0.001 to 0.01, the ROUGE scores generally have an
increasing trend. But the score goes up and then goes down when α is from 0.01 to
1. The optimal choice of the hyper-parameter α falls in the middle of the evaluated
values, which is 0.01. Similar results show for the experiments of loss trade-off fac-
tor β. Generally, 0.001 is recommended for β to achieve the best performance. The
experimental results indicate that the existence of the document-specific represen-
tation learner and the orthogonal constraint of document-specific feature generation
is important. Meanwhile, setting large α and β obstructs model optimization and
summary generation.
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4.5 Conclusion for the Chapter

In this chapter, we introduced DisentangleSum, a framework to disentangle document-
specificity for better abstractive MDS representations. To optimize the specific fea-
ture learning, we applied an orthogonal constraint to encourage the document-specific
learner to catch document-specific information. The experiments on two prevalent
datasets show the superior performances of the proposed model over other counter-
parts. Furthermore, we also provided extensive analyses that reveal DisentangleSum
exhibits broader coverage of input documents and better preservation of document-
related information. These analyses help researchers understand the intuitiveness of
the proposed model and could serve as an informative reference to the MDS research
community.
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Chapter 5

Exploring Transformer-based
Multi-document Summarization: An
Empirical Investigation

5.1 Introduction

The innovation and contemporary developments of Transformer architecture (Vaswani
et al., 2017) thrives multi-document summarization (MDS) (Ma et al., 2020). No-
tably, the methodologies introduced in the preceding two chapters are rooted in the
Transformer framework. This impetus prompts an exploration into the intricacies
and behaviors of established Transformer-based MDS models. Through the com-
prehensive analyses, we aimed to provide a thorough understanding of MDS and its
intricacies within the MDS model framework. We undertook a comprehensive inves-
tigation from five distinct perspectives covering the Transformer-based MDS model
design pipeline:

• Document input perspective: we conducted experiments to quantitatively as-
sess the impact of document separators from a standpoint of document input;

• Transformer structure perspective: we explored the effectiveness of different
mainstream Transformer structures;

• The significance of encoder and decoder perspective: we designed empirical
studies by adding noises on top of the encoder and decoder;

• Training strategy perspective: we reorganized the source documents and in-
clude self-supervised learning;

• Summary generation perspective, we explored the uncertainties when repeti-
tion problems occur in the summary generation process.
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The primary distinction between SDS and MDS lies in the variance of source
document numbers. One straightforward way that convert MDS to SDS is simply
concatenating text spans and processing them as a flat sequence (Liu et al., 2018a;
Chu and Liu, 2019; Brazinskas, Lapata, and Titov, 2020; Mao et al., 2020; Zhao
et al., 2022). To aid the models in detecting and modeling document-to-document
relationships, a straightforward way is to utilize special tokens as document separa-
tors (Fabbri et al., 2019a; Caciularu et al., 2021; Xiao et al., 2022). However, there
is no work exploring the impact of document separators qualitatively and quantita-
tively. This motivated us to analyze whether these special separators help improve
models’ performance and make the MDS models aware of the document boundaries
in the feature space. We conducted the experiments on three Transformer structures
and observed that the effect of special tokens is different on models with different
hierarchies. Uncertainty analysis is a pivotal approach employed in the examina-
tion and assessment of generation systems (Xu, Desai, and Durrett, 2020) which can
serve as an important indicator to show how the model performs during the summary
generation. We then investigated the variation of summary prediction uncertainty
by exploring the relations between separators and the predictive uncertainty of the
structures. Certainly, measuring uncertainty in the context of summarization can
provide insights into how the presence of document separators affects the behavior
of Transformer-based models and their summarization outcomes. By quantifying un-
certainty through the entropy calculations, we gained a deeper understanding of the
level of confidence or ambiguity the model has in its generated summaries.

Instead of simply concatenating all the input documents into a flat sequence and
applying SDS models, the hierarchical Transformer structure (Liu and Lapata, 2019a;
Pasunuru et al., 2021b; Li et al., 2020b) has been proposed to specifically solve MDS
tasks. This structure has been used for encoding multiple documents in a hierarchical
manner, enabling the capture of cross-document relations through the utilization of
an attention mechanism. The hierarchical Transformer structure contains a low-level
Transformer that encodes tokens and a high-level Transformer that is used to encode
coarser-grained textual units. This motivated us to further explore the influence of
different hierarchies on MDS performances. We explored the effect of different gran-
ularity of high-level Transformer on the performance of MDS models. In this thesis,
we considered sentence-level and document-level features as different granularities.
Based on the empirical studies, our findings indicate that for MDS tasks involving
relatively short documents, flat Transformer models are a suitable choice. Also, the
hierarchical structure prefers higher granularity in high-level Transformer structures.

In addition to exploring the hierarchical structure of Transformer-based MDS
models, we explored the Transformer’s internal structure. Based on the existing
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Transformer-based MDS methods, we found that many of the MDS models focus
on modifying the components of encoder (Liu and Lapata, 2019a; Pasunuru et al.,
2021b; Liu et al., 2021) and fewer works pay attention to ameliorating the decoder
(Jin and Wan, 2020; Liu et al., 2022) to cater the requirements for MDS tasks. This
motivated us to explore the sensitivity of the components of the encoder-decoder
structure. Therefore, we added Gaussian noise at the parameter space of the encoder
or decoder to fulfill this purpose. The experiments demonstrate the decoder is more
sensitive than the encoder in MDS, which provides a future direction for the research
community to pay more attention to the decoder.

Based on the analysis of Transformer-based MDS models, we also payed atten-
tion to exploring different training strategies for further enhancing the performance
of MDS models. Different training strategies offer unique approaches to utilize
available data and optimize model performance. By investigating diverse training
strategies, we aimed to identify the most effective methods for training MDS mod-
els, leveraging the characteristics of the dataset and the summarization task at hand.
These strategies involve using pseudo datasets, fine-tuning on original datasets, or
a combining of both. To generate pseudo data, we treated individual documents in
a document set as pseudo-summaries and create multiple sets of pseudo-document-
summary pairs. We evaluated three training approaches: training exclusively on the
pseudo dataset, mixing the pseudo dataset with the original dataset, and a two-step
process of training on the pseudo dataset followed by fine-tuning on the original
dataset. The experimental results demonstrate that the pretrain-finetune strategy con-
sistently outperformed the other training strategies, leading to improved summariza-
tion quality. The analysis of feature distributions further supported this finding, high-
lighting the alignment between the finetuned model and the baseline model. These
results provide valuable insights into the effectiveness of the pretrain-finetune ap-
proach in enhancing summarization performance. The findings of this study can
guide future research and development in the field of abstractive summarization,
emphasizing the importance of training strategies for achieving higher-quality sum-
maries.

Moreover, while the different Transformer structures and training strategies demon-
strated variations in performances, an observation is the presence of repetitive pat-
terns in the generated summaries, indicating a potential issue that needs to be ad-
dressed in abstractive summarization systems. Salkar et al. (Salkar et al., 2022) noted
that the repetition behavior training source has relations with the training source. Liu
et al. (Liu et al., 2023) gave two possible reasons behind the repetition problem
in abstractive summarization: (1) attending to the same location in the source and
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(2) attending to similar but different sentences in the source. In this thesis, we ex-
plored the cause of repetitive problems in abstractive summarization by examining
predictive uncertainty. We quantified uncertainty scores at each time slot during the
summary generation process. The analysis aims to observe how the uncertainty score
changes when repetition phenomena occur, allowing us to identify positions where
uncertainty is localized in repetitive behavior. The analysis revealed that as the model
generates repetitive sentences or words, the uncertainty score rises, pointing out de-
creased confidence and increased uncertainty regarding the appropriateness and rele-
vance of repeated elements in the summary. Understanding this relationship allowed
us to develop strategies to mitigate repetition and improve the quality of generated
summaries.

5.2 Methodology

In this section, we introduced how to design the MDS experiments from the fol-
lowing angles: input data, Transformer structures, training strategies and summary
generation. Therefore, we designed five experiments to evaluate the behaviors of
Transformer-based MDS models: (1) the measurable impact of document separa-
tors; (2) the effectiveness of different Transformer structures; (3) the sensitivity of
encoder and decoder against noises; (4) different training strategies; (5) repetition in
document generation.

5.2.1 The Measurable Impact of Document Separators

We explored if there is a measurable impact in having a document separator be-
tween source documents for Transformer-based models. The source documents are
separated by special tokens. We modified the source documents to the format of:
D = {d1, sep, d2, sep, ..., sep, dN}, where N is the number of documents in a docu-
ment set D, the superscript dn represents the n-th document in the set, and sep de-
notes the special tokens. We investigated different Transformer models on two MDS
datasets and eleven evaluation metrics to explore the impact of the document separa-
tors qualitatively and quantitatively. We also compared and analyze the embedding
space of the tokens after they feed into the encoder with and without document sep-
arators.

We analyzed and compare the prediction uncertainty from different datasets and
different format of source documents by inspecting entropy values during summary
generation. We aimed to understand how decisions by adding document separator
is reflected in the model’s uncertainty. In the generation process, each predictive
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position Xi has an outcome probabilistic distribution xi1, ...,xim, m is the number of
a corpus pool. We used entropy as uncertainty measurement which can be calculate
as follow:

H(Xi) = −
m∑
j=1

P (xij) logP (xij) (5.1)

Because the size of corpus pool is large and the prediction distribution is usually
long-tailed (Xu, Desai, and Durrett, 2020), we sorted the prediction distribution Xi

in descending order and get a minimal set of tokens where the sum prediction values
is larger than 0.95, and then normalize the distribution. We calculated the entropy
value based on the new distribution P ′(xij). The utilization of entropy as a measure
allows us to gauge the distribution of probabilities across different tokens within the
predictive positions of the summaries. Higher entropy values indicate a wider spread
of probabilities, suggesting that the model is less certain about the most appropriate
token to choose. Conversely, lower entropy values suggest that the model is more
confident in its token predictions. The quantification of uncertainty through entropy
measurements and its qualitative analysis enables us to assess how the introduction
of document separators influences the performance of the summaries generated by
Transformer-based models. This holistic approach helped us unravel the nuanced
impact of document separators on the MDS process and gain valuable insights into
the behavior of these models in handling multiple documents inputs.

5.2.2 The Effectiveness of Different Transformer Structures

Transformer structures have become an essential component of many state-of-the-art
natural language processing models. However, the design of the Transformer archi-
tecture can vary dramatically, and different structures may impact the performance
of the model on different tasks. In this study, we aimed to evaluate the effective-
ness of different Transformer structures for multi-document summarization tasks.
Specifically, we focused on two types of structures: flat Transformer and hierarchi-
cal Transformer.

The flat Transformer consists of a single layer of self-attention and feed-forward
neural network layers that process the input tokens sequentially. In contrast, the
hierarchical Transformer has a more complex structure, where the input tokens are
first group into sentences or documents, and then process by local and global Trans-
former layers. To explore the hierarchical Transformer structure, we investigated two
different granularities of high-level Transformer: sentence-level and document-level.
Building on the work of Liu (Liu and Lapata, 2019b), we removed the graph struc-
ture of the Hierarchical Transformer (HT) model and make modifications to the local
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Transformer layers to encode individual sentences or documents. The global Trans-
former layers are then able to exchange information at the sentence or document
level.

Our analysis is motivated by the need to better understand how different Trans-
former structures can impact the performance of multi-document summarization
models. By comparing the performance of the flat Transformer and hierarchical
Transformer structures, we aimed to identify which structure is more effective for
multiple document summarization data.

5.2.3 The Sensitivity of Encoder and Decoder

In summarization tasks, the encoder plays a crucial role in extracting representations
from the input text, while the decoder is responsible for generating the output sum-
mary, which requires producing coherent and meaningful language. Given the intri-
cate nature of summary generation, the decoder’s role demands fine-grained control
and precision, making it potentially more sensitive than the encoder. To explore the
sensitivity of encoder-decoder against noises in Transformer-based summarization
models, we added Gaussian noise at the parameter space of the encoder or decoder.
We devised this experiment based on the intuition that a module (whether it’s the
encoder or decoder) exhibits varying sensitivity to noise, thereby signifying the dif-
fering degrees of importance each module holds for overall performance. Formally,
we have:

z = f(x; Θ + αn),n ∼ N(µ, δ) (5.2)

where f(·) is the component in Transformer; Θ is the parameters in f(·); n represents
Gaussian noise; µ, δ are mean and variance in the Gaussian noise, α is the weighted
factor, and z is the corresponding output.

5.2.4 Different Training Strategies

In this study, we aimed to investigate the impact of different training strategies on
Transformer models for abstractive summarization. While we previously examined
the components of Transformer models, the specific influence of training strategies
remains unexplored. Our objective is to identify the most effective training strategies
by leveraging the inherent characteristics of MDS datasets, without the need for ex-
ternal data sources. To create pseudo data utilizing the characteristic multi-document
summarization, we adopted a straightforward approach. We treated one document
from a given document set as a pseudo-summary, while considering the remaining
documents as input documents. This process is iterated, systematically selecting each
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document in the set as a pseudo-summary, until all input documents have served as
pseudo-summaries. Consequently, we generated multiple sets of pseudo document-
summary pairs, which we referred to as pseudo MDS dataset. The original MDS
dataset is denoted as the original datasets in the subsequent analysis.

To evaluate the effectiveness of different training strategies, we designed three
distinct approaches. Firstly, we trained the MDS model exclusively on the pseudo
dataset. Secondly, we mixed the pseudo dataset with the original dataset, creating
a comprehensive mega dataset, on which the MDS model is trained. Lastly, we
employed a two-step process, initially training the model on the pseudo dataset and
subsequently fine-tuning it on the original dataset.

5.2.5 Repetition in Document Generation

For abstractive summarization, a persistent challenge arises from the inclination of
models to produce repetitive sentences or words during the summarization process.
This tendency creates a loop that is difficult to break, hampering the generation of
accurate summaries. To analyse what may cause repetitive problem, we delved into
an analysis of prediction uncertainty, examining uncertainty scores throughout the
generation process and localizing uncertainty to certain positions in a repetition be-
havior.

To quantify uncertainty, we employed Equation 5.1, which calculates the uncer-
tainty score for each time slot during the summarization generation. By applying
this equation, we obtained a measure of uncertainty that corresponds to the level of
doubt or ambiguity associated with the generated output. The analysis focuses on ob-
serving how the uncertainty score evolves in response to the occurrence of repetition
phenomena.

5.3 Settings for Empirical Studies

In this study, we evaluated the performance of three Transformer models: Vanilla
Transformer (VT) (Vaswani et al., 2017), Vanilla Transformer with copy mechanism
(VTC), and modified Hierarchical Transformer (HT) (Liu and Lapata, 2019b). These
models are assessed on two widely used Multi-Document Summarization (MDS)
datasets: Multi-XScience (Lu, Dong, and Charlin, 2020c) and Multi-News (Fabbri
et al., 2019a). To comprehensively analyze their performance, we employed eleven
evaluation metrics. In the following section, we will introduce these three Trans-
former models, provide an overview of the datasets, and describe the evaluation met-
rics utilized in our study.
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5.3.1 Summarization Models

Vanilla Transformer (VT) (Vaswani et al., 2017) is a sequence-to-sequence model
that is proposed for machine translation task. It is subsequently generalized in various
tasks of NLP due to its strong performance (Lin et al., 2021).

Vanilla Transformer with Copy Mechanism (VTC)1. This variant has a mech-
anism to copy the attention distribution that one of the randomly chosen attention
heads from the encoder side into the decoder, so that the generated text becomes less
repetitive and less factually inaccurate.

Hierarchical Transformer (HT) (Liu and Lapata, 2019b) proposed hierarchical at-
tention structure to attend long sequences effectively and capture cross-paragraph
contextual relationships. The local Transformer layers encode individual paragraphs
and global Transformer layers exchange paragraph-level information from local lay-
ers across paragraphs.

5.3.2 Datasets

The empirical studies are based on two widely used MDS datasets: Multi-XScience
(Lu, Dong, and Charlin, 2020c) and Multi-News (Fabbri et al., 2019a). Multi-
XScience contains data from scientific articles. The task of this dataset is to generate
the related work section of a target paper based on its abstract and the abstracts of
the articles it refers to. Multi-News collect news articles from the site "newser.com."
Each set of source documents has a professionally written summary and the task is
to generate that summary based on the sources. Table 5.1 describes the statistics of
these two datasets, including the size of the train, test, validation set, the average
document length, and the average summary length.

Datasets Train/ Test/ Validation
Average Document

Length
Average Summary

Length
Multi-XScience 30,369 / 5,093/ 5,066 778.08 116.44

Multi-News 44,972 / 5,622 / 5,622 2,103.49 263.66

TABLE 5.1. Description of Multi-News and Multi-XScience datasets.

5.3.3 Data Processing

For Multi-XScience and Multi-News datasets, the source documents are separated
by a special token named “story_separator_special_tag”. The length of the input

1We implemented the VT and VTC based on https://github.com/Alex-Fabbri/Multi-
News/tree/master/code/OpenNMT-py-baselines.
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documents are restricted to 1024 tokens. In each document set, the number of tokens
for one document is 1024

N
, where N is the number of documents in a document set.

For some shorter documents, the documents repeat themselves to fill the 1024 token
quota. In the Multi-XScience dataset, the citations in the sources and targets are
replaced by a common token ‘@cite’.

5.3.4 Evaluation Metrics

ROUGE2 Recall-Oriented Understudy for Gisting Evaluation (Lin, 2004b) is a set
of evaluation metrics for comparing the overlapping textual units between gener-
ated summaries and gold summaries, including ROUGE-1 (R-1), ROUGE-2 (R-2),
ROUGE-L (R-L), ROUGE-SU (R-SU). R-1 and R-2 measures the overlapping un-
igrams and bigrams respectively while R-L identifies the longest co-occurring se-
quence of n-grams. R-SU is calculated as a statistic to measure the co-occurrence of
unigram and skip-bigram.

ROUGE-WE (R-WE) (Ng and Abrecht, 2015) is a variant of the ROUGE metric
which replaces the hard lexical matching in ROUGE-N by a soft matching based
on the cosine similarity of word embeddings. The soft matching in ROUGE-WE
provides a more forgiving evaluation by not strictly requiring exact lexical matches,
thus allowing for variations in word order and phrasing.

BLEU BiLingual Evaluation Understudy (Papineni et al., 2002) introduces a brevity
penalty term and computes the geometric average of the modified n-gram precision.

S3 (Peyrard, Botschen, and Gurevych, 2017) is a model-based metric that consid-
ers the features from other evaluation metrics, including R-N, R-L, R-WE and JS-
divergence, to produce pyramid (pyr) and responsiveness (resp) scores.

BertScore (BS)3 (Zhang et al., 2020b) measures the soft overlap of the token BERT
embeddings from the machine generated summaries and gold summaries.

Relevance (Rel) (Peyrard, 2019) calculates cross-entropy over individually con-
structed probability distributions for a summary S and a source D using their own
semantic units ω: Relevance(S,D) =

∑
ωi

PS(ωi) . log(PD(ωi)), where probability

distributions of summary and source document are given by PS and PD respectively.

Redundancy(Red) (Peyrard, 2019) evaluates the quality of the accumulation of in-
formation in the candidate summaries: Redundancy(S) =

∑
ωi

PS(ωi) . log(PS(ωi)).

2The parameters of ROUGE are -c 95 -2 -1 -U -r 1000 -n 4 -w 1.2 -a -m.
3The model type of BertScore is bert-base-uncased.
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5.4 Empirical Studies and Analyses

This section presented a comprehensive analysis and evaluation of our study’s find-
ings in Transformer-based multi-document summarization models. Through rigor-
ous experimentation and quantitative assessments, we explored several crucial as-
pects related to document separation techniques, Transformer structures, the sensi-
tivity of encoder and decoder components, training strategies, and the relationship
between repetition and uncertainty in generated summaries. By examining these as-
pects, we aimed to provide valuable insights into the effectiveness and performance
of different approaches in the field of summarization.

5.4.1 Impact of Document Separators

We investigated the VT, VTC, and HT models on both datasets and eleven evalu-
ation metrics to explore the impact of the document separators. From Table 5.2,
interestingly, we found out adding separators reduces models’ performance in half
of the cases (3 out of 6). For example, model VT with separators performs relatively
worse on Multi-News dataset (the results of 8 evaluation metrics are worse among 11
evaluation metrics); model VTC performs relatively worse on both Multi-XScience
dataset (the results of 9 evaluation metrics are worse among 11 evaluation metrics)
and Multi-News dataset (the results of 8 evaluation metrics are worse among 11 eval-
uation metrics) when with separators.

These results indicate input document with separators are not very helpful for flat
Transformer models. However, we can perceive that the HT model achieves better
performance on both datasets with document separators. The discovery is also con-
firmed by t-SNE visualization (Figure 5.1). After token representations feed into the
Transformer encoder, the cluster boundaries of documents with separators are easier
to be identified in the embedding space. Potentially, the hierarchical Transformer
prefers more structural information of documents to compose the final summaries,
while the flat Transformer does not.

Another interesting finding is the most commonly used ROUGE, in a few cases,
show the opposite result from other evaluation metrics. For instance, on Multi-
XScience dataset, the VT (with document separators) shows better ROUGE results
than VT (without document separators) but contradicts the results on “R-WE", “BLEU”,
“S3”, ”BertScore", “Redundancy” and “Relevance". It indicates that the ROUGE-
centric evaluation system needs to be updated and the measurement of summariza-
tion can not rely solely on ROUGE.

We also discovered the relations between document separators and tokens uncer-
tainty scores. Figure 5.2 shows the uncertainty scores of generated tokens of VTC
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VT encoder input 
(with separators)

VT encoder output 
(with separators)

VT encoder input 
(without separators)

VT encoder output 
(without separators)

(VT)

VTC encoder input 
(with separators)

VTC encoder output 
(with separators)

VTC encoder input 
(without separators)

VTC encoder output 
(without separators)

(VTC)

HT encoder input 
(with separators)

HT encoder output 
(with separators)

HT encoder input 
(without separators)

HT encoder output 
(without separators)

(HT)

FIGURE 5.1. t-SNE visualization of two embedding space on Multi-
News dataset with VT, VTC and HT models: (1) token representations
before feeding into the Transformer encoder; (2) token representations
after feeding into the Transformer encoder. The figures in the 1st row
are the visualization with document separators and in the 2st row are

the visualization without document separators.



92
Chapter 5. Exploring Transformer-based Multi-document Summarization: An

Empirical Investigation

D
at

as
et

s
M

od
el

s
R

-1
↑

R
-2
↑

R
-L
↑

R
-S

U
↑

R
-W

E
↑

B
L

E
U
↑

S3
(p

yr
/r

es
p)
↑

B
S↑

R
ed
↓

R
el
↑

M
ul

ti
-X

Sc
ie

nc
e

V
T

0.
27

14
0.

04
90

0.
10

30
0.

07
84

0.
15

23
2.

97
73

0.
21

03
/0

.3
60

9
0.

53
30

-4
.0

71
2

-5
.8

35
2

V
T

w
/o

S
0.

26
70

0.
04

80
0.

15
53

0.
07

67
0.

15
80

3.
36

23
0.

22
02

/0
.3

66
3

0.
54

05
-6

.1
90

8
-4

.8
60

9
V

T
C

0.
26

35
0.

04
83

0.
14

99
0.

07
34

0.
16

59
4.

60
37

0.
25

61
/0

.3
88

5
0.

55
90

-7
.0

58
5

-4
.5

80
2

V
T

C
w

/o
S

0.
27

13
0.

04
68

0.
15

02
0.

07
80

0.
17

02
4.

76
15

0.
25

54
/0

.3
86

1
0.

56
21

-7
.8

40
2

-4
.2

90
8

H
T

0.
25

71
0.

04
83

0.
16

15
0.

06
92

0.
14

07
7.

15
01

0.
17

69
/0

.3
47

3
0.

53
03

-4
.6

98
7

-8
.0

37
9

H
T

w
/o

S
0.

22
16

0.
03

76
0.

14
46

0.
05

21
0.

11
00

5.
28

62
0.

14
28

/0
.3

29
5

0.
51

08
-4

.0
14

2
-1

1.
60

68

M
ul

ti
-N

ew
s

V
T

0.
24

45
0.

05
23

0.
13

01
0.

06
03

0.
14

80
2.

00
54

0.
13

80
/0

.3
21

2
0.

46
22

-5
.7

67
4

-7
.4

22
0

V
T

w
/o

S
0.

25
55

0.
05

50
0.

13
47

0.
06

51
0.

14
91

2.
01

93
0.

13
84

/0
.3

21
4

0.
46

05
-5

.2
09

8
-8

.0
48

8
V

T
C

0.
42

33
0.

14
71

0.
20

59
0.

16
25

0.
28

60
11

.3
86

1
0.

37
78

/0
.4

87
1

0.
59

55
-6

.0
96

6
3.

90
27

V
T

C
w

/o
S

0.
43

63
0.

15
55

0.
20

53
0.

16
98

0.
28

85
13

.0
15

0.
39

67
/0

.5
01

7
0.

59
16

-6
.2

86
9

3.
83

55
H

T
0.

23
49

0.
03

71
0.

13
52

0.
05

98
0.

11
54

3.
54

34
0.

10
97

/0
.3

07
4

0.
49

87
-5

.0
24

9
-1

7.
15

20
H

T
w

/o
S

0.
23

04
0.

03
84

0.
14

30
0.

05
80

0.
11

93
3.

04
99

0.
10

23
/0

.3
03

1
0.

49
66

-4
.9

43
3

-1
6.

82
05

TA
B

L
E

5.
2.

E
va

lu
at

io
n

re
su

lts
on

M
ul

ti-
X

Sc
ie

nc
e

an
d

M
ul

ti-
N

ew
s

da
ta

se
t,

bo
th

w
ith

an
d

w
ith

ou
t

th
e

do
cu

m
en

t
se

pa
ra

to
rs

.
“S

"
in

di
ca

te
s

do
cu

m
en

ts
ep

ar
at

or
s.

“R
-1

",
“R

-2
",

“R
-L

",
“R

-S
U

",
“R

-W
E

",
“B

S"
,“

R
ed

",
“R

el
"

re
pr

es
en

tR
O

U
G

E
-1

,R
O

U
G

E
-2

,R
O

U
G

E
-

L
,R

O
U

G
E

-S
U

,R
O

U
G

E
-W

E
,B

er
tS

co
re

,R
ed

un
da

nc
y

an
d

R
el

ev
an

ce
.“

py
r"

an
d

“r
es

p"
in

S3
ar

e
py

ra
m

id
an

d
re

sp
on

si
ve

ne
ss

sc
or

es
.

T
he

up
w

ar
d

ar
ro

w
(↑

)
si

gn
ifi

es
th

at
hi

gh
er

va
lu

es
ar

e
in

di
ca

tiv
e

of
be

tte
r

pe
rf

or
m

an
ce

,
w

hi
le

th
e

do
w

nw
ar

d
ar

ro
w

(↓
)

im
pl

ie
s

th
e

op
po

si
t.



5.4. Empirical Studies and Analyses 93

M
u

lt
i-

X
Sc

ie
n

ce
M

u
lt

i-
N

ew
s

12000

10000

8000

6000

4000

2000

0
0 1 2 3 4 5 6

Uncertainty Score

10000

8000

6000

4000

2000

0

w separator

w/o separator

FIGURE 5.2. The uncertainty scores of VTC models on Multi-News
and Multi-XScience dataset. The x-axis and y-axis are the value of

uncertainty scores and the number of tokens.

models on both datasets. Surprisingly, the figure reflects that separators are asso-
ciated with high uncertainty score actions which means the separators increase the
predictive uncertainty of models. Possible because the separators have no seman-
tic relations with the sources documents and separators may be regarded as noise
to increase the predictive uncertainty. The median uncertainty score of Multi-News
dataset are larger than the Multi-XScience dataset aligning with the size of datasets.

5.4.2 Quantitative Performance on Different Transformer Struc-
tures

We investigated (1) the effectiveness of different Transformer architectures for MDS:
flat Transformer and hierarchical Transformer; (2) the influences of different granu-
larities within hierarchical Transformer structure. The results are shown in Table 5.2.
In most evaluation metrics, the modified HT model (remove the graph structure) can
not achieve as good results as two flat Transformer models on both datasets. The two
potential reasons are: (1) the pipeline of the HT model is longer than the flat Trans-
former models which makes HT model hard to train. (2) the Multi-XScience and
Multi-New datasets are not long document summarization dataset. The average doc-
ument length of Multi-XScience and Multi-New are 778.08 and 2103.49. From the
experimental results, we concluded that the HT model is more suitable for lengthy
documents. This suggests that for MDS tasks with relatively short documents, flat
Transformer models are a good choice to be chosen.

As mentioned in section 5.2.2, to evaluate the influences of different granularities
within hierarchical Transformer structure, we removed the graph structure of the
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Multi-XScience Multi-News

FIGURE 5.3. Performance variation with document-level (green line)
and sentence-level (orange line) HT models on Multi-XScience and
Multi-News datasets. BLEU, Redundancy and Relevance are scaled

(0 to 0.6) to make all point in the plot boundary.

Hierarchical Transformer (HT) model and modified the local Transformer layers to
encode individual sentences or documents. Figure 5.3 shows the performances of
document-level and sentence-level HT models. All the metrics are showing better
performances with the document-level HT compared to the sentence-level HT as the
green line exceeds the boundary of the orange line in every dimension (redundancy
is the lower the better). The apparent trend implies that a higher level of granularity
is more favorable for the hierarchical Transformer structure.

x VTC
o VTC (self-supervised)
^ VTC (finetune)

Multi-News

x VTC
o VTC (self-supervised)
^ VTC (finetune)

Multi-XScience

FIGURE 5.4. The feature visualization of VTC, VTC with self-
supervised training and VTC with finetuning after self-supervised

training with Principal Component Analysis (PCA).



5.4. Empirical Studies and Analyses 95

5.4.3 Quantitative Performance on the Sensitivity of Encoder and
Decoder

To investigate the hypothesis in section 5.2.3, we selected the VTC model as the
foundation for evaluating the effectiveness of the encoder-decoder structure on the
Multi-XScience and Multi-News datasets. By examining Table 5.3, we observed
large differences in performance when introducing noise to the encoder and decoder
in highly noisy scenarios (with α = 1e-1 and α = 1e-2). Specifically, in noisy
conditions, we found that adding noise to the decoder has a more substantial impact
on performance compared to adding noise to the encoder. However, as the noise
levels decreased, the performance gaps between the two approaches narrowed. This
observation supports our initial hypothesis that the decoder is more sensitive than
the encoder. The potential reasons are: (1) errors or inaccuracies in the decoder can
have a cascading effect on subsequent tokens generated during decoding. This error
propagation phenomenon can make the decoder more sensitive to small perturba-
tions, as any mistakes or noise introduced during decoding can amplify and affect
the overall quality of the generated summary; (2) Transformer-based models often
employ an attention mechanism that allows the decoder to focus on different parts
of the encoded input during the decoding process. The decoder’s sensitivity is cru-
cial in effectively attending to relevant information, and even slight perturbations in
the encoded input can impact the attention weights and subsequently influence the
decoding process. Consequently, it underscores the crucial role played by the de-
coder in summarization tasks. These findings shed light on the high importance of
the decoder’s contribution to the overall summarization process.

5.4.4 Quantitative Performance of Different Training Strategies

The experimental results presented in Table 5.4 provides an overview of the per-
formance of VTC model trained using different pretraining strategies on the Multi-
XScience and Multi-News datasets. In the table, the VTC is trained on the original
document set and gold summary pairs. The “finetune" strategy refers to the training
of the model on the pseudo dataset (introduce in section 5.2.4) first and then fine-
tuning on the original dataset. The “self-supervised" strategy denotes training the
VTC model exclusively on the pseudo dataset. The “mix" strategy indicates training
the model using a combination of the pseudo dataset and the original dataset. By
comparing the results obtained from these different training strategies, we aimed to
identify the most effective approach for each dataset.
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For the Multi-XScience dataset, the results show that the VTC (pretrain-finetune)
strategy outperforms the VTC model trained on the original dataset across most met-
rics, indicating the effectiveness of the pretrain-finetune strategy in improving sum-
marization quality. On the other hand, the VTC (self-supervised) exhibits lower per-
formance compared to the VTC (pretrain-finetune), suggesting that just self-supervised
training not be as effective for this dataset.

Similarly, for the Multi-News dataset, the results indicate that the VTC model
achieves good performance across all metrics, with higher scores on the VTC (pretrain-
finetune) strategy, showcasing improved summarization quality. Conversely, the
VTC (self-supervised) and VTC (mix) strategy yields lower performance compared
to the other strategies.

The comparison of these different training strategies reveals that the pretrain-
finetune approach consistently leads to better summarization performance compared
to the baseline VTC model and other training strategy, highlighting its effectiveness
in improving summarization quality.

To find the potential reason why the finetune strategy works well, we visual-
ized the feature distributions of three training strategy: VTC, VTC (self-supervised)
VTC (finetune) using Principal Component Analysis (PCA) as illustrated in Fig-
ure 5.4. For the Multi-News dataset, the features comes from encoder of the VTC
(self-supervised) model and the VTC (finetuning) model exhibit overlapping, while
maintaining distance from the plain VTC model. In contrast, for the Multi-XScience
dataset, the VTC (finetune) model is more similar to the plain VTC model, but still
noticeably distinct from VTC (self-supervised) model. This observation is consis-
tent with the performance results presented in Table 5.4. In the case of the Multi-
XScience dataset, finetuning the model after self-supervised training significantly
improves the model’s performance compared to the VTC model. However, when the
model is only pretrained using self-supervised learning, it performs worse than the
VTC model. This discrepancy can be attributed to the fact that the features of the
finetuned model closely align with the VTC model’s distribution since both models
possess better representations for the final prediction. Conversely, for the Multi-
News dataset, the finetuned model exhibits only marginal improvements over the
VTC model. This observation also explains the overlap between features from the
finetuned model and the self-supervised model, as finetuning adjusts the feature dis-
tribution towards the ‘genuine’ distribution, albeit to a limited extent.

5.4.5 The Relation Between Repetition and Uncertainty

The analysis of the relationship between repetition and uncertainty are shown in Fig-
ure 5.5. In summary #1, where no repetitions occur, the uncertainties of tokens
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Summary #1

Tokens

Summary #2

Tokens

Summary #3

Tokens

Start repetition

Start repetition

FIGURE 5.5. The relationship between uncertainty scores and token
repetitions on different summaries. The X-axis represents the token
indexes and Y-axis denotes the uncertainty scores for each token. As
shown in the figures, in summary #1, no repetitions happen and the
uncertainties of tokens remain in the ‘normal’ level; however, in sum-
mary #2 and #3, the uncertainties climb up very quickly whenever the

repetition starts.
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remain within a “normal" range. This suggests that the model successfully avoids
repetitive patterns, resulting in lower uncertainty scores throughout the summary
generation process. Conversely, in summaries #2 and #3, we observed a distinct
pattern. As the repetition of tokens or phrases begins, the uncertainty scores esca-
late rapidly. By comparing uncertainty scores across different time slots, we gained
insights into the relationship between repetition and uncertainty in abstractive sum-
marization. When a repetition phenomenon occurs, we observed notable changes in
the uncertainty score, indicating a correlation between the two factors. Specifically,
as the model generates repetitive sentences or words, the uncertainty score tends to
increase. This increase in uncertainty suggests that the model becomes less confident
and more uncertain about the appropriateness or relevance of the repeated elements
within the summary. By understanding this relationship, we can devise strategies
to mitigate repetition and subsequently enhance the quality of generated summaries.
By reducing uncertainty through the minimization of repetition, we paved the way
for more accurate and reliable abstractive summarization.

5.5 Conclusion and Discussion for the Chapter

This chapter attempts to empirically examine the influences on Transformer behav-
iors from five important perspectives: document separators, Transformer structures,
the sensitivity of encoder-decoder architecture against noises, training strategies, and
the relationship between repetition and uncertainty in generated summaries. We first
explored the impact of separators on two flat Transformer and one hierarchical Trans-
former structure. We found that adding separators reduces models’ performance for
flat Transformer models and increase the predictive uncertainty of models. However,
adding separators improve the performance of hierarchical Transformer models. The
experiments show that adding separators helps the hierarchical Transformer model
aware of the document boundaries while the flat Transformer does not. It indicates
that, for models with complex structural information, adding document separators
can improve the model performance. The researchers should consider the necessity
of applying separators depending on the Transformer structure they use.

The Transformer structure exploring experiments demonstrate that a higher level
of granularity is favorable for the hierarchical Transformer structure. The experi-
ments also demonstrate the simple structure, flat Transformer, has been able to show
good performance on the Multi-XScience and Multi-News datasets than the com-
plicated hierarchical Transformer structure. The flat Transformer models are good
enough for the MDS problems that the length of documents is relatively short.
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Furthermore, we had found that adding noise to the decoder has a more pro-
nounced impact on performance compared to adding noise to the encoder. The de-
coder’s sensitivity could be attributed to error propagation during decoding and the
attention mechanism’s reliance on accurate encoding. These findings highlight the
critical role of the decoder in generating high-quality summaries and underscore its
significant contribution to the overall summarization process.

The pretrain-finetune strategy that training the model on the pseudo dataset first
and then fine-tuning on the original dataset consistently leads to improved sum-
marization performance compared to other training strategies for both the Multi-
XScience and Multi-News datasets. This finding highlight the effectiveness of the
pretrain-finetune strategy in enhancing the performance of the multi-document sum-
marization models.

Moreover, the analysis of the relationship between repetition and uncertainty pro-
vides valuable insights into improving the quality of generated summaries. The find-
ings indicate that as repetition occurs in the summaries, there is a noticeable increase
in uncertainty scores. This suggested a correlation between repetition and reduced
confidence in the appropriateness and relevance of repeated elements within the sum-
mary. By recognizing this relationship, strategies can be developed to mitigate repe-
tition and reduce uncertainty, ultimately enhancing the overall quality of abstractive
summaries. These insights contribute to the advancement of abstractive summariza-
tion techniques and open avenues for further research in improving the reliability and
effectiveness of summary generation.

We also pointed out the possible exploring direction for future MDS work: (1)
evaluate the generated summaries from multiple evaluations; (2) add the higher level
of granularity information into the models; (3) investigate the MDS method for par-
ticularly long input documents; (4) pay more attention to the decoder when design
the Transformer-based summarization models; (5) try to reduce the Sudden sharp
increase and high uncertainty score during the summary generation process.
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Chapter 6

Future Research Directions and Open
Issues

Although existing works have established a solid foundation for MDS it is a rela-
tively understudied field compared with SDS and other NLP topics. Summarizing
on multi-modal data, medical records, codes, project activities and MDS combining
with Internet of Things (Zhang et al., 2020e) have still received less attention. Actu-
ally, MDS techniques are beneficial for a variety of practical applications, including
generating Wikipedia articles, summarizing news, scientific papers, and product re-
views, and individuals, industries have a huge demand for compressing multiple re-
lated documents into high-quality summaries. This section outlined several prospec-
tive research directions and open issues that we believe are critical to resolving in
order to advance the field.

Capturing Cross-document Relations for MDS. Currently, many MDS models
still center on a simple concatenation of input documents into a flat sequence, ig-
noring cross-document relations. Unlike SDS, MDS input documents may contain
redundant, complementary, or contradictory information (Radev, 2000). Discover-
ing cross-document relations, which can assist models to extract salient information,
improve the coherence and reduce redundancy of summaries(Li et al., 2020b). Re-
search on capturing cross-document relations has begun to gain momentum in the
past two years; one of the most widely studied topics is graphical models, which can
easily be combined with deep learning based models such as graph neural networks
and Transformer models. Several existing works indicate the efficacy of graph-based
deep learning models in capturing semantic-rich and syntactic-rich representation
and generating high-quality summaries (Wang et al., 2020a; Yasunaga et al., 2019;
Li et al., 2020b; Yasunaga et al., 2017). To this end, a promising and important di-
rection would be to design a better mechanism to introduce different graph structures
(Christensen, Soderland, Etzioni, et al., 2013) or linguistic knowledge (Bing et al.,
2015; Ma et al., 2021), possibly into the attention mechanism in deep learning based
models, to capture cross-document relations and to facilitate summarization.
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Creating More High-quality Datasets for MDS. Benchmark datasets allow re-
searchers to train, evaluate and compare the capabilities of different models at the
same stage. High-quality datasets are critical to developing MDS tasks. DUC and
TAC, the most common datasets used for MDS tasks, have a relatively small num-
ber of samples so are not very suitable for training DNN models. In recent years,
some large datasets have been proposed, including WikiSum (Liu et al., 2018a),
Multi-News (Fabbri et al., 2019b), and WCEP (Ghalandari et al., 2020a), but more
efforts are still needed. Datasets with documents of rich diversity, with minimal
positional and extractive biases are desperately required to promote and accelerate
MDS research, as are datasets for other applications such as summarization of medi-
cal records or dialogue (Molenaar et al., 2020), email (Ulrich, Murray, and Carenini,
2008; Zajic, Dorr, and Lin, 2008), code (Rodeghero et al., 2014; McBurney and
McMillan, 2014), software project activities (Alghamdi, Treude, and Wagner, 2020),
legal documents (Kanapala, Pal, and Pamula, 2019), and multi-modal data (Li et al.,
2020a). The development of large-scale cross-task datasets will facilitate multi-task
learning (Xu et al., 2020a). However, the datasets of MDS combining with text clas-
sification, question answering, or other language tasks have seldom been proposed in
the MDS research community, but these datasets are essential and widely employed
in industrial applications.

Improving Evaluation Metrics for MDS. To our best knowledge, there are no eval-
uation metrics specifically designed for MDS models – SDS and MDS models share
the same evaluation metrics. New MDS evaluation metrics should be able to: (1)
evaluating the relations between the different input documents in the generated sum-
mary; (2) measuring to what extent the redundancy in input documents is reduced;
and (3) judging whether the contradictory information across documents is reason-
ably handled. A good evaluation indicator is able to reflect the true performance of
an MDS model and guide design of improved models. However, current evaluation
metrics (Fabbri et al., 2021) still have several obvious defects. For example, despite
the effectiveness of commonly used ROUGE metrics, they struggle to accurately
measure the semantic similarity between a gold and generated summary because
ROUGE-based evaluation metrics only consider vocabulary-level distances; as such,
even if a ROUGE score improves, it does not necessarily mean that the summary is of
a higher quality and so is not ideal for model training. Recently, some works extend
ROUGE along with WordNet (ShafieiBavani et al., 2018) or pre-trained LMs (Zhang
et al., 2020b) to alleviate these drawbacks. It is challenging to propose evaluation in-
dicators that can reflect the true quality of generated summaries comprehensively and
as semantically as human raters. Another frontline challenge for evaluation metrics
research is unsupervised evaluation, being explored by a number of recent studies
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(Sun and Nenkova, 2019; Gao, Zhao, and Eger, 2020).

Reinforcement Learning for MDS. Reinforcement learning (Mnih et al., 2016) is
a cluster of algorithms based on dynamic programming according to the Bellman
Equation to deal with sequential decision problems, where state transition dynamics
of the environment are provided in advance. Several existing works (Paulus, Xiong,
and Socher, 2018; Narayan, Cohen, and Lapata, 2018; Yao et al., 2018) model the
document summarization task as a sequential decision problem and adopt reinforce-
ment learning to tackle the task. Although deep reinforcement learning for SDS
has made great progress, we still face challenges to adapt existing SDS models to
MDS, as the latter suffers from a large state, action space, and problems with high
redundancy and contradiction (Mao et al., 2020). Additionally, current summariza-
tion methods are based on model-free reinforcement learning algorithms, in which
the model is not aware of environment dynamics but continuously explores the envi-
ronment through simple trial-and-error strategies, so they inevitably suffer from low
sampling efficiencies. Nevertheless, the model-based approaches can leverage data
more efficiently since they update models upon the prior to the environment. In this
case, data-efficient reinforcement learning for MDS could potentially be explored in
the future.

Pre-trained Language Models for MDS. In many NLP tasks, the limited labeled
corpora are not adequate to train semantic-rich word vectors. Using large-scale, un-
labeled, task-agnostic corpora for pre-training can enhance the generalization ability
of models and accelerate convergence of networks (Peters et al., 2018; Mikolov et
al., 2013). At present, pre-trained LMs have led to successes in many deep learning
based NLP tasks. Among the reviewed papers (Zhong et al., 2020; Lebanoff et al.,
2019; Li et al., 2020b; Pang et al., 2021; Su et al., 2020; Alambo et al., 2020), mul-
tiple works adopt pre-trained LMs for MDS and achieve promising improvements.
Applying pre-trained LMs such as BERT (Devlin et al., 2019b), GPT-2 (Radford et
al., 2019), GPT-3 (Brown et al., 2020), XLNet (Yang et al., 2019), ALBERT (Lan
et al., 2020), or T5 (Raffel et al., 2020), and fine-tuning them on a variety of down-
stream tasks allows the model to achieve faster convergence speed and can improve
model performance. MDS requires the model to have a strong ability to process long
sequences. It is promising to explore powerful LMs specifically targeting long se-
quence input characteristics and avoiding quadratic memory growth for self-attention
mechanism, such as Longformer (Beltagy, Peters, and Cohan, 2020), REFORMER
(Kitaev, Kaiser, and Levskaya, 2020), or Big Bird (Zaheer et al., 2020) with pre-
trained models. Also, tailor-designed pre-trained LMs for summarization have not
been well-explored, e.g., using gap sentences generation is more suitable than us-
ing masked language model (Zhang et al., 2020a). Most MDS methods focus on
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combining pre-trained LMs in encoder and, as for capturing cross-document rela-
tions, applying them in decoder is also a worthwhile direction for research (Pasunuru
et al., 2021b). Other promising directions in this area involve exploring pre-trained
LMs in languages other than English and specialized LMs for dealing with specific
summarization tasks, e.g. LMs pre-trained on scientific articles.

Creating Explainable Deep Learning Model for MDS. Researchers are more fo-
cused on designing deep architectures towards a certain MDS task by improving the
models performance while ignoring their interpretabilities. However, an explainable
model can reveal how it generates candidate summaries – to distinguish whether the
model has learned the distribution of generating condensed and coherent summaries
from multiple documents without bias – and is thus crucial for model building. Re-
cently, a large number of researches into explainable models (Zhang, Nian Wu, and
Zhu, 2018; Rudin, 2019) have proposed easing the non-interpretable concern of deep
neural networks, within which model attention plays an especially important role in
model interpretation (Zhou et al., 2016; Serrano and Smith, 2019). While explainable
methods have been intensively researched in NLP (Kumar and Talukdar, 2020; Jain
et al., 2020), studies into explainable MDS models are relatively scarce and would
benefit from future development.

Adversarial Attack and Defense for MDS. Adversarial examples are strategically
modified samples that aim to fool deep neural networks based models. An adversarial
example is created via the worst-case perturbation of the input to which a robust DNN
model would still assign correct labels, while a vulnerable DNN model would have
high confidence in the wrong prediction. The idea of using adversarial examples
to examine the robustness of a DNN model originated from research in Computer
Vision (Szegedy et al., 2014) and was introduced in NLP by Jia et al. (Jia and Liang,
2017). An essential purpose for generating adversarial examples for neural networks
is to utilize these adversarial examples to enhance the model’s robustness. Therefore,
research on adversarial examples not only helps identify and apply a robust model
but also helps to build robust models for different tasks. Following the pioneering
work proposed by Jia et al. (Jia and Liang, 2017), many attack methods have been
proposed to address this problem in NLP applications (Zhang et al., 2020d) with
limited research for MDS (Cheng et al., 2020). It is worth filling this gap by exploring
existing and developing new, adversarial attacks on the state-of-the-art DNN-based
MDS models.

Multi-modality for MDS. Existing multi-modal summarization is based on non-
deep learning techniques (Li et al., 2017a; Jangra et al., 2021; Jangra et al., 2020a;
Jangra et al., 2020b), leaving a huge opportunity to exploit deep learning techniques
for this task. Multi-modal learning has led to successes in many deep learning tasks,
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such as Visual Language Navigation (Wang, Wu, and Shen, 2020) and Visual Ques-
tion Answering (Antol et al., 2015). Combining MDS with multi-modality has a
range of applications:

• text + image: generating summaries with pictures and texts for documents with
pictures. This kind of multi-modal summary can improve the satisfaction of
users (Zhu et al., 2018);

• text + video: based on the video and its subtitles, generating a concise text sum-
mary that describes the main context of video (Palaskar et al., 2019). Movie
synopsis is one application;

• text + audio: generating short summaries of audio files that people could
quickly preview without actually listening to the entire audio recording (Erol,
Lee, and Hull, 2003).

Deep learning is well-suited for multi-modal tasks (Guo, Wang, and Wang, 2019),
as it is able to effectively capture highly nonlinear relationships between images,
text or video data. Existing MDS models target at dealing with textual data only.
Involving richer modalities based on textual data requires models to embrace larger
capacity to handle these multi-modal data. The big models such as UNITER (Chen
et al., 2020), VisualBERT (Li et al., 2019) deserve more attention in multi-modality
MDS tasks. However, at present, there is little multi-modal research work based on
MDS; this is a promising, but largely under-explored, area where more studies are
expected.
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Chapter 7

Conclusion

In this thesis, a collection of innovative techniques for multi-document summariza-
tion has been introduced, leveraging deep learning methodologies. These newly de-
vised approaches demonstrate both simplicity and efficacy, as substantiated by their
outstanding performance on demanding benchmark datasets.

First, we presented a generic framework to leverage linguistic knowledge to im-
prove the performance of abstractive Transformer-based summarization models. The
proposed linguistic guided attention mechanism can be seamlessly incorporated into
multiple mainstream Transformer-based summarization models and can outperform
existing Transformer-based methods by a large margin. We developed two models
based on Flat Transformer (FT) and Hierarchical Transformer (HT). The proposed
ParsingSum-HT and ParsingSum-FT incorporate dependency relations with Trans-
former’s multi-head attention for summaries generation. The experiments confirm
that utilizing dependency information from the source documents is beneficial to
guide the summaries generation process. Based on this work, we presented to en-
code 45 distinct dependency relations into a dependency relation mask and document
positional information for abstractive multi-document summarization. We conducted
extensive experiments on two benchmark datasets and the results demonstrate the su-
perior performance of the proposed two encoding methods. The analysis of various
settings of the document-aware positional encoding and linguistic-guided encoding
can help researchers understand the intuitiveness of the proposed model and could
serve as an informative reference to the MDS research community.

Moreover, we also proposed DisentangleSum, a disentangling specificity frame-
work for abstractive multi-document summarization. To optimize the specific feature
learning, we applied an orthogonal constraint to encourage the document-specific
learner to catch document-specific information. The experiments on two prevalent
datasets show the superior performances of the proposed model over other counter-
parts. Furthermore, we also provided extensive analyses that reveal DisentangleSum
exhibits broader coverage of input documents and better preservation of document-
related information.
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Finally, to examine the behaviors on Transformer based multi-document summa-
rization models, we explored the models from five important perspectives: document
separators, Transformer structures, the sensitivity of encoder-decoder architecture
against noises, training strategies, and the relationship between repetition and uncer-
tainty in generated summaries. We found that for models with complex structural
information, adding document separators can improve the model performance. The
researchers should consider the necessity of applying separators depending on the
Transformer structure they use. The Transformer structure exploring experiments
demonstrate that a higher level of granularity is favorable for the hierarchical Trans-
former structure. The experiments also demonstrated the flat Transformer models
are good enough for the MDS problems that the length of documents is relatively
short. Furthermore, we have found that adding noises to the decoder has a more pro-
nounced impact on performance compared to adding noises to the encoder. These
findings highlighted the critical role of the decoder in generating high-quality sum-
maries and underscore its significant contribution to the overall summarization pro-
cess. The pretrain-finetune strategy that trains the model on the pseudo dataset first
and then fine-tuning it on the original dataset consistently leads to improved sum-
marization performance when compared to other training strategies. This finding
highlighted the effectiveness of the pretrain-finetune strategy in enhancing the per-
formance of the multi-document summarization models. Additionally, the analysis
of the relationship between repetition and uncertainty provides valuable insights into
improving the quality of generated summaries. By recognizing this relationship,
strategies can be developed to mitigate repetition and reduce uncertainty, ultimately
enhancing the overall quality of abstractive summaries.
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